当前位置: 仪器信息网 > 行业主题 > >

校准曲线的标准

仪器信息网校准曲线的标准专题为您提供2024年最新校准曲线的标准价格报价、厂家品牌的相关信息, 包括校准曲线的标准参数、型号等,不管是国产,还是进口品牌的校准曲线的标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合校准曲线的标准相关的耗材配件、试剂标物,还有校准曲线的标准相关的最新资讯、资料,以及校准曲线的标准相关的解决方案。

校准曲线的标准相关的资讯

  • 【小坛微课】《校准曲线的建立》这个课程, 真是绝了!
    本期坛墨微课堂给大家讲解的内容是校准曲线的建立:最小二乘法和相对响应因子法。带大家了解定量过程的校准曲线是如何建立,如何选择和使用的。 主讲人 那晶晶坛墨质检技术服务总监本期课程 1、介绍校准曲线的概念2、如何使用最小二乘法建立校准曲线3、如何使用相对响应因子法建立校准曲线4、两种校准方式的区别和应用场景5、建立校准曲线需要的注意点课程链接:https://www.gbw-china.com/ns_detail/959.html
  • VOC手工监测-校准曲线绘制避坑指南 (上)-北京博赛德
    在实验室VOC手工监测实验中,校准曲线属于实验室质量控制的范围,一个好的校准曲线不但可以对目标物质进行准确的定性定量,而且能评价稀释系统、浓缩系统、分析系统等是否正常。校准曲线在绘制过程中经常会遇到各种各样的问题,北京博赛德应用工程依据多年经验总结出这份-校准曲线绘制避坑指南,对常见问题进行总结,分析可能的原因并提出有效的解决措施。一、绘制方法及要求绘制校准曲线浓度点数量不少于5个(不含零点),浓度范围应根据环境空气中目标化合物的浓度进行调整。一般情况下,BCTdi浓度点建议≤0.5ppbv,BCT高浓度点建议≤20ppbv。目标物相对响应因子的相对标准偏差(RSD)应≤30%或曲线方程的相关系数≥0.990。采用非线性曲线方程时,应BCT少采用6个浓度点进行校准。二、校准曲线的质控1、标气加湿用于配制标气的真空罐,在配制前应作加湿处理,相对湿度在40-50%之间为宜。加湿后罐内的水蒸气可以置换罐内表面的气体,使其保持在气相,减少内壁对标气的吸附。标气的湿度不足可能导致目标物不能完全地从标气罐或管线中转移到预浓缩仪。同时,环境空气样品存在一定的湿度,对标气加湿可以保证样品与标气之间的基质相近,有利于高沸点和活性组分的分析。2、使用两罐标气建立校准曲线时宜BCT少配置高低两个浓度的标气(建议2ppbv和10ppbv)。当标气配制或保存环节出现问题时,只有1罐标气不容易发现问题,且两个浓度的标气有利于发现系统中存在的吸附或残留等问题。3、单点质控分析测试期间每天分析一次单点质控标气(不能与校准曲线使用相同的标准使用气),评估校准曲线的有效性。未完,待续
  • VOC手工监测-校准曲线绘制避坑指南 (中)-北京博赛德
    VOC手工监测-校准曲线绘制避坑指南 (上)中,我们聊完了绘制方法及要求、校准曲线的质控,接下来我们看看一些常见问题并给出分析。三、常见问题分析1、曲线线性不好当校准曲线RSD超过30%时,可能的原因和解决办法包括:a. 个别物质校准曲线BCT个点因为浓度低做不好,可以在曲线点数满足要求的情况下舍掉BCTdi点;b. 内标不稳定,当内标峰面积的变化超过BCT近一次校准曲线内标峰面积均值的±40%时,表明仪器状态不稳定,需要进一步查找原因;c. 标准气体配制时平衡时间不够,这会导致部分浓度点测试时浓度不稳定。因此在配制标气时每一级稀释都需要平衡BCT少1个小时,对于一些高沸点物质需要的平衡时间可能更长。2、曲线正截距a. 若所有物质的校准曲线均出现正截距情况,可能是低浓度点的进样体积小,导致体积计量不准,这种情况可以采用低、高两个浓度标气来绘制校准曲线,避免小体积进样。对于不使用冷冻剂的预浓缩系统,标气的压力过大也会导致该情况,在配制标气时BCT终罐压力避免过高,或者给标气罐加装减压阀。b. 若部分物质(如高沸点物质等)校准曲线出现正截距,可能是整个系统中有目标物残留,可排查以下环节:(1)延长预浓缩系统烘烤时间或提高烘烤温度,判断预浓缩仪是否有残留;(2)排查清罐和配气系统是否安装除烃阱,或测试不同体积的氮气空白,判断氮气是否有残留;(3)运行不同体积的吹扫过程,判断氦气是否有残留;(4)进不同体积的内标气,判断内标中是否有目标物;(5)若以上环节均没有问题,残留很可能出现在标气罐上,在清洗标气罐时,建议加热加湿清洗,增加清洗循环次数;在清洗完成后进行罐清洗空白抽查;专罐专用,标气罐避免与污染源采样罐混用。未完待续
  • VOC手工监测-校准曲线绘制避坑指南 (下)-北京博赛德
    VOC手工监测-校准曲线绘制避坑指南 (中),我们总结了两个常见问题,今天我们继续探讨校准曲线的另外两个问题:3、曲线负截距a. 若所有物质的校准曲线均出现负截距情况,可能是低浓度点的进样体积小,导致体积计量不准,可以采用低、高两个浓度标气来绘制校准曲线,避免小体积进样。也可能是系统漏气,需要对系统进行检漏。b. 若部分物质(如高沸点物质等)校准曲线出现负截距,可能是整个系统对目标物有吸附,可初步排查以下环节:(1)确保系统与样品接触的部分均经过惰性涂覆,且有惰性测试报告;(2)清洗离子源,确保质谱离子源干净;(3)确保捕集阱温度传感器经过校准,仪器方法设置合理。若初步排查没有问题,表明预浓缩系统或采样罐被颗粒物污染,当颗粒物进入采样罐或分析系统时,会对部分目标物有一定吸附,影响测试结果。可排查以下环节:(1)提高预浓缩系统的烘烤温度,延长烘烤时间,根据色谱柱的内径调大柱流速,同时打开分流阀和进样阀,判断预浓缩系统是否被污染;(4)用高纯氮气对样品管线进行吹扫或用甲醇清洗,判断样品管线是否被污染;(5)若以上环节均没有问题,需要对M1、M2、M3进行逐一排查,判断三个冷阱是否被污染,若被污染需要进行更换。当系统出现颗粒物污染时,解决措施比较复杂,耗费人力物力。因此在用采样罐采集环境空气样品时需要加装颗粒过滤装置,避免颗粒物进入采样罐进而污染分析系统;在日常使用时,定期检查过滤装置是否堵塞,定期清洗或更换过滤器,这也可以减少颗粒物对采集的样品产生负面影响的可能性。 4、两罐标气绘制校准曲线的问题使用两罐标气绘制校准曲线可以避免小体积进样时体积计量不准,有利于发现标气配制或保存环节出现的问题以及系统中存在的吸附或残留等问题。不过使用两罐标气绘制校准曲线会出现新的问题,比如每罐标气各自浓度点的线性很好,但校准曲线总体线性不好,并出现正截距或负截距现象。a. 若出现正截距情况,可能是低浓度标气罐没有清洗干净,罐中有目标物残留,可以重新清洗标气罐、增加清洗循环次数,并在日常清洗完成后进行罐清洗空白抽查;也可能是在配气、分析过程中引入了实验室空气,需要在配气和分析前注意:配气前先用高纯氮气吹扫管路,分析前先不要打开标气罐阀门,用预浓缩系统对管路抽真空后再打开阀门。 b. 若出现负截距情况,可能是低浓度标气罐被颗粒物污染或惰性涂层被破坏,导致目标物在罐中被吸附。在日常测试时要专罐专用,避免标气罐与采样罐混用,并且在罐子没有连接仪器时要及时盖上密封帽,避免颗粒物通过阀门进入罐子;此外,还需定期对在用罐子进行惰性检查,保证在用罐子每3年BCT少被检查1次。 影响校准曲线的因素众多,涉及标气罐、清洗、配气、预浓缩、分析等环节的方方面面;校准曲线出现的问题也不尽相同,正截距还是负截距,所有物质还是部分性质相同的物质等等。校准曲线绘制避坑指南分享BCT此完结,本文总结的现象、问题、原因、解决方法可能有所遗漏,欢迎大家留言一起讨论!
  • 条纹相机校准用-黑体校准积分球光源
    在开发用于测量光源色温 (CCT) 的相机系统时,对其进行正确的校准以提供准确的读数是非常重要的。通常使用已知温度的标准黑体光源来完成校准。 一家研究机构需要一个可以模拟 5000K 和 2856K 曲线的黑体光源来校准他们正在开发的条纹相机。 客户要求该系统尺寸足够小,可通过 340 mm的开口孔安装到用于其测试配置的腔室中。 图1 条纹相机(源于网络图片)Labsphere(蓝菲光学)为客户提供了一个准确、安全、易于使用且可以轻松集成到他们的测试环境中的黑体光源。系统中的 8 英寸的积分球有一个 2 英寸的开口,并配备了几个高级组件,使其能够满足客户的规格要求:图2 Labsphere(蓝菲光学)提供的黑体校准积分球光源图3 标准化测量辐亮度和5015K黑体曲线两个卤素灯,可在开口处提供高达 40,000 cd/m2 的光通量;开口端的色彩平衡 Omega 滤光片可调整 CCT 并将光谱输出完美匹配黑体曲线;硅探测器组件:用于测量可见光光谱通量的;以及光谱仪:用于测量两次测试之间的波长分布;-两个探测器的滤光片组件,包括一个快门滑片、附加色彩平衡 Omega 滤光片和一个用于第三个滤光片的滑片特定应用的安装底板,设计用于安装在腔室中,以及 3米长的电缆,使电源机架和计算机能放在外面使用;制冷风扇,以防止意外灼伤和设备损坏。特点图4 面均匀性-97.5%具有 97.5% 的面均匀性,每次测试都能保证准确的结果;设计灵活,客户可使用一个系统在多种温度下校准相机;光谱输出与客户要求的黑体曲线完美匹配,提供与标准黑体光源相同的精度;使用 Labsphere (蓝菲光学)的 HELIOSense 软件可以轻松对每个组件进行微调控制以及实时数据收集和可视化;Labsphere(蓝菲光学) 保持与客户密切沟通,使客户能够获得专为他们的测试环境设计和构建的系统;提供的探测器可确保灯准确校准,并且提供可靠地测试数据。
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 红外分光测油仪的检测范围及校准方法
    红外分光测油仪是一款可以用于地表水、地下水、生活污水、工业废水、土壤中的矿物油和动植物油及废气中油烟和油雾排放检测的仪器设备,现在使用越来越广泛,今天小编就来介绍一下红外分光测油仪的相关情况。红外分光测油仪检测范围:红外分光测油仪检出限:DL≤0.04mg/L(四氯乙烯空白液测定11次的3倍SD)方法检出限:检出限为0.06mg/L;当样品体积为500ml,萃取液体积为50ml时(HJ637-2018标准)最低检出浓度:0.003mg/L样品测量范围:0~100%油(富集和稀释)基本测量范围:0.0-800mg/L重复性:RSD ≤ 0.6%(30-80mg/L 油样测定 11 次 )准确度误差:≤2%相关系数:r0.999扫描速度:全谱扫描,快速模式45 秒钟/次,精密模式3分钟/次波数范围:3100cm-1 ~ 2800cm-1 (即 3200nm ~ 3570nm )红外分光测油仪如何校准?1.选择:选择一条空白检测的曲线作为检测页背景线条;2.清空:将已选择的背景曲线清空,检测页将不显示背景曲线;3.校正系数计算:根据上方所选的四类样品计算出XYZF的值;4.保存:将计算出的XYZF的值进行保存;5.选取数据:选取用于计算标准曲线法参数的数据;6.计算:根据所选数据计算出相应公式;7.清空:将已保存的标准曲线法参数清除;8.保存:将计算得出的标准曲线法参数进行保存。红外分光测油仪校准页为出厂前对光路、基本波长和三个检测点进行校准,由于红外分光测油仪出厂前已经校准完毕,用户不需要对其进行设置,直接进行样品检测即可。
  • 气相分子吸收光谱仪的计量校准方法
    p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。 /span /p p   气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。 /p p   气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。 /p p   1.气相分子吸收光谱仪工作原理及特点 /p p   气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。 /p p   2.校准用主要仪器与试剂 /p p   气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /p p   盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /p p   柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /p p   磷酸:10%水溶液 /p p   过氧化氢:30% /p p   实验所用试剂均为分析纯 /p p   实验用水为高纯水 /p p   校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 01.png" src=" http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg" / & nbsp /p p   3.校准条件 /p p   3.1环境条件 /p p   环境温度:15~35℃ 环境相对湿度:≤85%。 /p p   室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。 /p p   3.2仪器安装及工作条件 /p p   仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。 /p p   工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 02.png" src=" http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg" / /p p   4.校准项目和校准方法 /p p   每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。 /p p   参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。 /p p & nbsp /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" 03.png" src=" http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg" / /p p   4.1检出限 /p p   将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。 /p p   检出限按式(1)计算: /p p   cL=3s/b(1) /p p   式中:b——工作曲线的斜率 /p p   s——空白样测定值的标准偏差,mg/L /p p   cL——测量检出限,mg/L。 /p p   4.2校准曲线绘制 /p p   4.2.1亚硝酸盐氮的测定 /p p   用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。 /p p   4.2.2硫化物的测定 /p p   用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。 /p p   4.2.3氨氮的测定 /p p   用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度 /p p   x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。 /p p   4.3定量重复性 /p p   将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 04.png" src=" http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg" / & nbsp /p p   5.不确定度评定 /p p   气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。 /p p   5.1实验数据 /p p   3种标准物质的实验数据列于表4、表5。 /p p style=" TEXT-ALIGN: center" img title=" 05.png" src=" http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg" / /p p   5.2不确定度评定 /p p   仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。 /p p   5.2.1重复性测量引入的标准不确定度u(s) /p p   输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度: /p p    /p p style=" TEXT-ALIGN: center" img title=" 06.png" src=" http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg" / /p p & nbsp /p p & nbsp /p p   5.2.2校准曲线引入的标准不确定度u(b) /p p   校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 07.png" src=" http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg" / /p p & nbsp /p p & nbsp /p p   式中2%为标准物质的定值不确定度。 /p p    /p p style=" TEXT-ALIGN: center" img title=" 08.png" src=" http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg" / & nbsp /p p   5.2.3合成标准不确定度的评定 /p p   由式(2)求得s的灵敏度系数: /p p   c1=3/b=3/0.0625=48(mg/L) /p p   同样斜率b的灵敏度系数: /p p   c2=–3s/b2=–0.0819(mg/L) /p p   根据式(2)求得检出限测量的不确定度: /p p style=" TEXT-ALIGN: center" img title=" 09.png" src=" http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg" / /p p   5.2.4扩展不确定度的评定 /p p   取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度: /p p   U=kuc=2× 0.0032=0.0064(mg/L) /p p   参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。 /p p style=" TEXT-ALIGN: center" img title=" 10.png" src=" http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg" / /p p   6结语 /p p   结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。 /p p   参考文献 /p p   [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999. /p p   [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4. /p p   [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20. /p p   [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57. /p p   [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367. /p p   [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33. /p p   [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002. /p p   [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]. /p p   [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]. /p p   [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]. /p p   [11]JJF1094–2002测量仪器特性评定[S]. /p p style=" TEXT-ALIGN: right"   施江焕,李蓓蓓 /p p style=" TEXT-ALIGN: right"   (宁波市计量测试研究院,浙江宁波315103) /p
  • 小奥课堂:pH校准标准操作程序 (SOP)
    pH校准标准操作程序(SOP)的目的是为常规校准步骤提供一个方法,以保证pH测试的精度。 推荐设备pH计pH电极和温度电极磁力搅拌器和搅拌子50毫升的烧杯和200毫升的废液杯pH 4.01 缓冲液或同等缓冲液pH 7.00缓冲液或同等缓冲液pH 10.01 缓冲液或同等缓冲液表面皿或封口膜去离子水或者超纯水校准频率至少要在使用仪器进行测量前的当天进行校准。在一天测量结束时进行校准后检查,以确定仪器是否偏离校准。 pH校准和测试建议1. 根据样品的pH值选择合适缓冲液标准液,样品的pH值应该在选择的缓冲液值之间。如果样品的pH值未知,则需要三种标准品进行校准:一种接近于7pH值,一种至少低于5 pH值的缓冲液,另一种至少高于9pH值的缓冲液,如果样品的pH值不在选择的校准溶液范围内,那么需要重新选择合适的校准溶液。2. 如果电极是可填充的,请在校准和测量过程中打开填充孔,以确保填充液通大气。电极内部的填充液液位必须比缓冲液或样品液位至少高出两厘米。3. 在校准/测试缓冲液或样品之间,用去离子水冲洗,并用滤纸吸去多余的水。然后再放入下一个缓冲液或样品。不要摩擦或擦拭电极玻璃球泡,减少极化引起的误差。4. 请勿重复使用缓冲溶液,也不要将使用过的缓冲溶液倒回到原来的存储容器中。5. 用磁力搅拌器适度匀速地搅拌缓冲液或者样品。电极的准备根据电极用户指南或说明书中的说明准备pH电极。校准之前,将电极存放在pH电极保存液中。 校准缓冲液准备1.在校准之前,将约30 mL的pH 10.01缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。2.在校准之前,将约30 mL的pH7.00缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。3.在校准之前,将约30 mL的pH 4.01缓冲液倒入50 mL的烧杯中,并用表面皿或封口膜覆盖烧杯。4.再分别将约30 mL的pH 10.01、7.00和4.01缓冲液倒入单独的50 mL烧杯中。在校准过程中,将这三个烧杯中的缓冲液作为润洗液。5.pH读数与温度有关,让所有缓冲液达到并保持在相同的温度。 校准1. pH读数与温度有关,让所有缓冲液放至环境温度。如果缓冲液温度不在25°C,建议进行温度补偿。使用NIST标准温度传感器测量缓冲液的温度,然后将温度手动输入到仪表中,或使用温度传感器将缓冲液的温度自动传输到仪表。2.按照上述“校准缓冲液准备”部分所述准备的pH 10.01缓冲液,pH 7.00缓冲液和pH 4.01缓冲液,取下校准烧杯的表面皿或者封口膜。3.首先用去离子水冲洗pH电极,然后在pH 10.01缓冲液润洗烧杯中润洗电极。请确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。4.将电极放入pH 10.01缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。5.在仪表上开始校准步骤。6.等待在pH 10.01缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表能自动识别缓冲液,显示温度补偿后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。7.仪表自动识别正确的缓冲液值后,准备下一个校准点。8.首先用去离子水冲洗pH电极,然后在pH 7.00缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。9.将电极放入pH 7.00缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。10.等待在pH 7.00缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表应自动识别缓冲液,显示温度补偿后后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。11. 仪表自动识别正确的缓冲液值后,准备下一个校准点。12.首先用去离子水冲洗pH电极,然后在pH 4.01缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准的缓冲液烧杯中润洗电极。13.将电极放入pH 4.01缓冲液校准烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。14.等待在pH 4.01缓冲液中的读数稳定。如果手动输入了缓冲液的温度或使用了自动温度补偿的温度电极,仪表应自动识别缓冲液,显示温度补偿后后的pH值。如果仪表无法自动识别缓冲液,请查看表1输入对应温度的pH缓冲液的值。15.仪表自动识别正确的缓冲液值后,操作仪表进行校准结果保存并结束校准。16.用去离子水冲洗pH电极,然后存放好电极。* 注意:至少用两种缓冲溶液每天进行电极斜率测试,斜率应为95%至102%。 校准验证1.使用与校准相同的缓冲液,或按照“校准缓冲液准备”部分中的说明准备新鲜的缓冲液。打开校准验证烧杯。2.首先用去离子水冲洗pH电极,然后在pH 10.01缓冲液润洗烧杯中润洗电极。确保在废液杯中用去离子水冲洗电极,以防止缓冲液污染。切勿在用于校准验证的缓冲液烧杯中润洗电极。3.将电极放入pH 10.01缓冲液校准验证烧杯中,使电极头和液接界完全浸入缓冲液中,并以适中的速率搅拌缓冲液。4.在仪表上按键读数。5.等待读数稳定,然后记录缓冲液的pH和温度。6.用pH 7.00缓冲液重复步骤2至5,然后再用pH 4.01缓冲液进行测试。7.将记录的缓冲液的pH和温度值与表1中列出的值进行比较。8.用去离子水冲洗pH电极,然后将电极存放在pH电极存储溶液中,直到准备好进行测量为止。
  • 国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》发布
    《核电厂流出物放射性监测技术规范(试行)》(国核安发[2020]44 号)(以下简称“技术规范”)由国家核安全局颁布,于2020年9月1日起施行。核电厂液态流出物中总β放射性监测是技术规范明确规定的监测项目之一,为了统一和规范各监测单位对核电厂液态流出物中总β放射性的监测工作,生态环境部组织编制了国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》,相关意见和建议反馈日期至2024年1月26日。总β放射性是指核电厂液态流出物中各种核素的β放射性活度浓度的总和,它不包括3H、14C的放射性贡献。本标准为首次发布。本标准规定了核电厂液态流出物总β放射性活度浓度的测量方法。本标准由生态环境部核设施安全监管司、法规与标准司组织制订。标准主要起草单位:生态环境部辐射环境监测技术中心(浙江省辐射环境监测站)。本标准规定了核电厂运行状态下液态流出物总β放射性活度浓度的测量方法。本标准适用于核电厂运行状态下液态流出物总β放射性活度浓度的测量,事故状态下参考使用。现行常用水中总β放射性测量标准有:(1)《水质 总β放射性的测定 厚阿源法》(HJ899-2017)原环境保护部发布,该标准适用于地表水、地下水、工业废水和生活污水中总β放射性的测定。(2)《生活饮用水标准检验方法第 13 部分:放射性指标》(GB5750.13-2023)中华人民共和国国家市场监督管理总局和国家标准化管理委员会发布,适用于测定生活饮用水和/或水源水中β放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总β放射性活度浓度。(3)《饮用天然矿泉水中总β放射性的测定方法 蒸发法》(GB8538-2022)中华人民共和国国家卫生健康委员会和国家市场监督管理总局发布,该标准采用薄样法和活性炭吸附法,适用于饮用天然矿泉水中总β放射性的测定。(4)《水中总β放射性测定 蒸发法》(EJ/T900-1994)中国核工业总公司发布,适用于饮用水、地表水、地下水和工业排放废水中放射性核素的总β放射性的测定,也可用于咸水或矿化水中放射性的测定。(5)《地下水质检验方法》(DZ/T0064.1~0064.80-2021)中华人民共和国自然资源部发布,采用放射化学法,适用于地下水总β放射性的测定。(6)《煤矿水中总α和总β放射性测定方法》(MT/T744-1997)。原中华人民共和国煤矿工业部发布,采用比较测量法,适用于煤矿矿井水,深井水总α和总β放射性测定。附件1  征求意见单位名单  国家能源局综合司  国家国防科技工业局综合司  各省、自治区、直辖市生态环境厅(局)  新疆生产建设兵团生态环境局  生态环境部各地区核与辐射安全监督站  中国环境监测总站  生态环境部核与辐射安全中心  国家海洋环境监测中心  中国核工业集团有限公司  中国广核集团有限公司  国家电力投资集团有限公司  中国华能集团有限公司  中国原子能科学研究院  中国辐射防护研究院  苏州热工研究院有限公司  抄送:生态环境部辐射环境监测技术中心。附件2、核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿).pdf附件3、《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》编制说明.pdf
  • “你真的了解电子天平吗?”之三——大有讲究的“校准”术
    前情回顾在本系列上一期关于电子天平水平调节的分享中,小编主要针对水平调节的必要性、原理、以及调节方法等方面进行了详细的梳理和通俗易懂的阐述,特别是就容易搞错的调节规则与手法为大家总结了详细的法则,相信小编手把手式的经验传授应该能为大家的实际操作起到实质性的帮助吧。水平调节的话题告一段落,本期小编将搬上天平的前期准备工作中最重要也是最有讲究的一环——校准,那么在天平的校准中,又有哪些值得关注的点呢? 老司机也难免会混淆的微妙概念 早在中学物理课本里,我们就学过物体的重量G=mg(m为物体的质量,g为重力加速度),对于同一个物体,无论把它放置在地球上的任一位置,它的质量都是不会发生变化的。然而,重力加速度g的值在地球上的不同地方是会有微小差异的,因此同一物体在不同地方的重量是不相同的。而电子天平则是采用电磁力与被测物体的重力相平衡的原理来测量物体的重量,并经过内部程序计算和显示出物体的质量,这与托盘天平的称量原理是不同的,所以就会出现同一台电子天平在不同地方称量同一个物体会显示不同的质量结果。此外,诸如温度、湿度等环境因素也会影响电子天平的传感器,导致称量结果的误差。 为了避免不确定因素带来的不良影响,就需要在使用电子天平之前进行校准,并在使用周期中进行定期的校准,特别是在对称量结果准确度和精确度敏感的应用中。校准(Calibration),是通过一组称量活动,来检测天平的各项计量性能,包括误差和不确定度的分析等。作为一种良好的称量习惯,校准能够有效地保证称量的可靠性。通过校准,能够检测出天平的工作性能,避免物料浪费、返工、过渡使用后的产品召回,定期校准并执行日常测试是降低相关风险的最佳方法。 然而,对于一字之差的“校正”,含义却有微妙的差别。校正(Adjustment),又称标定,是在测量系统中进行的一组操作,提供与将要测量的数量的给定值一致的规定指示。天平在投入使用前、工作一段时间以后、或者变更位置后,都需要进行校正,以消除重力加速度、环境干扰因素等导致的称量误差。通常,需要使用高精度的标准砝码来对天平进行量程校正。综上所述,通过定期的校准和校正,可以减少天平的称量误差,并且对天平的计量性能有一个全面的把握,确保称量结果满足实验和生产的要求。 在日常工作中,大家往往比较容易混淆“校准”和“校正”的概念,对于这种严格意义上微妙差别,习惯上大家会有一定程度的通用性,校正也可以被认为是狭义上的校准,本文接下来的内容主要是在此基础上进行讨论。 走近极致考究的校准术A. 关于砝码的学问谈到校准,起到至关重要作用的就是砝码。砝码是具有一定物理特性和计量特性且能够复现质量值的一种实物量具,关于其形状、尺寸、材料、表面状况、密度、磁性、质量标称值、最大允许误差等指标都有非常严格的规定。作为标定、校验衡器的最普遍也是最重要的工具,国际法制计量组织(OIML)对砝码进行了明确的等级划分,共分为9个等级:E1、E2、F1、F2、M1、M1–2、M2、M2–3、M3,等是按照不确定度来分,等砝码有修正值;级是按照示值误差来分,级砝码没有修正值,只要其示值误差在此范围内都是认为合格的。在砝码的众多指标当中,和校准关联度最高的就是最大允许误差(MPE)了,国际相关法规条款对各个等级的砝码的MPE有明确的规定,以下表格是对电子天平所常用质量标称值砝码MPE的说明(误差值以毫克为单位): 从上图可看出,在相同质量标称值的情况下,MPE的大小跟砝码等级的高低成反比;在相同砝码等级的情况下,MPE的大小跟质量标称值的大小成正比。 同时,在国家标准的相关规定里,根据检定分度值e和检定分度数n将电子天平分为四个准确度级别,由高到低依次为特种Ⅰ、高Ⅱ、中Ⅲ、普通Ⅳ准确度级。结合砝码MPE的变化趋势可得出,准确度越高的天平需要用越高等级的砝码进行校准,这样校准天平的数据就越精准。比如十万分之一和万分之一天平应选用E级系列砝码校准,千分之一天平应选用E2或F1级砝码进行校准,以此类推。B. 校准的分类从校准的用途上来讲分为“量程校准”和“线性校准”,在制造和维修过程中需要结合两种校准方式共同实施,而日常使用过程一般只需做量程校准。 量程校准主要是在当前称量环境下对天平进行赋值,通过称量一个已知质量的砝码,来获得实际值和显示值之间的比例关系,作为以后称量显示值计算的系数,目的是消除不同纬度及海拔高度对称量结果的影响、环境温度变化对称量结果的影响,以及天平使用一段时间后积累的误差。通常,量程校准采用比较简单的两点校准法,第一个点为零点,第二个点为天平的最大量程,日常操作起来比较容易,能够使天平快速适应当前的称量环境,保证整个量程范围内的称量准确,是实验室工作人员一种普遍的校准方法。 线性校准主要是通过对全量程范围内的多个点的称量结果的线性化来消除误差,使得显示称量结果与参考质量的比例接近相同。一般来说是在3个点设置电子天平,即零点、半量程和最大量程。天平经过线性校准后,其全量程线性误差通常表现为S型,即在零点、半量程、满量程3个校准点误差很小,在1/4,3/4满量程点误差相对较大。为获得更好的线性,可以采取多点修正的方式,比如制造过程中往往采用更科学的5点线性法。当然数学修正只是辅助的,天平的示值误差还是取决于其本身的真实性能。 以上两图描述了电子天平在实际载荷m和称量示值W之间的线性关系,左图的直线为理想线性特征曲线,右图为实测曲线(非线性曲线)与理想直线的对比,其中非线性就是指不按比例、不成直线的关系,且函数的一阶导数不为常数。m0处的NL为称量示值与实际负载间的非线性误差。在天平的称量规格说明书中,线性通常表述为在不断增加负载的测试中得到的最大误差值(以克为质量单位),误差值越小,说明线性度越高,称量越准确。 由于线性校准采用的是分段误差比较,节点越多,非线性误差就越小,实测曲线就越接近于理想的拟合直线,因此线性校准是保证每一个称量范围都做到最大程度的准确,从而对校准的条件会有更加严格的要求。通常,线性校准过程在恒温恒湿的环境下,由机械手自动完成。校准时需准备相应的多个砝码,非专业人员严禁私自进行操作,否则不能恢复原有程序,影响天平的正常使用。 综上所述,量程校准和线性校准各有各自的特点和用途,将二者结合能够有效提升校准的质量。 从校准的方法上来讲分为内校和外校。内校是指利用电子天平内部安装的校准砝码并遵循内部标准程序进行校准。校准时只需按一下校准键,电机会驱动带内置砝码的升降装置,对天平进行加载,从而实施并完成校准。 外校是指利用外部砝码对天平本身误差进行修正的方式进行校准。事先需检查外部砝码是否通过检定,并在检定有效期内,主要是为了确保砝码满足相关标准对实物量具的控制要求。开始校准时先按下校准键,再通过手动把指定量程的砝码放到电子天平秤盘上,来完成校准过程。 通常,外部砝码可能会受到灰尘沾染、日常磨损和酸碱腐蚀等自然因素的不良影响,所以为了保证计量工作的准确性,外部砝码也需要定期进行校准,常常需付费请省(市)级计量院做测试;再加上人为拿错砝码的可能性,因此外校型天平对人为操作的要求会更加苛刻。而内置砝码的天平一般不会出现这些情况,并可以通过修改天平的校正程序参数来修正偏差。综上所述,内校可以有效避免不确定因素所造成的误差,相比外校是一种更加节约成本的方法。 无论是内校还是外校,电子天平在使用之前都必须进行预热(万分之一位天平需要至少1个小时的预热),其次进行水平调节,之后就可以开始进行校准了(以下步骤为传统校准方法,具体不同品牌和型号的天平会有一定的差异): 第一,确保秤盘上没有称量物品时应稳定地显示为零位。 第二,按“CAL”键,启动电子天平的校准功能。 第三,内校型天平的显示器由“C”变成零位时,表示校准结束;外校型天平的显示器上首先显示需要准备的砝码的质量值,其次将与天平准确度级别相对应等级的标准砝码放在天平的秤盘上。当屏幕显示值不变时,取出砝码,屏幕显示“Done”之后说明已经完成校准。 第四,如果在校准中出现错误,电子天平显示器将显示“Err”,或“Time out”,应重新进行校准。 校准术的变革——奥豪斯AutoCal™ 全自动校准技术怎么样,看过了上面的详细介绍,你有没有发现校准是一门相当有技术含量的学问呢?其实,随着称量技术日新月异的发展,校准手段也越来越趋于人性化。如果你还在为传统校准方法中麻烦的人为操作而发愁,那不妨来看看为天平校准带来全新变革的奥豪斯AutoCal™ 全自动校准技术吧! 奥豪斯AutoCal™ 是针对环境温度漂移和时间触发的专业全自动校准技术,在传统的内校基础上进行了全新的改良,在温度漂移值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,避免了未进行定时校准或手动校准砝码不当等造成天平称量不准确的潜在因素。 目前,AutoCal™ 全自动校准系统在庞大的奥豪斯天平家族里有广泛的应用,特别是Explorer® 准微量天平采用了两组内置砝码,同时拥有量程校准和线性校准功能。在校准过程中,通过同时加载砝码m1和m2,以及分别加载砝码m1和m2校准半载点的方法,可测试天平的线性并自动进行线性校准。 此外,Explorer® 系列十万分之一以下的分析和精密天平以及Adventurer™ AX系列天平的AutoCal™ 通过配备的一个内置砝码,可进行量程校准功能,用户可根据具体的使用需求做灵活的选择! 听了小编全面细致的讲解,你是不是摸到了校准的门道呢?是不是也想马上动手操作感受一下AutoCal™ 技术的强大之处?如果你有更多关于天平校准的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议。最后,小编再次祝大家在旺旺狗年生活幸福吉祥,工作顺心顺意!
  • 新标准实施丨生物安全柜的校准有“法”可依
    生物安全柜(biosafety cabinet,BSC)是一种负压过滤排风柜,可防止操作者和环境暴露于实验过程中产生的生物气溶胶污染。被广泛应用于医疗卫生、疾病预防与控制、食品卫生、生物制药、环境监测,以及各类生物实验室等领域。目前,Ⅱ级生物安全柜因应用广泛倍受追捧而产生了较大的市场。尽管国产的Ⅱ级生物安全柜基本能满足我国生物制药等行业的需求,但市场发展依然存在诸多弊端。为了规范生物安全柜市场,使其健康有序发展,国家市场监督管理总局于2020年1月17日发布了JJF1815-2020 《Ⅱ级生物安全柜校准规范》,该标准已于2020年4月17日起正式实施。根据NSF/ANSI 49-2018《生物安全柜:设计,制作,性能和行业认证》以及YY 0569-2011 《Ⅱ级生物安全柜》中的说明,可将生物安全柜分为三级:Ⅰ级生物安全柜、Ⅱ级生物安全柜和Ⅲ级生物安全柜。Ⅰ级生物安全柜可保护工作人员和环境而不保护样品。其气流原理和实验室通风橱基本相同,不同之处在于排气口安装有HEPA过滤器,将外排气流过滤进而防止微生物气溶胶扩散造成污染。Ⅰ级生物安全柜本身无风机,依赖外接通风管中的风机带动气流,由于不能保护柜内产品,目前已较少使用。Ⅱ级生物安全柜是目前应用最为广泛的柜型。根据循环排风机制和排风选择的不同以及内部结构设计可分为5种类型:A1型,A2型,B1型,B2型和C1型,Ⅱ级生物安全柜的分型及其特点见表1。所有的Ⅱ级生物安全柜都可提供工作人员、环境和产品的保护。Ⅲ级生物安全柜专为高度传染性微生物媒介和其他危险操作设计,可为环境和工作人员提供的保护,其柜体完全气密,工作人员通过连接在柜体的手套进行操作,俗称手套箱,试验品通过双门的传递箱进出安全柜以确保不受污染,适用于高风险的生物试验,如进行SARS、埃博拉病毒相关实验等。关于JJF1815-2020 《Ⅱ级生物安全柜校准规范》中规定的计量特性、对应指标、相关方法及对应仪器设备,汇总见下表2。表2 Ⅱ级生物安全柜校准项目及对应设备青岛众瑞结合自身技术储备,有针对性的对校准项目中的三项给出了解决方案。具体项目及对应仪器设备如下表3所示。表3 众瑞产品对应校准项目汇总ZR-4000型 气流流形测试仪利用专利技术的超声波雾化器产生10微米左右的高可见度及无污染的水雾,用于洁净厂房、局部洁净环境的气流流形摄影及录像。根据ISO14644-3及GMP对洁净厂房验收需要对气流方向进行评价,可适用于半导体,制药类洁净车间。ZR-6010型 气溶胶光度计是根据Mie散射理论设计的,用于检测高效过滤器是否有泄露的一套专用检测设备。仪器符合相关国家和行业标准,可快速实现高效过滤器的气溶胶上游和下游浓度检测,并在手持采样设备和主机上同时实时显示高效过滤器的泄漏率,可快速准确的确定高效过滤器漏点的位置。适于洁净房、层流台、生物安全柜、手套箱、HEPA吸尘机、HVAC系统、HEPA过滤器、负压过滤装置、手术室、核子过滤系统、汇集保护过滤器等的泄露检测。ZR-1300A型 气溶胶发生器是利用Laskin喷嘴产生DOP气溶胶的专用仪器,内置调节阀可调节使用4个或10个喷嘴工作,输出的气溶胶浓度在1.4m3/min-56.6m3/min空气流量下,可以达到10μg/L-100μg/L,气溶胶性能指标符合国家标准,适用于医疗器械检验所、疾病预防控制中心、医院、制药企业、高效过滤器生产厂家等对洁净室及高效过滤器的检漏。ZR-1012型 智能生物安全柜生物检测仪采用生物法对II级生物安全柜安全防护性能进行测试,符合《YY0569 -2011.II级生物安全柜》等相关标准,具备人员保护、产品保护、交叉污染保护三种工作模式,主要用来确定气溶胶是否停留在安全柜内,外部的污染物是否进入到安全柜的工作区域,以及安全柜中装置之间的气溶胶污染是否减到最小,适用于医疗器械检测中心、疾控中心、计量检定部门和科研院所等部门对II级生物安全柜安全防护性能的检测。ZR-1100型 全自动菌落计数仪是针对微生物菌落分析和微颗粒粒度检测开发的高新技术产品,利用其强大软件图像处理功能和科学的数学分析方法对微生物菌落分析和微颗粒粒度检测,计数迅速准确。适用于医院、科研院所、卫生防疫站、疾病控制中心、检验检疫、质量技术监督、环境检测机构以及制药、食品饮料、医疗卫生用品行业等的微生物检测。
  • 生物检测仪器校准用标准样品专业工作组成立
    近日,全国标准样品技术委员会发布通知,批准4个专业工作组成立,包括动物防疫标准样品专业工作组、茶叶标准样品专业工作组、生物检测仪器校准用标准样品专业工作组和植物检疫标准样品专业工作组。其中生物检测仪器校准用标准样品专业工作组编号为SAC/TC 118/WG17,由中国计量大学牵头筹建,主要负责生物大分子和有机体检测仪器校准用标准样品研复制的申报、审批、立项、监查、评审等工作。第一届工作组共30人,由中国计量大学副校长俞晓平研究员任组长,中国计量大学院长叶子弘任秘书长,此外还有来自全国有关生物检测、检验检疫、计量校准、仪器开发等领域的专家。生物检测仪器校准用标准样品专业工作组的成立标志着我国生物检测仪器相关标准样品工作步入新的发展阶段。生物检测技术是生命科学和医学的基础,涉及临床检验、疾病防控、食品安全等众多领域。随着社会医疗健康的需求不断增长以及生物技术进步,生物检测技术近年来高速发展,生物检测仪器的市场规模也越来越大。与市场的快速扩张相比,生物检测仪器校准用国家标准样品的发展速度远远落后,无法满足现在的生物检测仪器生产与使用需求。生物检测仪器校准用标准样品专业工作组将聚集国内相关科研、产业优势资源,建设和完善生物检测仪器校准用标准样品体系,增加国家标准样品的有效供给,为填补国内生物检测仪器标准样品空白、有效推进生物检测仪器国产化进程和促进生物产业的快速发展提供有力的标准支撑。
  • 宁夏计质院新建微量进样器校准装置计量标准
    近期,宁夏计质院新建的微量进样器校准装置通过自治区市场监管厅考核,取得《计量标准考核证书》。   微量进样器作为色谱分析仪、酒精检测仪和其他化学分析仪器中常用的计量器具,主要应用于实验过程中对各种物质吸取定量样品,并进行微量定量、定性分析。随着全区医疗卫生、生物化学、食品安全、石油化工、环境保护等领域的快速发展,各实验室使用微量进样器越来越广泛,为满足在定性、定量分析中保证进样微小容量量值准确可靠的要求,宁夏计质院坚持问题导向,结合实际情况和近两年微量进样器的发展状况,新建了微量进样器校准装置,测量范围为(0.5~1000)μL。该项计量标准的建立,将为全区微量进样器校准工作提供科学依据和标准规范,保证微量进样器的量值溯源准确可靠。
  • 天津计量院建立《实时荧光定量PCR仪校准装置》计量标准
    基于实时荧光定量聚合酶链式反应分析(PCR)仪的核酸检测技术是《新型冠状病毒肺炎诊疗方案》中规定的新冠病毒确诊方法。因其操作便捷、相对快速高效、特异性强和较高的准确率,尤其适用于窗口期病例的及时筛查和判定,能有效防控疫情扩散。随着实时荧光定量PCR仪的频繁使用,其温度参数或光学物理参数可能产生偏差,进而影响判定结果。因此,开展实时荧光定量PCR仪全参数的计量溯源至关重要。   天津出现奥密克戎变异株本土确诊病例后,天津计量院高度重视,迅速建立技术团队。建标负责人,天津计量院热工室余松林博士放弃公休日积极组织撰写材料,同时为验证计量标准的准确性获取大量实验数据,与本室专业技术人员王喆赴医院加班加点开展现场实验。经过长期努力,完成了建标材料准备,并及时向上级主管部门提交了建标申请。   《实时荧光定量PCR仪校准装置》计量标准将为医疗机构和第三方核酸检测机构的荧光定量PCR仪计量校准提供技术支持,为坚持“外防输入、内防反弹”总策略和“动态清零”总方针贡献力量。该标准可实现实时荧光定量PCR仪温度参数,如示值误差、均匀度和升、降温速率,以及光学物理参数,如阈值循环数Ct值,溶解温度漂移和溶解温度比等全参数的计量溯源,与基于标准物质的荧光定量PCR仪计量方法相比,避免了后者可能引入的人为误差,提高了标准装置的溯源可信度。
  • 宁夏计质院直流标准电阻校准能力验证获“满意”结果
    近日,宁夏计质院参加中国航空工业集团公司北京长城计量测试技术研究所组织的“直流标准电阻校准能力验证计划”获得满意结果。直流标准电阻是电磁学基本量,作为一个标准阻值的参照或比较,它的准确一致对其它电磁学量值统一有着举足轻重的作用。此次能力验证,宁夏计质院严格按照相关要求,认真做好样品实验工作和数据处理,按时完成样品交接,及时提交实验数据和结果,最终各项测量结果与参考值之差都在合理预期之内,结果为“满意”。通过能力验证,进一步验证了宁夏计质院“一等直流电阻标准装置”检定人员业务素质和实验室能力水平,能够有效保证我区直流标准电阻量值传递的准确可靠。宁夏计量质量检验检测研究院(简称:宁夏计质院)成立于2017年8月,经自治区编委会批准,由宁夏计量测试院、宁夏产品质量监督检验院、宁东能源化工基地质量监督检验与计量测试所整合组建而成,为自治区市场监督管理厅直属公益类检验检测研究事业单位,是国家市场监督管理总局授权的法定计量检定和产品质量检验检测机构。宁夏计质院主要承担国家计量基准和宁夏公用计量标准的研究、建立、保存、维护、计量器具检定校准以及产(商)品质量监督检验、产品质量仲裁检验、产品质量鉴定、各种取证(生产许可证、CCC认证、产品认证等)检验、委托检验等工作。开展计量质量产学研一体化的合作与科研,为社会各界提供计量质量专业技术、能力提升、质量管理培训和咨询等技术服务。
  • 《臭氧校准分析仪国家标准》征求意见稿发布
    p   日前,全国几何量工程参量计量技术委员会发布《臭氧校准分析仪国家标准》征求意见稿,并面向全国的计量技术机构、科研院所以及相关的行业企业征求意见。 /p p   该标准由济南市大秦机电设备有限公司和中国计量科学研究院负责起草。该标准规定了臭氧校准分析仪的分类、要求、试验方法、检验规则、标志、包装、运输和贮存,适用于传递标准的臭氧校准仪和臭氧浓度分析的臭氧分析仪。 /p p   该标准引用了GB/T 191-2008《包装储运图示标志》、GB/T 2829-200《周期检验计数抽样程序及表(适用于对过程稳定性的检验)》、GB/T 11606-2007《分析仪器的环境试验方法》、GB/T 13384《机电产品包装通用技术条件》、JB/T 5995 《机电产品使用说明书编写规定》。 /p p   大气中臭氧层能吸收太阳释放出来的绝大部分紫外线,使动植物免遭这种射线的危害。但如果大气中的臭氧,尤其是地面附近的大气中的臭氧聚集过多,会导致严重的温室效应。 /p p   臭氧分析仪用于检测臭氧的浓度的仪器,此类仪器的校准需求非常迫切。臭氧校准仪作为标准装置,是环境大气臭氧分析仪和臭氧发生器理想的校准工具。针对日益重要的环境监测领域应用的臭氧检测仪的校准溯源工作,制定相关国家标准亟不可待。 /p p   此外,遵从JJF1071-2010《国家计量校准规范编写规则》的要求,此规范架构上包括封面、扉页、目录、引言、范围、引用文件、概述、计量特性、校准条件、校准项目和校准方法、校准结果表达、复校时间间隔、附录几个部分。 /p
  • 成果|中国计量院推出数字PCR仪校准用拷贝数浓度标准物质
    NIM-RM4061数字PCR仪校准用拷贝数浓度标准物质数字PCR技术可以实现核酸的绝对定量,目前已经在肿瘤突变检测、传染病诊断等众多领域得到应用。数字PCR仪计量性能的可靠性,直接关系到检测和诊断结果的准确与否。数字PCR仪校准用拷贝数浓度标准物质,专门用于数字PCR仪拷贝数浓度的校准,特性量值为每管溶液中含有目标基因的拷贝数浓度,标准值及扩展不确定度为:(1.07±0.08)×10^4copies/μL。该标准物质均匀性及稳定性良好。采用0.5mL冻存管包装,最小取样量为2μL。该标准物质采用高效液相色谱外标法得到高浓度质粒DNA母液浓度,结合称量法和经确认的绝对定量方法-数字PCR方法对标准物质的拷贝数浓度进行定值,取两种方法的平均值作为标准物质的标准值。通过使用满足计量学特性要求、经确认的绝对定量测量方法和经检定/校准的容量计量器具,确保本标准物质的量值溯源至可作为任何一个量制基本单位的实体数基本单位“一”(符号:1)以及体积的国家法定计量单位升(L)。数字PCR仪校准用拷贝数浓度标准物质可作为测量标准用于数字PCR仪的拷贝数浓度相对示值误差和拷贝数浓度重复性的校准。规格:50μL/管研制单位:中国计量科学研究院NIM-RM4061 数字PCR仪校准用拷贝数浓度标准物质
  • 确定仪器的校准周期的4种方法
    确定仪器的校准周期的4种方法 核心提示:一、统计法可由测量仪器的结构、可靠性、稳定性的不同状况,对测量仪器进行分类, 然后按照校准规程确定校准周期。并统计在规定周期 一、统计法 可由测量仪器的结构、可靠性、稳定性的不同状况,对测量仪器进行分类, 然后按照校准规程确定校准周期。并统计在规定周期内超差或其他不合格的仪器设备数目, 统计这些仪器与该组合格仪器总数之比。确定不合格测量仪器时, 应替除损坏而返回的仪器。若不合格仪器占的比例很高, 应缩短校准周期。不合格仪器所占的比例很低, 应延长校准周期可能是经济合理的。但若发现某一组的仪器 (或某厂家制造的或某型号) 不能和组内其他仪器那样正常工作时, 应将该组划为有不同周期的其他组。 二、时间法 确认校准周期时用实际工作的小时数表示, 当指示器达到规定值时, 将该仪器送回校准。这种方法主要优点是, 仪器校准费用与使用的时间成正比, 并可核对仪器的使用时间。 例如某些仪器可以直接在查到连续使用了多久, 利于管理。但这种方法在实践中有下列缺点:(1) 当测量仪器在储存、搬运或其他情况发生漂移或损坏时, 则不应使用本方法 (2) 安装计时器会增加费用, 且因受使用者干扰而需要在监督下进行, 又增加费用。 三、比较法 当每台测量仪器按规定的的校准周期进行校准, 将校准数据和前几次的校准数据相比, 如果连续几个周期的校准结果均在规定的允许范围内, 则可以延长它的校准周期 如果发现超出允许的范围, 则应缩短该仪器的校准周期。 四、图表法 测量仪器在每次校准中, 选择有代表性的同一校准点, 将它们的校准结果按时间描点, 画成曲线, 根据这些曲线计算出该仪器一个或几个校准周期内的有效漂移量, 从这些图表的数据中, 可推算出最佳的校准周期。 计量校准是提高实验室效率的重要环节, 而确定校准周期是计量工作的一项关键环节, 对产品质量和服务质量方面起着十分重要的作用,在确定测量仪器的校准周期时, 要对测量仪器的实际使用情况进行科学分析后评估决定。
  • 中国计量测试学会发布《铜(铁)分析仪校准方法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由河北中测计量检测有限公司等单位牵头起草的《铜(铁)分析仪校准方法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年4月26日前将《征求意见反馈表》反馈至以下联系方式。联系人:周建林 电 话:13630813838地 址:石家庄市红旗大街 333 号河北工院大学科技园邮编:050051 电子邮箱:9570407@qq.c om附件3 征求意见反馈表.doc附件2 《铜(铁)分析仪校准方法》编制说明.pdf附件1 《铜(铁)分析仪校准方法》征求意见稿.pdf
  • 浙江省计量院新建(自动)核酸提取仪校准装置社会公用计量标准
    近日,浙江省计量院“(自动)核酸提取仪校准装置”顺利通过现场考核,填补省内空白。   近年来,随着全国生物安全和生物防护的逐渐重视及升级,相关实验室核酸提取仪广泛应用于疾病控制中心、临床疾病诊断、输血安全、法医学鉴定、环境微生物检测、食品安全检测、畜牧业和分子生物学研究等多种领域。浙江省计量院新建成的“(自动)核酸提取仪校准装置”,作为省内首个(自动)核酸提取仪社会公用计量标准,依据JJF1874-2020《(自动)核酸提取仪校准规范》开展(自动)核酸提取仪设备的量值溯源工作。   该标准的建立解决了当前(自动)核酸提取仪性能状态无法校准,测量数据难以达到可比性及可溯源性等问题。此外该装置不仅可以提高实验室权威性、满足各实验室对计量认证和实验室认可的需求,同时对浙江省以及华东地区各类(自动)核酸提取仪的量值溯源提供技术保障。
  • 浙江省市场监管局拟发布省地方标准《计量校准服务规范》
    浙江省市场监督管理局拟批准发布《计量校准服务规范》浙江省地方标准,根据《浙江省标准化条例》的规定,现将拟批准发布的报批文本予以公示,公示期2023年09月26日至2023年10月03日。有关单位和个人如有意见建议,可通过来信、来电、来访等形式,向浙江省市场监管局标准化处反映。单位反映的意见建议请加盖单位公章,个人反映的请署真实姓名。逾期不再接受意见建议。联系地址:浙江省杭州市莫干山路77号(省市场监管局标准化处),联系电话:0571-89761453,传真:0571-89761453,电子邮件:zjbz2012@126.com。附件:计量校准服务规范(公示稿).pdf2023年09月26日
  • 石家庄市实验仪器行业协会批准《裁刀校准方法》《低温柔度试验仪校准方法》等8项团体标准立项
    各有关单位:经河北棕都科技有限公司申请,本协会组织专家对《裁刀校准方法》、《低温柔度试验仪校准方法》、《钻孔取芯机校准方法》、《初期干燥抗裂性试验机校准方法》、《轻骨料承压筒校准方法》、《抗折夹具、抗劈裂夹具校准方法》、《冷弯弯芯校准方法》、《建筑围护结构热工性能现场检测设备校准方法》8项进行了立项评审。经评审,项目符合立项条件。项目予以立项,并公示7天。请牵头单位根据《石家庄市实验仪器行业协会标准制修订工作管理办法》的要求,尽快组织实施,确保项目按时完成。联系人:杜娟联系电话:17769019597邮箱:love53155966@qq.com 石家庄市实验仪器行业协会2023年05月23日附件: 关于《裁刀校准方法》《低温柔度试验仪校准方法》《钻孔取芯机校准方法》《初期干燥抗裂性试验机校准方法》《轻骨料承压筒校准方法》《抗折夹具 抗劈裂夹具校准方法》《冷弯弯芯校准方法》《建筑围护结构热工性能现场检测设备校准方法》 团体标准立项的公告 .pdf
  • 石家庄市实验仪器行业协会发布《建筑围护结构热工性能现场检测设备校准方法》、《低温柔度试验仪校准方法》、《初期干燥抗裂性试验机校准方法》等团体标准征求意见稿
    各有关单位:按照石家庄市实验仪器行业协会团体标准制修订项目工作安排,经河北棕都科技有限公司申请,对《建筑围护结构热工性能现场检测设备校准方法》、《低温柔度试验仪校准方法》、《初期干燥抗裂性试验机校准方法》、3项团体标准的制定工作现已完成征求意见稿的编制。为进一步提高标准质量,现将该标准征求意见稿呈送给各有关单位。欢迎社会各界提出宝贵修改意见和建议,如有修改或完善的意见和建议,请填写《团体标准征求意见反馈表》,并于2023年06月19日之前将反馈至石家庄市实验仪器行业协会。联系人:杜娟联系电话:17769019597邮箱:love53155966@qq.com地址:河北省石家庄市长安区丰收路118号泽润大厦2413附件:附件 1:《建筑围护结构热工性能现场检测设备校准方法》团体标准(征求意见稿)附件 2:《建筑围护结构热工性能现场检测设备校准方法》团体标准编制说明附件 3:《低温柔度试验仪校准方法》团体标准(征求意见稿)附件 4:《低温柔度试验仪校准方法》团体标准编制说明附件 5:《初期干燥抗裂性试验机校准方法》团体标准(征求意见稿)附件 6:《初期干燥抗裂性试验机校准方法》团体标准编制说明附件 7:《团体标准征求意见反馈表》附件:公开征求意见的函.pdf初期干燥抗裂性试验机校准方法征求意见稿.doc低温柔度测定仪征求意见稿.docx初期干燥抗裂性试验机校准方法编制说明.doc低温柔度测定仪编制说明.doc建筑围护结构热工性能现场检测设备编制说明.doc建筑围护结构热工性能现场检测设备征求意见稿.docx征求意见表.docx
  • 冷杉精密仪器发布冷杉6100气体动态校准仪新品
    冷杉6100气体动态校准仪是一台智能化在线气体校准仪器。传统校准方式采用不同浓度的多个钢瓶气体分别进样分析,通过校准曲线进行仪器校准,冷杉 6100 气体动态校准仪由流量控制系统、气路控制系统和计算机控制系统组成,使用一瓶已知浓度标气调节不同稀释比例得到不同含量的标准气体浓度梯度。完全自动化操作,大幅度减少工作量并节约配气时间。产品特点1.人性化操作界面 自主研发操作界面,需人工输入项目少,界面简洁易操作2.提供多种配气模式,满足客户各种需求 自动配气,手动配气,序列配气3.支持正压输出 支持输出压力不超过 0.1 MPa4. 流量计准确测量流量 采用进口元器件,保证校准仪的精度和线性技术参数项目参数稀释气体种类高纯空气、高纯氮气标气流量范围(0~100)SCCM流量准确度±1% F.S.稀释比根据流量计配置而定标气输出接口1/4’’管,英制操作温度5 oC~35 oC使用环境室内或机柜内使用压力(0.1~0.3)MPa稀释气流量范围(0~1000)SCCM;(0~10000)SCCM,可选流量重复性±0.2%F.S.通讯LAN;RS232电源输入220VAC,50Hz工作湿度5%~95% RH仪器尺寸(469.1×178×600)mm(W×H×D)创新点:1、配置超高性能气体控制模块 》使用冷杉高精度压力、流量控制模块,流量准确度可达± 1% F.S. (10 to 100% F.S.),测试精准。 》使用冷杉专业的动态PID补偿算法和机制,流量重复性可达± 0.2%F.S,实现长期运行的超高稳定性。 2、软件系统支持多种功能 》质量流量控制器可自动校准 》支持自动配气、手动配气、序列配气设置 3、产品线满足多样化选择 》外观多样化选择:机柜式与便携式 机柜式,适用于在机柜内或者实验室内使用; 便携式,适用于运维维护,可随身携带。 》管路多样化选择:惰性化与非惰性化 标准气体化学性质活性高,采用惰性化管路; 标准气体化学性质稳定,采用非惰性化管路。 》压力输出可切换:微正压输出与正压输出 微正压输出:配套检测设备有采样泵; 正压输出:配套检测设备无采样泵。 》稀释比多样化选择:标气流量计与稀释气流量计 标气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选; 稀释气流量计:(0~100)SCCM,(0~1000)SCCM,(0~5000)SCCM,可选。 冷杉6100气体动态校准仪
  • 适用于赛默飞 ICP-MS仪器调谐液和校准标准液
    适用于赛默飞 ICP-MS仪器调谐液和校准标准液—上海甄准ICP调谐液用于检查仪器及其参数是否具备分析样品的条件。上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,Inorganic Ventures公司是一家专门生产AA,ICP和ICP-MS的标准样品的专业技术公司。现已通过ISO9001,ISO17025,ISO GUIDE 34认证。 上海甄准生物提供可用于安捷伦、PE、 Spectro、赛默飞等仪器的仪器调谐液和仪器检测标准品。Inorganic Ventures产品优势:1、可追溯至NIST;2、ISO 9001认证;3、经过验证的;4、可接受定制。产品信息:1、THERMO-4AREV(对应Thermo Scientific-1323770)ICP-MS Tuning Solution – Tune B ICAPICP-MS仪器调谐液—调谐B ICAP规格: 500 mL 基质: HNO3 /HCl分析物 浓度μg/L* 分析物 浓度μg/L*Ba 1 In 1Bi 1 Li 1Ce 1 U 1Co 12、THERMO-5A (对应Thermo Scientific-1323760)ICP-MS Tuning Solution – ICAPQICP-MS仪器调谐液— ICAPQ规格: 250 mL 基质: HNO3分析物 浓度μg/L* 分析物 浓度μg/L*Ag 6 Mg 10Al 10 Mn 6Ba 4 Ni 15Be 35 Rh 3Bi 3 Sc 8Ce 3 Sr 5Co 8 Ta 3Cs 3 Tb 3Cu 15 Tl 4Ga 10 U 3Ho 3 Y 3In 3 Zn 20Li 8*Parts per billion3、IV-STOCK-15 (可替代Thermo Scientific-1600635)ICP-MS Calibration StandardICP-MS校准标准品规格: 125 mL 基质: HNO3分析物 浓度μg/mL 分析物 浓度μg/mLCa 10 Li 10Fe 10 Na 10K 10 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832电话:021-6840 4353传真:021-5897 9353客服手机/QQ:15800340161客服手机/QQ:13795317828客服手机/QQ:13512172575客服手机/QQ:13818641861客服手机/QQ:13917991872客服手机/QQ:13916577892技术支持热线/QQ:13651665725服务监督与投诉:18918753302官网:www.zzstandard.comE:yangshuyan@zzstandard.com
  • 宽禁带联盟对《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》等五项团体标准进行研讨及审定
    2022年1月13日,根据中关村天合宽禁带半导体技术创新联盟(以下简称“宽禁带联盟”)团体标准制定工作程序要求,联盟秘书处组织召开了宽禁带联盟2022年度第一次团体标准评审会。本次评审会采取线上评审的形式,分别对《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》等五项团体标准进行了研讨及审定。线上评审评审会由宽禁带联盟秘书长刘祎晨主持,厦门大学张峰教授、中国科学院物理研究所王文军研究员、中国科学院半导体研究所金鹏研究员、孙国胜研究员、刘兴昉副研究员、国网智能电网研究院有限公司杨霏教授级高工、中科院电工所张瑾高工、工业和信息化部电子第四研究院闫美存高工、北京聚睿众邦科技有限公司总经理闫方亮博士、北京天科合达半导体股份有限公司副总经理刘春俊研究员、国宏中宇科技发展有限公司副总经理赵子强、北京世纪金光半导体有限公司技术主任何丽娟、北京三平泰克科技有限责任公司郑红军高工等宽禁带联盟标准化委员会委员参加了本次会议。会上,各牵头起草单位代表就标准送审稿或草案的编制情况进行了详细汇报,与会专家针对标准技术内容、专业术语、技术细节、标准格式、标准规范等内容等方面进行了深入的讨论,并提出了很多宝贵意见,最后经联盟标准化委员会与会委员表决,形成如下决议:1. 通过《碳化硅单晶片X射线双晶摇摆曲线半高宽测试方法》(牵头单位:国宏中宇科技发展有限公司)一项送审稿审定;2. 通过《碳化硅外延层载流子浓度测试方法-非接触电容-电压法》、《碳化硅栅氧的界面态测试方法—电容-电压测试法》(牵头单位:芜湖启迪半导体有限公司),《金刚石单晶片X射线双晶摇摆曲线半高宽测试方法》、《金刚石单晶位错密度的测试方法》(牵头单位:中国科学院半导体研究所)四项草案初审。同时标准化专家组建议各标准工作组要根据专家审查意见对各项标准进一步修改完善,尽快形成报批稿或征求意见稿,报送至联盟秘书处。联盟将按照标准制定工作计划进度要求,有条不紊地推动标准工作。宽禁带联盟一直以来都高度重视团体标准工作的发展,有责任和义务不断提升标准化水平,为引领行业技术发展提供重要支撑。同时,联盟也将积极探索推进与国标委的互动,协同推动优秀的团体标准上升为行业标准、国家标准,不断提升国家标准的水平。
  • 霍尼韦尔发布经双重认证的实验室仪器校准标准样品
    新一代Hydranal™ 产品系列经过ISO Guide 34认证,有助于简化研究实验室的仪器校准工作  芝加哥,2017年3月13日讯 – 霍尼韦尔(NYSE代号:HON)近日宣布推出首套Hydranal™ 双重认证标准样品 (CRM) 系列,满足卡尔?费休 (KF) 滴定应用要求。  迄今为止,卡尔?费休滴定的商业化标准水样大都采用ISO/IEC 17025标准进行测试,有些甚至没有任何测试标准。霍尼韦尔研究化学品部新一代标准水样的生产和认证符合ISO Guide 34和ISO/IEC 17025双重标准。这种双重认证意味着我们的产品能够兼容最严格的法规要求,研究人员可放心使用。  虽然纯净水亦可用于校验实验室仪器,但最终检测结果的精度受到所使用的天平、滴管体积、卡尔?费休滴定剂以及用户专业经验等诸多因素的影响。为此,研究人员都倾向于使用标准样品对仪器进行校准,以便大批量处理样本。  “自35年前发布Hydranal产品线之后,我们位于德国塞尔策 (Seelze) 的实验室始终在卡尔?费休试剂和标准水样产品线方面贯彻最高的生产和质量控制标准。”霍尼韦尔研究化学品部全球市场经理瑟伦霍格(Soeren Hoegh)表示,“客户的研究结果直接受到所用认证标准样品的影响,因此我们始终致力于不断改进工艺,确保我们的产品能帮助客户实现最佳研究结果。提供经过双重认证的标准样品正是这一承诺的又一体现。”  随着来自监管机构压力的不断增加以及用户对于更高质量测量结果的需求日益增强,越来越多的实验室都采用经认证的产品,以便更好地通过标准样品展示其测量性能和测量结果的可追溯性。  现在,客户可通过霍尼韦尔研究化学品部新上线的电子商务网站订购Hydranal标准样品系列。该网站由我们联合实验室和研究中心管理者共同开发,可确保满足霍尼韦尔客户对化学品采购的各类需求。霍尼韦尔Hydranal系列产品包括:   HYDRANAL-CRM标准水样10.0(液态,10.0 mg/g = 1.0%水含量)   HYDRANAL-CRM标准水样1.0(液态,1.0 mg/g = 0.1%水含量)   HYDRANAL-CRM二水合酒石酸纳(固态,~15.66%水含量)  霍尼韦尔研究化学品部的Hydranal卓越中心已成功通过德国国家认证机构DAkkS审核,被认定为符合ISO Guide 34的认证标准样品 (CRM) 制造商,成为全球范围内执行最高产品质量标准的少数机构和企业之一。  霍尼韦尔在无机物、溶剂和其他重要化学品领域的创新历史可以追溯到200多年前,当时化学家约翰雷德尔(Johann Daniel Riedel)在德国开始生产制药产品。霍尼韦尔研究化学品部总部位于德国塞尔策,靠近汉诺威,其致力于为实验室研究和分析检测应用提供高纯度解决方案。更多关于霍尼韦尔研究化学品信息,请访问www.lab-honeywell.com。  关于霍尼韦尔  霍尼韦尔是一家《财富》100强之一的多元化、高科技的先进制造企业,在全球,其业务涉及航空产品和服务,楼宇、家庭和工业控制技术,涡轮增压器以及特性材料。霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。霍尼韦尔在中国的员工人数现约12,000名。欲了解更多公司信息,请访问霍尼韦尔中国网站, 或关注霍尼韦尔官方微博和官方微信。
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect® ,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 医疗诊断用一次性校准Spectralon漫反射标准板
    光纤耦合光谱仪一家初创公司找到Labsphere(蓝菲光学),该公司使用基于光纤耦合光谱仪设备,通过内窥镜仪器通道进行反射率测量。为了获得准确的诊断结果,该仪器需要在每次使用前,使用反射率大于90%的标准品进行校准。但是,这种新的医学诊断应用需要在每次使用后丢弃标准板。该公司与Labsphere(蓝菲光学)联系,寻求一种重复性好,低成本的解决方案,使他们的设备能够实现市场渗透。 厂商最关注的是仪器校准的一致性,因此Labsphere(蓝菲光学)生产的每个漫反射标准板在安装到光纤的机械结构上以及在可见光(450-700 nm)上的漫反射比必须具有极高的重复性。Labsphere(蓝菲光学)需要迅速提供原型样片,但更重要的是要保证以市场价格每年提供10K-25K的产能。Spectralon漫反射材料Labsphere(蓝菲光学)制作了一个简单的设计,既能实现原型的快速周转,又能在高产量下实现成本目标同时优化技术性能。Spectralon漫反射标准板通过将Labsphere(蓝菲光学)的Spectralon® 模切成3毫米厚的板材,可以产生97%的漫反射朗伯性目标材料,从而达到了光学反射率的目标。 对Spectralon生产进行统计过程控制抽样检查确保了一致的反射性能。机械目标板设计实现了可重复性。该设计包括一个由Delrin拼合而成的外壳,包裹着由泡沫粘合剂支撑的Spectralon目标板。光纤端口的设计是通过底部凸起的唇缘紧密地贴合到客户的光纤上,以将光纤尖端定位到客户指定的、距漫反射目标板参考表面的精确距离。当单元的两半卡在一起时,靶材后面的泡沫粘合剂被设计为部分压缩,以确保将靶材固定在参考表面上,从而消除了从光纤尖端到靶材的临界距离的变化。外壳选择一种可兼容医疗器械的材料(Delrin)来满足成本和交付目标,该材料可以由Labsphere在内部进行机加工以进行快速原型制作,也可以进行大量注塑成型,以满足目标板生产单位定价。这项创新激发了Spectralon组件在医疗和生物医学行业中的许多其他用途。请与我们联系,获取更多Spectralon应用信息。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制