当前位置: 仪器信息网 > 行业主题 > >

微生物在线检测

仪器信息网微生物在线检测专题为您提供2024年最新微生物在线检测价格报价、厂家品牌的相关信息, 包括微生物在线检测参数、型号等,不管是国产,还是进口品牌的微生物在线检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微生物在线检测相关的耗材配件、试剂标物,还有微生物在线检测相关的最新资讯、资料,以及微生物在线检测相关的解决方案。

微生物在线检测相关的资讯

  • 双三元联用在线SPE,赛默飞助力“国家生物监测”
    大家先跟着飞飞看几个耳熟能详的数据:每年有约400万中国人死于吸烟引发疾病,超过因艾滋病、结核、交通事故及自杀死亡的人数总和;平均每6秒就有一个人死于吸烟有关疾病;吸烟者的平均寿命要比不吸烟者缩短10年;全世界每年因吸烟死亡人数高达700万,其中89万为常年吸食二手烟导致。1.究竟是什么让吸烟如此有害健康?吸烟者多死于肺癌,烟气中常见的有害物苯并芘是一种高活性间接致癌物,属于多环芳烃的一种。多环芳烃(简称PAHs)是人类最早发现的一类环境有机致癌化合物,广泛存在于烟熏烧烤类食品、香烟烟雾中,通过呼吸道、消化道和皮肤进入人体,参与体内代谢,生成羟基多环芳烃(OH-PAHs)。香烟烟雾作为多环芳烃的一个重要来源,是吸烟者(包括吸二手烟者)接触多环芳烃的主要途径。图1 非吸烟者(左)与吸烟者(右)肺部对比图2.如何检测人体内的多环芳烃(PAHs)?目前,尿液中的OH-PAHs是研究最多的人体对PAHs 的暴露水平综合评价的生物标志物。但是尿液中多环芳烃代谢物的含量极低,且尿液成分较复杂,所含杂质可能对色谱柱造成损害,直接进样不能满足分析要求。而现有采用离线固相萃取技术来减少基质干扰,提高检测灵敏度的方法,操作过程繁琐费时,重现性较差,成本较高。在线固相萃取(Online-SPE)是近年发展起来的一种全自动样品前处理方式,具有富集纯化一步完成、固相萃取柱可多次使用、重现性好、自动化程度高等优点,已被应用于食品、环境、生物等样品中痕量有机物的检测。飞飞来啦~赛默飞与“国家生物监测”重点实验室之一的上海疾病预防控制中心合作,开发了基于赛默飞双三元液相色谱—在线SPE大体积进样方法,实现人体尿液中多环芳烃羟基代谢产物的高灵敏度监测。“国家人体生物监测项目”是国家卫生计生委疾控局组织的国家重大公共卫生服务项目,通过在全国开展现场流行病学调查和人体生物样本中环境化合物检测,获得全国有代表性的环境化合物在人体内暴露负荷的基础数据,为今后相关公共卫生工作提供技术支持。本方法采用基于快速涡流色谱的Turboflow Cyclone 固相萃取柱对目标尿样进行在线富集纯化,将大分子蛋白杂质提前分离去除,不仅延长了固相萃取柱使用寿命,而且进一步降低了交叉污染率。同时,采用UHPLC-MS法,利用PAHs 专用细粒径UHPLC色谱柱对多环芳烃代谢物实现快速分离,解决了常规液相分离中部分目标物的出峰无法彻底分开和无法准确定性定量的问题,结合大体积进样,大大提高了检测灵敏度。图2 在线SPE大体积进样系统工作原理图【进样富集】【转移】【分析过程】实验条件富集柱:Turboflow Cyclone柱(50×0.5 mm);分析柱:PAH UHPLC柱(2.1x100 mm,1.8 μm);柱温30℃;进样量2500 μL;流动相A:水,B:甲醇:乙腈(1:1);梯度洗脱程序表1;质谱条件:负离子电喷雾(ESI-)。表1 梯度洗脱程序表2 多环芳烃羟基代谢物的保留时间、检测离子对和碰撞电压注:带“*”为定量离子对。检测结果通过使用Turboflow Cyclone富集柱和1.8 μm UHPLC细径分析柱(2.1x100 mm),12种目标化合物能够在短时间内快速分离,混合标准溶液的总离子流图见图3。标准物质的实验结果显示方法线性范围广(0.002~1.0 μg/L),线性较好,且回收率高(90%~110%),各目标物在尿液中的检出限最低可达到0.001 μg/L水平,各目标物的6次进样结果RSD不超过5%,重复性较好。实验采集了24个尿液样本(9名儿童和15名成人,包括6名吸烟成人男性)进行分析,检测结果显示,吸烟者尿液中各种多环芳烃代谢物检出量显著高于非吸烟者(见表2)。图3 各多环芳烃羟基代谢物标准溶液的总离子流图表3 吸烟和非吸烟者尿液样品中部分多环芳烃羟基代谢物测定结果结论本方法采用双三元在线固相萃取前处理方法,大大简化了样品前处理过程,分析成本大为降低,样品经固相萃取柱富集浓缩后在线转移至分析柱进行分析,样品中的待测组分能全部转移至分析柱,样品用量少且无损耗,采用质谱检测器可获得较高的灵敏度,可实现大批量样品的自动、快速、高效检测。感谢上海疾病预防控制中心各位老师的辛勤工作,老师们用实验数据再一次告诉我们:为健康,为家人,为自己,请拒绝吸烟!
  • 中国水产科学研究院在可再生磁控在线检测生物芯片方面取得新进展
    近日,中国水产科学研究院质量与标准研究中心(农业农村部水产品质量安全控制重点实验室)吴立冬副研究员及其研究团队研发出一种应用于原位快速检测水产品中多巴胺的可再生生物传感器,实现了鱼类脑部皮层区域神经元的多巴胺连续原位监测。该研究成果以“Regenerative Field Effect Transistor Biosensor for in Vivo Monitoring of Dopamine in Fish Brains”为题,发表在电化学传感器顶级期刊《Biosensors and Bioelectronics》(中科院1区top期刊,IF: 10.257)上。人工智能、物联网和脑机接口等领域的快速发展,刺激着相关领域对原位智能再生传感器设备的需求,尤其是监测生物体中重要理化参数的传感芯片。目前,可再生场效应晶体管(FET)生物芯片在该领域具有巨大的应用前景,经靶特异性受体修饰的FET可以快速检测生物活性分子。鉴于此,我们研制了一种磁控灵敏度且可再生场效应晶体管(FET)生物芯片实现原位检测鱼脑中多巴胺。该芯片具有以下明显优势:第一,通过调控外界永磁铁的磁场高度,实现了调节控制生物芯片的灵敏度和检测限,为生物芯片定制化服务提供最优工艺解决方案。第二,通过去除永磁体即可实现生物芯片传感器的再生,降低了生物芯片的生产使用成本,为硅基生物芯片再生提供了可靠技术方案。结果表明,本生物芯片传感器具有优异的灵敏度和选择性,其线性范围1 μmol L−1 ~ 120 μmol L−1,最低检出限为3.3 nmol L-1,经过15次再生处理后仍具有良好的稳定性,成功应用于活体鱼类脑部多巴胺的实时在线监测。本研究开发出的磁控生物芯片传感器是全球首个通过永磁体在线远程控制灵敏度和检测限的生物传感器,为鱼脑质量安全评价提供坚实的技术支撑。该芯片优异的检测性能、可重复利用和生产成本低廉等优势,赋予该芯片在原位检测动物脑部生物活性分子方面的广阔应用前景。在前期研究中,吴立冬团队与魏淑华团队合作,开发了基于碳管及二维黑磷的核酸适配体场效应晶体管生物芯片(Analytica Chimica Acta, 2020;Analytica Chimica Acta, 2021);进一步搭建了多功能磁性材料合成平台(本专利技术已许可给公司生产),研制了磁控场效应生物芯片传感系统。硕士研究生刘娜为论文第一作者,质标中心吴立冬副研究员论文通讯作者。(全文链接:https://doi.org/10.1016/j.bios.2021.113340 )。此项工作得到了中央公益性科研机构基础研究基金(2020GH09)和(2020TD75)的支持。图1 场效应晶体管源极到漏极通过磁控Fe3O4@AuNPs纳米粒子形成磁桥图2 生物芯片原位监测鱼脑中化学信号分子
  • 12.01日直播 5位专家在线共话生物纳米材料表征与检测技术
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8cdbadc6-6fbd-497d-8a17-40496580cd1d.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-indent: 2em text-align: justify " 生物材料与细胞的相互作用是组织工程研究领域中的重要课题,其中生物材料表面的微观结构对细胞的生物调控起重要作用。纳米材料由于其尺寸在纳米量级、有大量的界面或自由表面、各纳米单元之间存在着或强或弱的相互作用而具有一些独特的效应,表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能的根本途径。 /p p style=" text-indent: 2em text-align: justify " 为促进生物纳米材料领域的科技创新和产业发展,仪器信息网将于 span 2020 /span 年 span 12 /span 月 span 01 /span 日举办 span “ /span 生物纳米材料表征与检测技术 span ” /span 主题网络研讨会,依托成熟的网络会议平台,为纳米材料领域从事研发、生产、教学的科技人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。 /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong 【生物纳米材料交流群】 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 159px height: 213px " src=" https://img1.17img.cn/17img/images/202011/uepic/82aa6b9d-e452-4d11-bd42-6eed97311697.jpg" title=" 纳米材料表征会议微信群.jpg" alt=" 纳米材料表征会议微信群.jpg" width=" 159" height=" 213" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 宋体 color: rgb(192, 0, 0) " 【报告嘉宾一览】 /span /strong /span /p p style=" text-align:center font-variant-ligatures: normal font-variant-caps: normal orphans: 2 widows: 2 -webkit-text-stroke-width: 0px word-spacing: 0px" span style=" font-size:14px color:#444444" (按报告时间顺序) /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/a49a88b0-2e0f-4ad7-9183-fc1e3018232d.jpg" title=" 专家信息.jpg" alt=" 专家信息.jpg" / /p p style=" text-align:center" span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 18px font-family: 黑体 " 【 /span 大会报告题目及日程安排】 /strong /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse" align=" center" tbody tr class=" firstRow" td width=" 480" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 12 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 月 /span /strong strong span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 01 /span /strong strong span style=" font-size:12px font-family:宋体 color:#444444" 日 /span /strong strong /strong strong span style=" font-size: 12px font-family:宋体 color:#444444" 生物纳米材料表征与检测技术 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 时间 /span /strong /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告人 /span /strong /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-size:12px font-family:宋体 color:#444444" 报告题目 /span /strong /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" p span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 13:30-14:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 周晶 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 首都师范大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 稀土纳米探针诊断性能的可控调控及其检测研究 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:00-14:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 王鑫 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 布鲁克 span ( /span 北京 span ) /span 科技有限公司 & nbsp 应用科学家 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 原子力显微镜技术进展与在生物学检测中的应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 14:30-15:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 李春霞 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 山东大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 多功能纳米诊疗平台的构建及生物应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:00-15:30 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 侯毅 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 北京化工大学 副教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 纳米肿瘤分子影像探针构建与应用 /span /p /td /tr tr td width=" 75" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:& #39 Arial& #39 ,sans-serif color:#444444" 15:30-16:00 /span /p /td td width=" 208" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 袁荃 /span /p p style=" text-align:center" span style=" font-size:12px font-family:宋体 color:#444444" 湖南大学 教授 /span /p /td td width=" 197" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-size:12px font-family:宋体 color:#444444" 长余辉发光纳米材料控制合成及生物医学应用 /span /p /td /tr /tbody /table p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/7e51a59a-b457-496e-ba14-e33aee9c244f.jpg" title=" 12.01 报名 生物纳米材料会议.jpg" alt=" 12.01 报名 生物纳米材料会议.jpg" / /p p style=" text-align: center " span style=" text-align: center " 报名地址 /span /p p style=" text-align: center " span a href=" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/" https://www.instrument.com.cn/webinar/meetings/SWNMBJ2020/ /a /span /p
  • 09月09日 在线共享 生物药物评价及检测技术
    p strong /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/YoloBiodrugTest2020/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f7705b29-c58d-47bb-aa9c-046a6cd39431.jpg" title=" 103534520200805.jpg" alt=" 103534520200805.jpg" / /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 " 近年来,生物技术药物占比大幅提升,化学品生物制造的渗透率显著提高。生物制药已然成为目前我国着力发展的战略新兴产业。生物技术药物多数为蛋白质或者多肽及其修饰物,分子量相对较大结构复杂,具有多样性和可变性。生物技术药物的结构特性容易受到各种理化因素的影响,且分离提纯工艺复杂。因此生物技术药物检测、评价及质量控制显得尤为重要。 /span br/ strong /strong /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em font-family: 宋体 " 2020 /span span style=" text-align: justify text-indent: 2em font-family: 宋体 " 年09月09日,仪器信息网将举行“生物药物评价及检测技术”网络研讨会。会议将邀请生物制药领域的专家及技术人员,为大家介绍生物药物评价及最新检测技术。欢迎大家报名参加。 /span /p p span & nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/260e3081-4fff-4630-b862-36df7a8c3d8f.jpg" title=" 嘉宾头像0909.png" alt=" 嘉宾头像0909.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/08e043f5-58c2-44ce-b999-d88c38477e4e.jpg" title=" 日程0909.png" alt=" 日程0909.png" / /p p span /span br/ /p p strong 报名方式 /strong /p p span 1 /span 、点击链接 /p p span & nbsp a href=" https://www.instrument.com.cn/webinar/meetings/YoloBiodrugTest2020/" target=" _blank" https://www.instrument.com.cn/webinar/meetings/YoloBiodrugTest2020/ /a /span /p p span 2 /span 、扫码直达 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 171px height: 171px " src=" https://img1.17img.cn/17img/images/202009/uepic/2c6775e7-267e-4d64-b492-fc45e170481e.jpg" title=" 0909会议报名二维码 3287d83b6bc.png" alt=" 0909会议报名二维码 3287d83b6bc.png" width=" 171" height=" 171" / /p p strong 微信交流群 /strong /p p strong span & nbsp /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 194px height: 261px " src=" https://img1.17img.cn/17img/images/202009/uepic/2fb2e0ef-e846-43af-b451-8be2a879595b.jpg" title=" d3c427d0-4e47-4066-9edd-56454c33b349.jpg" alt=" d3c427d0-4e47-4066-9edd-56454c33b349.jpg" width=" 194" height=" 261" / /p p br/ /p
  • 得利特在线溶解氧分析仪--实现微量溶解氧的在线监测
    “十四五”期间,国家将建立统一的水生态监测技术体系,指导各流域按照物理、化学、生物完整性要求,研究建立符合流域特征的水生态监测方法、指标体系、评价办法,初步形成基于流域的全国水生态监测网络,逐步开展分类、分区、分级的水生态监测与评估。预计到2035年,形成科学、成熟的水生态监测体系并业务化运行,为水质目标管理向水生态目标管理转变奠定基础。将探索开展生态流量、水位监测和河流生态水量遥感监测研究,加快建立完善水资源、水环境、水生态数据共享机制。B2100在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。突出特点:1、 192×64点阵液晶、多参数显示、内容丰富2、 采用先进的嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、 中、英文双语可编程切换,满足不同用户需求4、 全中、英文引导式操作模式、使用简单、通俗易懂5、 可编程的自动或手动温度补偿方式、使用灵活方便6、 两路完全隔离的电流信号输出,可分别设定输出电流范围7、 带有上、下限报警功能,可分别设定报警值8、 带有标准的485数字通讯接口,可实现远距离通讯9、 具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录10、防护等级高,达到IP65,可以满足各种复杂环境应用要求11、电极零点漂移量小,响应速度快12、电极残余电流小,维护简单、寿命长久、结构牢固、抗污染能力强技术参数:显 示:中、英文显示,192×64点阵液晶测量范围:(0~20)μg/L、(0~200)μg/L 、(0~20)mg/L (量程自动切换)分 辨 率:0.1μg/L、0.01mg/L基本误差:±1.5%F.S或1ug/L(取大者)响应时间:25℃时60秒内达到变化的90%温度传感器:热敏电阻  温度测量范围:(0.0~99.9)℃  温度测量精度:±0.5℃  温度测量分辨率:0.1℃  温度补偿范围:(0~50)℃(手动或自动)样品条件:温度范围:(5~50)℃   流量范围:(50~300)ml/min (150ml/min左右佳)环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:800Ω报警输出:二路报警输出、直流5A/30V或交流5A/250V。储运温度:(-20~55)℃外形尺寸:144mm×144mm×115mm(宽×高×长)开孔尺寸:139mm×139mm供电电源:交流(85~265)V、频率(45~65)Hz功 率:≤10W重 量:约1.2 kg
  • 生物量监测在微生物(细胞)培养条件优化的应用
    上一篇推文,介绍了WIGGENS的CGQ生物量在线监测系统,在微生物(细胞)效能评价/菌种筛选的应用。 本期介绍生物量监测在微生物(细胞)培养条件优化中的应用。培养基为微生物(细胞)的生长提供环境条件以及碳源,氮源,生长因子等。培养基具有通用性,但每种培养物都有特殊性。在通用培养基的基础上针对培养物的特性做适当的调整或成分添加,对目的产物的高效产出,具有重要正作用。 下图是德国法兰克福歌德大学,使用CGQ生物量监测系统对Saccharomyces cerevisiae (一种酿酒酵母)在不同碳源组分中的生长曲线。 三种碳源Glc(葡萄糖)、Gal(半乳糖)、Mal(酰胺)不同浓度对酿酒酵母的生长有着明显的影响,对迟缓期和对数期的影响显著。碳源各组分浓度不同,对酿酒酵母进入平台期的时间甚至有超过6小时的差距影响。这对注重效率的工业发酵来说,减少迟缓期的时间段,有着重要的参考意义。 下图是,在M9培养基中,通过加入不同浓度的甘油,Escherichia coli (大肠杆菌)的生长曲线 从上图大肠杆菌的生长曲线可以看出,在M9培养基中,甘油浓度是对大肠杆菌最终生长量的最大影响因素。0.4%的甘油浓度对比0.1%的甘油浓度,对数生长期有明显提升,最终得到的生物量也是低浓度甘油的4倍以上。 下图是通过培养过程的摇瓶补液,CGQ进行的实时生物量监测。 在大肠杆菌培养中,通过LIS摇瓶补液系统,在摇瓶培养过程中进行在线补入缓冲液,缓冲液对pH值进行了调节。在使用LB培养基培养大肠杆菌的过程中,对生物量的限制的最大因素不是培养基组分,而是pH值,持续的进行pH调节,可以有效的增加生物量,提高培养基的利用率。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamicacidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 生物量监测在微生物(细胞)效能评价/菌种筛选的应用
    上一篇推文,我们介绍了WIGGENS的CGQ生物量在线监测系统监测微生物或细胞的生长阶段,本期我们介绍生物量监测对微生物(细胞)效能评价/菌种筛选的应用。 首先我们来看一篇使用CGQ系统监测生物量的已发表文献。 Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories). Bruder对酿酒酵母的高效菌株(CEN.PK2-1C)和碳源依赖性生长特性监测。 上图中生物量曲线(OD值)是CGQ系统实时在线测量。葡萄糖浓度和酒精浓度用在线生化分析仪进行实时在线监测的数据。 从上图的数据曲线中我们可以清晰的看出生物生长量与培养基中葡萄糖浓度和酒精产量三者的关联性。发酵过程希望使用的菌种是能够更高效率的将糖类等底物转化为酒精。底物与产物的效能比是对酿酒酵母菌株效能的最直接评价。 CGQ和生化分析仪的在线监测联合使用,可以对菌种的综合效能进行直观评价。 对微生物或细胞的突变体研究,是寻找高效菌种的一种有效手段。突变体与野生型的对比研究,用于对突变体进行效能评估。 上图是德国最格赖夫斯瓦尔德大学(成立于1456年),使用CGQ系统对Staphylococcus aureus(金黄葡萄球菌)野生型和突变体生物量分析。 作为菌种筛选的有力工具,CGQ系统可以对同一培养条件下,或不同培养条件下的生物量进行实时监控,根据生物量的监测数据对菌种筛选提供数据支持。 CGQ与生化分析仪同时使用,可以对多参数相关性进行综合评估,有效的拓展了应用范围,可以通过多参数变化,对微生物效能进行综合评价。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamic acidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • Modern Water 将向卡塔尔 2022 FIFA 世界杯综合供水系统提供完整的生物毒性在线监测解决方案
    2022 fifa world cupmicrotox ctmmodern water 与 avanceonmodern water 于近期和卡塔尔当地供水机构达成协议,将为 2022 fifa 世界杯场馆所在区域的综合供水系统提供超过20台的 microtox ctm 在线生物毒性监测仪,并将集成至当地供水监管机构的中央控制中心,以保证在世界杯期间的供水安全。该项目 modern water 将会和当地合作伙伴 avanceon 一同完成,avanceon 在水质监测领域提供先进的自动化解决方案。modern water microtox® ctm 在线毒性监测仪是一种即时的、连续的利用费氏弧菌(v.fischeri)作为生物传感器检测水源或排放水急性毒性的设备,可以在监测现场用作生物预警系统(bews),用于监测站点的在线连续监测,并可显示这些化合物对水体的综合污染状况,提供快速的早期预警,使相关机构对污染能够及时做出反应和控制,以避免严重后果。,时长02:03
  • 微生物(细胞)生长阶段时期监测
    菌种是微生物培养的前提条件。优良的菌种,是微生物高效培养的前提。无论是摇床培养还是发酵培养,优良的菌种对培养的效果都有至关重要的意义。 微生物在生长过程会经历迟缓期、对数生长期、稳定期和衰亡期。微生物在培养和传代过程中会发生变异,次生产物,细胞活力变化等。微生物在生长过程 微生物对数期生理状态相对稳定,较稳定期次生代谢物少,且生命力旺盛。对数生长期是保持菌株优良性状不退化和存活率的阶段,也是最佳菌种保存期。 如何对培养过程中的微生物处于某个生长阶段进行判断?目前较多采用的方法是取样检测。取样检测会产生培养间断,染菌风险,无法连续获取数据等制约。无法获得准确的微生物生长过程信息取样检测 WIGGENS生物生长量在线监测设备CGQ系统,可以通过外置式光学传感系统,对培养的微生物生长状况进行实时监测。数据收集器会根据光学传感器的数据值,反应微生物生长情况,准确的把握微生物的生长状态。通过显示器直接读取生长曲线,可以判断微生物在当前培养条件的所处的生长时期。摇瓶培养在线监测 | 发酵罐培养在线监测 CGQ系统实时监测生长曲线,能够让操作者及时掌握微生物生长状况。举例:在发酵中,一般要控制发酵条件时,控制在微生物生长曲线稳定期结束前,比如酸奶发酵,时间过短,微生物还处于繁殖期,发酵效果不好;发酵时间过长,微生物处于衰退期,衰退期将产生很多代谢物,使产品风味发生变化,甚至影响质保;在污水处理中,需要根据不同稳定期选择不同菌种;酿造工业中,发酵时间的选择尤为重要。生物量实时监测 CGQ系统对微生物生长状态的监测,也直接反映了微生物的生长条件变化。通过对微生物生长状态的监测,对培养基成分优化,培养条件改进,工艺流程探索等具有重要指导性作用。 CGQ系统适用于原核细胞和真核细胞培养物实时监测。
  • 佳明测控在水质微生物指标监测上的卓越进步
    水质生物监测与理化监测是水环境监测不可缺少的两个方面,目前,仅理化监测指标已无法全面客观反映环境质量状况,而生物监测能够弥补理化监测的不足,可以综合反映水环境质量状况。因此,水质生物监测日益受到各国的重视,欧盟已将生物指标纳入水质评价标准。为适应当前水质管理、监控的需要,我公司组织专家,历时4年、投资1000万元研制开发了水质微生物监测系列产品。 大肠菌群快速检测仪 大肠菌群快速检测仪是由我公司自主研发的检测不同水体中粪大肠菌和总大肠菌群的一项专利产品,与传统方法相比在检测方式上是一项重大突破。该仪器曾获青岛市科学技术进步奖、获《大肠菌群在线快速检测装置》实用新型专利、《微生物快速培养检测装置》专利、《便携式微生物培养装置》专利;并发表了《医疗机构污水粪大肠菌群快速检测方法的研讨》、《大肠菌群在线快速监测仪在地表水领域中的应用》和《粪大肠菌群快速检测方法研究》等论文。主要有台式与在线式两种。 台式大肠菌群主要应用于实验室。本方法与传统实验室方法相比具有明显的技术优势:本仪器结果准确;检测周期短2-12小时;使用一次性培养基,一次性可同时检测40个样本,大大提高工作效率;其测试范围可以覆盖饮用水、地表水、地下水、生活污水、医疗污水、工业污水等领域,能有效解决卫生监督、疾控、环保、水利水务、市政污水处理厂、自来水厂等水质大肠菌群的监测问题。 在线式大肠菌群快速检测仪主要应用于重点河流段面定点时时检测。采样、接种、培养、结果全部自动化操作完成,可按需求设置检测频率,同时结果可按需求直接上传至上级监管部门数据库,以便及时发现、处理突发事件,可以为重大事故的发生起到及时预警的作用。其测试范围可以覆盖环保部门的饮用水水源水地、河流断面;水利水务部门的地表水及河流断面;市政污水处理厂、自来水厂;卫生监督部门管网水、游泳池水质大肠菌群的远程监控。 水质微生物四项快速检测仪 总大肠菌群、耐热大肠菌群、大肠埃希氏菌及菌落总数做为饮用水及地表水的重要指示微生物,在水质监测上有着重要意义。我公司在大肠菌群快速检测仪的基础上,采用不同的原理、实现同一仪器检测四项微生物指标的快速检测仪。在微生物自动检测领域里,是一项重大突破和创新。能够同时检测《GBT5750.12-2006生活饮用水卫生标准》规定的微生物四项指标;检测周期短;检测灵敏度高,采用创新的集菌装置,最低检出限达到1个/L;大大提高工作效率;应用领域覆盖市政自来水厂饮用水;水利水务部门地表水、地下水;环保部门饮用水源地;卫生监督部门饮用水微生物指标的监测。 水质综合毒性检测仪 随着工业化进程的发展,工厂排放的废水进入河流、湖泊,就会造成水体污染。若不能及时处理,毒性物质就会累积起来,形成安全隐患。特别是出现水环境突发事故危及人民群众生命安全时,跟踪监测,及时提供毒性判定结果,让有关方面及时采取应急措施至关重要。 我公司研制的水质综合毒性检测仪可快速检测水质综合毒性,取样后能立即检测,数分钟即可得到水质毒性结果,该仪器曾获青岛市科学技术进步奖项,获《便携式毒性检测恒温装置》专利一项;该方法简便易行,且效率高、成本低。能为环保、卫生等部门应急事故处理提供有效的决策依据。
  • 欧盟成功研制创新水中微生物污染检测技术
    欧盟第七研发框架计划(FP7)提供部分资助,由西班牙ENSATEC公司领导,欧盟多个成员国工业界和科技界参与的欧洲AQUALITY研发团队。利用FP7的最新科研成果、即细菌菌株脂质体设计(Engineered Liposomes)的水资源微生物污染检测技术,成功研制开发出创新型的可实时进行微生物污染检测的&ldquo 光电超声波&rdquo (Opto-Ultrasonic)装置和基于脂质体的诊断试剂盒。在线同网络实验室分析平台相连接,可低成本、快速、有效地向工业企业或家庭用户,提供自来水供应或排放废弃水中微生物污染的准确数据。其明显的竞争优势,可广泛推广应用于国际市场上的各类工业生产企业、供水与水处理厂、环保机构和家庭用户,特别是食品与饮料加工业生产厂。   水质和用水安全从未像今天这样得到全世界各国的高度重视,全球每天数以百万吨计的工业与农业废弃水或处理不当的废弃水,直接排放流入到江河、湖泊和大海。水质安全不仅影响生态环境和人类健康,还直接影响着工业产品质量,特别是社会大众愈来愈关心的食品安全。据统计,美国每年使用具有病原体污染不洁水配制的食品,造成的食源性疾病为7600万例,其中32.5万例需要住院,引起死亡0.5万例。欧洲的情况基本相同,例如英国,2005年的食源性或水源性疾病为总人口的千分之一,病例数量相对1995年翻了一倍。   确认水质污染直到目前,几乎均采用现场试样采集加实验室分析的手工离线方式进行,即耗费时间又成本昂贵,意味着检测水质的污染物种类,往往局限于最低限度。研发团队成功开发的创新型水质污染检测系统,可系统准确地检测水中的细菌菌群及浓度,如沙门氏菌(Salmonella)、李斯特菌(Listeria Monocytogenes)和弯曲杆菌(Campylobacter)。美国农业部估计,目前仅这三类菌株每年造成的美国医疗和生产力损失,达69亿美元。
  • 岳阳市中心医院260.00万元采购微生物检测
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 微生物检测 开标时间: null 采购金额: 260.00万元 采购单位: 岳阳市中心医院 采购联系人: 周旭春 采购联系方式: 立即查看 招标代理机构: 湖南晟弘项目管理有限公司 代理联系人: 姚瑶 代理联系方式: 立即查看 详细信息 岳阳市中心医院检验科医疗设备一批采购项目公开招标公告 湖南省-岳阳市-岳阳楼区 状态:公告 更新时间: 2022-01-04 岳阳市中心医院检验科医疗设备一批采购项目公开招标公告 岳阳市中心医院对岳阳市中心医院检验科医疗设备一批采购项目进行公开招标采购,现将采购事项公告如下: 一、采购项目名称、编号及预算金额 采购项目名称:岳阳市中心医院检验科医疗设备一批采购项目 政府采购编号:岳财市采计[2021]000358号 采购代理编号:SHXM-21078 采购项目预算及最高限价: 采购需求: 包名 包名称 技术要求 数量 单位 预算金额 (元) 最高限价 (元) 代理服务费限价(元) 1 岳阳市中心医院检验科医疗设备一批采购项目 详见第四章技术规格、参数与要求 1 批 2600000.00 2600000.00 32600.00 1、需要落实的政府采购政策: (1)强制采购:政府采购实行强制采购的节能产品。 (2)优先采购:政府采购鼓励采购节能环保产品、政府采购支持两型产品。 (3)价格评审优惠:政府采购促进中小企业发展(包括政府采购支持监狱企业发展、政府采购促进残疾人就业)。 2、采购进口产品:本项目接受进口产品投标 三、投标人的资格要求: 1、投标人基本资格条件:投标人应当符合《政府采购法》第二十二条第一款的规定,即: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2、被“信用中国”网站列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的),不得参与本项目的政府采购活动。 3、投标人特定资格条件: 投标人应具有有效的医疗器械生产(经营)许可证。 项目清单 序号 医疗器械名称 单位 数量 1 免疫发光仪(全自动时间分辨荧光免疫分析系统) 台 1 2 全自动生化仪 套 1 3 全自动微生物快速培养系统 台 1 4、联合体投标。本次招标 不接受 联合体投标。 5、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。 6、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加此项目的其他招标采购活动。 四、招标文件的获取 1、凡符合投标资格要求并有意参加投标者必须办理数字CA,登录《岳阳市公共资源交易网》(http://ggzy.yueyang.gov.cn/)下载招标文件。投标人在网上注册应对所提供的证件和证明材料的真实性承担法律责任。 2、本次招标只支持网上支付标书费报名并从系统中下载招标文件。 联系电话:0730-2966692 岳阳市公共资源交易中心 3、招标文件售价:人民币0元/本,只支持网银支付。本项目只有网上购买文件,投标人才有资格生成投标保证金账号,缴纳保证金。 4、报名及招标文件提供下载期限:2022年1月4日至2022年1月11日17:00,各投标人自行在以上网站下载或查阅招标相关文件和资料等,恕不另行通知,如有遗漏采购人、采购代理机构概不负责。 5、电子招标文件获取方式:投标截止时间前,供应商进入“岳阳市公共资源交易网” (http://ggzy.yueyang.gov.cn/)登录“岳阳市公共资源交易中心电子交易平台”(http://222.242.228.197:8083/TPBidder/memberLogin)进行格式化电子招标文件的下载。 五、投标文件的制作 投标人在“岳阳市公共资源交易网”(http://ggzy.yueyang.gov.cn/)服务指南中及时下载安装最新版本“新点投标文件制作软件(岳阳版)”。参与投标的投标人需使用电子标书编制软件制作YYGCZF格式投标文件。本项目电子投标文件最大容量为200MB,超过此容量的文件将被拒绝。制作电子投标文件时,投标人须编制投标文件的内容目录和详细页码,其制作软件的下载安装和电子投标文件的制件说明(含电子签章的操作流程)可详见“岳阳市公共资源交易网”(http://ggzy.yueyang.gov.cn/)的服务指南《全流程电子化招投标操作手册》。 六、投标文件的递交 1、投标文件递交截止时间(投标截止时间,下同)2022年1月26日9时30分(北京时间),投标人应在投标截止时间前通过岳阳市公共资源交易平台递交数据电文形式的电子投标文件并完成在线签到。其递交的电子投票文件具备法律效力,逾期递交的电子投标文件,电子交易平台将予以拒收。 2、项目采取电子招投标方式进行,要求投标人制作和上传电子投标文件,并准时参加网上开标和远程解密电子标书。 七、投标文件的解密 电子投标文件的解密截止时间为2022年1月26日10时00分(北京时间)(系统设置为开标后30分钟内),投标人可在单位在线解密,如在开标现场解密的请自备解密电脑和网络。逾期未解密的,视为放弃投标资格。 八、投标人澄清、补正和说明 1、评标过程中,如评委专家要求投标人进行必要的澄清、说明和补正的,投标人应在线保持关注,及时登录岳阳市公共资源交易中心电子交易平台(http://222.242.228.197:8083/TPBidder/memberLogin)进行网上回复, 并上传提交相关资料,逾期未回复的,视为放弃澄清、说明和补正的权利。 2、招标人在岳阳市公共资源交易平台上公开进行开标,所有投标人均应当准时在线参加开标。 九、投标保证金: 1、本项目不需要交付投标保证金。 2、CA数字证书办理 湖南省数字认证服务中心有限公司(民兴路与狮子山南路交叉口)庙坡碧玉湾(南门)43号门面,电话:0730-8181828。 十、招标文件公告期限 招标文件公告期限:2022年1月4日9时00分至2022年1月11日17时00分止(5个工作日)。 十一、疑问及质疑: 投标人对政府采购活动事项如有疑问的,可以向采购人或采购代理机构提出询问。采购人或采购代理机构将在3个工作日内作出答复。 投标人认为招标文件或招标公告使自己的合法权益受到损害的,可以在获取招标文件之日或招标公告期限届满之日起7个工作日内,以书面形式向采购人、采购代理机构提出质疑。 十二、采购人及其委托的采购代理机构的名称、地址和联系方法 采 购 人:岳阳市中心医院 地 址:岳阳市岳阳楼区东茅岭路39号 联 系 人:周旭春 电 话:0730-8256318 代理机构:湖南晟弘项目管理有限公司 地 址:岳阳市岳阳楼区天伦金三角银座A栋28楼 联 系 人:姚瑶 电 话:0730-3290015 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:微生物检测 开标时间:null 预算金额:260.00万元 采购单位:岳阳市中心医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:湖南晟弘项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 岳阳市中心医院检验科医疗设备一批采购项目公开招标公告 湖南省-岳阳市-岳阳楼区 状态:公告 更新时间: 2022-01-04 岳阳市中心医院检验科医疗设备一批采购项目公开招标公告 岳阳市中心医院对岳阳市中心医院检验科医疗设备一批采购项目进行公开招标采购,现将采购事项公告如下: 一、采购项目名称、编号及预算金额 采购项目名称:岳阳市中心医院检验科医疗设备一批采购项目 政府采购编号:岳财市采计[2021]000358号 采购代理编号:SHXM-21078 采购项目预算及最高限价: 采购需求: 包名 包名称 技术要求 数量 单位 预算金额 (元) 最高限价 (元) 代理服务费限价(元) 1 岳阳市中心医院检验科医疗设备一批采购项目 详见第四章技术规格、参数与要求 1 批 2600000.00 2600000.00 32600.00 1、需要落实的政府采购政策: (1)强制采购:政府采购实行强制采购的节能产品。 (2)优先采购:政府采购鼓励采购节能环保产品、政府采购支持两型产品。 (3)价格评审优惠:政府采购促进中小企业发展(包括政府采购支持监狱企业发展、政府采购促进残疾人就业)。 2、采购进口产品:本项目接受进口产品投标 三、投标人的资格要求: 1、投标人基本资格条件:投标人应当符合《政府采购法》第二十二条第一款的规定,即: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录; (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录; (6)法律、行政法规规定的其他条件。 2、被“信用中国”网站列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的),不得参与本项目的政府采购活动。 3、投标人特定资格条件: 投标人应具有有效的医疗器械生产(经营)许可证。 项目清单 序号 医疗器械名称 单位 数量 1 免疫发光仪(全自动时间分辨荧光免疫分析系统) 台 1 2 全自动生化仪 套 1 3 全自动微生物快速培养系统 台 1 4、联合体投标。本次招标 不接受 联合体投标。 5、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。 6、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加此项目的其他招标采购活动。 四、招标文件的获取 1、凡符合投标资格要求并有意参加投标者必须办理数字CA,登录《岳阳市公共资源交易网》(http://ggzy.yueyang.gov.cn/)下载招标文件。投标人在网上注册应对所提供的证件和证明材料的真实性承担法律责任。 2、本次招标只支持网上支付标书费报名并从系统中下载招标文件。 联系电话:0730-2966692 岳阳市公共资源交易中心 3、招标文件售价:人民币0元/本,只支持网银支付。本项目只有网上购买文件,投标人才有资格生成投标保证金账号,缴纳保证金。 4、报名及招标文件提供下载期限:2022年1月4日至2022年1月11日17:00,各投标人自行在以上网站下载或查阅招标相关文件和资料等,恕不另行通知,如有遗漏采购人、采购代理机构概不负责。 5、电子招标文件获取方式:投标截止时间前,供应商进入“岳阳市公共资源交易网” (http://ggzy.yueyang.gov.cn/)登录“岳阳市公共资源交易中心电子交易平台”(http://222.242.228.197:8083/TPBidder/memberLogin)进行格式化电子招标文件的下载。 五、投标文件的制作 投标人在“岳阳市公共资源交易网”(http://ggzy.yueyang.gov.cn/)服务指南中及时下载安装最新版本“新点投标文件制作软件(岳阳版)”。参与投标的投标人需使用电子标书编制软件制作YYGCZF格式投标文件。本项目电子投标文件最大容量为200MB,超过此容量的文件将被拒绝。制作电子投标文件时,投标人须编制投标文件的内容目录和详细页码,其制作软件的下载安装和电子投标文件的制件说明(含电子签章的操作流程)可详见“岳阳市公共资源交易网”(http://ggzy.yueyang.gov.cn/)的服务指南《全流程电子化招投标操作手册》。 六、投标文件的递交 1、投标文件递交截止时间(投标截止时间,下同)2022年1月26日9时30分(北京时间),投标人应在投标截止时间前通过岳阳市公共资源交易平台递交数据电文形式的电子投标文件并完成在线签到。其递交的电子投票文件具备法律效力,逾期递交的电子投标文件,电子交易平台将予以拒收。 2、项目采取电子招投标方式进行,要求投标人制作和上传电子投标文件,并准时参加网上开标和远程解密电子标书。 七、投标文件的解密 电子投标文件的解密截止时间为2022年1月26日10时00分(北京时间)(系统设置为开标后30分钟内),投标人可在单位在线解密,如在开标现场解密的请自备解密电脑和网络。逾期未解密的,视为放弃投标资格。 八、投标人澄清、补正和说明 1、评标过程中,如评委专家要求投标人进行必要的澄清、说明和补正的,投标人应在线保持关注,及时登录岳阳市公共资源交易中心电子交易平台(http://222.242.228.197:8083/TPBidder/memberLogin)进行网上回复, 并上传提交相关资料,逾期未回复的,视为放弃澄清、说明和补正的权利。 2、招标人在岳阳市公共资源交易平台上公开进行开标,所有投标人均应当准时在线参加开标。 九、投标保证金: 1、本项目不需要交付投标保证金。 2、CA数字证书办理 湖南省数字认证服务中心有限公司(民兴路与狮子山南路交叉口)庙坡碧玉湾(南门)43号门面,电话:0730-8181828。 十、招标文件公告期限 招标文件公告期限:2022年1月4日9时00分至2022年1月11日17时00分止(5个工作日)。 十一、疑问及质疑: 投标人对政府采购活动事项如有疑问的,可以向采购人或采购代理机构提出询问。采购人或采购代理机构将在3个工作日内作出答复。投标人认为招标文件或招标公告使自己的合法权益受到损害的,可以在获取招标文件之日或招标公告期限届满之日起7个工作日内,以书面形式向采购人、采购代理机构提出质疑。 十二、采购人及其委托的采购代理机构的名称、地址和联系方法 采 购 人:岳阳市中心医院 地 址:岳阳市岳阳楼区东茅岭路39号 联 系 人:周旭春 电 话:0730-8256318 代理机构:湖南晟弘项目管理有限公司 地 址:岳阳市岳阳楼区天伦金三角银座A栋28楼 联 系 人:姚瑶 电 话:0730-3290015
  • 国内首台尿素在线检测装置问世
    记者11月22日从中科院合肥物质科学研究院获悉,由该院技术生物所和河南心连心化肥有限公司共同完成的,国内第一台尿素产品质量在线检测装置近日研发成功并投入生产应用。将装置安放在尿素传送带的上方,就能实时精确监测出尿素中尿素、缩二脲、水分的含量。   我国化肥产品结构以氮肥为主,占化肥总量的60%,而氮肥中60%以上为尿素。在尿素产品的生产过程中,高温会促使其产生缩二脲,当缩二脲浓度较高时会对作物生长有抑制作用,由于尿素易溶于水、易吸湿结块,因此准确测量尿素、缩二脲、水分三者含量难度较大,而如果测量精度不够,又很难保证尿素产品的品质。传统测定方法操作复杂、耗时长、消耗化学试剂成本高,同时不利于环保,因此发展尿素产品质量快速检测方法意义重大。   技术生物所科研人员在利用近红外漫反射光谱定量分析技术建立尿素中尿素、缩二脲和水分含量模型的基础上,研发出在尿素生产线上在线检测尿素、缩二脲、水分含量等尿素质量指标的装置。通过调试改进,克服了工业现场震动较大、化肥移动速度快对测量精度的影响,实现了对尿素产品品质在线检测的目标。
  • 聚焦食品微生物检验,守护舌尖上的安全|汇像智能检测
    夏天到啦!在炎热的天气,吃上一口美味多汁的西瓜,清凉又解暑,实乃生活的一大乐事。但一定要记得妥善放置剩下的西瓜,谨防 “冰箱杀手”——李斯特菌来袭,新闻中不少食物中毒事件可是都和它有关。01 微生物与人类:看不见的战争李斯特菌,全名单核增生李斯特菌,生命力极其顽强(耐盐耐酸耐碱耐冷),致死率极高。这是一种致病微生物,我们平时看不见摸不着,误食的可能性极大。图1:单核增生李斯特菌(致病类)古往今来,人类一直与微生物进行着看不见的战争。大多时候,我们与这个群体能和睦相处。但当微生物超过一定的数量或人不慎摄入致病菌,人的生命健康便会遭受威胁。在食品行业,为保障流入千家万户的食品安全,国家制定了严格的《食品安全国家标准》,对微生物的检测项目及检验方法做了相关规定。02 食品微生物学检验——ACC食品行业的微生物检验项目主要分为四类:指示菌计数(菌落总数的测定、大肠菌群的测定)、霉菌与酵母菌计数和食源性致病菌的检验及其他项目。本期以菌落总数的测定(Aerobic Colony Count)为例。菌落总数的测定主要反映食品被细菌污染的程度,把检样中的致病菌、非致病菌、酵母菌、霉菌都计算在内的微生物杂菌总数。国家标准对每一种食品都规定了细菌总数限量,如果某一种食品被检出超过限量,说明生产企业或销售单位在生产、运输、贮存该食品时的某一环节上操作不规范,这个食品不合格。根据菌落总数,我们还可以预测食品的耐放程度和时间,估测食品的腐败情况。实验关键要点1)无菌:无菌实验室,操作前紫外消毒30min以上;采样时,在缓冲间用75%的酒精对样品外表杀菌,送到传递窗口;操作过程有无菌操作意识,避免环境污染样品,也避免实验室工作人员被实验样品感染,将致病菌带出实验室;2)空白对照实验:必不可少,了解样品是否受到环境污染;3)菌落蔓延样品:用大约4ml琼脂培养基倾注覆盖一薄层即可;4)有颗粒状残渣的样本:多倾注1-2块板放冰箱冷藏,在计数时做对照用,易于辨别是残渣还是菌落03 ACC的自动化解决方案举例传统的微生物学检验,往往会由技术人员完成整个实验流程。但随着科技的发展,越来越多的企业开始引入自动化系统。汇像作为专业的实验室自动化智能化系统提供商,在智能检测方面已研发了不少经典的解决方案,比如智能pH值测试系统、智能称量系统等,目前已累计完成400+个案例。图2:GB4789.2-2016 食品微生物学检验菌落总数测定图3:智能微生物培养制备系统在“菌落总数的测定”这个场景中,我们曾为客户研发了智能微生物培养制备系统,该系统可按照食品安全国家标准GB4789.2-2016,自动化完成上图红框标注的相关流程。自动化流程与人工流程的对比人工流程困难点人工操作局限性(招人培训难、标准化流程落地难、可追溯性差、工作时间有限)无菌要求(过程繁琐)汇像解决方案以标准流程为纲,将人工操作的部分转换为机械臂的操作,精确把握操作的关键要点,实现智能在线检验。智能微生物培养制备系统PHS500WSW结果验证全程可追溯、效率提升、流程标准、结果可重复,汇像方案24小时可处理180份样品(两个梯度稀释);在调研过程中,了解到人工每13个人完成150份样品左右,项目复杂的,6-7个人能完成40-50份左右。(仅举例,不同的企业各自情况不同)04 趋势——智能检测中国制造转型,自动化系统解决方案入局图4:中国制造2025自2015年,我国提出“中国制造2025”计划后,中国制造开始向中国智造转型,自动化系统解决方案开始应用于食品行业的各个生产场景。为贯彻落实《中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》,加快推动智能制造发展,2021年12月21日颁布了《国家十四五智能发展规划》。图5:《国家十四五智能发展规划》,加快智能制造步伐食品先行者——乳制品智能制造示范工厂在印发《“十四五”智能制造发展规划》不久后,工信部公布了《2021年度智能制造示范工厂揭榜单位和优秀场景名单》。在这份名单中,我们可以看到乳制品行业蒙牛、伊利、飞鹤、光明等已先行转型,是行业的智能制造示范工厂,典型场景包括智能在线检测、车间智能排产、人机协同作业等。2022年2月14日公布图6:伊利、蒙牛等食品企业已成为智能制造示范工厂图7:飞鹤、光明上榜在实施2025中国制造战略的背景下,众多企业引入自动化系统,目前已取得相应经济收益。相信未来会有更多企业加入此行列,更多的自动化经典场景将会出现。
  • 上海智城成功研发在线光密度检测摇床
    我国生物发酵领域通过手工不断取样,了解微生物菌种生长特性的落后实验方法将得到彻底改变。上海智城分析仪器制造有限公司科研人员经过多年研究,成功开发出采用非接触式技术,对微生物菌种进行OD值在线实时检测的ZWYF—290B型在线光密度检测摇床新品。据了解,这一专利产品的问世,改变了我国生物发酵领域无此类国产设备的尴尬。 众所周知,我国对生物发酵技术的研究和应用经过数十多年的快速发展,已经使我国迈入了世界生物工程领域发酵大国的行列。但我国在此领域的科研水平及取得的科研成果与发达国家相比,还存在着较大的差距,实验装备的落后是其中的一个重要原因。目前我国在生物工程发酵领域对微生物菌种的培育和研究,还沿用着传统的,通过手工不断取样来了解微生物菌种生长特性的实验方法。这种手工操作方法不但费时费力,准确度底,重复性差,其研究效率还十分低下。这一状况已经成为我国生物发酵工程领域对微生物菌种进行培育和筛选的重要瓶颈。广大生物发酵领域的实验人员迫切希望能有国产的自动化检测设备早日问世,能够将他们从繁琐、繁重的实验操作中解放出来,实现我国从发酵大国走向发酵强国的夙愿。 ZWYF—290B型在线光密度检测摇床是一种采用非接触式检测技术,对微生物细胞浓度进行光密度(optical density,OD)值在线实时检测的恒温摇床新品。该产品在叠加式真彩触摸屏摇床上配置一个非侵入式多通道光度检测器,在动态环境下,实时测量微生物发酵液中细胞的光密度,在线跟踪微生物生长的浓度或粒度变化,为生物工程、生物医学和生物制药等提供了一款基础性的新型生物反应器。该产品使用波长为600/660nm激光光源,采用250mL特制锥形三角瓶作为生物发酵摇瓶,可以满足一般微生物发酵过程检测和细胞生长速率的在线分析。该新产品抗干扰噪声强,能在250rpm等转速振动的环境中获得真实的微生物细胞生长曲线。设备可选4、8、12和16通道, 适合正交试验、均匀实验和DoE设计实验,从而高效实现菌种筛选、培养基优化、工艺优化和动力学分析等。此外,产品所配置的无线数据采集和传输功能,为进一步实现多机联网、高通量大数据生物反应和分析创造了条件。 该产品适用于菌种筛选、培养基优化、发酵工艺优化等研究,能显著提高工艺优化与筛选效率。还可广泛应用于微生物细胞、动物细胞和植物细胞培养与发酵,在生物医药、食品开发、生物农业、环境治理等领域进行菌种筛选和工艺开发具有很好的应用前景。根据研究需要,该产品还可更换激光波长,应用于酶、蛋白质等活性物质的检测等。 采用ZWYF—290B型在线光密度检测摇床所得到的实验效果图形: 图一、大肠杆菌、农杆菌生长曲线自动生成(37℃,12小时) 图二、交大昂立的一种营养食品菌种在不同培养基中的生长曲线(37℃,17小时) Min 图三、接种不等量菌株,记录的大肠杆菌生长曲线
  • 近红外应用 | 水果在线分选检测
    当我们走进水果店时,会发现同一种水果会分不同的价格售卖,而影响价格的主要原因是其品质,这时我们就会产生疑问 ➙什么样的荔枝核小而甜?什么样的西瓜皮薄瓤多脆又甜?我们今天来分享一些关于:如何用科学的方法区分不同品质的水果(当然也能区分同一类水果的不同产地与品种)随着生活质量提高和消费水平的改变,消费者对于水果品质不同的需求也就促成了水果的销售分级处理;利用非接触式水果分选检测技术,不断细分果品,以便满足不同消费市场的需求。什么是水果分选?一般来说,将其分为四类:大小、重量、外观品质(颜色、新鲜度)、内部品质 其中在内部品质分选中,主要判断的指标如下:糖度硬度酸度内部缺陷然而传统的破坏性检验方法不仅成本高,还造成资源浪费,因此光谱无损检测的方法成为一大趋势。水果分选机因其具有检测速度快、可同时检测多种内部成分等优点,近年在农产品内部品质检测方面发展迅速。其基本原理是:当用近红外光照射水果时,不同的水果内部成分对于不同波长的光学吸收和散射程度不同,而内部光谱也会随着水果内部成分质量分数的不同而发生变化。利用这一特性,即可根据近红外光谱特征分析水果中的主要成分及其质量分数。为什么是近红外光谱?近红外光谱近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。近红外光谱优劣势但是近红外经过两百多年的发展与应用开发,仪器的进步与算法的革新,仪器制造商与科学家们已经可以将越来越多的劣势规避,从而更好地发挥了近红外不消耗化学试剂,不污染环境等优点,因此也受到越来越多人的青睐。应用案例基于近红外光谱技术检测水果糖度(水分/黑心病【可见+近红外】)主要过程:(1)选取具有代表性的水果(2)通过漫反射或透射方式采集水果样品相关光谱数据;(3)对光谱数据预处理,消除不同因素对水果模型精度带来的误差,选择更有代表性样品的光谱数据;(4)采用国家和国际认证的化学分析方法测量水果样品成分的准确含量;(5)建立预测模型(6)未知水果样品近红外光谱的采集,然后用所建立的预测模型预测未知样品的成分含量。(7)用标准的化学分析方法测量未知水果样品成分的含量,验证所建立预测模型的准确性,然后对预测模型进行校正和优化。典型装置设计:三大功能模块:光路模块、附件模块、数据处理模块光路模块的光源对待测水果样品进行有效照射,通过光纤传递给光纤探头,再将透过水果样品的光谱信息进行收集,并通过光纤传递给数据处理模块的光谱仪。通过微处理器进行处理、计算和分析,从而完成对待测水果样品糖度的预测,在显示屏上获取结果,实现水果糖度的无损检测。由于水果的尺寸大小、果肉薄厚,糖酸度有高有低,且分布不均的情况,在光谱采集模块中有多种方式:图片来源:仪器信息网以下图为实际的光谱采集谱图案例▼▼▼脐橙原始光谱采集(可见+近红外)苹果吸收光谱(可见+近红外)香蕉的不同反射光谱(近红外)并做归一化平均草莓反射光谱(可见+近红外)正常与不同腐变程度的苹果透射光谱比较图(可见+近红外)化学计量学建模在完成光谱采集后,数据处理成为整个装置的核心步骤。再建立准确化学值与光谱信息之间的化学计量学模型。化学计量学模型的建立主要包括两个过程:校正和预测硬件:光谱采集模块① 光谱仪(近红外系列光谱仪,可见-近红外光谱仪)② 光源(海洋光学提供集成和光路设计方案,解决客户在光学部分的担忧;因集成到在线设备,我们推荐使用高度可集成化、高稳定性的光源,以适应在线设备的光路设计和长时间稳定运行。) ③ 光谱收集附件(可选配/定制/也可空间光耦合的光纤、准直镜附件,帮助客户解决系统中光传输和耦合问题。)软 件① 光谱读取软件定制/二次开发(Omnidriver/Seabreeze)② 近红外光谱建模软件(可根据需求选取不同建模软件)③ 数据传输与分选机制协议定制针对不同的水果产线和分选机制,为客户定制数据传输模块及协议方式。由于通讯方式的差异及需求差异,我们还可以为客户进行光谱仪器协议、固件等开发,实现同样光谱设备在不同应用中发挥其不同长处。理由1:触发准确性在水果分选设备产线中,光谱仪工作在外触发模式,当传输带送入一个水果到测量位置,立即触发光谱仪开始积分,积分时间100ms,因此对触发的准确性要求很高。而竞争对手的产品外触发时间不准确,如果产线使用的是高功率卤钨灯,多停留一段时间就有可能造成水果的热损伤。理由2:量产能力性机器人自动校正并保证每台设备的精准校调,确保每条产线的分选标准一致。理由3:量身定制在线系统中如果出现系统故障会影响整条产线的正常运行,我们可为客户定制系统运行自测协议,减少人为检验步骤,提高生产效率。本文来源:海洋光学关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。如需了解更多详情或探讨创新应用,可拨打400-860-5168转5895客服电话。
  • 霍普斯-VOCs在线检测系统
    01行业背景目前,我国 VOCs 排放量已位居世界第一位。鉴于国内 VOCs 人为源排放量高于自然源,且主要集中在经济发达和人口密集地方,同时 VOCs 人为源污染排放成分复杂,不仅对大气环境造成影响,还对人体健康有直接或潜在的危害。自2018年起至今,国家对环境保护的政策不断更新,在此大背景下,对人为源 VOCs 的监测就显得迫在眉睫。2018年7月国务院印发《打赢蓝天保卫战三年行动计划》2018年8月生态环境部印发《关于加强重点排污单位自动监控建设工作的通知》2020年6月生态环境部印发《2020年挥发性有机物治理攻坚方案》的通知2021年5月生态环境部关于征求《关于加快解决当前挥发性有机物治理突出问题的通知(征求意见稿)》意见的函02VOCs固定污染源挥发性有机物在线监测系统为了响应国家及各省市对VOCs排放的监测需求,南京霍普斯科技有限公司(以下简称“霍普斯”)推出VOCs固定污染源挥发性有机物在线监测系统。A、采样探头B、伴热管线C、温压流一体机D、分析站房F、分析系统(含非甲烷总烃监测单元、废气参数监测单元、数据采集与控制系统)01PGCM-5500G/1001G(非防爆型/防爆型)VOCs固定污染源挥发性有机物在线监测系统VOCs固定污染源挥发性有机物在线监测系统采用全程高温取样预处理+GC-FID测量法,分析周期短,色谱稳定性高,维护量小,防爆和非防爆可选,可根据客户需求进行灵活化配置,满足现场的各种复杂工况和技术要求!★产品特点★适用于石油化工、生物制药、包装印刷、表面涂装等适用于防爆区域,防爆/非防爆(可选):防爆等级Ex de mb px IIC T4Gb柱箱采用气浴加热,升温速度快,加热更均匀全程伴热(0-200℃可调),无冷点,避免样气失真流量精准控制(电子流量压力控制、大气平衡),并有多重传感器监控系统的运行可根据客户需求定制特征因子(如H2S/C2S等)可达3个以上并行检测器(FPD、FID等)可达3个以上并行流路(并行色谱),可实现单台多点监测具备维护预警提醒、实时报警、远程控制和诊断功能现场可无人值守仿移动端APP:支持Android、IOS操作系统02HVPT-1000(防爆/非防爆)温压流一体机HVPT-1000型温压流一体机由主机及S型皮托管两部分组成,主要用于烟气参数如流速、压力及温度的在线监测;霍普斯自主研发,拥有国家级仪器仪表防爆安全监督检验站颁发的防爆合格证证书。★产品特点★可用于爆炸性环境中,防爆等级:Ex d [ia Ga] IIC T6 Gb测量范围:(0~40)m/s(低于5m/s不推荐使用)温度测量范围:0-500℃维护安装方便快捷气体采样探头适用于多种工况的气体采样,如含有粉尘、水分、腐蚀性、高温等多种应用。灵活多变的配置选择,适用于电力、钢铁、冶金、水泥等多种行业。
  • 医疗污水检测哈希产品方案-在线产品
    医疗污水中通常含有多种细菌、病毒、寄生虫卵和一些有毒有害物质。同时,医疗污水还含有重金属、有机溶剂、放射性物质及酸碱溶液,如这些物质直接被排放入环境将造成巨大危害并影响人体健康,必须经过处理后才能排放。目前对医疗污水处理的二级生化处理工艺有:活性污泥法、生物膜法等。在消毒工艺上大致可分为物理方法和化学方法两大类。物理方法有辐射法、紫外线法、加热法、冷冻法等。化学方法包括用卤素,臭氧、重金属离子、阳离子表面活性剂、等化学药剂处理。其中,较常用的是氯消毒法和臭氧消毒法。我国应用最广泛的是氯消毒法。 在医疗污水处理过程中,不同工艺单元需监测的水质参数不同:预处理阶段监测参数:悬浮物、pH混凝沉淀处理监测参数:pH、悬浮物生化处理监测参数:溶解氧、污泥浓度、pH深度处理监测参数:pH、溶氧、悬浮物消毒阶段监测参数:总余氯、二氧化氯哈希有多款在线产品可满足这些参数的检测,除此外针对医疗污水其他检测参数哈希也有相应在线产品供您选择:哈希公司能够提供全面的水质检测解决方案。在汶川地震、辽宁抚顺水灾、天津港大爆炸等重大灾害事件中,哈希都积极响应,第一时间为灾区提供水质检测产品,保障广大人民群众的饮水安全。 在此次新型冠状病毒感染肺炎疫情期间,我们时刻关注灾区饮水安全,并随时准备提供技术支持。在疫情期间所有进行水质监测的各界哈希用户,如果您在现场使用哈希仪器遇到任何应用方面的问题,请立即拨打我们的客服热线:400-668-7609,我们将全力响应您的支持需求,除此外您还可通过微信、官网等方式和我们取得联系。
  • 微颗粒的电磁在线监测技术与仪器装备
    table width=" 614" cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 482" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 微颗粒的电磁在线监测技术与仪器装备 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 482" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 中国科学院大学 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 王晓东 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 153" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" Xiaodong.wang@ucas.ac.cn /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 482" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp √已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp □可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 482" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" √技术转让& nbsp & nbsp & nbsp √技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp √其他 /span /p /td /tr tr style=" height:113px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 614" height=" 113" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 微颗粒(金属非金属氧化物颗粒、夹杂物、裂纹、气泡、缺陷、溶质、催化剂、大气污染物等等)在固相、液相和气相中的动态监测问题相当广泛地存在于不同的科学技术和工业领域里。中国科学院大学王晓东教授课题组提出基于电磁场理论的新原理,并根据监测体系和应用场合的不同,开发了一系列的系统解决方案(如下图)。 /span /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3809cd5b-c3be-4592-9b68-234e6eadb6b2.jpg" title=" 4.png" / /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" /span br/ /p p style=" text-indent:28px line-height:24px" span style=" font-family:宋体" 本项目新方法,主要有以下四方面的优势:1)原理上,测量量我们以矢量(如测力、第2磁场等代替标量(如阻抗),在测量精度上我们的新方法较传统涡流方法提高了1到2个数量级 2)并且由于测量量为矢量的原因,基本上消除了传统方法难以克服的“提离”效应,使检测精度大幅提高 3)检测速度大幅提高;4)可实现在线监测(传统方法为“线上”检测方式);5)检测信号易于解析。 /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 相较已有技术,本项目具备实时、在线、连续、原位、定量、高速等六大特点; /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 测量精度高:探测对象为微米、亚微米级颗粒物; /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 适用范围广:从低温的弱导电溶液到高温的金属液(电导率:100-106S/m;温度:常温—1600 /span span style=" font-family:宋体" ℃ /span span style=" font-family:宋体" ); /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 在化学化工、医药、环境领域,本技术大幅提高生产效率和质量、降低生产成本; /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 突破了高温金属液洁净度的在线测量技术(世界性难题,目前尚无竞争技术); /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 在无损检测领域,突破了传统标量测量量的极限,测量精度提高了1—2个数量级; /span /p p class=" MsoListParagraph" style=" margin-left:60px text-align: left line-height:24px" span style=" font-family:Wingdings" Ø span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span span style=" font-family:宋体" 仪器特点:精度高、信号易于解析、微小型化(便携)、适应恶劣工业环境、可远程通讯监控。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 614" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 1 /span span style=" line-height:150% font-family:宋体" 、应用于无损检测领域——基于矢量测量的新涡流监测法 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 作为朝阳行业的无损检测在我国有着广阔的发展空间。按原理分可分为五大类,而无损检测设备器材可分为26类。应用无损检测技术的企业超过3万家,而且还在不断增长,检测与服务机构超过2000家,涉及到的无损检测器材制造商800多家。从业人员超过35万(铁路系统5万人以上,石油化工、油田、天然气、锅炉压力容器四个行业12万人以上,航空系统2万以上, 此外,航天、汽车、机械行业、电力、核电、军队、电子工业、食品医药卫生、轻工及其他行业领域未计算在内)。市场总容量超过100亿。国外某知名度和权威性很高的检测公司估计中国的第三方市场是一个超过500亿美元的巨大市场。 & nbsp /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 涡流检测方法是五大类(超声波、涡流、磁粉、渗透和射线)无损检测方法应用最广泛方法之二(另一个为超声),涡流检测设备涵盖数字化涡流探伤仪、脉冲涡流检测系统、阵列涡流检测系统、大型自动化涡流探伤系统、导电率仪、金属探测器等。相关涡流检测制造厂家超过47家(2013年数据)。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 2 /span span style=" line-height:150% font-family:宋体" 、应用于弱导电液中的(如电解质溶液、离子液体等)微颗粒监测 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 仪器应用对象:不仅适合于化学化工领域中的催化剂演化过程监测控、结晶工艺中控、化学提纯等领域,而且还可用于其他领域的工艺监控:磨料、墨粉、水质、稀土、化纤、陶瓷、滤材、材料、环境检测、化妆品、晶体、电子材料、食品工业、燃料、微球体、涂料和色素、造纸工业、石化、颜料、水污染检测等。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 3 /span span style=" line-height:150% font-family:宋体" 、应用于高温金属液洁净度的原位、在线、定量测量技术(冶金夹杂物监测) /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 冶金过程中的夹杂物在线监控(采用光学等实验室化验方法属于非在线手段,对生产实际意义不大)是世界性难题(类似于空气污染物的监测,难度高于此!)。其价值在于能有效监控由于原材料或工艺工程中带入的非金属夹杂物,是生产洁净钢和超高洁净钢必须的关键技术。目前,基于库尔特原理的LiMCA技术只能应用于低温(熔点温度低于700度)。如能在钢铁工业、铜工业上实现夹杂物的在线监控,将是冶金领域里世界范围内技术革新。而我们的技术完全可以涵盖从低熔点到高熔点的全部范围。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 4 /span span style=" line-height:150% font-family:宋体" 、应用于大气颗粒物的监测 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 大气环境监测是所有的大气环境工作的物质基础,无论是进行大气环境质量监测、大气污染治理,还是进行大气环境科学与工程的研究,都必须是在科学、准确测定大气环境参数的基础上进行。目前,大气中悬浮颗粒物的存在,已对环境产生了严重影响,检测与监测大气颗粒物成为研究热点。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 614" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 申请美、德、中专利20项、其中7项已获授权 /span /p /td /tr /tbody /table p br/ /p
  • 2013第1批水质在线监测仪器适用性检测开始
    日前,中国环境监测总站发布“2013年第一批水质在线监测仪器适用性检测工作”通知,通知中称,2013年第一批水质在线监测仪器适用性检测于2013年3月开始,岛津公司、深圳朗石等16家仪器公司的20款水质在线监测仪器将被送进检测室开始检测。具体内容如下所示: 2013年第一批水质在线监测仪器适用性检测工作通知   2013年第一批水质在线监测仪器适用性检测将于2013年3月开始,计划检测时间为2013年3月-2013年6月。送检企业的名单见下表,请各送检企业于2013年3月18日-22日将被检仪器送进检测室并开始调试,2013年3月25日开始正式检测;逾期未到者视为自动放弃本次检测资格。   207室、208室、209室通讯协议见附件。   各公司送检时,请先将附件3的委托检测表和检测通知表有关企业部分的内容填好,一起带来。   联系人:王晓慧 左航 王利燕   联系电话:010-84943048 010-84943049 010-84943252   附件:   1. 207、208水质仪器检测通讯协议及验证工具   2. 209水质仪器检测通讯协议及验证工具   3. 氨氮委托检测表、氨氮检测通知单   4. COD委托检测表、COD检测通知单 氨氮水质在线监测仪   207检测室 序号 企业名称 产品型号 产品名称 1 爱华仪器有限公司 CL1000 氨氮在线监测仪 2 河北碧洁环保科技有限公司 SND-9000型 氨氮在线监测仪 3 杭州慕迪科技有限公司 NH3N-8000 氨氮在线分析仪 4 青岛崂山电子仪器总厂有限公司 LN1000型 氨氮在线监测仪 5 广东伟创科技开发有限公司 NH3N-2009 氨氮水质在线自动监测仪 6 宇星科技发展(深圳)有限公司 YX-NH3-N-Ⅲ 氨氮水质在线自动监测仪 7 杭州泽天科技有限公司 Wdet-5000 氨氮水质自动分析仪 8 太原罗克佳华工业有限公司 RK-NH3-N-I 氨氮水质在线自动监测仪 9 岛津企业管理(中国)有限公司 NHN-4210 氨氮在线监测仪 COD水质在线监测仪   208检测室 序号 企业名称 产品型号 产品名称 1 上海恩德斯豪斯自动化设备有限公司 CA71CODCr COD自动在线监测仪 2 拉尔分析仪器(杭州)有限公司 Elox 在线COD分析仪 3 宇星科技发展(深圳)有限公司 YX-COD-C 化学需氧量水质在线自动监测仪 4 深圳朗石生物仪器有限公司 PhotoTek6000 CODcr水质自动监测仪   209检测室 序号 申请企业 产品型号 产品名称 1 南京华都环保设备有限公司 HD02-1型 化学需氧量(CODcr)在线分析仪 2 江西怡杉环保有限公司 YSM-C型 CODcr在线监测仪 3 广东伟创科技开发有限公司 WCOD-2009 化学需氧量水质在线自动监测仪 4 杭州泽天科技有限公司 CODet-5000 COD在线分析仪 5 杭州富铭环境科技有限公司 WD2100 CODCr在线检测分析仪 6 兰州连华环保科技有限公司 5B-5型 COD在线快速测定仪 7 太原罗克佳华工业有限公司 RK-COD-I 化学需氧量水质在线自动监测仪
  • 2012年第二批水质在线监测仪适用性检测工作将展开
    关于开展2012年第二批水质在线监测仪适用性检测工作的通知   2012年第二批水质在线监测仪适用性检测将于2012年5月开始,计划检测时间为2012年5月~7月。具体送检企业名录见下表,请所有送检企业于2012年5月7日~14日将被检设备送进检测室,逾期未到者视为自动放弃本次检测资格。   207室、208室、209室通讯协议见附件。   联 系 人:王晓慧 左航   联系电话:010-84943048   010-84943049   附件:   1. 207、208检测室通讯协议   2. 209检测室通讯协议   207检测室 序号 申请企业 产品型号 产品名称 性质 1 深圳市绿恩环保技术有限公司 GR-NH3-N 在线自动监测仪 初次检测 2 深圳市朗石生物仪器有限公司 PhotoTek 6000 氨氮在线水质分析仪 初次检测 3 河南乾正环保设备有限公司 QZ300 氨氮自动分析仪 换证检测 4 成都乐攀环保科技有限公司 LP NH3-N-2012 氨氮(NH3-N)在线自动监测仪 初次检测 5 江苏德林环保技术有限公司 DL2003 氨氮全自动在线分析仪 换证检测 6 成都海兰天澄科技有限公司 HLT-200 氨氮在线自动监测仪 换证检测 7 四川久环仪器有限责任公司 2000C 氨氮(NH3-N)在线自动监测仪 换证检测 8 北京环科环保技术公司 HB2000 在线氨氮分析仪 换证检测 9 南京小桥流水环保科技有限公司 GIM-2100A15 氨氮自动监测仪 初次检测 10 厦门市吉龙德环境工程有限公司 μMAC C NH3 Analyzer 在线氨氮分析仪 换证检测   208检测室 序号 申请企业 产品型号 产品名称 性质 1 湖北盘古环保工程技术有限公司 PG-02 水质在线检测仪 换证检测 2 深圳市绿恩环保技术有限公司 GR-CODCr 在线自动监测仪 初次检测 3 河南乾正环保设备有限公司 QZ5000 化学需氧量测定仪 换证检测 4 山东省恒大环保有限公司 SHZ-1 COD水质在线监测仪 换证检测 5 江苏天泽环保科技有限公司 TZ-CODCr-1001 水质CODCr在线监测仪 初次检测 6 成都乐攀环保科技有限公司 LP CODCr-2011 CODCr在线自动监测仪 初次检测   209检测室 序号 申请企业 产品型号 产品名称 性质 1 苏州聚阳环保科技有限公司NH3N-1040 氨氮在线分析仪 换证检测 2 山东龙发环保科技有限公司 LFH2005E NH3-N在线监测仪 换证检测 3 福禄克测试仪器(上海)有限公司 Amtax sc 氨氮水质在线分析仪 换证检测 4 江苏天泽环保科技有限公司 TZ-NH3-N-1001 水质氨氮在线监测仪 初次检测 5 武汉宇虹环保产业发展有限公司 TH-ZX200 氨氮在线分析仪 初次检测 6 武汉巨正环保科技有限公司 JZ-NG01 氨氮在线分析仪 初次检测 7 爱华仪器有限公司 CL1000 氨氮在线监测仪 初次检测 8 苏州阊亦宏环保科技有限公司 3Z-D(Ⅰ) 氨氮在线分析仪 初次检测 9 浙江环茂自控科技有限公司 Super Vision 氨氮在线自动监测仪 换证检测  附件1:207、208水质仪器检测通讯协议及验证工具 附件2:209水质仪器检测通讯协议及验证工具
  • 水质监测黑科技,跟随这家企业“玩转”数智化在线监测
    数智化,即数字化与智能化相结合,是指利用数字技术和智能算法来转变和优化业务流程、增强决策质量、提高运营效率和客户体验。在城镇供水和水质监测领域,数智化通常包括以下几个方面:智能监测系统:使用传感器、物联网技术等实时收集和分析水质数据,实现对供水系统的远程监控和自动化管理。数据分析和人工智能:利用大数据分析和人工智能算法处理和分析大量数据,以预测潜在的问题,优化资源分配,提高系统效率和响应速度。用户交互和服务:通过移动应用、在线平台等,提供实时数据、警报和报告,增强用户参与和满意度。集成和自动化:将不同的系统和流程集成到一个统一的平台中,实现自动化操作和智能决策支持。预测性维护:使用预测性分析工具来预测设备故障和维护需求,减少停机时间,延长设备寿命。资源优化:通过智能算法优化水资源管理,包括减少漏损、优化能源消耗等。数智化在城镇供水和水质监测中的应用,不仅提高了供水安全和效率,还促进了可持续发展,为城市居民提供了更好的服务。作为水质守护者的哈希,产品被全球用户广泛应用各个领域。为了更好地了解数智化在线监测如何助力水质监测分析,哈希&仪器信息网 将于7月10日下午13:30举办“焕新升级智焕未来-城镇供排水水质监测与设备管理”网络会议,同济大学信昆仑教授领衔开讲,团标《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》起草人蒋增辉正高级工程师进行标准解读。直播间抽奖:收纳袋 手持风扇 手持吸尘器 星球杯套装和运动水杯等~快速报名链接:https://www.instrument.com.cn/webinar/meetings/hach240710/会议日程:报告时间报告题目报告嘉宾报告简介13:40--14:10感知数据在智慧供水系统的应用与挑战信昆仑同济大学 教授结合案例,针对感知数据在智慧供水系统建设过程中的作用,所遇到的问题及解决方案,未来的挑战及应对等进行介绍14:10--14:40数智化在线仪器在供水原水和污染源监测中的应用郝祺哈希水质分析仪器(上海)有限公司 产品应用专家结合数智化,详细解读在线仪器特有的技术性能优势;分享数智化一体解决方案的优势,如何帮助客户针对城镇进排口水质变化进行预警预测和智慧数据分析14:50--15:20水中微生物ATP含量的检测方法和应用蒋增辉东方国际集团上海环境科技有限公司 正高级工程师《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》标准解读15:20--15:50高品质供水生物安全性水质监测应用与实践雷斌哈希水质分析仪器(上海)有限公司 高级产品应用经理围绕高品质供水微生物安全性水质在线监测,回顾直接性微生物指标的意义和不足,提出净水工艺和管网输配水过程中增加颗粒物和三磷酸腺苷(ATP)实时监测的重要性报名后,添加助教微信13260310733,备注“供排水”,领取近三年环境领域会议回放链接(电子版pdf)点此参会,邀请三人报名,领取随机实物礼品一份直播间抽奖:收纳袋 手持风扇 手持吸尘器 星球杯套装和运动水杯等~
  • 利用水质在线预警技术监测水质变化
    仪器信息网讯 2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2014)&rdquo 在国家会议中心召开。北京城市排水集团有限责任公司水质检测中心翟家骥在会上做题为&ldquo 利用水质在线预警技术监测水质变化&rdquo 的报告。 北京城市排水集团有限责任公司水质检测中心 翟家骥   环境污染对人民群众的生活带来很大的威胁,及时有效的发现污染物的泄漏或排放有着十分重要的意义。尤其,对于污水处理厂,及时有效的发现进水的异常状态,对于构筑物和活性污泥都能起到很好的保护作用,同时也能够更好的确保出水水质稳定,这其中水质在线监测预警技术将会起到非常重要的作用。   水质在线预警系统一般包括样品采集设备、水质在线监测仪器、数据采集设备、数据传输设备、通讯设备和终端接收设备等。其中,对采集的各种监测数据传输至环保系统,目前有多种传输方式,如:电话线方式、GPRS方式、GSM短消息方式、局域网方式、无线电台方式等。 水质在线监测预警系统示意图   在线预警常用指标有:化学需氧量(COD)、生化需氧量(BOD)、总有机碳(TOC)、氨氮(NH3-N)、总氮(TN)、总磷(TP)。   COD是水质监测分析中最常测定的项目,评价水体污染的重要指标之一   实验室测定COD的方法主要有:GB11914-89《水质 化学需氧量的测定 重铬酸钾法》,ISO 15705《水质&mdash &mdash 化学需氧量的测定(ST-COD)&mdash &mdash 小型密封试管法》,HJ/T399-2007《水质 化学需氧量的测定 快速消解分光光度法》。   GB11914-89是测定CODCr经典的方法,适用于各种天然水体、工业废水、生活污水和污水处理厂进出水的测定。测定的精密度和准确度都很好,可信度高,广泛用于各方面的检测和仲裁等。但存在水电等能耗高,氧化性、腐蚀性药品用量大,检测人员工作强度大,分析时间长等缺陷。   ISO 15705是国际化标准组织水质技术委员会颁布的一种测定水中CODCr的便捷的方法。与HJT 399-2007不同之处有两方面:一是消解温度为150℃,二是消解时间为120min。这一方法在国外的一些CODCr测定仪生产公司中被采用,如HACH公司。但这种方法测定较低浓度的CODCr时,结果往往偏高,更适合测定200mg/L以上的样品。   2007年,HJ/T399-2007颁布,这种方法在各方面的检测中得到了越来越广泛的应用。该方法的消解时间仅为15分钟,可谓非常快捷,很适合用于大批量样品的检测和应急监测中。但由于其采用的温度较高,对于污水处理厂二级处理出水和再生水的检测会因原污水的性质不同而受到影响。有些样品中会因为含有一定量的高沸点有机物,采用HJ/T399-2007法测定,结果会偏高。   在线监测COD的方法主要有:化学法(重铬酸盐法)、光谱法(UV254 双波长法)、相关系数法(通过TOC间接求出COD)、连续流动分析法(重铬酸钾法演化)、分光光度法(重铬酸钾法演化)等。   在线监测COD技术的干扰因素主要有:氯化物(加硫酸汞)、加药管路堵塞和污染(清理管路)、催化剂投加(加硫酸银)、本底校正(空白实验)等。 COD自动在线监测仪流程图   TOC在线监测技术比较 方法性能 燃烧氧化法 湿式氧化法 氧化能力 氧化能力强 氧化能力弱,难氧化颗粒物、烷基苯磺酸、腐植酸、咖啡因等。 检测限 常用情况为几毫克每升,特殊用途可达约10&mu g/L。 常用情况为几毫克每升,特殊用途可达约几微克每升。 前处理 不需前处理,直接由TC-IC求出TOC,无挥发性有机物损失 必须前处理,挥发性有机物有损失 可操作性 容易、快速、使用高温炉和催化剂 较复杂,使用氧化剂、UV灯   &ldquo 十二五&rdquo 期间&ldquo 氨氮&rdquo 成为硬性指标   氨氮在水中会以铵盐离子形态和游离态溶解氨存在,铵盐离子一般认为没有毒性,游离态溶解氨毒性大小与氢离子浓度有关   氨氮的实验室测定方法:HJ 535-2009《水质 氨氮的测定 纳氏试剂分光光度法》,HJ 535-2009是以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420nm处测量吸光度。   HJ 536-2009《水质 氨氮的测定 水杨酸分光光度法》,HJ 536-2009在碱性介质(pH=11.7)和亚硝基铁氰化钠存在下,水中氨、铵离子与水杨酸盐和次氯酸离子反应生成蓝色氯化物,在697nm处用分光光度计测量吸光度。   在线监测主要方法是氨气敏电极法。氨气敏电极法氨氮在线监测仪的测量原理是将水样中的NH4+转为气态的NH3(NH4++OH-D NH3+H2O),氨气通过渗透膜进入到电极内,使得电极内部的平衡反应NH4+D NH3+H+发生变化,引起电极内部[H+]变化,由pH玻璃电极测得其变化,并产生与样品中铵离子浓度有关的输出电压,得出相应的氨氮浓度。   在线监测正在从单一参数的检测向对水体安全进行全面评估的生物毒性预警发展   目前对水质的考核指标多为对某几类污染物的限值要求,但是,即使考核的污染物含量都达到要求,对水质的实际安全性依然存疑。目前尤为关注的包括水中残留的难降解有机物,以及消毒副产物等存在较大生物毒性的物质,这些物质无法简单用COD、BOD或TOC来表征,存在于水体中对环境和生态都有一定的威胁。所以,对生物毒性进行综合的评价,能够有效的对水体的安全进行全面的评估。   生物毒性实验室测定方法主要有SOS/umu生物检测生物遗传毒性、发光细菌急性毒性(发光菌)、大型蚤暴露生物急性毒性(大型蚤)、斑马鱼活体暴露风险评价慢性毒性(斑马鱼)、胚胎暴露生物早期发育影响(斑马鱼卵)等。   而在线监测生物毒性方法主要有发光菌监测系统、双壳软体动物监测系统、鱼类监测系统、水溞监测系统等。   其中,发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响,判断毒物毒性的大小。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应会产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度降低。基于鱼类毒性的在线测定技术,鱼活对水环境的变化十分敏感,当水体中有毒物质达到一定浓度时,就会引起一系列中毒反应。
  • COD在线监测及日常维护
    p   为了准确掌握污水处理厂各个处理环节的运行情况,必须对进入各构筑物的相关参数进行监控。这些参数的测量有的需要手工化验,有的可以利用仪表自动检测。COD在线测定仪就是自动检测水质的重要仪表之一。下面我们来了解一下COD在线监测及日常维护注意事项。 /p p   1. 工作原理 /p p   国家规定在最终排放口必须安装COD在线测定仪,这种测定仪是将COD的化验室分析过程,通过仪器系统化、程序化地实现,常见的COD分析仪工作原理见图: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4f255775-eff9-462f-a1c4-312895610102.jpg" title=" ..jpg" alt=" ..jpg" / /p p   COD测定仪先由自吸泵将水样从排放明渠内提升至进水精滤采样杯内,再由进水蠕动泵P1将水样提加到反应室内。 /p p   然后,依顺序再由蠕动泵P2、P3、P4分别将重铬酸钾、硫酸一硫酸银和蒸馏水提加到反应室内。 /p p   进样完毕开始微波加热5分钟(加热时间可自行设定和修改),待加热完毕注入蒸馏水稀释并冷却到室温,之后再由气压泵将混合液吹至测量室进行测量,并自动计算和显示测量结果。 /p p   最后,由气压泵将混合液排放掉并将管路吹扫干净,进入下一次测量循环过程。整个循环过程由PLC进行控制,自动进行。 /p p   2. 使用注意事项 /p p   (1) 日常的检查 /p p   主要包括检查仪器工作是否正常,比如进出管路是否通畅,有无泄漏,并保持仪器的清洁,尤其是对转动部分和易损件要定期检查和更换,防止其损坏造成泄漏而腐蚀仪器。 /p p   (2) 试剂的更换 /p p   重铬酸钾和硫酸一硫酸银属于强腐蚀性试剂,并且在工作现场容易挥发和吸潮,所以应定期更换。更换周期依据使用情况而定,一般至少3个月更换一次。 /p p   (3) 防护性检修 /p p   由于蠕动泵管吸取强腐蚀性试剂,所以应3个月更换一次。测量室和反应室应每年至少彻底检查清洗检修一次。 /p p   (4) 日常校准 /p p   除程序设定的自动零循环校准外,在第一次使用、更换试剂或防护性检修之后要进行零点和标准溶液的校正。采用实验室制备的蒸馏水作为零点校准液,校准过程与测量循环过程相同,校准后保留新零点的参数,并对工作曲线进行校准。 /p p   (5) 出厂参数设置 /p p   仪器在出厂时虽然已经设定了原始的工作曲线,但因使用场所不同,原有工作曲线往往不能满足任何监测场合,所以应该对其工作曲线进行定期的校核。可由实验室配制COD标准溶液进行校核,校准过程与测量循环过程相同,校核后更改有关界面参数,对工作曲线进行校准。 /p p   (6) 安装环境 /p p   要保证COD在线测定仪安装场所的温度、湿度恒定,必要时需要安装空调等加热、制冷和除湿设施。同时使用独立的稳压电源。 /p p   (7) 仪器暂停 /p p   仪器暂停使用时,要用蒸馏水彻底清洗后排空,再依次关闭进出口阀门和电源,重新启用时用新试剂进行彻底清洗,并对工作曲线进行较准。 /p p   3. 自动连续采样器的使用注意事项 /p p   COD在线测定仪通常需要与自动连续采样器相匹配。自动连续采样器一般安装在污水处理场的进水口和排放口,可以较好地进行混合样的采集,而且大部分带有冷藏功能,可以在一定时间内保持采集水样的稳定性。其使用注意事项有: /p p   (1)后配的取样管一定要使用洁净无污染的管道,管道的材质不能和废水中的成分发生反应,如果没有特殊要求,一般使用PVC软管。 /p p   (2)及时将自动连续采样器采集的水样取出分析化验,防止水样超过保存的稳定时间和取样瓶装满后溢出损坏采样器。 /p p   (3)定期清洗或更换取样管和取样瓶。 /p p   (4)定期对采样器的控制和机械部分进行维护和保养。 /p p   (5)北方地区污水处理场安装的自动连续采样器必须有防冻措施。 /p
  • PCR用于食品中致病微生物快速检测方法新进展
    p & nbsp & nbsp & nbsp 2015年8月26日,成都市食品药品检验研究院组织有关专家对该院与苏州博泰安生物科技有限公司共同承担的项目“多点取样-实时荧光定量PCR技术食品中致病微生物快速检测方法研究”进行技术评价。 本次评价会邀请了国家食品安全风险评估中心首席专家吴永宁、中国检验检疫科学研究院研究员卢行安、国家食品安全风险评估中心副研究员裴晓燕、四川省卫生厅农村卫生管理处处长钟新秋、四川省疾控中心微生物所细菌科科长杨小蓉、成都市疾控中心食环学卫科副科长李晓辉、四川省出入境检验检疫局微生物室主任谭志共七位专家。市检研院院长万渝平、副院长谯斌宗、苏州博泰安生物科技有限公司总经理王伟宏、总经理夏东元、副总经理李红及有关项目组成员参加了此次会议。 /p p & nbsp & nbsp 项目组主研人员王利娜博士、苏州博泰安生物科技有限公司夏东元博士对项目研究情况做了主体汇报。专家组在听取研究报告汇报、审查相关资料和质询、讨论后,一致认为本项目针对PCR检测方法是否能够区分致病菌状态这一难题进行研究,项目建立的研究方法可以在24小时内完成致病菌的检测,满足食品中致病菌活菌快速检测的需求 此项目研究开发的快速检测方法及其配套的试剂盒,经过5家检验机构验证,效果良好,具有良好的应用价值和推广前景。 最后,专家组一致评价,该项目工作扎实,研究内容系统深入,在致病菌活菌检测方面创新性突出,对于食品的日常监管及企业的在线质量控制有着良好的应用前景与推广价值,建议在后续研究中增加阳性样品的实验数据,尽快将产品推向市场。 /p p style=" TEXT-ALIGN: center" img title=" untitled.jpg" src=" http://img1.17img.cn/17img/images/201509/insimg/4e032530-ff27-4a9b-844f-1e4212297c2d.jpg" / /p
  • 多角度探讨——“第二届环境在线监测技术”专题网络研讨会水质在线监测报告精彩纷呈
    p    strong span style=" color: rgb(0, 112, 192) " 仪器信息网 /span /strong 讯 & nbsp 2018年3月29日,仪器信息网“第二届环境在线监测技术”水质在线监测方向专题网络研讨会精彩继续。水质在线监测方向专题网络研讨会共有五位专家为大家分享报告,报告精彩内容如下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/b3af4472-3723-49f2-a506-d43987e8e198.jpg" title=" 饶凯锋照片.jpg" / /p p style=" text-align: center "   报告人:中国科学院生态环境研究中心 饶凯峰 /p p style=" text-align: center "   报告题目:生物预警监测技术的研究与思考 /p p   饶老师的报告分为两大部分内容:一是生物预警监测的研究与运用 二是生物预警监测的发展与思考。报告的开始,饶老师通过为大家分享多姿多彩的生物以及生物演化的规律得出,生物是奇妙的、多层次的、像共融的事物的整合,是值得敬畏的。报告中指出,应对水环境现状的监测预警体系应该是预警、监控、应急为一体的。饶老师在报告中为大家介绍了发光细菌毒性预警技术、藻类毒性预警技术、溞类毒性预警技术、鱼类毒性预警技术等几种生物预警技术。同时,饶老师在报告中也表示,生物毒性预警与化学参数监测可以优势互补,联合生物-化学监测,可以提升扩展在线监测预警功能,这是环境监测技术发展的创新方向和前沿。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/559094cc-b389-4c1d-9492-7ff0e588d4a9.jpg" title=" 1_副本.png" / /p p style=" text-align: center "   报告人:安捷伦合作伙伴 李蕊 /p p style=" text-align: center "   报告题目:多种环境(水、土、气)中VOC的监测解决方案 /p p   李老师在报告中为大家介绍了基于热脱附的环境VOC监测解决方案,热脱附采样方式多样,包括吸附管、苏玛罐/气袋以及在线监测且采集的样品多样,气体、液体、固体都可以,例如环境空气、固定污染源废气、硫化物异味气体、土壤气VOC、水中VOC等。不同的样品需要采用不同的吸附管和采样方式,李老师在报告中介绍到,对于一些很珍贵的样品,自动脱附仪可以对样品进行保留和备份。报告中、老师还为大家介绍了TD100-xr-全自动脱附仪和UNITY-xr单管热脱附仪等仪器设备。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/6e4064f1-5f15-408d-b102-02140492e6ea.jpg" title=" 李作进.jpg" / /p p style=" text-align: center "   报告人:重庆科技学院 李作进 /p p style=" text-align: center "   报告题目:微量水在线分析技术研究及仪器研发 /p p   李老师在报告中主要为大家介绍了微量水在线分析仪的研发背景及应用现状。微量水的检测对于工业气体和天然气行业来说是非常有必要的,水分含量对于工业气体来说是必检项目。在“气体微量水在线监测技术难、国外仪器价格昂贵”等现状下,李老师所在团队联合多方进行“微量水分仪”的研制,该仪器在全国气体标准化委员会、中石油西南油气田成都天然气化工总厂等单位也已得到了较好的应用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/4d73ca60-eccc-4d09-a8b9-a421f35566be.jpg" title=" 晏明全.jpg" / /p p style=" text-align: center "   报告人:北京大学环境科学与工程学院 晏明全 /p p style=" text-align: center "   报告题目:紫外-可见光谱技术在水体中天然有机污染物在线分析中的应用研究进展 /p p   晏老师在报告中指出,随着城镇化的发展,城市化进程中城市群水资源与水质面临着水资源短缺与水环境污染等问题,其中,天然有机污染物是一种关键污染物。报告中,晏老师为大家分享了他们团队应用紫外-可见光光谱技术的一些案例。报告最后,晏老师讲到,利用紫外-可见光光谱技术效应能定量表征与模拟NOM主要水化特性,实现了天然环境浓度条件下,主要水化过程中NOM行为效应定量表征与计算 紫外-可见光光谱技术灵敏度高、操作便捷,光谱信息量大,数据深度理解是关键,部分研究有待深挖。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/c1b00094-3629-457c-8a83-4203ea8652d1.jpg" title=" 左航.jpg" / /p p style=" text-align: center "   报告人:中国环境监测总站 左航 /p p style=" text-align: center "   报告题目:水污染源在线监测系统的标准体系 /p p   左航老师的报告是围绕着以下几个方面展开的:1.水污染源在线监测系统的发展 2.水污染源监测系统的含义 3.水污染源在线监测系统的质量保证与质量控制 4.水污染源在线监测系统的技术标准 5.水污染源在线监测系统的管理文件。针对以上五方面内容,左航老师为大家进行了一个系统的介绍,且为大家列出了一系列水污染源在线监测系统的管理文件。另外,老师在报告中表示,近期或将有关于水污染源在线监测系统安装、验收、运行与考核、数据有效性的技术规范发布,相关人员可多加关注! /p
  • 发布VOCs在线监测系统新品
    应用范围:适用于石油石化、化工、水泥建材、橡胶制品、生物制药、工业涂装、包装印刷、电子信息、合成材料、纺织印染、固/危废处置、垃圾填埋等工业企业固定污染源废气挥发性有机物(TVOC)的连续实时在线监测。 1、实时在线,响应速度快。 无需色谱柱、定量管(环),采用直接FID检测,瞬时(0.1s)响应。3、技术成熟、可靠,数据稳定: FID几乎对所有挥发性有机物均具良好应答、线性范围宽且数据稳定,美国(EPA-25A)、欧洲标准方法,成熟可靠。5、可扩展性: ①可根据工况选择单或双通道(即一台仪器同时在线监测两个污染源),在烟道气物理距离较近时,双通道设计可有效降低用户成本; ②仪器配置采样管线、零气/氢气发生器、控制器等可组成在线监测系统,并可实现与上层数据采集和管理平台的无缝对接。2、全方位防控,抗干扰能力强: ①采用可靠的内部加热技术,气体从废气口排出一直到被FID检测,全过程伴热,有效避免冷凝、水堵; ②采用直接FID技术,无需通过色谱柱、定量管(环),减少处理环节; ③采用特殊的高强度过滤装置,多重防护,有效避免废气中细微颗粒物、酸碱、水分、二氧化碳和其他化合物的干扰。4、自动化程度高: 程序控制,自动选择测量范围、点火、燃料关闭、熄火指示以及全自动标定、调零;用户可选燃料,自动界定和转换连续测定范围。创新点:是把高精度的在线总烃N20的分析仪,集成到这套在线监测TVOC的集成系统中,提高了样品的分辨率和精度,比其他设备在软件、分析仪的精度和整体的稳定性上更有优势,主要适用于石油石化、化工、水泥建材、橡胶制品、生物制药、工业涂装、包装印刷、电子信息、合成材料、纺织印染、固/危废处置、垃圾填埋等工业企业固定污染源废气挥发性有机物(TVOC)的连续实时在线监测。 VOCs在线监测系统
  • 8月6日直播:食品微生物实验室安全和新兴检测技术前沿研讨会
    伟业计量线上研讨会——老时间,新地方!每周五上午九点半,伟业计量直播间来相见! 专家亲授——全程免费——无限回放 2021年8月6日(周五)上午9:30分,由北京北方伟业计量技术研究院主办的《食品微生物实验室安全和新兴检测技术前沿研讨会》即将开启,欢迎大家锁定伟业计量直播间! 直播期间,特邀行业大咖直播亲授,每节结束都会在线答疑,您有任何关于课程、研讨会以及伟业计量的问题,都可以在留言区进行提问。另外,我们还为当天观看直播的观众准备了礼品赠送活动,让您在兼具趣味性与创意性的直播课程中吸收知识。本期《食品微生物实验室安全和新兴检测技术前沿研讨会》专家简介09:30-10:30 曾静 《食品微生物实验室生物安全》讲师简介:中国海关科学技术研究中心研究员,中国农业大学微生物专业,获理学博士学位,在微生物专业领域具有30年工作经验。第一届食品安全国家标准评审委员会委员,第二届食品安全国家标准评审委员会副主任委员;参与制定国家食品安全卫生标准微生物限量标准GB29921;主持和参与科技部重大专项6项,获得省部级一、二、三等奖共计9项,制定行业标准30余项,发表科研论文40余篇。 10:30-11:30 赵勇 《食源性致病微生物新兴快速检测技术研究进展》讲师简介:上海海洋大学食品学院副院长,博导,教授,微生物学理学博士。主要研究方向为:(1)食品质量安全风险评估;(2)食品质量安全与系统生物学研究;(3)食品微生物分子生态学。工作期间在中国复旦大学、美国佐治亚大学、英国食品研究院等单位进行访问学者研究。2007年入选上海市青年科技启明星计划,2015年入选上海市曙光计划,荣获2018年中国产学研合作促进奖、2019年度中国食品科学技术学会科技创新奖——杰出青年奖、2020年全国食品工业科技创新领*人物。第二届国家食品安全风险评估专家委员会委员、中国食品科学技术学会青年工作委员会委员、非热加工技术分会理事,上海市食品化妆品质量安全管理协会副会长,上海市食品学会常务理事、副秘书长、青年工作委员会主任委员、食品安全专委会副主任委员,上海市微生物学会微生物耐药防控专委会副主任委员。《水产学报》《食品科学》《食品工业科技》《食品安全质量检测学报》《肉类研究》等期刊杂志编委。已主持包括国家自然科学基金在内的各类科研项目20余项,参与各类科研项目10余项。科技上曾荣获2012年度上海市技术发明奖一等奖、2016和2020年度中国食品科学技术学会科技创新奖技术进步奖二等奖、2017年度上海市科技进步奖二等奖、2018年度上海市浦东新区创新成就奖、2018年度中国产学研合作创新成果奖二等奖、2018年度中国商业联合会科技进步二等奖、第四届中国水产学会范蠡科技进步二等奖等奖项。发表论文200余篇,其中SCI、EI论文100余篇;获得国家授权发明专*10项;参编中外文专著5部。 会议议程:09:30-10:20议题一: 《食品微生物实验室生物安全》本课程梳理了食品微生物实验室生物安全相关法律法规、部门规章和标准,依据其危害程度对致病微生物的分类、致病微生物实验室的分级管理;病原微生物实验室如何制定和执行生物安全管理制度、保卫制度和应急预案。 10:20-10:30互动答疑、礼品抽取 10:30-11:20议题二: 《食源性致病微生物新兴快速检测技术研究进展》当前食源性致病微生物引起的食品安全问题已成为危害人们身体健康和影响社会稳定的关键因素,如何保障由于食源性致病微生物引起的食品质量安全问题,从科学技术层面来说,发展新兴的检测技术和发展高效的防控技术,是应对食品质量安全事故的关键。目前有各种各样方法来检测食源性病原微生物,包括传统基于生物化学和酶方法、基于核酸的分子生物学方法、基于蛋白的免疫学方法等。新兴检测方法中,发展快速无损检测技术是当前的研究热点之一,包括基于物理方法——气味指纹技术、基于化学方法——光谱指纹技术、基于代谢方法——色谱指纹技术。还有,特异性纳米磁珠探针标记试纸条技术、免疫磁珠富集结合环介导等温PCR扩增的的快速检测技术、微流控及微芯片技术、核酸适配体分子检测技术、基于CRISPR分子检测技术、基于量子点的检测技术等等。整体上,针对食源性致病微生物,组合新兴检测技术、高效防控技术,加上风险评估研究,以确保食品质量与安全。(关注伟业计量公众号,免费观看线上研讨会) 11:20-11:30互动答疑、礼品抽取 温馨提示:伟业计量线上研讨会将于每周五上午09:30(节假日除外)定期开办。同时,我们还提供申请直播功能,欢迎业内专家、检测机构、仪器厂商、与我们联系详谈!
  • 中药在线监测:连续化生产的核心
    2021年是我国“十四五”规划的开局之年,医药产业,是21世纪创新最为活跃、影响最为深远的新兴产业之一。新冠疫情的突袭,进一步加速了医药行业的升级与变革,使其备受瞩目。面对新阶段、新形势、新机遇、新挑战,伴随医药行业新法规、新政策、新变革,中国的医药行业步入创新药驱动的新时代,产业化的实施落地更需在研发、工艺、设备、生产技术、质量控制等方面协同创新,才能在市场竞争中突出重围。连续制造(Continuous Manufacturing, CM),作为一种先进的制造工艺,正在成为制药行业未来技术竞争和产业保护的新焦点。它是指物料连续不断投入并随着加工而转化,加工后的物料连续不断从系统中排出。与之相对的是间歇工艺(Batch Process),半连续工艺(Semi Continuous)。总的来说,与间歇工艺相比,连续生产的优势主要表现在:生产周期缩短,生产效率极大提高;生产设备自动化、封闭化程度高,人工干预少;设备体积小,占地面积少;物料损耗少,生产成本低;整个药品生产过程实施高强度过程分析和先进工艺控制,产品质量一致性较高。对于连续制造,FDA和ICH一直以来都是推动者。其中以下2篇指南可以看出FDA和ICH对连续制造技术的鼓励支持以及相关的科学建议。FDA于2019年2月发布了《Quality Considerations for Continuous Manufacturing》行业指南草案,提供FDA目前对小分子固体口服制剂新药和仿制药连续制造的质量考虑因素的看法。描述了几个关键质量方面的考虑因素,包括工艺动态,批次定义,控制策略,药品质量体系,放大,稳定性,以及现有批生产到连续制造的桥接。ICH 于2021年7月公布了Q13指南文件《Continuous Manufacturing of Drug Substances and Drug Products》,对连续制造的模式、Batch批次的定义、控制策略、控制状态、工艺动态、物料特性与控制、设备设计与系统整合、工艺监测与控制、物料可追溯性与分流、工艺模型、生产输出变更、持续工艺确证、监管考量等方面均有更新。客观来看,中药产业迈向连续制造的难度远比国外制药(以生物制药、化学药为主)大得多,主要瓶颈涉及到工艺改进法规限制、装备创新能力不足、生产制造控制技术基础薄弱等方面。可喜的是近年来,国家陆续出台一系列政策,将中医药提升为国家战略,如在线检测、过程分析技术(PAT)、质量控制体系、质量大数据、工艺优化方法等技术方向,均已陆续出现在国家各类政策和国家级课题的指南之中。作为FDA连续制造的指南草案中极为重要的一部分,PAT的实施在产业的发展过程中主导地位凸显。连续制造,从“批次”到“流程”。基于众多项目的实施,总结为以下三个关键点:1)设备的连续化;2)工艺技术连续化;3)法律的合规性。就目前而言,1)是制药装备的发展,3)需要国家层面上的政策的导向;我们现在基于的是2)的工作可行性以及有效数据的积累和挖掘。针对工艺技术的连续化,如下图所示:以颗粒剂生产为例,其突出的特点为:物料/产品在每一步单元操作后统一收集,转至下一单元操作(事实上目前已有部分设备能够实现某些单元操作的半连续制造,如部分制粒操作);最终的制剂是在所有操作完成后,在离线的实验室中进行检验的;实际生产用时(每批)等于几天到几周不等。需要同样操作的颗粒剂连续制造;同样提取、浓缩、制粒和混合的操作,通过设备和控制系统设计,使得每一单元操作之间物料/产品不间断通过。颗粒剂的例子中,实时监测和控制将制粒操作后测得的粒度分布、最终混合操作后测得的多组分含量均匀度等构成实时联动的反馈控制系统。突出的特点为:1)物料/产品在每个单元操作之间持续流动;2)生产过程中的在线检测;(3)基于在线检测结果和评估的整个工艺的微调(在线控制);(4)由原来的对工艺的在线控制变成全过程的质量在线控制;(5)实际生产用时大大缩短。苏州泽达兴邦医药科技有限公司在PAT领域已经取得了显著的社会效益。2021年度,公司在多家中药企业落地了在线过程质量检测系统,例如上药杏灵科技药业股份有限公司在线质量检测项目、太极藿香正气口服液生产全过程在线检测以及二期补肾益寿胶囊全过程质量监测项目、众生复方血栓通在线质量检测系统项目、华润本溪三药气滞胃痛颗粒在线分析系统项目、江中参灵草口服液在线检测系统项目等等。此外,公司还顺利完成枣庄三九中成药制剂数字化车间新模式应用项目、天圣中药固体口服制剂数字化车间项目等验收,攻克了中药制剂一步制粒过程中在线检测的难题,将问题深度剖析,将经验转换成数据,将数据转换为知识,深深得到客户们的一致好评,尤其在柱层析以及一步制粒的工段的研究,基本实现全过程的质量控制,将生产工人经验转变成数据的可视化,为未来的工段连续化生产提供的技术支撑;案例:层析分离工段柱层析是目前广泛应用于中药生产过程中的一种重要分离手段,在其分离过程中,通过监测现场工艺状况来保证生产稳定、终产品质量均一和及时确保目标药物洗脱终点。传统上,操作人员凭借观察药物颜色、气味或者通过UV、HPLC等方法判断药物分离的起点和终点,但具有主观性强、不可控风险高、低效耗时等缺点。为了实现银杏酮酯生产过程的智能监测,苏州泽达兴邦医药科技有限公司与上海上药杏灵科技股份有限公司合作了银杏酮酯PAT项目,在项目实施过程中不仅建立了药材、中间体(提取液、浓缩液、醇沉液、层析液、干燥物)及成品质量指标的在线及离线快速检测方法,更通过近红外光谱技术实现了银杏酮酯生产过程中柱层析洗脱起点和终点的实时判断,同时也基于多元统计过程控制技术(MSPC)的方法保证每次收集的样本一致性,最终于SCADA系统工艺参数构建映射分析,当出现异常的时候能够进行实时的调节反馈。项目的实施大大降低了企业生产成本,保证了产品质量的均一稳定,更好地满足了中药生产过程高效精准的需求。目前我们也与辽宁本溪三药合作开展了气滞胃痛颗粒全过程质量控制(PAT)技术以及关键技术的创新研究。针对一步制粒过程自学习生产研究,通过使用多元统计过程控制技术(MSPC)建立了气滞胃痛颗粒一步制粒生产过程轨迹,根据PAT的监测数据结合SCADA系统数据,对生产过程的参数进行实时调控反馈,实现了对一步制粒过程的全程监控。作者简介 王钧,2013年参加工作,现任苏州泽达兴邦医药科技有限公司过程分析控制部技术总负责人,苏州市姑苏紧缺人才,苏州高新区重点产业人才引进,同时担任中国仪器仪表学会近红外分会协会理事。近年来主要从事过程分析技术及其应用研究,先后参与国家工信部智能制造新模式项目5项、工业转型升级(中国制造2025)1项。先后完成多个中药上市企业的制药过程质量控制技术研究与工业应用项目,包括山东绿叶制药有限公司“罗替戈汀”生产过程质量控制技术研究、扬子江药业集团江苏龙凤堂中药有限公司国家工信部智能制造新模式应用项目子课题:“蓝芩口服液”生产过程质量控制技术及产业化应用研究、江苏康缘药业股份有限公司工信部智能制造试点示范项目“中药生产智能工厂”项目-热毒宁注射液生产全过程质量控制体系构建、重庆天圣制药集团股份有限公司国家工信部智能制造新模式应用项目子课题“银参通络等中药单品种生产过程分析技术研究及系统构建”及国家重大新药创制课题“中药新药地贞颗粒先进制造与信息化技术融合示范研究”。发表相关论文23篇,其中SCI 5篇,申请发明专利3项,团体标准1项(在线近红外)。单位简介泽达兴邦成立于2011年,是依托浙江大学苏州工业技术研究院和浙江大学药学院的科研创新体系孵化出来的医药领域高水平科技创新企业,是国内医药制造大健康方向既有竞争力的信息化解决方案供应商和系统集成商。公司联合浙江大学主导制定了国际首个中药生产工艺语义关联的ISO国际标准并于2020年1月出版,先后荣获中国科协“智能制造十大科技进展”、中华中医药学会“科学技术奖一等奖”、荣登中国科协2020年度“科创中国”先导技术榜单等荣誉,入选工信部2019年智能制造系统解决方案供应商。公司专注于新一代信息技术与医药健康领域的创新融合,致力于中药、疫苗等制药全产业链智能制造解决方案,推动具有行业示范效应的核心技术应用,开发了一系列具有核心竞争优势的信息化技术及软件产品。已在国内近百家中药制药企业进行产业化应用,为国内中药领军企业开展中药全产业链智能制造整体解决方案设计与实施服务,核心在于PAT系统的构建。
  • 饲料中主要病原微生物快速检测方法 -微生物快速检测系统(MBS)
    1. 饲料中主要病原微生物快速检测方法-微生物快速检测系统(MBS) 1.1 中文名称 饲料中主要病原微生物快速检测方法-微生物快速检测系统 1.2 英文名称 Rapid detection method of main pathogenic microorganisms in feed-Micro Biology Survey (MBS) 2.范围 本标准规定了饲料中细菌总数、沙门氏菌、大肠菌群、金黄色葡萄球菌、大肠埃希菌、 单核增生李斯特菌微生物快速检测系统(MBS)检测方法。 本标准适用于配合饲料(蛋鸡配合饲料、肉鸡配合饲料、猪配合饲料、肉鸭配合饲料)、 动物源性饲料(血粉、肉骨粉、鱼粉、羽毛粉、乳清粉)、植物源性饲料(玉米、麸皮、豆 粕、花生粕、棉籽粕)中细菌总数、沙门氏菌、大肠菌群、金黄色葡萄球菌、大肠埃希菌、 单核增生李斯特菌含量的快速检测。 3.规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期 的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括 所有的修改单)适用于本文件。 GB 19489 实验室 生物安全通用要求 4 原理 MBS 方法通过氧化还原指示剂测量微生物主要代谢途径中氧化还原酶的催化活动。氧 化还原指示剂会根据介质的氧化状态改变指示剂颜色。颜色变化耗时与微生物污染程度的 Log 值呈负相关关系,从而可获得观察到的酶活性与检测样本中活细胞的数量之间存在的确 定相关性。 微生物快速检测试剂瓶内的营养物,维持目标细菌的生长;选择性药剂,抑制非目标细菌的 生长;而其中的还原剂,作为递氢体,能在细胞色素 C 后把电子转移到细菌呼吸链,而又不被氧分子氧化。如果目标细菌存在,那么检测瓶中的氧化还原反应色素会根据媒质的 氧化还原状态改变颜色。MBS 主机通过三光波探测颜色变化,最后根据整合颜色变化 的时间确定细菌的含量。5 试剂和材料 除另有规定外,试剂为分析纯或生化试剂。 5.1 20%无菌甘油:水:甘油=5:1。 5.2 微生物快速检测试剂瓶。 6 仪器和设备 6.1 微生物快速检测系统(MBS):MBS-MR 主机、笔记本电脑、MBS 中文操作软件和微 生物快速检测试剂瓶。 6.2 冰箱:2-5℃或-20℃。 6.3 涡旋振荡器。 6.4 电子分析天平:感量 0.01g。 7 检验 7.1 饲料中细菌总数的检验 7.1.1 将 MBS-MR 主机、笔记本电脑接通电源,并用数据线将两者连接,在电脑上启动 MBS 中文操作软件,点击“参数”录入相关信息(包括:操作员姓名、操作员职务、检测样 本所属客户等信息);在软件操作界面的样品设置选项中对样品进行基本信息设置,在分析 设置选项中设置细菌总数,并选择定量分析。 7.1.2 将配套 20%无菌甘油加入到细菌总数试剂瓶中,溶解试剂。 7.1.3 带好无菌手套,用消毒后的药匙或无菌镊子取待测饲料样品,并准确称取 1g(精确 到 0.01g),加入到细菌总数试剂瓶中。 7.1.4 摇动试剂瓶(手摇 1-2 分钟或涡旋振荡器振荡 20-30 秒),直到饲料样品溶解完全或 与试剂充分混合。 7.1.5 设置相应的参数后,将处理好的试剂瓶放入 MBS-MR 主机中,进行孵育,MBS-MR 主机会自动控温,然后开始进行分析。 7.1.6 分析完成后,按下试剂瓶顶部,瓶盖内部的消毒灭菌物质会释放至试剂瓶内,5-10 分钟即可充分灭菌,将灭菌后的试剂瓶丢弃到生物垃圾箱中集中处理。 7.1.7 检测结束后,系统可以输出检验报告,报告的内容包括用户设定的全部信息、检测结 果,如变色时间、样本中微生物的浓度和检测中的所有参数。 7.2 饲料中沙门氏菌的检验7.2.1 在 7.1.1 中的分析设置选项中设置沙门氏菌,并选择定量分析,其他步骤同 7.1.1—7.1.7。7.3 饲料中大肠菌群的检验7.3.1 在 7.1.1 中的分析设置选项中设置大肠菌群,并选择定量分析,其他步骤同 7.1.1—7.1.7。7.4 饲料中金黄色葡萄球菌的检验7.4.1 在 7.1.1 中的分析设置选项中设置金黄色葡萄球菌,并选择定量分析,其他步骤同7.1.1—7.1.7。7.5 饲料中大肠埃希菌的检验7.5.1 在 7.1.1 中的分析设置选项中设置大肠埃希菌,并选择定量分析,其他步骤同7.1.1—7.1.7。7.6 饲料中单核增生李斯特菌的检验7.6.1 在 7.1.1 中的分析设置选项中设置单核增生李斯特菌,并选择定量分析,其他步骤同7.1.1—7.1.7。8 结果记录微生物快速检测系统(MBS)自动给出定量分析检测报告,读取数据,记录结果。9 质量控制本方法在 1-108cfu/ml(g)添加浓度水平上的回收率为 87.19%-97.66%(n≥10),变异系数为 7.18%-10.28%(n≥10)。附录 A 微生物快速检测(MBS)孵育温度/检测时间快查表
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制