当前位置: 仪器信息网 > 行业主题 > >

微生物实时检测

仪器信息网微生物实时检测专题为您提供2024年最新微生物实时检测价格报价、厂家品牌的相关信息, 包括微生物实时检测参数、型号等,不管是国产,还是进口品牌的微生物实时检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微生物实时检测相关的耗材配件、试剂标物,还有微生物实时检测相关的最新资讯、资料,以及微生物实时检测相关的解决方案。

微生物实时检测相关的资讯

  • 生物量实时监测测系统– CGQ
    什么是CGQ?CGQ (Cell Growth Quantifier)系统,是一种在线实时监测摇瓶中生物量设备,通过摇瓶底部光学检测器,对培养物进行实时跟踪检测。测量时不需要将摇瓶从摇床中取出,也无需停止摇床运作,CGQ 系统通过专利的光学测量技术,自动监测生物量浓度。使用CGQ可以获取高准确率的生物生长动力学曲线。相对于传统的取样检测有着无可比拟的优势。 传统摇瓶中生物量检测方式传统的手动取样检测有诸多弊端:* 时间成本高(每个摇瓶的测量数据获得需要几分钟) * 手动测量 ,无法完成定时自动测量* 效率低(定时,手动操作,数据获取密度低) * 侵入性(因为需要取样测量,培养体积会变小,培养环境会改变) * 运行成本高 (需要耗材) * 每次测量取样,存在污染风险 CGQ工作原理CGQ通过底部的LED灯发射光线,检测器通过OD600nm波长进行生物量测定。生物量与检测器的光线检测量成正比。 CGQ光学法检测原理 位于摇瓶底部的LED发光及检测器 使用者可精确的实时监测生物量和生长曲线 CGQ在线检测产品特点:* 非侵入性(放置于培养瓶底部,不与培养基接触)* 持续性好,不会对微生物/ 细胞生长造成影响* 自动测量;节省操作时间和成本* 实时测量* 对任何偏差反应迅速* 数据采集量大* 在设定时间内对工艺过程进行详细监测* 平行反应监测* 可以同时监测最多16 个摇瓶 操作步骤简单:将检测器置于摇瓶底部,用于监测生物量。检测组件与培养液没有接触在摇瓶上,罩上黑色罩子,防止外界光线对检测的干扰数据收集器收集传感器信号,发送到CGQ数据中心,进行信息处理CGQ软件,通过数据处理,显示各个检测摇瓶的生物量适用于各种现有实验室培养系统:CGQ 系统可以用于多种科学应用:生长曲线指引的蛋白表达;培养基开发/优化;菌种筛选/比较;监测限制因素以及染菌;分析生长动力学曲线;优化培养条件;在线监测嗜热微生物等
  • Nature:生物电子传感,实时监测环境污染物!
    研究背景淡水受到天然和合成化学物质的污染是一项全球性的环境挑战。特别值得关注的是影响脊椎动物繁殖的化学物质和刺激微生物繁殖的无机化合物,因为它们进入环境后都会产生严重的生态影响。由于化学物质的释放可能是动态且瞬态的,需要在原位实时检测这些化学物质。这种检测也必须具有不同非生物条件的环境准确性。实时化学传感对于环境和健康监测中的应用至关重要。生物传感器可以通过基因电路检测各种分子,利用这些化学物质触发有色蛋白质的合成,从而产生光学信号。关键问题虽然生物传感器可以满足污染物监测需求,但仍存在以下问题:1、传感速度通常较慢,难以实现原位监测生物传感器都依赖转录调节进行检测,而蛋白质表达过程将这种传感的速度限制半小时以上,光学信号通常很难原位检测到。2、工程化微生物传感器会降低信噪比和时间响应工程化的微生物虽然提供了机械完整性和支持连续传感,但它们会衰减信号传输,进而降低信噪比和时间响应。新思路有鉴于此,美国莱斯大学Caroline M. Ajo-Franklin等人将合成生物学和材料工程相结合,开发出能够产生电读数且检测时间为分钟的生物传感器。使用模块化的、八组分合成的电子传输链对大肠杆菌进行编程,使其产生电流以响应特定的化学物质。按照设计,该菌株在暴露于硫代硫酸盐后,在2分钟内产生电流。然后,对电流传感器进行了修改,以检测内分泌干扰物。将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。该研究结果提供了一种设计规则,可以用质量输运模型有限的检测时间来感知各种化学品,并为保护生态和人类健康的微型低功耗生物电子传感器提供了一个新的平台。技术方案:1、设计了基于大肠杆菌的生物传感器在大肠杆菌中设计了一种合成电子转移(ET)途径,制备了生物传感器,并评估了各个模块的性能,优化了输出模块的功能,并分析了其性能。2、证实了对硫代硫酸盐的快速检测和定量作者构建了I+C+O+菌株,测量了硫代硫酸盐依赖性EET。通过改进,获得了更高的信噪比,信号强度及再现性,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。3、设计了多样化的活体电子传感器作者利用Fd开关以确定活体电子传感器是否可以多样化,证实了工程化Fd可测量合成ET途径中非代谢中间体的分析物,并将响应时间减少了约4倍。4、证实了传感器在城市水道样品的适用性作者证实了2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能,并通过改进实现了高度可再现的响应,提高了信噪比,获得了更高的稳态电流和更快的响应时间。技术优势:1、开发了超快的生物传感器作者开发了利用ET合成信号转导方法,通过结合合成生物学和材料工程开发了生物传感器,可以产生电子读数,并将检测时间由半小时以上缩短至几分钟。2、实现了城市水道内分泌干扰物的快速测量将蛋白质开关纳入合成途径,并用导电纳米材料封装细菌,可在3分钟内检测城市水道样品中的内分泌干扰物。快速的响应时间非常适合于环境中瞬时化学暴露的连续监测。3、开发了提高信噪比的改进方法利用细胞封装来实现比率传感,并加入导电纳米材料以提高EET的效率,这两种方法都提高了信噪比,并导致了质量传输有限的响应时间。4、为连续、实时环境传感的设计提供了研究平台本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台,可以在不同的环境中进行长时间的准确操作。技术细节传感器设计作者在大肠杆菌中设计了一种合成电子转移(ET)途径。使用硫代硫酸盐来测试该策略,用三个模块设计了硫代硫酸盐依赖的ET途径。为了评估各个模块的性能,使用了基因组编码和质粒编码的遗传电路的组合,使模块组件能够即插即用表达。为了优化输出模块的功能,作者分析了其表达、EET以及在不同诱导条件下对细胞适应度的影响。为了测量细胞色素的表达,监测了细胞颗粒的相对红色。为了以高通量的方式评估EET,测量了诱导细胞还原细胞不可渗透的WO3纳米棒的能力。使用最佳诱导策略,表明优化的输出模块是功能性的。作者确定了耦合模块的SQR,并证明了细胞可以在表达输出模块的同时在输入模块中合成全蛋白。图 带有合成ET链的大肠杆菌传感器硫代硫酸盐的快速检测和定量为了确定ET通过全合成途径是否依赖于硫代硫酸盐,将所有三个模块集成在一起以构建I+C+O+菌株,并在BES中测量浮游细胞的硫代硫酸盐依赖性EET。结果表明整个通路就像一个硫代硫酸盐传感器。为了改善低信噪比,将每个菌株和工作电极封装在藻酸盐-琼脂糖水凝胶中。与浮游细胞相比,封装细胞对硫代硫酸盐的反应具有更高的信噪比(平均增加30倍以上)。此外,相对于浮游细胞,它表现出更高的信号强度(增加5倍)、更高的再现性(标准偏差减少50%)和更高的线性(R2增加10倍)。探讨了该传感器对不同硫代硫酸盐浓度的响应,表明I+C+O+菌株的电流响应与硫代硫酸盐浓度呈线性关系,证实了工程菌株产生的电信号能够快速、连续地检测和定量硫代硫酸盐。图 活体电子传感器的封装实现了硫代硫酸盐的快速检测和定量传感器多样化为了确定活体电子传感器是否可以多样化,以响应影响脊椎动物繁殖的化学物质,利用Fd开关在翻译后对化学配体进行响应。为了量化每个反应器中4-HT诱导的电流变化,计算了IsC+O+应变相对于IC42AC+O+菌株的电流百分比差异。DMSO和4-HT信号的比较显示,在7.8分钟内以95%的置信度检测到4-HT,信号强度增加0.93%±0.33%。尽管工程Fd产生的信号低于野生型Fd,但它能够检测合成ET途径中非代谢中间体的分析物。因此,与以前的微生物生物电子传感器相比,IsC+O+活电子传感器按设计对4-HT作出响应,并将响应时间减少了约4倍。图 表达电子蛋白质开关的活体电子传感器能够快速检测内分泌干扰物城市水道样品测量在添加了硫代硫酸盐或4-HT的河流和海洋样品中测试了BES,证实2-EWE传感器在具有不同非生物特征的城市水样中具有一致的功能。由于这些城市水样的导电性差且氧化还原活性化合物丰富可能会干扰生物电子传感,引入了生物相容性和导电性TiO2@TiN纳米复合材料进入包封基质以增加接触表面并促进细菌-电极界面处的电子转移。这些纳米颗粒-活性传感器混合物在装置之间显示出高度可再现的响应,提高了信噪比,并且在1mM硫代硫酸盐存在下具有更高的稳态电流,并具有更快的响应时间。本工作开发的活体电子传感器可用来专门检测与环境相关的浓度和条件下的分析物,其传质限制动力学比之前的状态快十倍。图 用导电纳米颗粒封装的活体电子传感器能够快速检测环境中的污染物展望总之,本文研制的活体电子传感器为连续环境传感提供了一个可扩展的平台。实时传感需要快速的分析物检测,在没有样品准备的情况下,可以在不同的环境中进行长时间的准确操作。活体电子传感器可在各种环境条件下使用有限的仪器实时检测目标化学品。为了实现长期的环境部署,可以将碳源和辅助化学品纳入封装矩阵,以优化非生物-生物界面的电信号传输。此外,这些传感器可以被安装到通过清除环境中存在的能量来自我供电的设备中。小型、可部署的实时生物电子传感器可以分布在不同的环境位置,这将彻底改变监测化学品在生态系统中迁移的能力。这将为农业的可持续发展提供重要信息,减轻工业废物排放的影响,并确保水安全。参考文献:Atkinson, J.T., Su, L., Zhang, X. et al. Real-time bioelectronic sensing of environmental contaminants. Nature(2022).DOI:10.1038/s41586-022-05356-yhttps://doi.org/10.1038/s41586-022-05356-y
  • 实时细胞分析系统研究获突破 为生物检测作出贡献
    为推动生物检测技术的应用与发展,来自亚太地区细胞生物学各研究领域的专家日前齐聚北京,召开了生物检测领域的新前沿技术——xCELLigence高峰论坛。   这项新技术为药物研发、毒理学、肿瘤、医学微生物和病毒学研究的分析应用提供了一个无须标记、同时又可对细胞进行实时监测的新型细胞分析平台。这不仅改变了多步骤、长时间的人工操作所带来的主观性判断偏差,也缩短了研究周期,减少了动物实验等巨大研究成本,向我们呈现出更为实时、精确、可靠的实验结果。   与会专家希望通过xCELLigence系统平台的不断完善,对无标记的动态细胞检测技术的发展起到更好的推动作用,从而为生物检测领域作出贡献。
  • 北大在生物气溶胶实时监测研究上取得重要突破
    近日,北京大学环境科学与工程学院要茂盛研究员、朱彤教授和化学与分子工程学院郭雪峰研究员在生物气溶胶实时监测上的合作研究取得突破,成果以论文“Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques for Real-time Monitoring Biological Aerosols”在线发表在环境科学与技术(ES&T)刊物上 (http://pubs.acs.org/doi/pdf/10.1021/es1043547)。   生物气溶胶包括空气中的病毒、细菌等的暴露造成了严重的健康问题,包括2003的SARS、2009年的H1N1流感等。此外, 国际上局部区域动荡不安,高致病微生物作为大规模杀伤性武器的可能性日益升高。科学界长期致力于开发空气中致病原的在线监测技术,但在检测时间和甄别生物物种上存在着挑战。   北大研究人员通过集成高效的空气采样、微流控样品输送和硅纳米线生物传感器等技术实现了空气中流感病毒(H3N2亚型)的在线检测。研究指出当空气中出现流感病毒时,该系统能够在短时间内(1-2分钟)报警, 并可以通过无线网络传输系统将检测信号发送到远程接收平台如手机和电脑 而当干净空气通入时没有明显检测信号。系统的选择性也通过流感病毒亚型H1N1和过敏原等得到了验证。   该研究采用了高效的气溶胶转化为水溶胶的采集方法,病毒抗体修饰的硅纳米线生物传感技术及检测信号放大和传输等跨学科先进技术和方法。论文还指出通过对样品的基因扩增(常常达几个小时)也发现含较高浓度的病毒对应着较强的检测信号。   该项研究巧妙地将空气中的生物危害转化为可视的电信号,在检测时间和物种的甄别上迈出了重要的一步,为生物气溶胶的实时检测开辟了崭新的科研手段和研究思路。   论文也指出,对集成单元的进一步改进可使得该系统有望在实际环境中如在军事反恐、医疗卫生机构、机场等公共场所等得到应用。这是北大环境与健康研究团队在2011年的又一项重要研究成果。做为共同通讯作者,要茂盛、郭雪峰研究员是北京大学“百人计划”项目引进的青年人才,朱彤教授是长江特聘教授、北大环境与健康研究中心主任。论文的共同第一作者包括研究生申芳霞、博士后谭苗苗、王振兴, 其他合作作者还包括研究生王金东、武艳、徐振强。
  • 生物气溶胶检测仪-一款用于采集空气中浮游菌的机器2024实时更新
    型号推荐:生物气溶胶检测仪-一款用于采集空气中浮游菌的机器2024实时更新,生物气溶胶检测仪在采集空气中浮游菌的过程中,展现出了其独特的优势。下面将从精准采样、智能化操作、数据管理与分析以及快速检测四个方面,详细阐述其对采集空气中浮游菌的帮助。 一、精准采样 生物气溶胶检测仪通过高效的采样模块,能够精准地采集空气中的微生物浮游菌。其采样技术确保微生物颗粒被完整且准确地收集,为后续的检测分析提供可靠的样本基础。 二、智能化操作 该检测仪多采用智能化设计,用户可轻松设置采样参数,设备将自动完成采样、检测及数据上传等一系列工作。这不仅简化了操作流程,还大大提高了工作效率。 三、数据管理与分析 生物气溶胶检测仪提供强大的数据管理平台,用户可以对采样数据进行长短期评估管理分析。这有助于了解环境中微生物的变化趋势,为决策者提供科学依据。 四、快速检测 该检测仪集成了快速检测功能,大大缩短了从采样到出结果的时间。这种快速响应能力使得在发现潜在微生物污染风险时,能够迅速采取防控措施。 五、产品优势 1.空气微生物采样检测一体机集大流量采集模块、快速荧光检测模块、清洗模块等于一体,实现了全自动无人值守检测(可每天定时多时段检测),省却了人工单独采样,采样完成再转换到实验室检测的过程; 2.安卓系统RAM2G+ROM16G; 3.大流量空气采样装置(干壁气旋固气分离原理) 4.采用MPPT硅光电倍增管检测器 5.可每天定时多时段检测; 6.检测完自动报讯数据; 7.可wifi联网将数据无线上传至云平台; 8.配置数据管理平台,可进行长短期评估管理分析; 9.交直流两用,可方便长时段监测,也可方便流动检测; 10.可选配4G模块,定位模块 生物气溶胶检测仪以其精准采样、智能化操作、数据管理与分析及快速检测等特点,为采集空气中浮游菌提供了极大的帮助。这些优势使得生物气溶胶检测仪在环境监测、疾病防控等领域具有广泛的应用前景。
  • 实时细胞分析:为中药检测提供量化依据
    近日,生物检测领域的新前沿技术——XCELLigence高峰论坛透露,作为生物检测技术领域的一项创新有望给中药检测提供可量化依据。   据了解,罗氏应用科学部最新的这一实时细胞分析系统为药物研发、毒理学、肿瘤学、医学微生物和病毒学研究分析应用,提供了一个无需标记、同时又可对细胞进行实时监测的新型细胞分析平台。尤其在现代中药的开发和药理机制分析的应用上,这一突破性的技术给中草药的发展带来了里程碑式的意义。   在高峰论坛上,浙江大学医学部柯越海教授还介绍说,中国传统医药与西方现代科学有了一个共通的、可量化的检验途径,也为传统天然药材的药效检测提供了新的依据。艾森生物科学公司总裁徐晓博士指出:“XCELLigence新技术使得研究者对癌症的了解更透彻,有利于最优化的药物研发,使癌症得到更好的治疗。”罗氏诊断应用科学部及分子诊断部总监郭伟立先生表示:“罗氏希望通过XCELLigence系统平台的不断完善,对无标记的动态细胞检测技术的发展起到更好的推动作用,从而为生物检测领域做出贡献。”
  • 全自动实时PCR技术!万孚生物全自动核酸检测分析仪获证上市!
    近日,万孚生物子公司万孚卡蒂斯弈景® 全自动核酸检测分析仪(以下简称“弈景® ”)正式获批,取得了国家药品监督管理局三类医疗器械认证(国械注进20223220448)。作为全球第一个可以直接使用FFPE样本和血液样本进行肿瘤基因检测的创新性全自动核酸检测分析系统,弈景® (Idylla™ )致力于提供精确、灵敏、便捷的诊断及用药指导,系统全自动运行,只需不到2分钟的简单人手预备操作。万孚卡蒂斯开创国内先河,首次把全自动一体化理念引入肿瘤精准医疗领域,打造一体化全自动分子诊断中国智造新方案。弈景® 基于实时PCR技术,整合了从样本处理到分析步骤的全过程,创新地把上述全程缩短至约120分钟,能提供准确可靠的分子病理诊断结果,及时为治疗决策提供诊断依据。弈景® 突破了传统分子诊断的障碍和壁垒,打造盒式微型实验室,系统占地不到1平方米,即可实现传统PCR实验室的功能。系统采用全自动运行系统,内置程序,无需人为设定,只需不到2分钟的简单人手预备操作,降低手工影响,真正实现样本进、结果出,保证高准确性和重复性。防污染检测盒密闭设计,内置所有样本处理,即开即用,常温存储。该系统为模块化设计,通量灵活,每个控制台最多可连接8台主机,主机间独立运行、灵活上机、高效检测、结果准确,可用于各类型的实验室。作为创新性全自动核酸检测分析系统,弈景® 致力于使用更少样本,在更短时间提供检测结果,让分子检测更简单、更快速,让更多实验室可以开展伴随诊断等肿瘤分子标志物检测。目前,弈景® 已开发用于指导肺癌、结直肠癌和黑色素瘤等治疗的10多个伴随诊断产品,致力于为肿瘤患者提供精确、灵敏、便捷的诊断及用药指导!
  • 世界首创!基于石墨烯的生物传感器实时检测多种生物信号
    美国国防高级研究计划局(DARPA)、西门子、美国陆军、佐治亚理工学院(Georgia Tech Research Institute)和 Paragraf(最近收购了Cardea Bio)合作,开发了一种利用石墨烯场效应晶体管的电子生物传感平台,该平台能够同时评估多个生物信号。这篇名为“A Single Multiomics Transistor for Electronic Detection of SARS-Cov2 Variants Antigen and Viral RNA Without Amplification”的论文登上了《Advanced Materials Technology》杂志的封面。这一成就标志着这种新型多组学方法的首次公开展示,也成为了首个能同时检测 COVID-19 蛋白质和 RNA 生物信号的方法。Paragraf San Diego 首席创新官说:“拥有一个可以在小型检测设备上同时检测蛋白质和 DNA/RNA 生物信号分析物的单一技术平台是一项重大的技术进步。虽然它最初会影响我们检测病毒感染的时间和地点,但随着时间的推移,它也将适用于其他类型的疾病。这将为任何类型的疾病或生物威胁提供新的、更好的、更快的诊断。”Paragraf 首席执行官补充说:“该项目是在 COVID-19 大流行期间启动的,旨在培育可以快速部署以检测新冠的技术,为未来的任何大流行设想一个灵活的多组学即时检测平台。”我们在圣地亚哥的 Paragraf 团队与合作伙伴一起成功完成了这项计划,实现了 DARPA 设定的目标。更重要的是,这一新颖的突破结合了 Paragraf 以标准半导体工艺大规模生产石墨烯电子产品的独特能力,标志着在护理点测试中可能出现的新方向的开始。”“到目前为止,PCR 一直是任何规模的 DNA/RNA 检测的支柱。然而,这项技术还不能成为一种方便或快速的护理资源。除此之外,抗体/抗原侧向流动测试是用于快速护理点蛋白质检测的首选工具,但它们本身无法提供 PCR 的实验室级准确性。这个多组学项目的成果代表了第一代新型多组学平台,具有相当的准确性和特异性,可以推动护理点疾病检测的水平。可以将其视为提供实验室级别的准确性以及方便和易于使用的横向流动测试。”首席商务官总结道。
  • 微生物检测| Ebio Reader 3700飞行时间质谱系统在微生物检测中的应用
    基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)是一种软电离生物质谱,具有操作简便、结果高准确性、检测速度快和低成本等优点,目前已成为可靠的微生物快速鉴定技术,在微生物领域有着十分广泛的应用。 东西分析作为国产商品化质谱仪开拓者之一,对质谱仪技术及应用的开拓从未停止脚步。并在质谱仪器研发、生产与应用方面拥有丰富的经验和技术沉淀,2017年,东西分析推出MALDI-TOF 质谱-Ebio ReaderTM 3700M飞行时间质谱系统。Ebio ReaderTM 3700M飞行时间质谱系统Ebio ReaderTM 3700M飞行时间质谱系统是东西分析仪器有限公司开发的一款以MALDI-TOF为平台的多功能生物信息阅仪。它是一款多用途多功能的生物检测平台,既可以用于临床医学检测,也可以用于非临床领域诸如食品安全,非法添加,疾控,工业微生物等检测。 原 理 每种微生物都有独特的蛋白质组成。MALDI-TOF MS正是这样一种基于蛋白质检测的微生物快速鉴定技术。其原理是利用质谱技术将蛋白质按分子量大小排列形成独特的指纹图谱,通过测定某一细菌的蛋白质组成,并将特征峰与数据库中的参考谱图对比,即可对细菌进行准确的鉴定。 由此可见,数据库的种类谱图等成为制约MALDI-TOF MS的重要因素。Ebio ReaderTM 3700M拥有强大数据库,包含有4000余种微生物, 包括多种临床致病菌,能够实现菌种的实时鉴定,无需上网检索鉴定;其搭载的神经网络人工智能算法,可对基因型相近的难辨菌(大肠杆菌和志贺氏菌)进行准确区分。同时具有自建库功能,可根据用户的实际情况建立自己的特有菌种库。 应 用 (一)大肠埃希菌和志贺菌的鉴别大肠埃希菌和志贺菌是具有高度传染性、危害严重的革兰阴性肠道致病菌。这两种菌在菌落形态及生物学特性方面非常相似,常规的临床鉴定方法很容易混淆,即使通过16SrRNA测序也无法准确区分。Ebio ReaderTM 3700M利用具有深度学习分析功能的神经网络人工智能软件,可以实现对大肠埃希氏菌和志贺菌的准确区分鉴定。大肠埃希菌,福氏志贺菌和两种混合菌的指纹图谱人工智能算法准确鉴定难辨菌种(二)菌种鉴定MALDI-TOF MS不仅可以鉴定细菌,还可以用于细菌分型,亚种识别等。样品处理在Eppendorf 管中加入300µl 纯净水,挑取适量(5~10mg)菌体,混匀,再加入900 µl 无水乙醇,混匀后以12000r/min 离心2min,弃去上清液,待管中残留液体彻底干燥后,加入50µl 70% 甲酸,混匀,再加入50µl 乙腈,混匀,同样以12000r/min 离心2min,吸取上清液,与等体积的基质溶液(CHCA)混合,然后涂布于96 孔样品板上,自然晾干后进样。用校准品对仪器进行质量轴校正,随后利用Ebio ReaderTM 3700M质谱仪进行样品检测。仪器条件实验结果Ebio ReaderTM 3700M分析样品的质谱图根据所得图谱与数据库参考谱图匹配程度,软件可以计算得到分值。根据质谱仪鉴定分值,1.7时,结果高度可信。本实验中检测的样品质谱结果得分2.3,表示高属水平鉴定,可能的种水平鉴定。(三)地氯雷他定口服溶液药品中洋葱伯克霍尔德氏菌洋葱伯克霍尔德菌是一种无条件致病菌,可引发包括肺炎、败血症、心内膜炎、伤口感染、脓肿在内的多种感染,死亡率95%,被越来越多的制药企业和药监管理系统所重视。《中国药典》2020版也新增洋葱伯克霍尔德菌检查指标。菌种培养菌悬液制备:在生物安全柜内,将洋葱伯克霍尔德氏菌冻干粉溶于胰酪大豆胨液体培养基中,在32℃的电热恒温培养箱中培养,备用。样品制备1. 菌种阳性对照:在生物安全柜内,将洋葱伯克霍尔德氏菌冻干粉溶于胰酪大豆胨液体培养基中,在32℃的电热恒温培养箱中培养,备用。2. 地氯雷他定口服溶液:取三个批次地氯雷他定口服溶液溶于胰酪大豆胨液体培养基中,置32℃电热恒温培养箱中培养;3. 地氯雷他定口服溶液+菌种培养:取三个批次地氯雷他定口服溶液和已制备的菌悬液溶于胰酪大豆胨液体培养基中,置32℃电热恒温培养箱中培养;蛋白提取量取适量的待测样品,以5000r/min 离心5 min收集沉淀物,加入300µl 纯净水,混匀,再加入900 µl 无水乙醇,混匀后以12000r/min 离心2min,弃去上清液,待管中残留液体彻底干燥后,加入50µl 70% 甲酸,混匀,再加入50µl 乙腈,混匀,以12000r/min 离心2min,吸取上清液。点样移取经上述方法处理后的上清液,与等体积的基质溶液(CHCA)混合,然后涂布于96 孔样品板上,自然晾干后上仪器分析。仪器条件质谱仪器参数如下:正离子模式,检测范围:2000 Da~15000 Da;激光点击数:每图谱 200;激光频率:20 Hz;离子源加速电压:20 kV。每次实验前用校准品对仪器进行质量轴校正。结果Ebio ReaderTM 3700M分析洋葱伯克霍尔德氏菌的质谱图地氯雷他定口服溶液的质谱图地氯雷他定口服溶液+菌的质谱图从口服液质谱图和口服液+菌质谱图对比可知,地氯雷他定口服溶液中不含洋葱伯克霍尔德氏菌。(四)食源性致病菌检测一般所说的致病菌指的是病原微生物中的细菌,常见且危害较为严重的食源性致病菌有鼠伤寒沙门菌、副溶血性弧菌、大肠埃希氏菌、单核细胞增生李斯特氏菌等。基于Ebio ReaderTM 3700M飞行时间质谱系统,东西分析可提供食源性致病菌高通量、高自动化解决方案,高效地为食源性疾病诊断提供有价值的检测结果。伤寒沙门氏菌、大肠埃希氏菌、单核细胞增生李斯特氏菌、副溶血性弧菌质谱图结 论MALDI-TOF MS是一种非常有前景的微生物鉴定方法,它具有很明显的准确性和高效性,尤其在临床使用中,常规微生物鉴定需要经过较长时间的培养,而且过程比较繁琐,费用较为昂贵。但是MALDI-TOF MS短的可以几秒出结果,而且成本较低,可以更多的惠及患者。
  • 长江及重要支流水生生物试点监测实施方案及监测技术研讨会在北京召开
    p   8月9日,根据《长江及重要支流水生态环境质量监测方案(试行)》(环办监测函〔2019〕637号)的要求,为贯彻落实水生生物试点监测工作,高质量推进水生生物监测和水生态评价技术体系建设,中国环境监测总站(以下简称总站)在北京组织召开了长江及重要支流水生生物试点监测实施方案及监测技术研讨会,长江流域监测中心、湖北省站、湖南省站、安徽省站、江苏省站、浙江省站、无锡市站、常州市站、苏州市站、洞庭湖站及巢湖站相关领导和专家参加研讨。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/fb3586e4-cc74-45f1-8431-268d3646e625.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center "   研讨会现场(一) /p p   会上,各单位分别介绍了水生生物监测工作基础以及在监测和评价技术方面取得的标志性成果。随后,总站从目的意义、主要目标、监测内容、工作方式及任务分工、监测要求、质量控制、进度安排、数据上报和报告编制等方面详细介绍了2019年水生生物试点监测实施方案内容,并与参会单位就水生生物监测技术展开了充分交流和讨论,进一步明确了下一步工作的方向和要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/981beb96-0a9c-4678-800a-f3613c736fa2.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center "   研讨会现场(二) /p p   三水(水资源、水生态、水环境)统筹是“十四五”及今后我国水生态环境管理的主要目标和方向。总站将依托水生生物试点监测工作,立足长江及重要支流,放眼全国,开展技术和业务体系建设先行先试,探索并逐步构建我国水生生物监测规范化技术体系和业务工作推进机制,为客观反映水生态环境质量状况,建立健全流域水生态环境监测和评价体系提供技术支撑。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/7b16db89-65da-458a-9043-524c56d2e74b.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加绿· 仪社为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 水质中5种生物胺检测(液相色谱法)方法国家标准实施
    水质中5种生物胺检测方法国家标准实施  为灾区水质的检测、监控提供检测方法和技术手段   记者从6月17日科技部和国家标准委联合召开的新闻发布会上获悉,针对5.12汶川大地震可能造成灾区水质变化而制定的检测水质中5种生物胺的国家标准已于6月11日由国家质检总局和国家标准委发布并于当日起实施。这项标准从提出到完成,仅用了13天。科技部副部长刘燕华、国家标准委主任刘平均出席会议并讲话。   刘燕华指出,科技和标准的结合将在抗震救灾和灾后重建中发挥重要的作用。汶川大地震发生后,科技部针对地震灾区水质可能发生变化的情况,组织科技专家联合攻关,着手制定检测水质中5种生物胺方法的国家标准。目前,灾区对检测方法的需求十分迫切,5月23日,科技部接到来自灾区的生物胺快速检测的请求并组织专家到前线,这项国家标准是在深入了解灾区需求的情况下制定的,将对保证灾区人民的饮水安全和身体健康发挥重要的作用。   刘平均指出,检测水质中5种生物胺的国家标准是科技成果及时转化为标准的范例。这项标准中的方法是对相关方法进行认真筛选后确定的精确度高、检测结果稳定的高效液相色谱法检测法,已经过了10个权威实验室的验证试验。科技部提出制定这项标准的建议后,国家标准委迅速启动了应急标准制定程序,本着科学、严谨、快速的原则,在程序不减、质量要求不降低的前提下,标准的立项、审查和报批同时进行,从标准提出到完成,仅用了13天。这项标准的发布实施,为灾区水质的检测和监控,为灾区人民饮水安全及环境保护提供了权威的检测方法和有力的技术手段。   据悉,《水质 组胺等五种生物胺的测定 高效液相色谱法》(GB/T21970-2008)规定了测定水中腐胺、尸胺、亚精胺、精胺及组胺含量的测定方法。生物胺具有生物活性的有机化合物,常存在于动植物体内及食品中。微量生物胺是生物体内的正常活性成分,但当人体摄入过量的生物胺时,会引起头痛、恶心、心悸、血压变化、呼吸紊乱等不良反应。 附件:水质中5种生物胺检测:液相色谱法生物胺.pdf
  • 微生物检测大有可为
    2016年8月25日,国家卫生计生委、国家发展改革委等14部门联合制定发布了遏制细菌耐药国家行动计划(2016-2020年)。我国是抗菌药物的生产和使用大国。抗菌药物广泛应用于医疗卫生、农业养殖领域,细菌耐药问题给人类社会带来了生物安全威胁加大、环境污染加剧等影响,迫切需要加强多部门多领域共同应对。计划从国家层面实施综合治理策略和措施,对抗菌药物的研发、生产、流通、应用、环境保护等各个环节加强监管,加强宣传教育和国际交流合作,应对细菌耐药带来的风险挑战。  行动计划设定了六个目标:    (一)争取研发上市全新抗菌药物1-2个,新型诊断仪器设备和试剂5-10项。  (二)零售药店凭处方销售抗菌药物的比例基本达到全覆盖。省(区、市)凭兽医处方销售抗菌药物的比例达到50%。  (三)健全医疗机构、动物源抗菌药物应用和细菌耐药监测网络 建设细菌耐药参比实验室和菌种中心 建立医疗、养殖领域的抗菌药物应用和细菌耐药控制评价体系。  (四)全国二级以上医院基本建立抗菌药物临床应用管理机制 医疗机构主要耐药菌增长率得到有效控制。  (五)人兽共用抗菌药物或易产生交叉耐药性的抗菌药物作为动物促生长应用逐步退出 动物源主要耐药菌增长率得到有效控制。  (六)对全国医务人员、养殖一线兽医和养殖业从业人员完成抗菌药物合理应用培训 全面实施中小学抗菌药物合理应用科普教育 开展抗菌药物合理应用宣传周。  2016年12月9日,为贯彻落实《遏制细菌耐药国家行动计划(2016-2020年)》,提高二级以上综合医院细菌真菌感染诊疗能力,促进抗菌药物合理应用,国家卫生计生委办公厅发布关于提高二级以上综合医院细菌真菌感染诊疗能力的通知。  通知提出了加强医院临床微生物、临床药学、医院感染管理等相关学科建设 使科室(实验室)布局、人员配备、仪器配置、质量管理等满足工作需求等五项要求。 遏制细菌耐药国家行动计划(2016-2020年).docx关于印发遏制细菌耐药国家行动计划(2016-2020年)的通知.docx国家卫生计生委办公厅关于提高二级以上综合医院细菌真菌感染诊疗能力的通知.docx国家卫生计生委等12部门召开应对细菌耐药工作会议.docx《关于提高二级以上综合医院细菌真菌感染诊疗能力的通知》解读.docx
  • 中国合格评定国家认可委员会发布CNAS-CL01-A026:2023《检测和校准实验室能力认可准则在药物生物样本分析检测领域的应用说明》及其实施安排
    CNAS-CL01-A026-2023 检测和校准实验室能力认可准则 在药物生物样本分析检测领域的应用说明本文件适用于 CNAS 对药物生物样本分析(以下简称生物样本分析)检测领域实验室的认可活动。药物生物样本系指药物在生物体内的药代动力学、生物利用度/生物等效性等研究所获取的动物非临床试验或人体临床试验的全血、血清、血浆、尿等样本。本文件仅适用于检测对象为药物临床试验生物样本。本文件与 CNAS-CL01:2018《检测和校准实验室能力认可准则》同时使用。本文件为首次制定,细化了药物生物样本分析检测实验室的要求,故使用了本应用说明,则不再使用 CNAS-CL01-A002:2020《检测和校准实验室能力认可准则在化学检测领域的应用说明》(以下简称“CNAS-CL01-A002:2020”)。本文件于2023年11月1日发布并实施。为保证文件的顺利实施和平稳过渡,具体过渡安排通知如下:一、2023年11月1日至2024年4月30日为过渡期,过渡期期间两个应用说明可并行使用,已获认可实验室自行完成过渡转换,自2023年11月1日开始,CNAS接收的初次申请、扩项申请无识别结果均执行CNAS-CL01-A026:2023。二、自2024年5月1日开始,所有申请受理、文件评审、现场评审等评审活动均执行CNAS-CL01-A026:2023。三、2024年5月1日以后,对现场评审发现未完成转换的实验室,CNAS将暂停或撤销其药物生物样本分析检测领域的认可资格。四、实验室认可申请书CNAS-AL01-63:20231101 附表6( CNAS-CL01-A026: 2023 )《核查表》(以下简称“CNAS-AL01-63 : 20231101”)和实验室评审报告CNAS-PD14-11-56 D0附件1-1 (CNAS-CL01-A026:2023 )《检测/校准实验室现场评审核查表》( 以下简称“CNAS-PD14-11-56 D0”)的过渡期与CNAS-CL01-A026:2023相同。关于发布CNAS-CL01-A026:2023《检测和校准实验室能力认可准则在药物生物样本分析检测领域的应用说明》及其实施安排的通知,CNAS-CL01-A026-2023 检测和校准实验室能力认可准则 在药物生物样本分析检测领域的应用说明
  • 发布微生物快速检测系统新品
    MBS微生物快速检测系统品牌:意大利MBS.SRL适合您的可移动的微生物实验室整套系统由MBS-MR主机,笔记电脑,MBS(Fitlylab)中文操作软件,VL微生物检测瓶组成检测项目• 活菌总数• 大肠菌群• 大肠杆菌• 粪大肠菌群• 肠杆菌• 金黄色葡萄球菌• 绿脓杆菌/铜绿假单胞菌• 沙门氏菌• 李斯特菌• 粪肠球菌 • 酵母菌应用范围卫生控制:• -食品(HACCP)• -厨房、工具、表面(HACCP)• -水质• -(CDC)控制、进出口检验检疫• -药品及化妆品与我们的生活息息相关,例如:l咖啡馆、餐厅l分析实验室l农产品及相关加工公司l消费者保护团体、工商管理机构等整套系统主要特点:1:食源性致病菌及菌落总数等定量检测;2: MBS砖利技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫 法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身;3:检测速度:是传统检验方法速度的2~10倍;4:可检测固态、液态、表面、膏状、浆状样本 ;5:8个检测位都是独立作业,可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可循环使用,可以自动选择控制检验项目温度;6:三光波同时检测(蓝,绿,红);7:灵敏度高达可检测到1目标微生物,即1CFU,特异性高达99.999%;8:样本检测操作简单,大部分样品可以直接加1g或者1m样品无需前处理;9:不需要人值守,自动生成检测报告储存在数据库,也可以根据需要选择创建报告另存;10:检测瓶是封闭式的检测,所有检测过程对人体无害,并可以在一般实验室环境下使用;11:可以按客户的要求设置合格值的定性分析,也可以不做限制的原样 样品的定量分析;12:检测瓶自带杀 菌功能,检测后的检测瓶经杀 菌后可按照实验室常规废弃物处理,安全无害;13:操作软件已升级为Fitlylab中文版,购买的客户可以长久免费更新;14:简单三个操作步骤,傻瓜型,无需专业操作人员 ;15:仪器便携式,可随时随地进行检测、100%定量分析;16:通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替 法的认证, 符合ISO/IEC 17025:2005标准(检测和校准实验室能力的通用要求)的内部认证。 MBS微生物快速检测系统VL微生物快速检测瓶(MBS砖利技术)MBS-MR主机由罗马第二大学物理研究所和意大利核物理量子实验室(INFN)共同研发,VL检测瓶由罗马第三大学生物系研究所研发。MBS砖利检测技术过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证国家轻工业食品质量监督检测南京站验证报告MBS砖利检测技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身。对于需氧菌,以比色的形式测量通过呼吸氧化还原反应链的电子通量率,从而测量耗氧量的速度,而耗氧量的速度与存在于媒介总的菌数量成正比,对于厌氧性微生物测得内生电子的下降率也与媒介中的的菌数量成正比。(VL检测瓶内的营养物,维持目标菌的生长;选择性 药 剂,抑制非目标菌的生长;而其中的还原剂,做为递氢体,能在细胞色素C后把电子转移到菌呼吸链,而又不被氧分子氧化。如果目标菌存在,那么检测瓶中的氧化还原反应色素会根据媒质的氧化还原状态改变颜色。MBS主机通过三光波探测颜色变化,*后根据综合颜色变化的时间确定菌的含量。)MBS-MR主机8个检测位都是独立作业可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可以循环使用,可以自动选择控制检验项目温度,MBS-MR主机三光波同时检测(蓝,绿,红)与简单的色度计不同的是,仪器可同时使用3种波长进行测量,避免由于菌生长或存在固体样本造成的光散射带来的干扰。MBS-MR根据时间记录红绿蓝通道的光强度微分曲线*大拐点代表颜色变化的临界点,利用临界点对应的时间计算菌的含量VL微生物快速检测瓶• 通过ISO 16140:2003认证• 直接利用VL检测瓶可以快速定性检测致病菌• VL检测瓶搭配MBS-MR机可以快速的定量检测致病菌检测步骤可以总结成以下4步:检测报告(PDF报告)食品分析(取样方法)在进行食品分析时,使用食品加工用具或者消 毒后镊子把食品样本放进瓶子里,达到实时检测污染物的目的。对于液体样品,要按要求使用一次性吸液管。表面分析(取样方法) 1,打开装有中和溶液的小瓶中的棉签2,在一个大约10平方厘米的区域擦拭3,将棉签插入检测瓶4,开始分析水分析(取样方法) 对于水分析,本产品配备了能满足各种分析需求的工具包。对所需的水样进行过滤后(如:100毫升),把过滤器放进大瓶里。不管菌附在过滤器内,还是处于自由悬浮状态,色变所需的时间几乎一样。MBS微生物快速检测系统孵育温度/检测时间快查表创新点:仪器软件及检测瓶重新升级 样品不需要前处理,直接加样,系统升级可以按客户设定合格值提前得出报告。 微生物快速检测系统
  • 各方专家共话制药领域微生物检测
    p style=" text-align: left " 仪器信息网讯:8月16-18日,第六届工业企业微生物安全控制技术与实践研讨会在北京友谊宾馆顺利召开。会议由中国工业微生物菌种保藏管理中心、中国食品发酵工业研究院、中国微生物学会工业微生物学专业委员会和发酵行业生产力促进中心共同主办,国家微生物资源平台、国家食品安全风险评估中心和中国食品药品检定研究院联合支持。来自国内外食品、制药、化妆品等工业企业,全国质量监管、检验检疫、出入境和第三方检测实验室等机构,近100家单位的230余位代表出席本次研讨会。 br/ & nbsp & nbsp 2017年,GB4789食品微生物学检验系列新标准正式发布,药品微生物控制理念与技术不断革新,新版《化妆品安全技术规范》全面施行,标志着我国与国际标准快速接轨。此次会议的召开,也是为业界各方提供了一个非常理想的就如何进一步促进工业企业标准贯彻及质控技术能力提升等问题进行交流探讨的互动平台。 br/ & nbsp & nbsp 本次会议除了设有大会报告外,在18日还分别开设了“食品和化妆品分会场”和“制药分会场”。在“制药分会场”,共有8位来自药检机构及企业的专家进行了精彩的报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/f216e29e-30f3-4c46-9e3b-49b1e309b1da.jpg" title=" IMG_2858_meitu_2.jpg" / /p p style=" text-align: center " strong 制药分会场 /strong br/ /p p style=" text-align: left " & nbsp & nbsp & nbsp 天津市药品检验研究院曹晓云主任从指导原则、分类及命名回顾、鉴定程序、表型鉴定、基因型鉴定和溯源分析等六个方面对2015版药典通则 9204《微生物鉴定指导原则》进行了详细介绍,并通过具体案例就如何在相关原则的指导下开展微生物检验工作进行了分析。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/711e761f-33a5-4514-9893-e677b51d59bf.jpg" title=" IMG_2854_meitu_1.jpg" / /p p style=" text-align: center " strong 天津市药品检验研究院 曹晓云 /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp 浙江省食品药品检验研究院的李珏副所长在报告中就微生态制剂中的活菌检验、杂菌检验的方法学研究及相关产品标准进行了探讨。在报告最后,李珏表示,随着微生物学的迅速发展,一些简便快速或具有实时监控潜力的微生物检验新技术被引入到制药领域以促进生产成本降低及检验水平的提高。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/8907ce42-4f22-4db2-a418-4a8e477232ab.jpg" title=" IMG_2870_meitu_3.jpg" / /p p style=" text-align: center " strong 浙江省食品药品检验研究院 李珏 /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp 美国礼来苏州制药有限公司顾问王晓明博士则从无菌保障的重要意义、厂房车间设计、设备设施维护、人员培训、工艺验证/控制、产品配方、无菌工艺、监测等各个环节详细阐述了如何在无菌药品生产过程中实现无菌保障。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/79c29a25-9562-4e88-b6d6-5eb881221dbf.jpg" title=" IMG_2876_meitu_4.jpg" / /p p style=" text-align: center " strong 美国礼来苏州制药有限公司 王晓明 /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp 美国Microbiologics公司的高级微生物专家Laurie Kundrat在报告中介绍了针对制药用水微生物检测方面的相关技术,和该公司在这一领域可以提供的相关产品及解决方案。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/2be88901-949d-40f5-aad1-fe3b663cbe4f.jpg" title=" IMG_2895_meitu_5.jpg" / /p p style=" text-align: center " strong 美国Microbiologics公司 Laurie Kundrat /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp 辽宁省药品检验检测院张亚杰主任的报告题目为“药品洁净实验室微生物监测和控制指导原则实施现状及展望”。她在报告中首先介绍了国内、外的相关法规,随后针对有关法规在实施当中存在的问题,尤其是在环境洁净度监测(悬浮粒子和浮游菌)方面的问题及相关解决方案进行了详述。报告最后,她对有关标准、方法、技术三个方面的未来发展进行了展望。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/c47db19a-8ef8-47a1-a2ab-79a0cfa7ee86.jpg" title=" IMG_2904_meitu_6.jpg" / /p p style=" text-align: center " strong 辽宁省药品检验检测院 张亚杰 /strong /p p & nbsp & nbsp & nbsp 上海诺狄生物科技有限公司柴海毅总经理根据自己20余年的质控从业经历,通过生动详实的案例,向与会者分享了当出现微生物污染结果不符合标准时,应当如何调查原因的宝贵经验。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/69f684b2-8ffc-41f9-ae91-dad604fc7478.jpg" title=" IMG_2934_meitu_7.jpg" / /p p style=" text-align: center " strong 上海诺狄生物科技有限公司 柴海毅 /strong /p p & nbsp & nbsp & nbsp 无锡药明康德生物技术股份有限公司Asso. Director司阳从基本问题、主要工艺步骤、无菌模拟试验的调查和审计关注点等四个方面对培养基灌装(无菌工艺模拟)技术进行了详细解读。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/0f472113-b3da-4007-88f8-512c7b00e5cb.jpg" title=" IMG_2947_meitu_8.jpg" / /p p style=" text-align: center " strong 无锡药明康德生物技术股份有限公司 司阳 /strong /p p & nbsp & nbsp & nbsp 中国工业微生物物细菌保藏管理中心(CICC)赵婷高工则在报告中介绍了CICC在微生物检测实验室质量管理体系建设方面所取得的成果。特别是从质量保证、非标方法确认、设备管理、文件控制、客户服务、生物安全管理等多方面着重分享了贯彻实施ISO17025实验室管理标准方面的宝贵经验。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/2cdd8bf9-99a8-4c23-bcb6-2b92d1d3eb78.jpg" title=" IMG_2955_meitu_9.jpg" / /p p style=" text-align: center " strong 中国工业微生物物细菌保藏管理中心 赵婷 /strong /p
  • 高效率、快检测、强效果 | 杭州大微推出预制菜微生物快检方案
    预制菜是预先加工制作以方便后续食用的多种类型食品的统称,根据食用方式可将预制菜产品分成四个类型,即食食品、即热食品、即烹食品以及即配食品。预制菜中的微生物尤其是致病菌具有检出率高但含量低的特点,检测方法的灵敏度和限量要求之间有着很大的差异;加之预制菜加工过程需要保障食材的新鲜度,对检测的方法和效率要求高。为了抵御预制菜生产加工各环节中的微生物污染,杭州大微现推出「预制菜中微生物快速检测方案」,高效率、快检测、强效果地为预制菜质量安全保驾护航。预制菜中涉及的微生物指标限量要求主要参照GB 29921-2021《食品安全国家标准 预包装食品中致病菌限量》和GB 31607-2021《食品安全国家标准 散装即食食品中致病菌限量》。另外GB 19295-2021 《食品安全国家标准 速冻面米与调制食品》、T/CHA 024—2022《预制菜生产质量管理技术规范》、T/CNFIA 115-2019《预制包装菜肴》等标准也对预制菜质量提出要求,为预制菜的品质分级及质量管理提供了标准指引。1月29日,市场监管总局发布《市场监管总局关于规范食品快速检测使用的意见》,明确食品快检可用于对食用农产品、散装食品、餐饮食品、现场制售食品等的食品安全抽查检测,并在较短时间内显示检测结果,鼓励开展食品快检产品认证,加强食品快检方法开发。ATP生物荧光法无需培养微生物过程,操作简便的同时灵敏度高,缩短检测时间,降低人工成本,是目前微生物检测最快的方法之一。杭州大微通过将ATP荧光原理与微生物特性相结合,开发了DW-ES800型微生物实时检测系统。这款创新型的系统分为酶-底物反应法培养模块和实时光电检测模块两个部分:培养模块实现30个微生物检测拭子的自动培养,光电检测模块采用高灵敏的光电二极管技术和简洁易用的操作设计。该系统可广泛消毒效果检测、水质分析、食品、保健品、化妆品、餐饮企业等行业中总大肠菌群、粪大肠菌群、大肠杆菌、细菌总数等指标的检测。 在传统微生物培养理论的基础上,杭州大微还将染色、新光源和光子探测技术、二氧化碳传感技术结合,推出了DW-BT100型快速微生物定量检测系统,通过双温光电检测系统和计算机控制的模块化分析系统来监控微生物生长代谢所引发的光密度和颜色的变化。DW-BT100型快速微生物定量检测系统缩短检测时间,简化传统微生物的检测方法,该技术目前已被广泛用于乳制品、食品保健品、化妆品的微生物检测以及水厂、政府监管部门、科研院所。食品安全关乎消费者的生命健康,针对预制菜食品行业中出现的微生物指标超标、原材料变质、加工环节受污染等问题,政府部门不断完善相关的政策法规,杭州大微生物也将为您持续提供最适所需的解决方案。
  • 勤邦生物参与的饲料中真菌毒素快速检测地方标准发布实施
    近日,江西省质量技术监督局发布并实施了三项食品安全快速检测地方标准,勤邦生物做为主要起草单位之一,为标准的制定和顺利颁布做出了多项技术支撑,体现了勤邦生物在真菌毒素免疫快速检测领域的技术实力和影响力。本次发布的三项地方标准为:DB 36/T 1024-2018《饲料中黄曲霉毒素的快速筛查 胶体金快速定量法》DB 36/T 1025-2018《饲料中呕吐毒素的快速筛查 胶体金快速定量法》DB 36/T 1026-2018《饲料中玉米赤霉烯酮的快速筛查 胶体金快速定量法》胶体金法检测快速,操作简单,成本低廉,可用于各类型农产品食品生产经营企业的内部品控,也可用于各级政府监管部门的现场检测,通过大样本、大范围的筛查,发现疑似阳性样本,使用法定的仪器分析法进行确认检验,在不增加检测成本的情况下,扩大了抽样范围和抽样量,使得检测具有针对性和代表性,真正做到有效品控和监管。勤邦生物一直将自主创新做为企业发展的核心动力,不断加强核心技术专利转化为标准的能力,截至目前,勤邦团队已经参与制定22项标准,其中国家标准1项、行业标准17项,地方标准3项,团体标准1项。勤邦生物将继续发挥行业领军作用,以更先进的技术、方法,更严谨的态度,推动免疫检测行业发展进步。
  • 新品发布:Sievers Soleil快速微生物检测仪
    Sievers分析仪产品线再次增加新成员,为快速发展的制药和生命科学行业提供更强大的支持。据麦肯锡公司称,新模式在药物开发管线中所占的比例已从11%增加到21%,生产工艺流程也必须跟上步伐。要快速适应先进制造、过程分析技术(PAT)实施以及改进批量制造和工艺控制的要求,就需要在生产过程中保持灵活性。全新Sievers® Soleil快速微生物检测仪可提供近乎实时的数据,用于监测超纯水和生产工艺中微生物控制的有效性,最终提供与传统方法相关的可操作结果。随着Sievers Soleil的发布,Sievers分析仪已成为业内首家为制药工艺提供所有四种关键分析检测参数的品牌 — 微生物、细菌内毒素、总有机碳TOC和电导率。这一综合服务使Sievers分析仪成为水质检测解决方案和过程分析技术领域独一无二的单一来源供应商。使用Sievers Soleil,用户可以在45分钟内准确检测水系统、原材料和加工过程样品中的微生物污染,与需要数天才能得出结果的传统检测方法相比有了重大改进。通过近乎实时地提供与平板计数相关的微生物数据,制造商可以迅速采取行动控制污染事件并降低风险。这一新型快速微生物检测仪源于威立雅近期对Sentinel Monitoring Systems公司的收购。Sentinel公司的技术和专业知识,使Sievers分析仪的产品组合扩展到快速微生物检测的新兴市场。使用Sievers Soleil快速微生物检测仪,用户可以:针对制造工艺流程及时做出数据驱动型决策,从而降低风险、节省更多成本并在产品放行时增强信心。在实验室中或在整个制造过程中进行旁线检测(at-line),从而监测水系统、清洁验证、环境监测、原材料和原料药中的污染控制过程。只需3个移液步骤即可轻松进行检测。消除产品放行中的微生物检测瓶颈。30多年来,Sievers分析仪通过卓越的分析检测推动用户做出更明智的决策,帮助用户满足法规要求、优化流程并与最佳实践保持一致。Sievers Soleil延续了这一传统,实现了简单的微生物检测和更高的效率。作为水处理解决方案的先驱,威立雅始终致力于开发类似于Sievers Soleil这样的创新技术,以满足客户的需求。现在,Sievers Soleil快速微生物检测仪已正式在大中华区市场开售,即刻联系我们,了解Sievers分析仪产品如何帮助用户简化水质检测。点击查看Sievers Soleil快速微生物检测仪产品页面。点击查看Sievers Soleil快速微生物检测仪视频介绍◆ ◆ ◆联系我们,了解更多!
  • IVIS 视角 | 使用生物发光成像实时监测体内葡萄糖摄取
    在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。今天给大家分享一篇2019年发表在《Nature Methods》杂志上的文章。作者设计了一种生物发光的探针BiGluc,利用该探针即可在体内、体外实时、无创的长期监测葡萄糖的摄取。葡萄糖是大多数生物体能量的主要来源,其异常摄取与许多病理条件有关,如肿瘤、糖尿病、神經退行性疾病、非酒精性脂肪性肝炎等。到目前为止,基于18FDG的正电子发射断层成像(PET)仍然是测量葡萄糖摄取的金标准。还没有光学成像技术能够很好的检测该指标。文章中作者设计了一种可以可视化和定量葡萄糖吸收的光学探针。该探针是基于结合笼状萤光素技术与生物正交‘点击’反应,即可激活的笼状萤光素三芳基膦酯(CLP)与全氟苯基叠氮基修饰的葡萄糖(GAz4)分子之间产生的生物正交点击反应,该反应导致游离萤光素的释放,此时在萤光素酶的存在下,即可产生可量化的生物发光信号,其信号强度与葡萄糖的代谢水平相关。在活体成像中,首先是表达萤光素酶的动物注射CLP, 24小时后注射GAz4,注射后即可使用IVIS 小动物活体成像系统进行成像,如下图所示。图1. BiGluc.探针的设计策略点击查看视频:https://v.qq.com/x/page/y0897ftpwnc.html为了研究BiGluc探针在活体水平的应用,文中使用基因工程鼠FVB-luc+/+【该小鼠通过β-actin启动子广泛的表达萤光素酶】来进行评价。在三组FVB-luc+/+小鼠中,首先尾静脉注射CLP溶液,24h后分别灌胃GAz4(BiGluc组)、GAz4+d-葡萄糖(BiGluc+d-葡萄糖组)或PBS(背景组)。结果显示,d-葡萄糖(1:300 ratio with the GAz4 probe)的竞争能够对BiGluc信号进行抑制,使得信号值下降至背景值。从而成功证明BiGluc探针与天然底物存在竞争(下图a-c)。为了进一步研究BiGluc和d-葡萄糖的在体内的选择性,作者进行了胰岛素耐受性试验。高水平的胰岛素会导致GLUT4易位到细胞膜,随后组织对d-葡萄糖摄取的增加。因此实验中FVB-luc+/+小鼠静脉注射CLP,24h后注射GAz4 结合 PBS溶液(对照组)或者胰岛素,随后进行生物发光成像,结果显示胰岛素处理组小鼠的信号增加了三倍(下图d)。图2. 转基因小鼠(FVB-luc+/+)中d-葡萄糖摄取的成像和定量这些实验结果表明,BiGluc探针可以可靠地用于可视化研究活体水平d-葡萄糖的摄取,并且可以进行定量,从而也提示该探针可用于糖尿病等代谢疾病的研究。同样,该探针可用于肿瘤葡糖糖摄取的研究。葡萄糖转运蛋白,特别是GLUT1,在多种类型肿瘤发展中起着至关重要的作用。实验中使用裸鼠接种4T1-luc或4 T1-luc-GLUT1?/?细胞,肿瘤生长至体积65mm3,所有的动物注射等量的萤光素,以确保肿瘤的大小和萤光素酶的表达量相同。如前所示,进行BiGluc探针成像实验。实验结果表明,与对照组相比,4T1-luc-GLUT1?/?发光强度降低38%。同样文中还研究了BiGluc信号是否可以通过化学抑制GLUT1转运体来调节。众所周知,WZB-117是一种小分子的GLUT1可逆抑制剂,能够在不同的癌症中有效地阻止葡萄糖的摄取。结果显示WZB-117处理组,葡萄糖摄取信号减少50%(下图c,d)。同样文中比较了BiGluc 探针和18F-FDG-PET在肿瘤移植体中的应用效果。结果显示 4T1-luc-GLUT1?/-细胞对葡萄糖的摄取量降低,与BiGluc探针成像结果一致(下图e,f)。图3. 使用BiGluc和18F-FDG探针对肿瘤异种移植模型中d-葡萄糖的摄取进行成像和定量这些结果都证明了BiGluc探针在研究机体葡萄糖摄取中强大的功能。相信这项技术可以广泛应用于药物研发以及监测与葡萄糖摄取异常相关疾病的发生和进展,如癌症、糖尿病和肥胖等。此外,BiGluc技术扩大了生物发光成像技术可检测的生物分子的范围。在未来,利用新的红移萤光素-萤光素酶组合技术可以进一步提高BiGluc探针灵敏度,将进一步扩大其应用范围。文章来源https://www.nature.com/articles/s41592-019-0421-z关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 泰林生物微生物检测仪出口美国,加速国际化步伐
    2018年4月16日,浙江泰林生物技术股份有限公司首批微生物检测仪器和耗材空运抵达美国,至此泰林生物继成功开发英国、日本、韩国、澳大利亚、巴西、西班牙等国家和地区后,成功登陆美国市场。这是公司在”专业化、规模化、国际化“的经营战略指引下,经过连续多年赴海外参加国际性展览后取得的丰硕成果。 泰林生物主营微生物检测与控制技术系列产品,注重研发和创新,每年用于研发的资金超过营业收入10%以上,开发的智能集菌仪、集菌培养器、无菌隔离器、过氧化氢灭菌器、总有机碳分析仪等产品多次荣获省、市科技进步奖,公司还承担了十三五科技计划-重大仪器开发专项等重大项目。 公司创立之初就成立了国际贸易部,开始尝试产品出口。早期由于发达国家对中国制造的精密仪器类产品缺乏信心,对中国产品往往提出苛刻的要求,有些国家的代理商甚至提出产品包装上不得出现中文等不合理要求。但泰林生物始终坚持基本原则,拒绝不合理、不平等的诉求,走自己的品牌之路。 为成功打开国际市场,公司制定了国际贸易“三步走战略”。第一步是产品标准化,从研发开始,全面学习贯彻ISO、FDA、USP、EP,结合中国GMP、CHP等国内外技术标准和法规,将产品通用化、标准化;第二步是全面抢占设在国内的外资企业用户,通过长期、持续的技术交流、产品试用、产品验证等工作,赢得了越来越多设在国内的外资企业的认可,百特、辉瑞、罗氏、阿斯利康、参天制药等一大批在中国境内的企业用户纷纷采购泰林生物的产品,用于过程产品和最终产品合格放行的检测;第三步是全面进军海外市场,凭借产品标准化以及过硬的技术和质量,加上国内检测机构、大型企业用户、外资企业用户的认可,泰林生物迅速在海外吸引了一批优质经销商,一举打通了出口海外的渠道。至今,泰林生物的全系列产品已出口到40多个国家和地区,其国际贸易额近年来保持连续高速增长。 随着产品更多地出口欧美高端市场,泰林对其产品的品质及管理也得到了进一步提高,泰林品牌价值和品牌影响力日益提升,为其对外贸易的持续发展提供了更为广阔的空间。特别是2018年,在美国301调查的市场大背景下泰林能保持对美国市场出口的增长,不仅证明了泰林产品品质,更证明了泰林技术以及服务得到了海外市场的肯定。此外,泰林产品还将在韩国COPHEX、德国ACHEMA、日本INTERPHEX、西班牙CPHI上亮相,泰林生物将升级国际贸易经营理念,实施新一轮出口战略,改单一的产品出口为产品加服务出口双轨战略,提供客户整套微生物检测与控制技术解决方案。
  • 生物量监测在微生物(细胞)培养条件优化的应用
    上一篇推文,介绍了WIGGENS的CGQ生物量在线监测系统,在微生物(细胞)效能评价/菌种筛选的应用。 本期介绍生物量监测在微生物(细胞)培养条件优化中的应用。培养基为微生物(细胞)的生长提供环境条件以及碳源,氮源,生长因子等。培养基具有通用性,但每种培养物都有特殊性。在通用培养基的基础上针对培养物的特性做适当的调整或成分添加,对目的产物的高效产出,具有重要正作用。 下图是德国法兰克福歌德大学,使用CGQ生物量监测系统对Saccharomyces cerevisiae (一种酿酒酵母)在不同碳源组分中的生长曲线。 三种碳源Glc(葡萄糖)、Gal(半乳糖)、Mal(酰胺)不同浓度对酿酒酵母的生长有着明显的影响,对迟缓期和对数期的影响显著。碳源各组分浓度不同,对酿酒酵母进入平台期的时间甚至有超过6小时的差距影响。这对注重效率的工业发酵来说,减少迟缓期的时间段,有着重要的参考意义。 下图是,在M9培养基中,通过加入不同浓度的甘油,Escherichia coli (大肠杆菌)的生长曲线 从上图大肠杆菌的生长曲线可以看出,在M9培养基中,甘油浓度是对大肠杆菌最终生长量的最大影响因素。0.4%的甘油浓度对比0.1%的甘油浓度,对数生长期有明显提升,最终得到的生物量也是低浓度甘油的4倍以上。 下图是通过培养过程的摇瓶补液,CGQ进行的实时生物量监测。 在大肠杆菌培养中,通过LIS摇瓶补液系统,在摇瓶培养过程中进行在线补入缓冲液,缓冲液对pH值进行了调节。在使用LB培养基培养大肠杆菌的过程中,对生物量的限制的最大因素不是培养基组分,而是pH值,持续的进行pH调节,可以有效的增加生物量,提高培养基的利用率。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamicacidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 微生物(细胞)生长阶段时期监测
    菌种是微生物培养的前提条件。优良的菌种,是微生物高效培养的前提。无论是摇床培养还是发酵培养,优良的菌种对培养的效果都有至关重要的意义。 微生物在生长过程会经历迟缓期、对数生长期、稳定期和衰亡期。微生物在培养和传代过程中会发生变异,次生产物,细胞活力变化等。微生物在生长过程 微生物对数期生理状态相对稳定,较稳定期次生代谢物少,且生命力旺盛。对数生长期是保持菌株优良性状不退化和存活率的阶段,也是最佳菌种保存期。 如何对培养过程中的微生物处于某个生长阶段进行判断?目前较多采用的方法是取样检测。取样检测会产生培养间断,染菌风险,无法连续获取数据等制约。无法获得准确的微生物生长过程信息取样检测 WIGGENS生物生长量在线监测设备CGQ系统,可以通过外置式光学传感系统,对培养的微生物生长状况进行实时监测。数据收集器会根据光学传感器的数据值,反应微生物生长情况,准确的把握微生物的生长状态。通过显示器直接读取生长曲线,可以判断微生物在当前培养条件的所处的生长时期。摇瓶培养在线监测 | 发酵罐培养在线监测 CGQ系统实时监测生长曲线,能够让操作者及时掌握微生物生长状况。举例:在发酵中,一般要控制发酵条件时,控制在微生物生长曲线稳定期结束前,比如酸奶发酵,时间过短,微生物还处于繁殖期,发酵效果不好;发酵时间过长,微生物处于衰退期,衰退期将产生很多代谢物,使产品风味发生变化,甚至影响质保;在污水处理中,需要根据不同稳定期选择不同菌种;酿造工业中,发酵时间的选择尤为重要。生物量实时监测 CGQ系统对微生物生长状态的监测,也直接反映了微生物的生长条件变化。通过对微生物生长状态的监测,对培养基成分优化,培养条件改进,工艺流程探索等具有重要指导性作用。 CGQ系统适用于原核细胞和真核细胞培养物实时监测。
  • 环凯微生物气溶胶采样器在军团菌检测中的应用
    军团菌(Legionella)是一种广泛存在于自然界中的机会致病菌,是一种能够引起呼吸道传染病的细菌,最为多见以临床类型为以肺部感染为主,同时伴有全身多系统损害的军团菌肺炎。目前已发现了超过30种军团杆菌,至少19种是人类肺炎的病原,其中最常见病原体为嗜肺军团菌,占病例的85%~90%。军团菌常隐藏在空调制冷装置中,随冷风吹出浮游在空气中,吸入人体后引起上呼吸道感染及发热症状,严重者可导致呼吸衰竭、肾衰竭甚至死亡。&zwnj 由于军团菌肺炎与其他肺炎不易区别,&zwnj 且老年人容易受到侵犯,&zwnj 一旦患病,&zwnj 病情相当严重。&zwnj 因此,&zwnj 对空调通风系统中军团菌的检测至关重要。我国对于空气和集中空调通风系统中军团菌的检测已形成多项标准,其中有《GBT18204公共场所卫生检验方法》第3部分:空气微生物、第5部分:集中空调通风系统、第6部分:卫生监测技术规范,《WS394-2012公共场所集中空调通风系统卫生规范》等,标准要求军团菌“不得检出”。环凯微生物气溶胶采样器是根据相关标准的要求,基于液体冲击式采样法为原理而开发的全新产品,能高效的采集空气及空调送风中的嗜肺军团菌。本采样器是采用前置大流量虚拟冲击空气微生物气溶胶浓缩装置、标准微生物液体撞击采样器相结合的新型空气微生物采集装置,摒弃了传统笨重的真空泵,采用自行研发且具有自主知识产权的轻便采样装置,采集空气样本时流量大,能在短时间将空气中的微生物浓缩到液体采样器中,避免长时间采样带来的生物活性损失,能简便高效解决传统空气采样器对于中低浓度微生物气溶胶捕获效率低下的问题,并有效提高采样人员的工作效率。1、主要产品特点● 实时显示采样数据:根据需求设置采样时间或采样总量,实时显示采样流量、浓缩流量、采样时间、总流量、已完成采样信息等。● 3种采样方式:程序采样、定体积采样、手动采样可选。● 程序采样:可实现单次或最多255次自动间隔采样,可满足多种采样要求。● 高效液体冲击式气溶胶捕集装置:对0.5μm以上生物粒子有效捕集效率90%以上。● 可追溯性:大容量设备运行存储,可自动记录4000组采样数据(含设定的采样地点号、采样分组号、采样量、采样时间等),可通过输入时间段随时查询对应时间段的采样记录数据 USB数据线简单快速接入电脑,通过HKM数据管理软件,实现高效追溯管理,并导出采样数据用于报告和分析(部分型号)。● 3.5寸高清液晶触控屏幕∶显示内容丰富,人性化菜单设置,操作界面简洁易懂。● 总气路和浓缩气路同时采样:可手动调节流量,双气路同时采样,同时显示双路流量。● 内置可充电电池,方便外出采样,有效捕集总生物气胶或活生物气胶有效时间达8小时以上2、嗜肺军团菌采集方案表货号名称规格单位11001010空气微生物气溶胶浓缩采样器(含液体冲击式采样器)ACS-150ACS-150套32647458微生物气溶胶采样器 EHK 225-9595 单个装(气溶胶浓缩采样器配套)EHK 225-9595套071910(嗜肺)军团菌生化鉴定盒7种×10次7×10支/盒盒CP0020BCYE平板(军团菌生长平板)90mm*20个90mm*20个盒1206194嗜肺军团菌 GDMCC1.1266 ATCC33152GDMCC1.1266支CP0040GVPC选择性平板(军团菌选择性平板) 90mm*20个90mm*20个盒CP0030BCYE-CYS平板(BCYE无L-半胱氨酸平板) 90mm*20个90mm*20个盒CP0020BCYE平板(军团菌生长平板)90mm*20个90mm*20个盒026072采样吸收液1-GVPC培养基基础 250克250克瓶SR0570GVPC液体培养基配套试剂(含SR0570A和SR0570B)A*10支+B*5支盒050090酵母提取粉 BR 400gBR 400g瓶
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 访广东省微生物分析检测中心
    为了解中国科学仪器的市场情况和应用情况,同时将好的检测机构及其优势检测项目推荐给广大用户,“仪器信息网”与“我要测”自2011年9月1日开始,对不同领域具有代表性的实验室进行走访参观。近日,“我要测”工作人员参观访问了本次活动的第八十八站:广东省微生物分析检测中心。该中心食品药品实验室副主任郭伟鹏高级工程师、刘振杰工程师和质量管理部徐鹏工程师热情地接待了“我要测”到访人员。  广东省微生物分析检测中心是1999年经广东省机构编制委员会批准,在广东省微生物研究所的基础上成立,并于当年通过计量认证(CMA),现隶属广东省科学院,在检测业务上接受广东省质量技术监督局领导。2004年,中心通过中国实验室国家认可委员会(CNAS)认可,是具有独立法人地位的第三方实检测验室。广东省微生物分析检测中心获得的认证认可资质  2006年,中心被广东省科技厅批准为 “广东省食品安全检测与评价科技创新平台”食品微生物安全性检测与评价中心,并成为该平台建设的主要承担单位。2005年,中心被广东省科技厅批准为“广东省材料检测与评价科技创新平台”材料(制品)防霉抗菌及安全性检测与评价中心;2010年亚运会在广州举办之时,受邀参与“第十六届亚运会公共卫生保障合作实验室”,成为广州地区共同承担“亚运期间新发传染病、食物中毒等重大突发公共卫生事件实验室检验检测工作”的八家实验室之一。 中心外景  中心现有人员79名,其中高、中级职称人员近50%;中心设有食品药品实验室、工业材料与产品实验室、农用生物产品实验室、生态毒理与环境安全实验室,实验室总面积约1500平方米,用于检测的仪器设备100多台(套)。主要对外业务包括:食品、饮料及饮用水检测;食品安全性检测与评价;农产品检测;药品、一次性使用医疗用品检测;化妆品、日化产品、卫生用品检测;防霉、抗菌、消毒产品及消毒器械的检测;玩具、电器、空气净化器、室内装饰装修材料检测;公共场所用具及包材检测;微生物菌剂的环境安全性测试和评价;水质检测;空气检测;菌种鉴定;微生物控制及检测培训与技术服务等。  食品药品实验室是检测中心成立最早的实验室。该室主要从事:食品、饮料、饮用水、保健品、农产品等产品的微生物、理化及农药残留等卫生指标的分析与安全评价;药品、医疗辅料、血透及相关治疗用水、一次性医疗用品、一次性卫生用品等医药及医疗产品的微生物及理化指标检测;消毒剂、消毒器材、医疗器械等消毒产品的消毒(杀菌)效果评估测试;食品、饮用水、医药生产企业环境空气洁净度检测及空气质量评估;产品微生物鉴定;生产企业质控人员检测技术培训。是中国饮料工业协会天然矿泉水分会、广东省瓶装饮用水行业协会指定饮用水微生物检测人员培训机构。  中心研究团队长期从事食品和饮用水安全相关检测技术的研究和开发,主持和参与了多项食品和饮用水安全国家和地方标准的研究和制定,并承担了国家食品药品监督管理局(SFDA)2007年食品安全专项调查与评价项目“我国奶粉中阪崎肠杆菌安全调查与评价”、2008年食品安全专项调查与评价项目“集中消毒餐具消毒效果及残留物专项调查”。  2008年饮用天然矿泉水国家标准(GB 8537-2008)正式实施之后,面对行业共性问题——消毒副产物溴酸盐,检测中心成立了专家团队,搭建了矿泉水生产中试基地,邀请国内8家有代表性的矿泉水生产企业,参与到“包装饮用水消毒副产物溴酸盐控制新技术”中,并于2011年4月份通过了成果鉴定。检测中心的一系列工作提高了中心在国内同行中的影响力。中心化学室食品分析检测室中心仪器室食品分析室和仪器室中的部分仪器微生物室研究生实验室  检测中心自成立以来,除每年承担政府部门委托的香菇、木耳、罐头食品、羽绒羽毛等产品的监督抽查任务外,一些食品、医药、日用品、化工、生物、环保和农业等领域的大型企业还长期委托中心进行分析检测,以及帮助他们解决生产过程中的质量监控问题。中心获得的奖励证书  经过长期科研和检测工作创新及积累,目前检测中心在食品和药品安全与产品品质控制、饮用水安全检测及控制、消毒杀菌产品消毒效果评测、工业材料防腐防霉和抗菌、环境保护可持续发展、农业微生物产品质量、大型真菌和毒蘑菇鉴定、为企业咨询产品污染的原因和提供解决的办法等技术服务方面在华南地区已具有广泛的影响力、不可替代的作用和明显的技术优势。  除检测服务外,中心还为客户提供技术咨询服务,指导和帮助客户分析产品未达标的微生物诱因,解决客户实际生产中遇到的难题,使其产品质量得到提升,达到标准,同时为客户提供微生物检测技术及质量控制培训服务。  附:  广东省微生物分析检测中心展位  http://www.woyaoce.cn/member/T100072/  广东省微生物分析检测中心  http://www.gddcm.com/
  • 微纳生物传感检测:让老百姓吃得放心
    近年来,我国的食品安全突发事件层出不穷。而这些食品安全问题大多源于食源性致病菌的污染和食品生产、加工过程中对农药、兽药、添加剂等的不科学使用,甚至是违用、滥用等违法、违规行为所致。要从根本上解决食品安全问题,就必须对食品的生产、加工、流通和销售等各环节实施全程管理和监控,食品安全快检技术也就随之应运而生。 “实验室检测方法和仪器很难及时、快速而全面的从各环节监控食品安全状况,而快速、方便、准确、灵敏是食品安全快检技术的最大优势。”中国检验检疫科学研究院首席科学家邹明强说。 以前,检测瘦肉精、三聚氰胺需要价值数百万元甚至上千万元的仪器设备,如今,一张价值几元的检测卡插在猪尿和牛奶中,几分钟就会显示结果。一个粉笔盒大小的试剂盒,可以精确地检测出食品中是否含有对人体有害的农兽药残留物及其含量̷̷这就是食品安全快检的“魔力”。 “以试剂盒、ELISA、PCR、纳米生物技术、生物传感技术、便携式分析仪器等为代表的快速检测、移动检测技术在中国食品安全保障体系中扮演着重要的角色。”邹明强认为,其中生物传感器技术具有快速、灵敏、特异、简便等特点,在食品检测领域具有广阔的应用前景。 近几年,在邹明强的带领下,中国检验检疫科学研究院研究团队针对禽流感、甲型H1N1流感和瘦肉精等重大公共卫生安全事件迫切的检测技术需求,基于微纳生物传感技术,以发展“既快又灵”的高效检测技术为目标,通过原理创新和技术发明,构建了服务于食品和公共卫生安全保障的检测方法系统。该项目荣获2014年度北京市科学技术奖一等奖。 中国检验检疫科学研究院研究团队正在进行项目研讨 小小快检用处大 据了解,食品质量安全检测方法有很多,包括现场检测方法,实验室定量检测方法,以及确认方法等。从实验室检测来看,快速检测方法其实是起到了有益的补充,这是由它自身的特点决定的。与传统仪器方法相比,快检技术快速、简单,可以测固体及液体样品。而且快速检测对配套的前处理设备要求不高,可以允许提取样品中杂质成分的存在,同时也就决定了其市场地位在筛选中的必须性,这样可以与高档的仪器进行互补,以快速检测方法进行初筛,再用仪器方法进行确证,从而构建效率和准确度均较高的检测体系。 快速检测的优势在于前端,直接性、时效性、现场感。快速检测的形式是与生产现场、时间要求相结合,而传统的实验室检测通常用时较长,例如将产品送到第三方检测中心进行检测,快则几日,慢则一两周,对于生产经营者来讲,时间成本的损耗是巨大的。这就需要企业自身在生产初期、源头位置对风险加以把控。产品质量安全需要依靠质量管理与前端风险排查、检测,这样才有可能在产品出厂前,最大程度保证其质量安全。 构建“既快又灵”的检测技术系统 据了解,现有快检技术,主要为胶体金免疫层析法和酶联免疫吸附法,虽然操作简便、成本低,但其灵敏度不够高。“如果强调灵敏准确,则难于实现便捷,存在‘灵而不快’问题,导致安全因子发现不及时;若兼顾快速、高通量,则不宜实现灵敏可靠,存在‘快而不灵’问题,导致误检和漏检,留下安全隐患。”邹明强说,“既灵敏又快速”的检测技术成为亟待攻克的技术难题。 生物传感器检测技术系以识别元件(酶、抗体/抗原、核酸、标记材料等)为特异性载体而转换为电、光、磁等信号实现检测,为解决上述问题提供了新兴的技术途径。 “针对我国食品和公共卫生安全检测的更高要求,亟待开展融合前沿微纳米技术的现代生物传感检测技术攻关,大幅度提升检测灵敏度、定量化、通量、多靶分型和同检等分析性能,实现既快又灵检测,提供高效、实用、便捷、可靠的快检解决方案,破解‘检不出’‘检不准’‘检不快’难题,为食品和公共卫生安全提供服务和技术支撑。”邹明强表示。 在邹明强的带领下,研发团队通过研究纳米金颗粒原位聚集效应,建立层析快检卡通用增敏技术,开发荧光胶乳定量试纸条及荧光检测仪,解决“快而不灵”的问题,实现高危病原“既快又准”检测。 项目团队提出了流式技术竞争式免疫分析新原理,发明了编码微球及荧光探针试剂制备技术,开发多种小分子同步检测方法,解决“灵而不快”的问题,实现多种农兽药高通量筛检,引入不确定度概念,保证检测结果客观、准确;阐明酶分子构象稳定机制,突破抗原决定簇类结构修饰难题,建立酶活性保护技术与类特异抗体制备技术,开发类检试剂盒(卡),解决农兽药类检稳定性及包容性难题,并开发共轭滤光定量检测器,实现层析快检卡数字判读;集成荧光探针、生物信号转导等,建立分子马达核酸分型传感检测技术,实现食源性病原菌多型同检。 “由此我们构建了‘既快又灵’的检测技术系统,成果应用实现标准化及产业化,为提升公共卫生安全应对能力提供检测技术支持。”邹明强说。 传统检测技术实现飞跃 “该项目综合利用多项微纳生物传感技术,建立了系列高灵敏高通量检测技术,在实现技术创新的同时也推动了相关技术的进步。”邹明强说。 首先,项目技术改善提升了传统检测技术水平,实现了传统检测技术的飞跃。胶体金免疫层析检测技术具有简便快速、成本低等优势,现场检测应用广泛,但灵敏度低与不能定量检测大大限制了它的应用范围。该项目建立了纳米金增敏技术,大幅度提高传统胶体金检测方法的灵敏度,在与禽流感国家标准检测方法的比对测试中,准确度一致,灵敏度相当,增敏技术使胶体金检测技术达到了定量PCR的水平,有效提高了疫病防控水平。 同时,项目研发团队用荧光标记取代了传统的金标记,实现了层析检测的定量检测,更加扩展了层析检测技术的应用范围,特别是通过目标物含量的多少来进行的检测。“这项技术使传统免疫层析技术实现了灵敏度大幅提升与定量测定。”邹明强说。 其次,该项目是多技术交叉融合,通过合力提升了技术水平。在流式荧光编码微球检测技术中,应用化学与材料技术合成了量子点等标记物,应用生物技术实现了目标物的准确捕获,在检测结果的判定中又引入了不确定度等统计学概念,使检测结果更加客观科学,几种技术集合在一起形成的是具有多种优点的检测技术。 最后,根据应用需求,建立了点面结合的检测技术。准确测定目标物是检测技术的终极目标,而测定类别也具有广泛的实际需求。然而,目前广泛使用的农残酶抑制法快筛法,因酶试剂难于在通常条件下保存和运输,制约了该法的应用可靠性。 “该项目发明了稳定贮藏酶试剂配方,有效保障了该方法的可靠性,提高了其应用价值,该方法一次可检测涵盖约300种高毒农药。”邹明强说。 据了解,该项目团队围绕快检仪器、试剂(卡、盒)及方法构建了较为完整的快检技术系统,获国际专利授权1项,国家发明专利授权15项,软件著作权1项,制定国标3项,医疗器械注册证6项,发表SCI论文35篇。项目禽流感层析传感增敏技术经第三方检测机构验证,与国标定量PCR法检测结果一致且灵敏度相当;参加全国甲型H1N1流感双盲双测筛选名列第一;鉴定意见认为项目整体技术达到国际先进水平。 “项目以需求为牵引,以应用为导向,利用微纳生物传感技术实现了检测技术的突破,既推动了检测技术的进步,也反馈促进了微纳生物传感技术的发展。”邹明强说。 项目成果开花结果 如今,项目成果已广泛用于甲型H1N1流感全国联防联控、国境检验检疫、国家残留监控计划、北京奥运和上海世博会食品安全保障,大力促进了我国应对公共卫生安全水平提升。 据了解,自2005年以来,项目团队基于项目微纳生物传感原理开发了系列快速检测技术及产品,并积极进行产品规模化生产,开拓产品市场,为科技成果转化树立了良好典范,陆续在我国出入境检验检疫、农业、工商、质监和卫生等200多个食品检测机构和1000多家企业得到广泛应用,出口至20多个国家或地区。 北京勤邦生物公司基于该项目核心技术开发的磺胺类十五合一试剂盒、磺胺类试纸条、喹诺酮类试剂盒、喹诺酮类试纸条、四环素类试剂盒、四环素类试纸条、β -内酰胺类+四环素类二联卡、呋喃西林代谢物试剂盒产品显著提高了检测性能,实现了多靶同检,大幅提升了企业自检自控能力,取得了良好的社会效益和经济效益。 据介绍,勤邦公司的部分产品性能指标优于国外产品,检测成本仅为同类产品的2/3,有效替代进口产品。检测集约化和多元化,检测效率高,检测成本低,节约了资金。相关快检产品被评为“中关村国家示范区新技术新产品”,并出口至印度、泰国、新加坡等10多个国家,近三年经济效益显著。 “如今,利用该项目成果的快检产品已广泛应用于全国各地蔬菜、水果农残检测。”邹明强介绍说,宁夏天然蜂产品公司应用项目成果进行产品自检自控,有效保障了其产品质量安全,“十里花”蜂产品畅销国际市场。“应用项目快检技术缩短检验周期,提高检测效率,保障了50多亿元销售额产品安全”。
  • 生物量监测在微生物(细胞)效能评价/菌种筛选的应用
    上一篇推文,我们介绍了WIGGENS的CGQ生物量在线监测系统监测微生物或细胞的生长阶段,本期我们介绍生物量监测对微生物(细胞)效能评价/菌种筛选的应用。 首先我们来看一篇使用CGQ系统监测生物量的已发表文献。 Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories). Bruder对酿酒酵母的高效菌株(CEN.PK2-1C)和碳源依赖性生长特性监测。 上图中生物量曲线(OD值)是CGQ系统实时在线测量。葡萄糖浓度和酒精浓度用在线生化分析仪进行实时在线监测的数据。 从上图的数据曲线中我们可以清晰的看出生物生长量与培养基中葡萄糖浓度和酒精产量三者的关联性。发酵过程希望使用的菌种是能够更高效率的将糖类等底物转化为酒精。底物与产物的效能比是对酿酒酵母菌株效能的最直接评价。 CGQ和生化分析仪的在线监测联合使用,可以对菌种的综合效能进行直观评价。 对微生物或细胞的突变体研究,是寻找高效菌种的一种有效手段。突变体与野生型的对比研究,用于对突变体进行效能评估。 上图是德国最格赖夫斯瓦尔德大学(成立于1456年),使用CGQ系统对Staphylococcus aureus(金黄葡萄球菌)野生型和突变体生物量分析。 作为菌种筛选的有力工具,CGQ系统可以对同一培养条件下,或不同培养条件下的生物量进行实时监控,根据生物量的监测数据对菌种筛选提供数据支持。 CGQ与生化分析仪同时使用,可以对多参数相关性进行综合评估,有效的拓展了应用范围,可以通过多参数变化,对微生物效能进行综合评价。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamic acidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 首个“微环境实时监测网”上线
    进地铁站时或逛街前,可通过提示牌看到地铁站内或商场内的细颗粒物PM2.5的实时数值 上班前,先了解办公楼、办公室内的空气质量状况。11月25日,国内首个&ldquo 微环境实时监测网络&rdquo &mdash &mdash &ldquo 清天朗日指数&rdquo 在北京上线运营。   该系统由北京睦合达信息技术有限公司开发,清华大学建筑环境检测中心验证、美国斯坦福大学提供大数据算法支持,检测并上网的PM数据能精确到每楼每车每户。   世卫组织提醒,大部分公众每天在室内工作生活20多个小时,对人们产生更多影响的是居所、办公楼和汽车等&ldquo 微环境&rdquo 空气质量 而室外大气污染物的60%&mdash 80%能进入密闭室内。   北京睦合达公司总裁孙翯说,与各地推出的&ldquo 大气质量报告&rdquo 不同,&ldquo 清天朗日指数&rdquo 侧重收集和反映办公楼、学校、幼儿园、车站等公共场所及车内、居所等&ldquo 微环境&rdquo 空气质量。   记者在现场看到,该指数能通过&ldquo 空气地图&rdquo 形式实时展现周边数据,包括空气质量指数、空气净化器综合评价指数、健康影响评价指数等,涵盖PM2.5、PM10、净化效果评价等参数。   &ldquo 未来还将拓展到一氧化碳、挥发性有机污染物、甲醛及心率、血压等可穿戴指数。&rdquo 清天朗日联盟秘书长黎佳说,目前该系统已在北京铺设200多个公共空间点位、500多个人点位 将为全国各地市免费提供检测设备20万套,提供软硬件支持,建立全国统一的&ldquo 清天朗日指数&rdquo 。   中国科学院城市环境研究所研究员李富胜说,我国已初步建立较完善的大气环境监测体系,但室内空气质量状况过于微观、琐碎,目前并没有统一数据网络和标准,&ldquo 清天朗日指数&rdquo 填补了空白。
  • 迅数科技为制药行业微生物检测提供支持
    &ldquo 2011首届中国药品安全与质量控制大会&rdquo 于5月25日-26日在北京新世纪日航饭店召开, 大会由全国医药技术市场协会主办,北京中培科检信息技术中心承办,近200位制药企业代表参会探讨并把握当前最新解决方案与先进技术。迅数科技,中国领先的微生物检测技术和仪器供应商,应邀参展并向大会介绍了其领先的&ldquo 全自动菌落分析仪&rdquo 在医药制造业的主要应用,受到与会代表的欢迎。 本次大会围绕&ldquo 关注创新药研发与申请的关键环节&rdquo 、&ldquo 新版GMP的理解与认识&rdquo 、&ldquo 新版GMP实施后,对中小企业的影响&rdquo 、&ldquo 近十年FDA批准上市新药分析&rdquo 、&ldquo 药品安全的质控方法和技术&rdquo 、&ldquo 药品质量标准的建立&rdquo 等议题展开讨论,旨在为积极应对未来药品质量安全面临的各种挑战献计献策。 随着新版中国GMP和2010版药典的颁布,中国制药企业面临着新一轮无菌控制水平和微生物控制水平提升的挑战。在原料、环境、生产过程及最终产品的质量管理中有包括细菌、霉菌酵母菌及控制菌检查在内的种类繁多的微生物检测项目,在微生物实验数据的记录保存和可追溯性等方面也提出了新要求。制药企业迫切需要引入&ldquo 快速,准确,自动化&rdquo 的设备来辅助完成更高频次的微生物检测和应对新版GMP对于实验数据管理的更高要求。 迅数科技在新版GMP和2010药典的修订过程当中积极饯行法规要求,并在服务中国一流制药企业的过程中积累了丰富的经验,可以帮助制药企业更好应对微生物安全挑战和法规性审查。 迅数科技向与会代表分享了全自动菌落分析仪在医药制造业的主要应用:1. 原辅料、半成品和成品的质量检验--原料卫生微生物检验,抗生素生物效价测定,细菌总数等微生物限度检查,培养基质量控制;2. 洁净区环境监测--空气微生物监测,生产区表面微生物检测;3. 药物研发-菌种筛选,新型抗菌药物筛选,药品AMES毒理实验;发酵过程分析--菌落形态变化观察记录, 筛选发酵菌株。 会议期间,迅数科技工程师还向与会代表分享了全自动菌落分析仪的制药工业微生物检测应用案例:华北制药/头孢项目质控-空气微生物检测,华东医药股份/研究环孢素A发酵工艺-菌落形态分析,成都地奥集团/药理活性物质筛选-自动抑菌圈测量,石药集团维生药业/维生素C发酵优良菌落的遗传稳定性判断,成都生物制品研究所/洁净车间浮游菌和沉降菌测定-菌落计数自动化,上海药明康德/实现Ames试验数据分析高效自动化,中国药品生物制品检定所/培养基的质量评价与质量控制。 迅数科技不仅为用户供应高品质的可靠的微生物检测产品及解决方案,更关注用户的实验室数据安全问题;使用户不仅享有&ldquo 快速,准确,自动化&rdquo 的实验室体验,更能轻松应对最为严苛的国内外GMP法规要求和审查!迅数科技期待与广大制药企业携手合作,共同保障人民药品安全!
  • 欧盟成功研制创新水中微生物污染检测技术
    欧盟第七研发框架计划(FP7)提供部分资助,由西班牙ENSATEC公司领导,欧盟多个成员国工业界和科技界参与的欧洲AQUALITY研发团队。利用FP7的最新科研成果、即细菌菌株脂质体设计(Engineered Liposomes)的水资源微生物污染检测技术,成功研制开发出创新型的可实时进行微生物污染检测的&ldquo 光电超声波&rdquo (Opto-Ultrasonic)装置和基于脂质体的诊断试剂盒。在线同网络实验室分析平台相连接,可低成本、快速、有效地向工业企业或家庭用户,提供自来水供应或排放废弃水中微生物污染的准确数据。其明显的竞争优势,可广泛推广应用于国际市场上的各类工业生产企业、供水与水处理厂、环保机构和家庭用户,特别是食品与饮料加工业生产厂。   水质和用水安全从未像今天这样得到全世界各国的高度重视,全球每天数以百万吨计的工业与农业废弃水或处理不当的废弃水,直接排放流入到江河、湖泊和大海。水质安全不仅影响生态环境和人类健康,还直接影响着工业产品质量,特别是社会大众愈来愈关心的食品安全。据统计,美国每年使用具有病原体污染不洁水配制的食品,造成的食源性疾病为7600万例,其中32.5万例需要住院,引起死亡0.5万例。欧洲的情况基本相同,例如英国,2005年的食源性或水源性疾病为总人口的千分之一,病例数量相对1995年翻了一倍。   确认水质污染直到目前,几乎均采用现场试样采集加实验室分析的手工离线方式进行,即耗费时间又成本昂贵,意味着检测水质的污染物种类,往往局限于最低限度。研发团队成功开发的创新型水质污染检测系统,可系统准确地检测水中的细菌菌群及浓度,如沙门氏菌(Salmonella)、李斯特菌(Listeria Monocytogenes)和弯曲杆菌(Campylobacter)。美国农业部估计,目前仅这三类菌株每年造成的美国医疗和生产力损失,达69亿美元。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制