放大镜成像原理

仪器信息网放大镜成像原理专题为您提供2024年最新放大镜成像原理价格报价、厂家品牌的相关信息, 包括放大镜成像原理参数、型号等,不管是国产,还是进口品牌的放大镜成像原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合放大镜成像原理相关的耗材配件、试剂标物,还有放大镜成像原理相关的最新资讯、资料,以及放大镜成像原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

放大镜成像原理相关的仪器

  • 近年来,钙钛矿型闪烁体及钙钛矿型 X 射线直接探测器被广泛研究及报道。在发光闪烁体层面,钙钛矿纳米晶闪烁体通过溶液即可制得,成本极低,且具备全色彩可调谐辐射发光的特点。在直接探测层面,铅卤钙钛矿材料因其具备较大的原子序数、高吸收系数等优点,在 X 射线直接探测领域同样表现出非常优异的性能。卓立汉光能够提供基于 X 射线的稳态发光光谱,荧光寿命,瞬态光谱以及 X 射线探测成像的相关测量方案。能够提供全套涵盖 X 射线激发源、光谱仪、稳态及瞬态数据处理、成像测量(CMOS 成像,单像素成像,TFT 面阵成像)、辐射剂量表、辐射安全防护等,辐射防护防护满足国标《低能射线装置放射防护标准》(GBZ115-2023)。如下陈述我们几种测量方案及相关配置明细( 一 ) 稳态光谱及荧光寿命采集基于皮秒 X 射线和 TCSPC 测量原理的方法纳秒脉冲 X 射线 稳态和寿命测量数据( 二 ) X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲 X 射线实现光电流衰减测量TFT 集成的面阵 X 射线成像 成像测量结果( 三 ) 技术参数稳态光谱及荧光寿命采集基于皮秒X 射线和TCSPC 测量原理的方法包含:皮秒脉冲激光器、光激发X 射线管、TCSPC 或条纹相机。 由皮秒脉冲激光器激发“光激发X 射线管”发射出X-ray 作用于样品上,样品发射荧光,经光谱仪分光之后,由探测器探测光信号,数据采集器读取数据。皮秒X 射线测量荧光寿命原理图纳秒脉冲X 射线150KV 纳秒脉冲X 射线* 安全距离要求:a:3 米,b:6 米,c:30 米稳态和寿命测量数据NaI 样品在管电压50KeV,不同管电流激发下的辐射发光光谱 纳秒X 射线激发的荧光衰减曲线X 射线探测成像X 射线探测成像光路图X 射线探测成像及脉冲X 射线实现光电流衰减测量TFT 集成的面阵X 射线成像TFT 传感芯片规格TFT 读取系统规格成像测量结果 CMOS 成像实物图分辨率指标:TYP39 分辨率卡的X 射线图像。测试1mm 厚的YAG(Ce) 时,分辨率可以优于20lp/mm 手机充电头成像测试密码狗成像测试技术参数稳态X 射线激发发光测量光源 能量:4-50KV,功率:0-50W 连续可调,靶材:钨靶,铍窗厚度 200μm样品位置辐射剂量:0-25Sv/h光路透射和反射双光路,可切换 光谱范围200-900nm(可扩展近红外)监视器内置监视器方便观察样品发光,可拍照快门可控屏蔽快门,辐射光源最大功率下,关闭快门,样品位置辐射剂量小于10uSv/h辐射防护满足国标《X 射线衍射仪和荧光分析仪卫视防护标准》(GBZ115-2023)样品支架配备粉末、液体、薄膜样品架成像测量模块成像面积:直径20mm(可定制更大面积:120mm×80mm)成像耦合光路附件,样品测试夹具相机参数:颜色:黑白,分辨率:20MP, 5472 (H) x 3648 (V),像元尺寸:2.4μm×2.4μm,量子效率:84%@495nm,暗电流:0.001e-/pixel/s,制冷温度:-15℃,成像分辨率:优于20lp/mm瞬态X 射线激发发光测量光源皮秒脉冲X 射线源纳秒脉冲X 射线源*405nm ps 激光二极管:波长:100Hz-100MHz 可调,峰值功率:400mW@ 典型值,脉冲宽度:100ps光激发X 射线光管:辐射灵敏度:QE10%(@400nm),靶材:钨,操作电压:40KV,操作电流:10μA@ 平均值,50μA@ 最大值 电压:150KV脉冲宽度:50ns重复频率:10Hz平均输出剂量率:2.4mR/pulse数据采集器TCSPC 计数器条纹相机(同时获得光谱和寿命)示波器瞬时饱和计数率:100Mcps 时间分辨率(ps):16/32/64/128/256/512/1024/…/33554432通道数:65535死时间:< 10ns支持稳态光谱采集数据接口:USB3.0最大量程:1.08μs @16ps,67.1μs@1024ps, 2.19s@33554432ps 光谱测量范围:200-900nm时间分辨率:=5ps,( 最小档位时间范围+ 光谱仪光路系统)探测器:同步扫描型通用条纹相机ST10测量时间窗口范围:500ps-100us( 十档可选)工作模式:静态模式,高频同步模式以及 低频触发模式;系统光谱分辨率:0.2nm@1200g/mm单次成谱范围:=100nm@150g/mm静态(稳态)光谱采集,瞬态条纹光谱成像及荧光寿命曲线采集模拟带宽:500 MHz通道数:4+ EXT实时采样率:5GSa/s( 交织模式),2.5GSa/s( 非交织模式)存储深度:250Mpts/ch( 交织模式),125 Mpts/ch( 非交织模式) 寿命尺度500ps-10μs100ps-100μs 100ns-50msX 射线探测成像 方式CMOS 成像单像素探测器TFT 集成的面阵探测器配置成像耦合光路附件,样品测试夹具相机参数:颜色:黑白分辨率:20MP, 5472 (H) x 3648 (V) 像元尺寸:2.4μm×2.4μm量子效率:84%@495nm暗电流:0.001e-/pixel/s制冷温度:-15℃XY 二维电动位移台:XY5050:行程:X 轴50mm,Y 轴50mm,重复定位精度1.5μm,水平负载4Kg;XY120120:行程:X 轴120mm,Y 轴120mm,重复定位精度3μm,水平负载20KgTFT 阵列传感芯片(可提供直接型和间接型芯片):背板尺寸(H×V×T):44.64×46.64×0.5 mm,有源区尺寸(H×V):32×32mm,分辨率(H×V):64×64, 像素大小:500×500μmTFT 读出系统:成像规格:解析度:64 行×64 列,数据灰阶:支持256 灰阶显示,数据通信方式:WIFI 无线通讯,数据显示载体:手机/ 平板(Android 9.0以上操作系统、6GB 以上运行内存)辐射剂量测定辐射计量表探测器:塑料闪烁体, Ø 30x15 mm连续长期辐射:50 nSv/h ... 10 Sv/h连续短期辐射:5 μSv/h ... 10 Sv/h环境剂量当量测量范围:10 nSv ... 10 Sv连续的短时辐射响应时间:0.03 s相对固有误差:连续和短期辐射:±15% 最大137 Cs 灵敏度:70 cps/(μSvh-1 )剂量率变化0.1 to 1 μSv/h 的反应时间 ( 精度误差 ≤ ±10%) 2 s全光产额测量方案 闪烁晶体的光产额(也称为光输出或光子产额)是指晶体在受到电离辐射(如γ 射线、X 射线或粒子)激发后,发射光子(通常是可见光)的数量。光产额通常以每单位能量沉积产生的光子数来表示,单位可以是光子/MeV。光产额是衡量闪烁晶体性能的重要参数之一,它是衡量闪烁体材料性能的重要指标之一,也直接关系到该材料在实际应用中的灵敏度和效率。常见的闪烁晶体包括碘化钠(NaI),碘化铯(CsI),和氧化镧掺铈(LaBr3)等。不同的晶体材料会有不同的光产额,这取决于其发光机制、能带结构、以及材料的纯度和缺陷等因素。研究闪烁体材料的光产额对于提高其性能、拓展其应用具有重要的意义。一些常见闪烁晶体的光产额值如下:碘化钠(NaI(Tl)):约38,000 photons/MeV氯化铯(CsI(Tl)):约54,000 photons/MeV氧化铈掺杂的氧化镧(LaBr3):约63,000 photons/MeV钇铝石榴石掺杂铈离子(YAG:Ce):约14,000 photons/MeV 光产额越高,意味着该晶体能够在相同的能量沉积条件下产生更多的光子,从而在探测器中生成更强的信号,通常也会导致更好的能量分辨率。卓立汉光提供一整套包含同位素源、屏蔽铅箱(被测器件及光路)、光电倍增管、高压电源、闪烁体前置放大器、谱放大器、多道分析仪及测试软件,实现闪烁体的光产额测量。同位素源Na-22(或 Cs-137 可选),屏蔽铅箱(被测器件及光路),充分保证测试人员安全 光电倍增管 光谱范围:160-650nm,有效面积:46mm 直径,上升时间:≤ 0.8ns 高压稳压电源 提供:0-3000V 闪烁体前置放大器 :上升时间< 60ns积分非线性≤ ±0.02%计数率:250 mV 参考脉冲的增益偏移 0.25%,同时应用 65,000/ 秒的 200 mV 随机脉冲的额外计 数速率,前置放大器下降时间:信号源阻抗为 1 MΩ,则下降时间常数为 50 μs 谱放大器高性能能谱,适合所有类型的辐射探测器(Ge、Si、闪烁体等) 积分非线性(单极输出): 从 0 到 +10V0.025%噪声:增益 100 时,等效输入噪声 5.0uV rms;手动模式下,增益> 1000 时,等效输入噪声 4.5uV rms;或者自动模式下,增益 100 时,等效输入噪声 6.0uV rms温度系数(0 到 50° C)单极输出:增益为 +0.005%/'C,双极输出:增益为 +0.07%/'C,直流电 平为 +30μV/° C误差:双极零交叉误差在 50:1 动态范围内 ±3 ns增益范围:2.5-1500 连接可调,增益是 COARSE(粗调)和 FINE GAIN(微调增益)的乘积。单极脉冲形状:可用开关为 UNIPOLAR(单极)输出端选择近似三角形脉冲形状或近似高斯脉冲形状。配置专用 3kv 高压电源 2K 通道多道分析仪ADC: 包括滑动标度线性化和小于 2us 的死区时间,包括存储器传输 积分非线性 : 在动态范围的前 99% 范围内≤士 0.025%。 差分非线性 : 在动态范围的前 99% 范围内小于士 1%。 增益不稳定性 : 士 50 ppm/° C死区时间校正 : 根据 Gedcke-Hale 方法进行的延长的实时校正。 USB 接口 :USB 2.0 到 PC 的数据传输速度最高可达 480Mbps操作电脑/ 光学平台 尺寸:1500*1200*800mm台面 430 材质,厚度 200mm,带脚轮。固有频率:7-18Hz,整体焊接式支架
    留言咨询
  • [ 产品简介 ]在对较大样本进行荧光成像时,非焦平面的杂散光往往会使图像模糊,从而降低对比度和分辨率。全新蔡司结构照明Apotome 3光学切片成像组件,可搭载在开方式倒置荧光显微镜、研究级正置荧光显微镜和大视野宏观变倍显微镜等宽场显微镜上。Apotome 3可以自动识别物镜放大倍数,将与之匹配的栅格移动到光路中,利用结构照明,将栅格结构投影到样品的焦平面上,消除样本非焦平面的杂散光,再通过蔡司特有的算法生成更清晰锐利的光学切片,让您获得出色分辨率和高对比度图像。与传统宽场荧光显微图像相比Apotome 3 能够显著提高轴向分辨率,您可以获得支持三维渲染的优质光学切片,厚的样品也不例外。[ 产品特点 ]&bull 优质的光学切片:蔡司Apotome3具有三种不同几何性状的栅格,无论您选择何种放大倍率,都可以保证高分辨率, &bull 自由选择光源和染料:蔡司Apotome 3可适应荧光团和光源。因此,当实验的复杂性和需求发生变化时,您也可以灵活应对。&bull 更多结构化信息:凭借结构照明的专利算法,您甚至可通过反卷积进一步改善图像质量。更好地识别所检查对象的重要结构。[ 应用领域 ]&bull 组织学样品二维、三维荧光光切成像&bull 活细胞样品二维、三维荧光光切成像&bull 全胚胎大视野荧光光切成像 皮质神经元DNA和微管染色的宽场图像(DAPI,A488),Z stack,40X物镜(左图未使用Apotome拍摄,右图使用 Apotome拍摄)
    留言咨询
  • 动物手术放大镜 头戴式光源可以满足动物手术中对视野放大的需求,视场大,清晰度高; 头戴式设计,灵活方便; 瞳距可调,范围:54~70mm 景深长,工作更方便,工作距离:340mm、420mm、500mm 放大倍率:2.5X、3.5X 视场范围:φ70mm~φ120mm 观察景深:标称工作距离±50mm 两种型号可选:2.5倍型号:FD-501-2.53.5倍型号:FD-501-3.5 多角度视图:如果需要更大的放大倍数,更稳定的手术视野,可以选择手术显微镜:动物手术显微镜是专门针对动物解剖手术设计的光学仪器,适用于动物实验中各种骨科、外科、显微外科手术中的微血管和神经吻合手术,是在临床用手术显微镜基础上研发改进而成,更加适合大鼠、小鼠、兔子等动物实验使用。是一款用途广泛、性价比较高的精密光学仪器。 主要型号: YAN-6A 双人四目型 YAN-6B 双人四目型,配备分光器,单反相机 YAN-6C 三人六目型(助手镜的放大倍率是4倍) 产品主要特点: 采用连续变倍光学系统,成像清晰,体视感强,视野宽阔 标准配备为双人四目型镜头,两名实验人员可在同一倍率下进行观察 配备示教镜头一副 冷光源同轴内照明系统,适用于深部手术 具有三种不同焦距的大物镜,因而具有三种不同的工作距离,适用于不同深度的手术 脚控微调,轻便灵活,移动范围:40mm 高低左右调整可在任意一平衡定位,操作轻便灵活,稳定可靠 主要技术参数: 目镜倍率:12.5×主镜放大倍率:5×-25×,电动连续变倍物镜焦距:200mm工作距离:192.74mm视场直径:27.5mm视度调节范围:±5D瞳距调节范围:55-75mm照明方式:冷反射医用卤钨灯泡,15V 150W术面照度:≥50000Lx横臂伸展半径:1230mm微调焦速度:≤1.5mm/s微调焦行程:≥40mm电源电压及频率:220V±10% 50Hz±1Hz保险丝:2A/3A/15A多种功能可选选择:连续变倍;视场内照相系统,摄像系统等 也可根据实验需求,选择台式手术显微镜、冷光源等设备:SM-201TR型台式手术显微镜三目型,双轴支架,带数码相机,带中文界面的操作软件,和目镜视野同步,可进行拍照和录像操作SM-401TR型台式手术显微镜三目型,新式镜头,双轴支架,带数码相机,带中文界面的操作软件,和目镜视野同步,可进行拍照和录像操作 SM-501型双目型,摇臂式支架,加强型底座(10Kg),万向移动非常方便,支架高度34cm,最大臂展100cmSM-501TR型三目型,摇臂式支架,加强型底座(10Kg),带数码相机,带中文界面的操作软件,和目镜视野同步,可进行拍照和录像操作YAN-3D-200型 立体手术显微镜手术照明工具:冷光源采用双光纤设计,多种型号可供选择:300型(卤素光源)、303增强型(80W LED光源--推荐)、303型(20W LED光源)。采用了可靠的滤红外线技术,可见光谱区段高色温、无热作用。蛇形光纤管操作灵活,使用方便,可以进行各种角度的配光。可以插入玻璃瓶内或透明塑料袋内进行透光照相。
    留言咨询

放大镜成像原理相关的方案

放大镜成像原理相关的论坛

  • 【原创大赛】排查细管路神器-放大镜篇

    【原创大赛】排查细管路神器-放大镜篇

    相信很多同志们跟我一样,因为仪器一些微小的地方很难自己排查故障原因,今天我给大家带来福音了,放大镜真是好用,尤其是对于我们操作管路较多而且又细的仪器,我们实验室那台skalar连续流动仪管子实在是太多了,而且又很细,一旦出了什么问题,要自己去看看哪里出问题那叫一个难啊,借用步步高的一句广告词“自从有了放大镜,领导再也不用担心我的skalar了,首先来看看我们的skalar,管子多吧。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518015_2913831_3.jpg放大镜也有好多种,放大倍数不一样,价格也不一,我们实验室用的是40倍的,不过也足够了。 http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518014_2913831_3.jpg前段时间仪器老是出问题,感觉管子不干净,但是光凭自己肉眼看又看不见,下面我们来对比一下放大前后的效果图,有了放大镜后明显能看到我们的管路有蓝色的脏东西,然后我们用乙醇给它洗了个澡,最后还真解决了我们的问题。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518011_2913831_3.jpg有时候管路有效破裂也能明显看得到的,下面也是明显的证据。http://ng1.17img.cn/bbsfiles/images/2014/10/201410131014_518022_2913831_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/10/201410131009_518012_2913831_3.jpg小结这里只是给大家介绍一点经验,我们实验室用的放大器是40倍的,也足够了,如果管路更小可以用100倍的,这东西倒是也不贵,但是真的很好用,很推荐大家使用,而且除了可以用来排查管路,还可以用来排查仪器一些细微的地方,比如ICP-MS的取样锥锥孔是否变形等等。

  • ICP-OES放大镜的作用!

    各位前辈/同行,请问ICP的放大镜是如何使用的,而且用它判断谱线的元素可信吗,有时测PB,它显示都不是该元素,而是FE.不知各位同行是否有同样疑问?

放大镜成像原理相关的耗材

  • 袖珍放大镜
    袖珍放大镜◇体积小,易拿。◇10倍放大倍率,很容易看到柱端从而可以判断柱端是否是方形切割。袖珍放大镜说明包装量货号袖珍放大镜单件20124
  • 玻璃尺放大镜
    如果需要一个简单、精确的尺子来测量平面两点间的距离,这里几款玻璃尺放大镜一般是最好的选择!放大镜放大倍数是8,尺子范围150mm-600mm,有公制和英制两种。无与伦比的质量和精度。操作者无需培训或者简单训练即可使用。整体无电子部件,玻璃镜头超高的清晰度,尺子等分精确,等分线由金属铬沉积而成,这种线经久耐用。公制的精度0.1mm,英制的精度0.005英寸,每一个玻璃尺放大镜均是精致木盒包装。我们也提供校准可溯源性的玻璃尺放大镜。详细信息请联系海德公司获取。 应用领域:l 印刷Printingl 包装Packagingl 艺术品Artworkl 工业和商业照相Industrial and Commercial Photographyl 地图Mapsl PCB制造PCB Manufacturel 航海图Navigation Chartsl 其它平面测量Any other flat objects 订购信息:货号产品名称规格E02020玻璃尺放大镜CA150,尺长150mm,精度0.1mm,单放大镜个E02021玻璃尺放大镜,CA310,尺长300mm,精度0.1mm,双放大镜个E02022玻璃尺放大镜,CA710,尺长450mm,精度0.1mm,双放大镜个E02023玻璃尺放大镜,CA810,尺长600mm,精度0.1mm,双放大镜个E02068玻璃尺放大镜,CA510,尺长12英寸,精度0.005英寸,双放大镜个B02023玻璃尺,150mm,精度0.1mm个B02024玻璃尺,300mm,精度0.1mm个B02025玻璃尺,12英寸,精度0.005英寸个B02026玻璃尺,450mm,精度0.1mm个B02027玻璃尺,600mm,精度0.1mm个 价格仅供参考,详情请电询
  • 20 倍放大镜
    20 倍放大镜检查色谱柱末端以保证正确切割。毛刺,粗糙或者不垂直的切割会极大地影响色谱性能。订货信息:说明部件号20 倍放大镜430-1020

放大镜成像原理相关的资料

放大镜成像原理相关的资讯

  • 纳米“放大镜”可将光线放大一万倍
    美国威斯康星大学麦迪逊分校的科学家日前开发出一种能将光线放大一万倍的光学设备。让人称奇的是,这种神奇的“放大镜”只有几纳米大。研究人员称,该研究有望大幅提升相机弱光拍摄性能,在提高太阳能电池的转化效率上也有很大潜力。相关论文发表在近日出版的《物理评论快报》杂志上。  光在某些方面和声音很像,可以产生共振,借助这种方式可将周围的光线放大。威斯康星大学麦迪逊分校的科学家,正是借助这一原理制造出了纳米“放大镜”。它实际上是一种纳米共振器,该设备能让光的波长变短,收集大量的光能,然后在一个非常大的区域将其散射出去。这意味着它的散射光能用于成像,能像放大镜一样,放大物体的光学尺寸。  负责此项研究的该校电子与计算机工程学助理教授余宗福(音译)说:“就像琴弦能让周围的空气发生振动,产生美妙的音乐一样,这个非常小巧的光学器件能从周围吸收光线,产生让人惊讶的强大输出。”  余宗福说,他们正在开发基于该技术的光电传感器,这样的设备将能帮助摄影师在弱光条件下拍出图像质量更好的图像。在成像领域,这样的能力要显著优于传统的玻璃和树脂镜片,因为这些传统光学材料更容易受到自身尺寸和光线方向的影响。  鉴于纳米共振器能吸收大量光线的能力,该技术在提高太阳能光电转化效率方面也具有很大潜力。由于纳米共振器具有较大的光学截面,也就是说,其发光尺寸远远要大于其自身实际物理尺寸的大小,这样所带来的一个好处是,可以摆脱在类似的系统中经常会出现的、让人头痛的发热问题,让被动散热成为可能。  研究人员称,这种纳米共振器对光散射能力显著优于之前的设备,在光传导和光传感领域开辟了一条新的途径。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 全航程监测海水pH值 北冰洋成全球海洋酸化“放大镜”
    p   航程12000多海里,执行我国第九次北极科学考察的“雪龙”号9月26日回到母港——位于上海的中国极地中心码头。 /p p   在本次科考中,科考队以“雪龙”号为平台,围绕海洋酸化等热点问题,进行了深入全航程监测。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/a9f1a932-2366-451c-b917-28209df4f667.jpg" title=" 工作人员取冰.jpg" alt=" 工作人员取冰.jpg" / /p p   什么是海洋酸化?在北冰洋开展海洋酸化研究有何特别意义?目前北冰洋酸化研究存在什么困难? /p p   全航程监测北冰洋海水pH值 /p p   和全球变暖“祸出同因”, 海洋酸化同样源于人类向大气过量排放的二氧化碳。 /p p   不同的是,全球变暖是由于排入大气中的二氧化碳温室效应作用,海洋酸化是溶入海水中的二氧化碳和水发生化学反应,产生大量碳酸根和氢离子,变成北冰洋“汽水”。随着溶于海水的二氧化碳不断增加,海水pH值和碳酸钙饱和度持续下降。 /p p   走航观测是本次海洋酸化研究的一个重要组成部分。正因如此,对自然资源部海洋三所助理研究员祁第来说,从上海出发,经过日本海、鄂霍次克海、白令海,直到北冰洋高纬海区,以及自北冰洋返回上海,“雪龙”号69天的航程具有特别意义。 /p p   “船开出去后,借助船体加装的高精度pH走航观测系统,每隔20分钟,我们就能获得表层海水的高时空分辨率数据,初步统计,此次北极科考获得了两千多个点的、跨越多个经纬度的北极大空间尺度的高分辨pH走航数据。”祁第告诉记者。 /p p   海洋酸化是个很缓慢的过程,如果精度不高这种变化根本看不到。祁第说,这次科考中除了pH走航系统能进行全航线监测外,还设置了40多个水文站位。水文站位采样,是将重达200多公斤的CTD放入海中进行相关作业。CTD由24个10升的采水瓶和一些测试仪器组成。每下降到一定深度,采水瓶会自动采集海水样品。船上实验室的电脑也会实时接收并显示仪器观测到的海洋数据。 /p p   祁第告诉记者,此次作业中,CTD下沉至4000多米的海底,一般需经过4个多小时,才能完成作业。尽管采样工作量大,却是获取海洋全水深酸化数据的最可靠手段。此外,水文站位的表层数据还可以和走航数据进行比对校正,确保了走航观测数据精度的可靠性。 /p p   为了解海冰覆盖下的海水酸化状况,本次考察设置了9个短期冰站和1个长期冰站。当船到达某一个冰站,工作人员将搭乘从船上放下的小艇,行至浮冰上,借助冰芯钻取及采集手段、半自动采水系统采集样品,并利用海洋环境多参数分析仪,现场分析温度和盐度。但冰站作业却是探究海冰融化驱动酸化机制的最直接办法。 /p p   酸化比太平洋或大西洋等快4倍多 /p p   1999年,经国务院批准,我国首次北极科学考察队搭乘“雪龙”号极地科学破冰船首航北冰洋。当年的科考任务中,把如今仍不被很多人所熟悉的海洋酸化研究列入其中,正是时任领队兼首席科学家陈立奇研究员主持。 /p p   上世纪80年代,作为我国最早选派到美国学习全球变化科学的学者之一,陈立奇参与了“海气实验计划”的全球计划。大量实践和研究使他敏锐地意识到,人类活动对全球变化的作用,已经接近并超过自然变化的强度和变率。 /p p   “从工业化到本世纪初,海洋平均pH下降0.1的时间,从每百年单位进入每十年。”谈及研究的初衷,陈立奇回忆,当时的推测是,在这种全球变化背景下,作为生态系统结构简单、对气候和环境变化也最敏感的地区,北冰洋会首先感应到这种酸化加速并被放大。 /p p   过去20年,北极升温幅度是全球平均升温的6.7倍。北极快速升温导致北冰洋海冰大量融化,每年夏季开阔水域超过1000万平方公里,高浓度的二氧化碳容易入侵北极海水,导致其上层水体的酸度升高。 /p p   与此同时,全球变化和北极变暖引起的北极海洋环流和大气模态异常,让北冰洋酸化雪上加霜。北冰洋海冰覆盖面积快速后退,诱发太平洋携带“腐蚀性”的酸化海水大范围入侵,这也是导致北冰洋酸化海水快速扩张的最主要原因。 /p p   如今多项研究已证明,北冰洋是全球海洋酸化“领头羊”。 /p p   “北冰洋是我们观测到的第一个如此迅速且大范围、长时间酸化加重的大洋,比在太平洋或者大西洋观测到的结果要快4倍以上。”祁第说,历经9次北极科考,基于对过去20年来所有横穿北冰洋航次数据的精细分析,结合历次我国北极科考航次的数据集成后发现,北冰洋酸化水体以每年1.5%速度快速扩张,并预估酸化水体将在本世纪中叶覆盖整个北冰洋。 /p p   组成全球观测网,用数据说话 /p p   2016年,一则新闻引发关注。在澳大利亚东部海岸绵延2300公里的“国宝”大堡礁,由于珊瑚大规模白化,已导致北部和中部区域约35%的珊瑚死亡或濒临死亡。白化现象最严重的部分珊瑚礁中,一半以上珊瑚已经死亡 剩余珊瑚中有一部分无法从白化恢复正常,死亡比例将进一步上升。 /p p   海洋酸化带来的影响打破了地理边界。 /p p   在北冰洋,翼足目类海螺是北冰洋食物链中重要的一环,是北极三文鱼和鲱鱼重要的食物。2013年发布的《北极海洋酸化评估:决策者摘要》,指出北极海洋正在酸化,并对海洋生物和渔业资源构成威胁。 /p p   祁第解释,在pH值较低的海水中,为了保护自己,这些钙化生物会长得越来越小、外壳越来越厚。作为饵料,它们的价值也会下降,这将影响渔业和水产养殖等,进而通过食物链破坏整个生态系统。 /p p   从时间横轴来看,从第三次北极考察开始,我国北极科考酸化研究安装了船载走航二氧化碳观测系统,不仅可以观测海洋吸收二氧化碳的量和潜力的变化,还可以为评估海洋酸化提供重要数据 基于中美国际合作,第四次北极科考开发的净群落生产力走航观测系统,扩展了生物过程对海洋酸化的影响研究和贡献评估。 /p p   祁第表示,当前海洋酸化演化成全球生态环境危机,尽管在北冰洋开展海洋酸化研究有着“一叶而知秋”的重要意义,但也面临重重困难,数据是一大瓶颈。 /p p   目前来自欧盟、美国、加拿大、日本和韩国等的科学家,都对北冰洋海洋酸化的研究给予了高度关注,并对北极陆架海域和南部海盆海水的酸化状况、海冰融化、生物过程、太平洋冬季水入侵影响等进行了研究。面对全球大洋研究最为匮乏的区域之一,这些国家的科研人员同样受困于高时空尺度的数据。 /p p   几年前我国提出了以北冰洋和北太平洋酸化为重点海区的观测网计划(nPAOA-ON)。“我们对北冰洋酸化的研究表明,在全球气候变化驱动下的海洋酸化没有国界,人类需要携手聚焦典型海域酸化实时监测,组成全球观测网并对酸化趋势和影响评估,采取应对和减缓措施,以构筑保障海洋生态屏障。”陈立奇说。 /p p   此次科考中,我国同样邀请了法国、美国科学家,乘坐“雪龙”号采集海洋酸化数据,就这一全球环境热点问题开展科学合作。 /p p   “就目前的研究而言,海洋酸化的损害后果仍难以评估。”但祁第可以肯定的是,要了解酸化对海洋生态系统意味着什么,需要用数据说话,开展长期监测研究。 /p

放大镜成像原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制