当前位置: 仪器信息网 > 行业主题 > >

多金属分析规程

仪器信息网多金属分析规程专题为您提供2024年最新多金属分析规程价格报价、厂家品牌的相关信息, 包括多金属分析规程参数、型号等,不管是国产,还是进口品牌的多金属分析规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多金属分析规程相关的耗材配件、试剂标物,还有多金属分析规程相关的最新资讯、资料,以及多金属分析规程相关的解决方案。

多金属分析规程相关的资讯

  • 上饶又现大型银多金属矿 估算矿石量539.94万吨
    10月13日,记者从省地质矿产勘查开发局获悉,上饶县梨子坑锁定一大型银多金属矿,据前期勘查探明,矿区富含银、铜、钼、铅、锌等贵重金属矿,且含量比例高出国家许可开采标准的数倍,这是我省在北武夷成矿带上武夷山脉金属矿系的又一重大勘探找矿成果。初步估算矿石量539.94万吨上饶横跨武夷、怀玉两大山脉,是全国16条重要成矿带之一的武夷成矿带的重要组成部分。此次锁定的矿区属于武夷山成矿带重点成矿区域之一的冷水坑——梨子坑银铅锌多金属成矿亚带,这里各类矿产资源十分丰富,尤其是铜等金属类矿产资源,亚洲最大的德兴铜矿距离此次勘探区域仅百余里,并与该矿系一脉相承,成矿时间上相近。上饶的金银储量分别占全省储量的86.6%和65%,而此次勘探成果将又一次改写这一数字。据已经取得该银多金属矿探矿权证的公司负责人介绍,项目的勘探面积有20.81平方公里,矿区地处中国金属矿成矿带的矿脉上,早在300年前福建人就在此大规模开采银等金属矿,现在保留的遗址就有近百处。2010年至今,省地质矿产勘查开发局赣东北大队在矿区橙树坪矿段、塘里矿段完成地质勘查,目前查明20余条铅、锌矿体,初步估算矿石量539.94万吨,金属量铅4.5040万吨,锌6.2748万吨,伴生银25.74吨。塘里矿段圈出矿化蚀变带3条,其中M1矿化带规模最大,位于矿段北侧,目前走向长约1.2公里,带内共圈出3条工业矿体,平均真厚度2.71米。ZK501单孔圈出铜矿体2层,钼矿体1层,铜矿体单层视厚度最厚达7.93米,钼矿体单层视厚度达12.66米。另外,橙树坪矿段还发现萤石矿1条,可见走向50米,厚度0.4~0.8米。我省锁定三个重点找矿靶区近年来,省地矿局与中国地质大学、南京大学、东华理工大学、地科院矿产所等科研院校所合作,数十位院士、专家对北武夷地区成矿地质条件进行综合分析研究,发现大量找矿线索,进一步明确了我省“三个重点找矿靶区”为主攻目标,即贵溪冷水坑-金溪珊城铅锌银铜钼找矿远景区、饶南坳陷东乡枫林-弋阳铁砂街-铅山永平铜多金属找矿远景区及铅山篁碧-上饶梨子坑铜铅锌找矿远景区等3个远景区为重点找矿区段。专家建议,锁定这3个重要区段,主攻铜、铅、锌、银、钼、金等矿种,并特别注意海底火山喷流沉积——叠加改造型、斑岩型和矽卡岩型、层控叠加改造型、火山——次火山热液型铅锌、火山——次火山岩(斑岩)型铅锌银矿及块状硫化物型铜多金属矿等矿床类型找矿理论的运用。从目前矿区找矿成果,预测该矿区经地质工程揭露的铅、锌、银、铜、钼矿床找矿异常连续性具有良好的找矿远景,矿床规模保守估计能达到大型。 在此次的找矿靶区,专家们建议使用伊诺斯手持式矿石分析仪DPO6000。伊诺斯xrf分析仪不仅可以快速的判别矿石的种类,而且可以快速分析出矿石中各个元素的含量。 关于Delta DPO-6000: 品牌:INNOV-X 产地:美国 典型用户:矿产探矿企业 配置:标准型SDD探 测器,探测面积25平方mm;靶材Ag或Au 分析元素: K、Ca、S、P、Cl、 Ti、V、 Cr、Mn、Fe、Co、Ni、Cu、W、Zn、Hg、As、Pb、Bi、Se、Th、U、Rb、Sr、Y、Zr、Mo、Ag、Cd、Sn、Sb...等元素。
  • 梅特勒托利多金属检测机在线研讨会邀您参与
    梅特勒托利多金属检测机再次推出在线研讨会,诚邀您的参与! 感谢众多客户的积极参与,梅特勒托利多金属检测机在线研讨会于9月17日顺利结束。 本次会议的参与者来自制药、食品、饮料、乳制品等多个行业,会上大家就各行业如何建立有效的金属检测机制展开讨论,并现场咨询了检测设备的相关问题,反响甚好。 为答谢各位参与者,我们已经通过EMS于9月23日为成功参与的客户邮寄了礼品。 应广大客户的强烈要求,我们选择在10月15日再次进行相同内容的在线研讨会,让更多希望了解如何建立有效金属检测机制的专业人士们通过这样的交流平台,深入了解金属检测机制带给制造商的益处。 报名请登陆: 《减少金属污染,建立一种有效的机制》 会议时间:2009年10月15日 10:00-11:00 / 15:00-16:00 点击了解研讨会详情 相关产品:金属检测机 热门话题:食品安全专题 本活动最终解释权归梅特勒托利多所有
  • 2009年梅特勒托利多金属检测机中文免费在线研讨会即将举行
    2009年9月17日(星期四) 北京时间 10:00-10:45 15:00-15:45 产品的多样化,生产工艺的复杂化,客户要求的严格化,使得制造商面临越来越大的挑战。如何有效减少金属污染,引起我们高度重视。 梅特勒托利多产品检测部门致力于为您提供完美的在线检测解决方案,帮助您保护品牌,获得利益最大化。 梅特勒托利多金属检测机结合多年实战经验,为客户提供《减少金属污染&mdash &mdash 建立一种有效的机制》的专业指南,旨在为您提供系统的学习提高的机会,该指南在生产领域广受好评。 此次,我们根据专业指南的内容,针对各个行业的特点,为您准备了45分钟左右的免费在线研讨会,向您阐述: - 建立金属检测机制的理由 - 如何建立有效的金属检测机制 - 优化金属检测的关键控制点 以帮助您获得更多减少金属污染的实用信息,另有更多食品安全专题内容期待您的关注。 注册参与免费在线研讨会 凡参加本次会议,均有机会获得礼品一份! 欢迎您免费索取《减少金属污染&mdash &mdash 建立一种有效的机制》专业指南
  • 牛津仪器金属分析论坛济南站即将举行
    牛津仪器是金属分析行业内知名的分析仪器供应商。我们可以为客户提供从原料筛选到过程控制,再到成品检验的金属分析应用全程解决方案。随着国内金属行业的蓬勃发展,为了促进行业内分析测试人员的交流,自今年7月开始我们将在全国举办金属分析系列论坛。今年的首站定于山东济南,现诚意邀请新老用户莅临交流!   会议时间   2012年7月27日(9:00-16:00)   会议论题   行业内知名专家演讲   牛津仪器应用专家报告   在这里你能遇到众多金属行业用户,彼此分享经验、相互学习   在这里你能遇到牛津仪器管理团队、应用专家…    部分论题   o 金属行业现状分析   o X射线荧光和直读光谱等新型分析技术     金属材料的微观分析   o 铸造冶金技术   o 标准样品在化学分析中的重要性及选择标准     实验室第三方认可规范说明等   参会对象(限山东地区)   想进一步对金属分析技术学习交流的资深用户   近期已购买牛津仪器设备或有购买意向的客户   想了解金属行业内最新的成分分析技术及新产品动态的用户   地点   济南喜来登酒店,龙奥北路8号,济南,中国。   费用   通过我们确认的客户可免费参加本次会议,并且我们还会提供免费的会议资料和午餐。   本次活动不包含客房费。若你想在会议宾馆下榻请点这里。在预定时说明“牛津仪器金属分析论坛”可得到特惠价格。   如有疑问请联系: Contact Us 联系人 电话 传真 Email 青岛至诚卓越 王小钰 0532-80931780/3 0532-80931784 office@qdzczy.com 牛津仪器市场部 倪小姐 021-60732929 021-60732949 ChinaMarcom@oxinst.com
  • 美国TraceDetect痕量金属分析仪登陆德祥
    美国TraceDetect(微检)公司以化学传感器的微处理技术而著称,目前是世界上最专业的重金属分析仪表制造商。 公司具有Nano-Band电极*技术并研制出系列重金属分析仪,可对水样中的金属含量快速测定,灵敏度为全球最高,可达ppt级。 三大产品线 便携式: Nano-Band Explorer II-------------------专门用于分析现场水样中的痕量金属浓度 ◆ *的Tri-TrodeTM电极技术,集Nano- Band的工作电极、参比电极和辅助电极于一身 ◆ 测试金属种类:铅、铜、镉、锌、砷、汞 ◆ 测试过程简单快速 ◆ 与ICP-MS具有极好的相关性(+/-10%) ◆ 支持多种测量及技术(溶出伏安法、循环伏安法、安培测量法、氧化还原电位、离子电极等) ◆ 自动生成报告 全自动: SafeGuard------------全自动痕量分析技术,操作简单且功能强大 当把样品放入仪器后,只需轻轻一按&ldquo 开始测量&rdquo 按钮,就可在30分钟内给出1ppb精度的数据 ◆ 全自动化操作,自动传输,确保操作者的安全 ◆ 采用Nano- Band*技术 ◆ 测量种类:砷、铅、镉、汞、铜、锌 ◆ 与ICP/MS有极好的相关性 ◆ 内置数据存储器可自动生成报告并将结果存档 现推出最新的SafeGuard II& III: 可应用于更多金属的监测---------铜、铅、镉、锌、镍、钴、铬、钒、锑、铁 在线式: Arsenic Guard--------------在线总砷分析仪,对砷监测提供了完整的过程控制 *台完全自动化,监测饮用水中砷含量在线分析仪。 ◆ 全自动在线操作 ◆ 消除操作误差,精度达1ppb ◆ 与ICP-MS具有极好的相关性(+/-10%) ◆ 最多可支持四个样品流 ◆ 全自动数据采集和自动化信息数据管理系统界面 ◆ 低操作成本,易于维护和保养 还根据客户的不同需求推出Metal Guard----------------在线金属分析仪 可分别用于铜、铅、镉、锌、镍、钴、铬、硒、钒、锑、铁的在线监测 应用: 饮用水------------- TraceDetect提供适用于各种市场和应用的产品类型 废水---------------- 通过自动化与在线监测控制砷处理费用和步骤的完整性 食品饮料---------- 可视配料、工艺路线和产品的污染物检测 工业---------------- 在你的控制下进行现场产品污染物和过程残留污染物的识别 学术研究------------即时、准确、低成本进行实验室或现场金属测量 半导体---------------金属污染物的在线检测,防止灾难性的产量损失,降低废物处理成本 矿产业---------------在确保员工和社会健康与安全的同时,降低运营成本 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 邮箱:info@tegent.com.cn
  • 梅特勒托利多金属检测有奖活动获奖名单
    梅特勒托利多&ldquo 金属检测&mdash &mdash 我们可以做得更好&rdquo 电邮有奖反馈活动得到了广大客户的积极参与,并收到了大量反馈。 此活动已于2013年2月28日结束。在这里真诚感谢大家的建议和反馈以及多年来对梅特勒托利多的支持! 在反馈信息中,我们随机抽取了1名幸运者,将获得Apple IPad4 1台。 获奖名单 武汉,胡先生 奖品已于近日通过EMS寄出,请注意查收。希望您继续关注和支持梅特勒托利多! 梅特勒-托利多 产品检测部门 梅特勒托利多是食品和制药行业金属检测与X射线检测解决方案的全球领先供应商。事业部包括 Garvens 自动检重和CI-Vision,组成梅特勒托利多产品检测部。 有关梅特勒托利多的更多信息,请访问:www.mt.com/pi
  • 牛津仪器邀请您参加金属分析论坛北京站石化特检专场
    p    strong 牛津仪器金属分析论坛北京站· 石化特检专场 /strong /p p   牛津仪器是金属分析行业内知名的分析仪器供应商。我们可以为客户提供从原料筛选到过程控制,再到成品检验的金属分析应用全程解决方案。 /p p   随着国内金属行业的蓬勃发展,为了促进行业内分析测试人员的交流,自2012年7月开始我们将在全国举办金属分析系列论坛。 /p p   北京站是我们第14站,现诚意邀请新老用户莅临交流! /p p style=" text-align: center " img width=" 200" height=" 163" title=" QQ截图20160601160203.jpg" style=" width: 200px height: 163px " src=" http://img1.17img.cn/17img/images/201606/noimg/64b9e999-092c-4128-9b6d-e50ce494c6cd.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p strong   会议时间 /strong /p p   2016年6月27日 /p p   strong  会议论题 /strong /p p   石化和特检行业内知名专家演讲 /p p   牛津仪器应用专家报告 /p p   在这里你能遇到众多金属行业用户,彼此分享经验、相互学习 /p p   在这里你能遇到牛津仪器管理团队、应用专家… /p p   strong  部分论题 /strong /p p   石化行业现状及发展 /p p   XRF和OES新型技术在金属行业的应用 /p p   直读光谱仪和手持式合金分析仪现场操作演示 /p p    strong 参会对象 /strong /p p   想进一步对金属分析技术学习交流的资深用户 /p p   近期已购买牛津仪器设备或有购买意向的客户 /p p   想了解金属行业内最新的成分分析技术及新产品动态的用户 /p p   详细会议介绍及历站会议报道,请见仪器信息网 /p p strong   费用 /strong /p p   通过我们确认的客户可免费参加本次会议,并且我们还会提供免费的会议资料和午餐。 /p p strong   地点 /strong p style=" text-align: center " img title=" Hilton.jpg" src=" http://img1.17img.cn/17img/images/201606/noimg/f6ba1826-bc9b-4ab7-884b-1fccfd10bb38.jpg" / /p p   北京希尔顿酒店 /p p   朝阳区东三环北路东方路一号 /p p   北京市,中国 /p p    strong 如有疑问请联系: /strong /p p   代理商:北京华仪 /p p   联系人:王洪东 /p p   电话 a href=" mailto:13911657782Emailchinahyh@chinahyh.cn" :13911657782 /a /p p    a href=" mailto:chinahyh@chinahyh.cn" Email:chinahyh@chinahyh.cn /a /p p /p p /p p /p p /p p /p p /p p br/ /p /p
  • 电子探针显微分析探索锰结核的结构及成因
    导 语多金属铁锰结核即锰结核的形态、结构构造、矿物种类和化学成分综合反映了结核的形成环境和生长机制,其生长过程中因为记录着这些海洋地质作用及变化的信息,备受相关学者的关注。使用岛津电子探针EPMA可对海底采集的多金属铁锰结核进行了微观形貌观察、成分分析和元素面分布特征测试,从而可以研究其结构及成因。 岛津电子探针EPMA优势: 岛津电子探针EPMA可在微区领域进行高灵敏度的分析,观察及分析只需要使用鼠标键盘即可完成,方便高效。 岛津电子探针(EPMA-1720 & EPMA-8050G) 岛津电子探针EPMA通过配置 统一四英寸罗兰圆半径的兼具灵敏度和分辨率的全聚焦分光晶体以及52.5°的特征X射线高取出角 使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。 图解:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。 图解:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。 岛津电子探针EPMA对锰结核的分析: 通过岛津电子探针EPMA分析发现,此锰结核的中心成核部位发现了较多的全自形斑晶,斑晶主要为长石与辉石,可能来自于海底火山喷发在海水中的冷却结晶,在火山岩碎屑基质中还有后期充填形成的杏仁体构造。在火山岩碎屑边部也观察到快速冷却的火山玻璃晶相特征。 而根据相关元素的协变关系,结合各元素元素分布特征,表明此多金属结核的初期经历了一次较长周期的快速生长,形貌特征呈较为疏松的花瓣状和纹层状构造,其后经历了反复多次的快速和慢速结核的交替,反映了当时复杂多变的海洋地质环境,最外层是慢速生长的瘤状富Fe、Co外壳。整个结核壳层中,相对于内部原生构造的花瓣状和纹层状构造形貌,外面几层有裂隙及充填脉状形态,可能来自于次生构造。 图解:面分析(Mapping分析过程)反应多金属结核整体元素分布特征,Mn+Ni和Co元素分布富集具有负相关关系。
  • 水源地水质重金属监测解决方案
    自然界中,有许多金属元素通过解吸作用、溶解作用或氧化作用等,进入自然水体。这些金属元素在自然水域中普遍存在,其监测采用人工方法即可完成。然而,当需要把自然水体引入城市生活用水时,要求水源地中水体的金属元素含量低至ppb级别。此时,人工方法精度低、误差大、易受偶然状况影响的缺点将导致水质监测指标不准确。Hach EZ系列在线分析仪,检测下限低至ppb级别,量程可达g/L级,可选1-8通道测量,实现模拟通讯、数字通讯、远程通讯,为地表水站等用户提供重金属等参数的在线解决方案。可测参数• 铝、铁、锰、铬、铜可测参数• 氰化物 产品性能• 优异的分析性能• 内置样品消解系统• 智能自控系统• 通过工业面板计算机控制和通讯• 带报警功能的标准4 - 20 mA信号输出• 支持以太网连接至Modbus TCP/IP协议通信• 更大的测量范围• 内置样品稀释功能• 多通道分析可测参数• 砷、镉、铜、铅、汞、[CQ1] 锌产品性能• 优异的选择性和灵敏度;• 采用溶出伏安法技术• 标准量程,可选内部稀释模块;• 智能的自动控制系统;• 通过工业面板计算机控制和通讯;• 模拟和数字输出可选;• 支持多通道分析
  • 《减少金属污染——建立一种有效的机制》内容已被摘录
    梅特勒托利多金属检测机《减少金属污染&mdash &mdash 建立一种有效的机制》专业指南内容已被英国零售商协会(BRC)摘录。 英国零售商协会(BRC)在最新的全球标准中摘录了梅特勒托利多金属检测机专业指南中的部分内容,作为全球金属异物检测的标准性读本。 梅特勒托利多关于金属检测机的专业指南&mdash &mdash 《减少金属污染&mdash &mdash 建立一种有效机制》,凭借通俗易懂的内容,从金属检测机的原理入手,阐述如何选择金属检测机,以及如何更好地建立有效的机制,深受业内人士广泛好评。获取该指南可以通过登陆www.mt.com/mdguide免费索取。 关于梅特勒托利多(METTLER TOLEDO) 梅特勒托利多是全球领先的精密仪器和服务供应商,是全球最大的实验室、工业和食品零售业称重设备的制造商和销售商。梅特勒托利多产品检测部门提供以金属检测机、X射线检测系统、自动检重秤为主的在线检测设备,更多相关信息请登陆http://www.mt.com/PI 关于英国零售商协会(BRC&mdash British Retail Consortium) 英国零售商协会是一个重要的国际性中国协会,其成员包括大型的跨国连锁零售企业、百货商场、城镇店铺、网络卖场等各类零售商,涉及产品种类非常广泛。目前,英国和北欧国家的大部分零售商只接受通过BRC认证的企业作为他们的供货商。 更多英国零售商协会信息请登陆http://www.brcglobalstandards.com/ 免费索取《减少金属污染&mdash &mdash 建立一种有效的机制》专业指南, 您可以获取更多食品安全专题内容,并且有机会体验梅特勒托利多服务最大化带来的便捷!
  • 土壤重金属有效态浅析
    p   土壤重金属污染风险不仅与重金属全量有关,更与其存在形态密切关联。重金属的生物有效性一般是指环境中重金属元素在生物体内的吸收、积累或毒性程度,从某种角度上讲,形态分析是生物有效性的基础,而生物有效性是形态分析的延伸。目前大多数生物有效性的研究方法都是通过确定污染物在环境中的形态和分布,再将这些形态分布与生物体中污染物的富集量通过单元回归或多元回归等进行统计分析。 /p p   根据IUPAC(国际纯粹与应用化学联合会)的定义,形态分析是指表征与测定一个元素在环境中存在的各种不同化学形态与物理形态的过程。广义上讲,重金属形态是指重金属的价态、化合态、结合态和结构态四个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。狭义上的重金属形态是指用不同的化学提取剂对土壤中重金属进行连续的浸提,并根据所使用的浸提剂对重金属的形态进行分组。一般分为水溶及可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态以及残渣态。因浸提剂系列和浸提方法的不同,上述分组方法也有变化。 /p p    strong 水溶及可交换态 /strong :是指交换吸附在土壤粘土矿物及其它成分,如氢氧化铁、氢氧化锰和腐殖质上的重金属。该形态对土壤环境变化最敏感,最易被作物所吸收,对作物危害最大。 /p p    strong 碳酸盐结合态 /strong :是指与碳酸盐沉淀结合的重金属,该形态对土壤环境条件敏感,特别是对pH最敏感,随着土壤pH值的降低,离子态重金属可大幅度重新释放而被作物所吸收。 /p p    strong 铁锰氧化物结合态 /strong :是指与Fe2O3和MnO2等生成土壤结核的部分。土壤环境条件变化可使其中部分重金属重新释放,对农作物存在潜在危害。此形态的最大特点是在氧化还原条件下稳定性差。 /p p    strong 有机物结合态 /strong :是指以不同形态进入或包裹于有机质中,同有机质发生鳌合作用而形成鳌合态盐类或硫化物。该形态较为稳定,一般不易被生物所吸收利用 但当土壤氧化电位发生变化时,可使少量重金属溶出而对作物产生危害。 /p p    strong 残渣态 /strong :在连续提取法中,上述各形态重金属被提取后,剩余部分的重金属均可称为残渣态重金属。对这部分重金属的结合方式很难给出明确的概念。大部分学者认为,稳定存在于石英和粘土矿物等晶格里的重金属即为残渣态重金属。残渣态的重金属很稳定,对土壤重金属迁移和生物可利用性影响不大。 /p p   就提取剂而言,有多种类型,美国、欧洲和日本等国家标准中的提取剂包括:王水、NH4NO3、HCl、HNO3、NaNO3、HCl-HNO3-HF和水等。我国当前土壤重金属有效态的标准方法主要有:《土壤有效态锌、锰、铁、铜的测定》(NY/T 890-2004)、《土壤质量有效态铅和镉的测定》(GB/T 23739-2009)、《土壤检测 第9部分 土壤有效钼的测定》(NY/T 1121.9-2012)、《森林土壤有效锌的测定》(LY/T 1261-1999)、《森林土壤有效钼的测定》(LY/T 1259-1999)、《森林土壤有效铜的测定》(LY/t 1260-1999)和《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》(HJ 804-2016)等,基本都采用二乙基三胺五乙酸(DTPA)或0.1M盐酸浸提剂,也有部分采用硝酸-高氯酸-硫酸、草酸-草酸铵或EDTA浸提剂。 /p p   DTPA分子结构为: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/e7a061cf-0596-44cc-85b9-9fc8ae5c57b3.jpg" title=" 8be6fee55d73b8c347db15cdec21b8a5.jpg" /    /p p   DTPA能迅速与钙、镁、铁、铅、铜和锰等离子生成水溶性配合物,尤其对高价态显色金属配合能力强,因此能浸提出土壤中水溶及可交换态、碳酸盐结合态和部分铁锰氧化物结合态的重金属,相对于其全量而言,这些被认为是高度生物有效的形态。 /p p   表征农田重金属生物有效性的方法包括: /p p   (1 strong )实验模拟法 /strong :根据重金属在土壤—水相互作用过程中的释放速率和释放机理,预测自然风化条件下土壤中重金属的潜在环境效应。 /p p   (2) strong 植物指示法 /strong :生活在重金属污染土壤中的植物都能够不同程度地吸收一些重金属。通过分析这些植物体内重金属的含量,可以判断污染土壤中重金属的生物可利用性,从而判断土壤受重金属污染的程度。 /p p   (3) strong 化学浸提法 /strong :即采用一种适当组成与组成量度的试验溶液(一种或几种试剂) 按照一定的土液比与浸提方法进行浸提, 然后测定浸提液中重金属的含量。如前所述的DTPA,虽然能在一定程度上表征重金属的生物有效性,但由于多种因素(土壤类型、酸度、多金属间的作用、金属在不同植物不同部分的迁移)对生物提取剂的影响,使其很难对多种金属的生物有效性准确表征。 /p p   影响重金属生物有效性的因素包括: /p p   (1) strong 土壤pH值 /strong :土壤pH值对土壤中的重金属的形态有很大的影响,其发生变化时,土壤重金属的形态也会动态波动。 /p p   (2) strong 重金属之间综合作用 /strong :土壤中重金属之间及与其他大量元素之间的复合污染也会影响其生物有效性,即重金属元素间的拮抗作用和协同作用影响重金属形态分布。 /p p   (3) strong 植物根际环境 /strong :植物根的生长改变了土壤的某些物理、化学和生物性质 根际( rhizosphere) 是距离根毛大约0.22 mm 厚的土壤层,根际环境是一个复杂的、动态的微型生态系统。土壤中的微生物能够改变重金属生物有效性,从而影响他们在土壤-植物系统中的迁移和转化。 /p
  • 有机磷农残光电传感分析研究取得进展
    近日,中国热带农业科学院传感与光电检测技术研究团队在多孔框架的分析功能化调控及有机磷光电化学传感分析研究中取得重要突破,成功揭示了多中心金属有机框架对有机磷结构的亲和机制,为农产品和产地环境中有机磷残留的传感分析平台构建提供新的思路。该研究成果发表于Chemical Engineering Journal。基于双功能多中心亲和MOF/MXene异质结构建乐果光电传感器示意图 中国热带农业科学院供图有机磷农药(OPs)因其药效高、广谱抗虫活性被广泛用于控制水果和蔬菜害虫。但有机磷农药会对中枢神经系统造成不可逆损伤,长期使用有机磷化合物会通过污染环境介质(如水、食物和土壤等)严重影响人体健康。因此,研究有机磷农药的快速和可靠的检测方法具有重要意义。团队受天然有机磷水解酶的启发,以四羧基苯基卟啉锌作为有机配体制备了多金属中心的光活性金属有机框架(MOF)。通过量子化学证明了制备的光活性金属有机框架中锆及锌金属中心可以与有机磷形成桥连结构,从而实现对有机磷结构的特异性亲和,这种全新的多中心亲和机制为有机磷农药残留的传感识别提供了新途径。团队进一步通过耦合金属有机框架与Nb4C3形成肖特基结,协同分子印迹技术开发了一种新的多中心亲和光电传感策略。金属有机框架不仅作为光电信号发生中心,同时其金属中心位点(Zn(II)、Zr(IV))与分子印迹的空间匹配协同确保了有机磷结构的精准捕获。团队最后以多巴胺为电子供体和界面探针,构建了一个痕量有机磷光电化学传感器,用于检测农产品和环境水样中的乐果。这种策略也可推广于其他有机磷结构检测中,这为有机磷残留的传感分析平台构建提供新的思路。
  • 污染大米或成居民暴露重金属最大风险源
    近日,中科院华南植物园科学家发现污染大米成为居民暴露重金属的最大风险源。相关研究发表于《公共科学图书馆》。   据介绍,湖南、江西、广东北部等地区是典型多金属成矿带,矿冶活动已对生态环境、食品安全和人体健康带来了严重影响。如大宝山矿区周边的新江镇上坝村村民癌症发病率高,癌症致死率高达56%,成为全国闻名的癌症村。有科学家指出,环境中重金属即使剂量较低,也可通过食物链的传递影响动物和人类健康,甚至导致癌症。   因此,华南植物园生态及环境科学研究中心博士庄萍等科研人员对大宝山矿区周边居民癌症高发与食物重金属污染是否有关,饮食途径中不同暴露参数对风险度的贡献率如何等问题进行了多年探索,在比较了饮用水、土壤无意摄取和食物摄取等多种暴露方式之后,结果发现,食物摄入是危害矿区居民健康的最主要途径。   据研究人员分析,污染土壤中重金属铅和镉经过食物链(农田土&mdash 稻米&mdash 鸡、菜园土&mdash 蔬菜/豆类、淤泥&mdash 杂草&mdash 鱼)传递,在大米、蔬菜、鱼肉、鸡肉中均有一定量的累积,且一半以上样品镉和铅含量超过国家卫生标准。矿区周边成人和儿童通过食物途径摄入重金属的总目标危险系数THQ达到10.2和11.1(THQ大于1即存在健康风险),食物中重金属污染使当地居民面临巨大的健康风险。在多种暴露因子中,大米重金属铅和镉的危害贡献率超过了七成以上,成为当地居民暴露重金属的最大风险源。
  • 突破3D打印瓶颈,科学家提出无聚合物高精度金属与合金自由空间直写技术!
    【科学背景】随着纳米技术的发展,纳米尺度三维(3D)打印技术逐渐成为研究热点。金属和合金的纳米3D打印在电子学、纳米机器人和芯片制造等领域展现出了巨大的应用潜力。然而,传统的纳米制造方法面临着速度慢、微型化困难以及材料性能不足等挑战。例如,光刻技术在材料选择和处理速度上存在限制,且通常只适用于二维平面几何形状。尽管电化学方法能够实现高分辨率金属打印,但其复杂性和有限的材料选择使得其在工业应用中受限。为了解决这些问题,武汉大学Gary J. Cheng教授团队提出了一种基于双光子分解(TPD)和光学力捕获的新型无聚合物3D打印方法。这种方法利用超快激光诱导的TPD对金属前驱体进行分解,通过光学力快速组装纳米晶体,并进行超快激光烧结,从而实现了高分辨率(100纳米至358纳米)和高密度的金属、金属氧化物及多金属合金的3D打印。该技术不仅突破了光学衍射极限,还消除了对有机材料的需求和复杂的后处理工序。此外,激光诱导的局域表面等离子体共振(LSPR)进一步增强了光学力,促进了纳米晶体的聚集,形成了致密且光滑的纳米结构。实验结果表明,打印的Mo纳米线和Mo-Co-W合金纳米线在机械性能上表现出色,分别在抗拉和抗压强度方面优于传统制造方法。这一创新为高质量金属和金属氧化物的定制化3D打印开辟了新的技术路径,并在纳米电子学、纳米机器人和芯片制造等领域具有广泛的应用前景。【科学亮点】1. 实验首次实现了基于双光子分解(TPD)的无聚合物方法,成功进行了金属、金属氧化物和多金属合金的自由空间直接3D打印,分辨率达到100纳米。这一方法通过超快激光诱导TPD,将前驱体化合物中的金属原子分解为纳米晶体,并通过光学力驱动其快速组装,再通过超快激光烧结形成致密光滑的纳米结构。2. 实验通过激光诱导的局域表面等离子体共振(LSPR)增强了光学力,从而促进了纳米晶体的聚集,得到了更密集、更光滑的纳米结构,并成功实现了复杂的3D设计。3. 数值模拟揭示了LSPR诱导光学力在纳米颗粒组装过程中的关键作用。实验结果表明,打印的Mo纳米线具有优异的抗压和抗拉强度,而Mo-Co-W合金纳米线在抗拉强度方面表现更佳,展示了通过成分调整轻松实现结构性能控制的优势。【科学图文】图1:3D纳米打印过程及结构的工艺方案、机制、模拟与示范。图2:打印的金属、合金及金属氧化物的表征。图3:线性和曲线3D纳米结构。图4:Co晶格、Mo纳米线及合金纳米线的原位机械测试。【科学启迪】综上所述,本研究在激光增材制造领域中纳米尺度金属和合金的3D打印这一长期挑战中取得了突破。作者引入了一种基于TPD的无聚合物方法,实现了高密度金属、金属氧化物和多金属合金的自由空间直接3D打印,材料性能可定制,分辨率达100纳米。该技术利用超快激光照射下前驱体化合物的同时TPD,随后通过光学力驱动纳米晶体的快速组装及超快激光烧结,从而通过调整激光参数实现对晶粒形态和尺寸的精确控制。此外,通过激光诱导的LSPR增强光学力,促进了纳米晶体的聚集,形成更致密、更光滑的纳米结构,并实现了复杂的3D设计。作者的数值模拟深入理解了纳米颗粒组装过程中的物理原理,特别强调了LSPR诱导的光学力的作用。此外,该方法无需有机材料和复杂的后处理,突破了光学衍射极限,并提供了对材料性能的出色控制。力学评估显示了打印纳米线的优异性能。Mo纳米线表现出优异的抗压和抗拉强度,而合金纳米线则表现出更好的抗拉强度,突显了通过成分调整轻松实现结构控制的优势。参考文献:Wang, Y., Yi, C., Tian, W. et al. Free-space direct nanoscale 3D printing of metals and alloys enabled by two-photon decomposition and ultrafastoptical trapping. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01984-z
  • 沉痛悼念我国现代地矿实验测试事业及生态地球化学研究的主要倡导者和奠基者——李家熙
    p strong 仪器信息网讯: /strong 2019年3月3日凌晨,国家地质实验测试中心李家熙研究员因病不幸逝世,享年87岁。李先生是我国分析化学测试仪器研发的先行者之一,是著名的科技社会活动家,在国内外享有崇高的声誉。她的不幸去世,是我国地质实验测试界的重大损失,中国分析测试界痛失了又一位宗师级的专家。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ce6e7659-a59f-4d90-ae83-a068f0079a19.jpg" title=" 2011612125219738_meitu_1.jpg" alt=" 2011612125219738_meitu_1.jpg" / /p p & nbsp & nbsp 地质学是公认的“艰辛”科学,科研环境十分艰苦。然而在这一几乎是须眉一统的基础科学领域,却有着一位杰出的女性,她就是著名的分析化学和环境地球化学科学家李家熙研究员。李先生的科研生涯伴随新中国的地质实验工作一起走过了风雨60余年。她在极谱分析、原子吸收分析及痕量元素分析,水化学分析技术等方面均有很高造诣,使国家地质实验测试中心在总体上达到了国际先进水平,其中Os同位素测定等技术,更是处于国际领先地位。同时,在她的努力下,我国的地质分析仪器产业化获得了实质性的发展,李家熙研究员也成为我国该领域的奠基人之一。 br/ /p p & nbsp & nbsp 李先生为人谦和,平易近人,乐于奖掖提携后进。仪器信息网在自身的发展过程中,也曾多次得到李先生的提点指引,乃至具体工作上的建言献策。2014年,仪器信息网为感谢包括李先生在内的老一辈行业专家长期对仪器信息网所给予的真诚帮助,专门颁发了“金蜜蜂奖”。 /p p & nbsp & nbsp 今天,李家熙先生不幸离世,仪器信息网全体同仁对此表示最沉痛的哀悼!祝愿李先生一路走好! /p p & nbsp & nbsp & nbsp 根据李家熙先生的遗愿和其家人的愿望,李先生的丧事一切从简。遗体告别仪式定于2019年3月5日上午九点在协和医院太平间告别室举行。 /p p strong 李家熙研究员生平回顾 /strong /p p & nbsp & nbsp 李家熙研究员1932年生于上海,1953年毕业于复旦大学化学系,分配到地质部北京实验室,历任技术员,工程师,副研究员、研究员;国家地质实验测试中心主任、地质矿产部岩矿测式技术研究所所长;国际地质对比计划医学地质专业委员会委员、中国计量学会地质分会主任委员、全国地质矿产标准物质分会主任委员、国家科委科技攻关项目首席科学家、中国地质学会理事、中国分析测试协会常务理事暨咨询委员会副主任、科技部国家科技攻关项目《科学仪器的研制与开发》专家组成员、《国家科学基础条件平台建设》专家顾问组成员。 /p p & nbsp & nbsp 50年代,我国地质样品分析沿处于起步阶段, 李家熙研究员在经典极谱分析的基础上,开展了方波极谱分析方法和仪器的研究;60年代,结合水地球化学元素迁移、集散的模拟实验,开展方法研究,完善了水分析操作规程,研制了适合野外分析的测定仪;70至80年代,系统总结了《岩石矿物分析》中极谱、原子吸收和水分析方法,与地质实验室的专家们在岩石矿物中的痕量元素分析方法和分析技术等方面取得突破性进展,获得地质矿质部科技成果一等奖。为地质找矿获得准确、可对比的数据,领导组织地质矿产部省局实验室研制标准物质、建立标准方法,使现有的地质、地球化学各类标准物质(含岩石、矿石、土壤、水系沉积物、海洋沉积物和单矿物共238个),达到国际先进水平,被国内外广泛使用。90年代,任“东太平洋多金属结核及深海沉积物的标准物质研制”项目负责人,制备了不同类型多金属结核和深海沉积物标准,有力地支持了我国海洋资源的勘察工作,该项目获地矿部科技成果二等奖。 br/ /p p & nbsp & nbsp 70年代,李家熙成功地将原子吸收技术引入国内并率先广泛应用地质系统,在大量实验工作的基础上,指导开展原子吸收仪器的开发,研制的无火焰原子吸收、塞曼火焰原子吸收等新仪器、新方法被广泛应用于地质实验第一线。她还致力于进口仪器的改造和国产化。80年代,在国内首先开展了大功率石墨炉原子吸收分析技术和磁光旋转光谱分析的研究,在地质系统开辟了原子光谱研究新领域。为满足地质找矿和环境科学研究的需要,积极推进了具有中国特色的原子荧光光度计的设计、制造和应用等方面的研究,有力地促进了仪器产业化的进程。 br/ /p p & nbsp & nbsp 当人类进入21世纪的时候,地质工作的战略目标做出了重大调整,地质实验工作面临着转制及专业结构调整的重大挑战。全球地学的知识体系已开始从地质、矿业、资源等传统地学向环境地学拓展。 br/ /p p & nbsp & nbsp 李家熙研究员凭借其学术的敏感性把握住了新时代学科发展的趋势,引领了学科发展的方向。她通过探索元素在岩石圈、土圈、水圈和生物圈的传递和演化,建立了地学与农业和生命科学组合的研究途径和方法。解释了元素通过水载体从岩石到土壤,经农作物最后进入人体的过程。首先对微量元素从岩石圈到土壤之间的物质迁移、演化机理做了详细研究,并在此基础上结合水系沉积物和土壤微量元素的分布规律,圈定了与人体健康密切相关元素的地球化学分区;西北内陆区、大兴安岭-青藏高原、东北三江—西南三江区和东南沿海区,在每个分区中,微量元素呈现有规律的变化分布。为研究各种环境问题提供了区域地球化学背景;同时在宏观上为指导土壤改良、微肥的使用和作物种植规划,提高国民的健康水平和生活质量、改善营养元素的盈亏状态提供了科学依据。科研成果在北京效区、山东、广西、云南、内蒙应用于农林、种植业和地下水处理,都取得了显著效果。 br/ /p
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 梅特勒托利多为您的金属检测机测试样品安个家!
    为了回馈梅特勒托利多金属检测机的广大新老客户,我们将推出系列优惠活动! 只要您一次性购买12个同类型测试卡或测试棒,将免费获赠梅特勒托利多实用美观的测试样品储藏专用盒一个。 梅特勒托利多根据您的生产现场,为您提供多种量身订制的金属检测解决方案。并且有配套的不同尺寸、材质测试样品供选择,方便进行设备校准、认证等,为您的稳定生产保驾护航。 本活动只针对梅特勒托利多终端客户,最终解释权归梅特勒托利多。 点击这里,了解更多测试样品相关信息&hellip &hellip
  • 重金属污染土地修复,碰撞中推进
    研究团队的阶段性成果要及时与业界、用户及各行业管理部门积极沟通,以促进技术的交流与及时转化、应用。 酸和重金属复合污染土地寸草不生。 矿业污染已经成为严重社会问题 “软骨病、砷中毒、癌症……种种痛苦的病症正悄悄地袭击越来越多的人群,包括皮肤病、肝病也成为一些地方的常见多发病。在这些灾难背后,隐藏的是矿产资源过度开发产生的废渣、废水污染,如果不及时治理,其危害将更加严重。” 日前,由中国科学院地理科学与资源研究所环境修复中心、地表环境化学过程与健康实验室和“863”计划重点项目“重金属污染土壤联合修复”项目办公室,在京联合召开的重金属污染土地修复暨“863”重点项目进展研讨会上,华南理工大学环境科学与工程学院院长党志教授概述研究成果时说了上述这段话。 国土资源部耕地司土地开发整理处处长卢丽华介绍,据估算,中国在生产建设过程中因挖损、塌陷、压占、污染等各种人为因素造成破坏和废弃的土地有近2亿亩,其中因采矿破坏的土地面积近一半。有些100多年前开采过的矿区,当地老百姓至今还因污染深受其害。由于被破坏土地未得到及时复垦利用,人地矛盾激化,生态环境恶化,老百姓生产生活条件下降,在部分地区,耕地被大量破坏,一些人陷入“无房可住、无地可种、无岗可上、无水可用”的困境,严重影响社会稳定。 “矿业污染已成为一个重大生态环境问题,矿产开发污染常常伴随着重金属的污染,污染生态系统包括水体、土壤和大气。矿冶活动导致土地污染事件频频发生,比如,浙江有万亩连片农田受镉、铅等重金属污染,致使10%的土壤基本丧失生产能力。” 作为“863”计划重点项目“重金属污染土壤联合修复”项目首席科学家,中国科学院地理科学与资源研究所环境修复中心主任陈同斌介绍,单从金属矿产来说,我国金属矿产丰富但品位低,矿山有28万个,矿石总产量50.8亿吨,矿业产值2913亿元,占工业总产值的31.7%。其中,砷、镉、铅、铜是矿产中常见的伴生元素,在采冶过程中容易进入周围环境。 矿业活动导致的土地污染并不仅仅是矿山周围的局部问题,而是一个区域性环境问题。有研究表明,矿区砷、铅、镉等重金属可以长距离迁移,导致20~60公里的农田受到严重污染。 矿业活动导致的重大中毒事件也不鲜见:2007年,湖南冷水江市铅锌矿尾砂库泄漏,铅、锌、镉、砷等超标,致使冷水江市及下游新化县城停水;2006年,甘肃徽县铅冶炼活动致使附近2000名居民铅中毒,周边土地和农作物遭受严重污染…… “我国矿业污染土地亟待复垦和修复。采矿占用、破坏土地743万公顷,每年递增4万公顷,但矿山土地复垦率仍不足10%;我国大型金属矿山进入集中闭坑期:26%铜矿、40%铅锌矿已经闭坑或接近闭坑,如果不进行复垦或修复,会导致严重的环境健康问题。” 陈同斌表示。 污染土地修复面对极大社会需求 “某化工厂严重污染,搬迁后导致土地无法利用,甚至达不到标准无法作为建设用地,一房地产企业拍卖得到这块土地,但需要附加1亿元进行修复。土地的污染问题也是房地产开发的一个限制因素,现在也有公司跟我商谈希望推荐合适人选帮助他们做土地污染修复工作,社会对这方面科研人员的需求很大。”陈同斌介绍。 1998年,陈同斌带领其研究团队在中国境内首次发现了砷的超富集植物——蜈蚣草,蜈蚣草含砷比普通植物高数十万倍,并且生长快、生物量大;2001年,他们在湖南郴州建立了世界上第一个砷污染修复基地;随后又在广西和云南建立了砷、铅等重金属污染及酸化土壤修复的示范工程,建立了超富集植物与经济作物间作的修复模式,做到边修复污染土壤、边开展农业生产,推动了重金属污染土地修复工作的突破性进展。 陈同斌介绍,“十五”以来,我国重金属污染土壤修复领域得到快速发展。据有关专家估计,目前全国从事这方面工作的单位至少超过200家,从业科技人员和研究生数百人,一批大型环保企业也开始涉足此领域的产业化工作。 “十一五”期间科技部将“金属矿区及周边重金属污染土壤联合修复技术与示范”列入“863”计划的重点项目。该项目由中国科学院地理科学与资源研究所主持,联合了中科院南京土壤所、中山大学、北京矿冶总院等14家科研单位、高等院校和企业,研究涉及多学科领域,试图通过多单位协作、多学科交叉,构建我国重金属污染土壤修复的平台,并通过建立修复基地加快科技成果的转化。 我国重金属污染土地修复技术成果除不断得到政府和农民的认可之外,这些理论和技术成果也受到国际同行的广泛关注。比如,2007年,就有澳大利亚墨尔本大学生态系、越南科学院环境研究所等5个研究所(中心)的所长和多位专家,到中国科学院地理科学与资源研究所环境修复中心访问交流相关研究进展。 此次研讨会的主要目的是为交流重金属污染土地修复和矿山土地复垦的研究进展。陈同斌介绍,解决矿山土地污染问题的总体考虑是,对于重度污染土壤,通过固定或钝化技术控制重金属扩散;中度污染土壤,通过重金属去除技术、蜈蚣草等植物修复技术来改善;大量污染土地是轻度污染,要采取防止重金属进入食物链的阻隔技术,比如对于镉污染土地,施用磷肥、选中适宜的作物类型或者作物品种,就可以防止它进入食物链。 陈同斌领导的“重金属污染土壤联合修复”项目团队正在开发富集多种重金属的植物富集技术。土壤重金属污染往往表现为复合污染,通过多金属超富集植物材料的筛选、鉴定和培育,建立多金属联合修复技术,可以达到同时去除多种重金属的目的。 植物修复收获物可以安全焚烧与资源化利用,收获后的超富集植物焚烧后,灰渣或烟尘中重金属含量可达10%以上。借鉴冶金技术等化工技术可回收有价金属或开发其他产品,进行植物采矿,有些植物对矿的富集量甚至比原矿还要高。 “目前,特别重要的问题是需要建立重金属污染土地的修复技术规范。”陈同斌表示,从工程应用的角度来看,目前污染土壤修复的相应技术规范的缺乏,限制了其技术的应用和推广。 但也不排除这种土地修复技术并不被外界所了解的情况。国土资源部耕地保护司副司长刘仁芙不时遇到地方要求申请更多建设用地指标的情况,理由之一是有些土地已经污染,他们没有处理技术或者处理效果不好。“既寻求发展,又保护耕地,使我们面对很大压力,修复技术为18亿亩耕地的保障看到了希望。技术还是急需的。希望专家们在耕地保护、土地复垦尤其重金属污染修复方面多作贡献。”刘仁芙表示。国家环保部自然保护司处长张山岭介绍,相比较而言,对于土壤污染修复的方方面面,研究工作还处于初步发展阶段,以前人们更多关注的是显性的水、大气的污染。不过,值得庆幸的是,十七大已经把土壤和水、大气并列作为环境污染防治方面特别值得关注的三大问题。 科技部中国二十一世纪议程管理中心张书军博士建议,研究团队的阶段性成果要及时与业界、用户及各行业管理部门积极沟通,以促进技术的交流与及时转化、应用。 “土壤污染问题已经成为各部门关注的热点问题。”国家环境保护部科技司产业处处长刘海波表示,仅仅从他们科技司的情况来看,对土壤修复和治理的投入越来越大。“我们希望研究成果能及时反馈过来,为管理提供更多科技支撑,同时希望得到针对环境管理的有意义的建议。”
  • 应用丨食品和水产品中金属元素的测定的预处理方案
    海水污染成为全球关注的问题,如何运用科技,更好地保障食品和水产品的饮食安全?本文以“水中人参”——鳗鱼为例,参考《GB 5009.268 食品安全国家标准 食品中多元素的测定》用微波消解对鳗鱼进行前处理,可完全消解样品,所得消解液澄清透明,便于进行鳗鱼中金属含量的检测,保证其安全性,适用于硼钠镁铝钾钙钒铬锰铁钴镍铜锌等众多金属。仪器和耗材1.仪器样品预处理加热仪:XT 9825微波消解仪:XT 9930样品消解1.称样加酸取绞碎的鳗鱼约0.8g(精确到 0.001 g)于高通量版消解罐中,加入5mL HNO3、1mL 过氧化氢。2.微波消解旋紧盖子将消解罐放入微波消解仪中,选择高通量模式,进行消解。3.赶酸冷却后取出消解罐,再放置于XT 9825中于100℃下赶酸30min,用水定容。4.消解结果定容后观察到样品已消解完全,溶液澄清无沉淀。图4 鳗鱼消解结果实验注意事项1. 消解罐内液体量不低于5mL。2. 消解罐使用前应泡酸,洗净,晾干,以除去本底干扰。3. 称取样品时避免样品附在壁上,若沾到壁上需冲洗下去。4. 加酸后若反应剧烈,静置一段时间等反应平息再进行下一步操作。5. 预消解时若样品冲出消解罐,需重新称取样品进行消解。6. 预消解时若样品反应剧烈,可加入1ml水。7. 装消解罐时先从外圈开始放,消解罐对称放置。结果与讨论1.试验样品类别为鳗鱼,取样量为0.5g-1g,采用硝酸及过氧化氢进行消解,最高实验温度190℃,样品消解完全,溶液澄清透明。2.采用XT-9930密闭式智能微波消解仪能同时进行42个样品的消解,做样通量高;消解全程约1h,提高了工作效率。样品消解完全,消解效果理想。
  • 参与规程宣贯,海光助力重金属形态检测技术发展
    本月4-6日,由全国物理化学计量技术委员会主办,中国计量测试学会承办的多项国家检定规程宣贯会在江苏南京成功召开。现场反响热烈的是JJG 1151-2018《液相色谱-原子荧光联用仪检定规程》的宣贯讲座,海光公司作为规程起草单位之一,受邀参加本次宣贯会,现场展示了仪器操作与使用,并带来了砷汞形态检测应用方面的技术报告。 海光公司参与规程宣贯 检定规程的发布与宣贯标志着液相色谱-原子荧光联用仪的成熟与普及,也证明了这项形态检测技术在我国的成功应用。从这项技术的创新研发到国标的制定验证,从检测条件的优化提高到技术的推广普及,海光公司在整个发展过程中投入了大量的人力物力财力,根植于中国特色的检测方法,始终助力重金属形态检测的进步与发展。 海光与液相色谱原子荧光联用技术 早在2007年,海光公司与中国科学院生态环境中心江桂斌院士合作,在国内率先开发液相色谱与原子荧光联用技术,用于元素的形态和价态分析,并成功研制出首代液相色谱原子荧光联用仪——积木式结构的LC-AFS9600、LC-AFS9800 等系列仪器。液相色谱-原子荧光联用的理论与技术创新,为食安、环保等领域砷、汞等重金属的形态检测开启了浓墨重彩的新篇章。 首代液相色谱原子荧光联用仪LC-AFS9600 在液相色谱- 原子荧光联用产品获得市场初步认可的情况下,海光公司紧跟市场需求,进一步加强联用技术研发及应用实践,于2014年推出二代液相色谱- 原子荧光联用系列产品。该产品具有多项原创技术,兼备总量和形态分析,且实现自动切换,同时解决了交叉污染,完善了分析方法形态接口技术,产品技术指标优异,操作方便,是自动化程度高的形态分析产品,代表型号有LC-AFS 6000、LC-AFS 6500、LC-AFS 95 系列等。中国疾病预防控制中心、国家食品质量安全监督检验中心、中国食品药品检定研究院等多家单位已采购并使用此类产品,市场反应良好。 国家卫计委于2016年3月21日正式实施了新版食品安全国家标准(GB 5009-2014)。该标准在2003版基础上做出修订,其中无机砷和有机汞的测定均采用液相色谱-原子荧光联用分析法。海光LC-AFS6500产品也作为国标的主要验证仪器,为国标的起草提供了大量的实验数据。 二代液相原子荧光联用代表产品LC-AFS6500 2015年10月,海光公司LC-AFS9560液相色谱-原子荧光联用仪获得第十六届BCEIA 金奖。为表彰该系列产品技术创新性及在市场销售方面的表现,以此类仪器为课题产品的《痕量砷、汞及其有毒化合物形态检测仪的完善和产业化培育》项目荣获了2017年中国仪器仪表学会颁发的科学技术奖二等奖。 此后,海光LC-AFS6500产品参与了北京市科委与原北京出入境检验检疫局(现北京海关)组织的 “国产仪器设备验证与综合评价”活动。北京出入境检验检疫局技术中心、北京疾病预防控制中心等5家权威实验室验证了此产品的各项指标,并给出了高度评价:液相色谱-原子荧光联用仪(LC-AFS)解决了元素形态分析问题,同时该仪器与液相色谱-电感耦合等离子体质谱法(ICP)相比,在砷、汞等有毒有害元素及其化合物的形态分析检测方面更简便,检测灵敏度高,测试数据准确,仪器精密度高,是实验室进行元素形态分析的仪器。 2019年3月1日,国家卫健委标准《尿中砷形态测定 液相色谱-原子荧光法 WS_T635—2018》正式实施,海光新形态产品为标准的验证提供了大量数据。今后,海光将继续推广液相色谱原子荧光联用技术向更多应用领域发展,让更多的检测机构用上更简单易用的国产形态检测仪器。
  • 一支刚刚永久退出现役的光荣部队 分析化验也是它的训练内容
    p style=" text-align: left "   来自有关方面的消息,2018年8月28日下午15时,武警黄金指挥部举行武警黄金部队移交自然资源部交接仪式,这标志着武警黄金部队正式退出历史的舞台,全体官兵脱下军装,集体退役。 br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/201809/uepic/47992a2a-fd07-44a5-ab0c-a780a10aa005.jpg" title=" 交接仪式.jpg" alt=" 交接仪式.jpg" / /p p style=" text-align: left "   中国的武警黄金部队曾经是世界上唯一一支以军事组织形式从事地质工作的武装力量,担负着特殊的历史使命。据有关资料显示,国家每年找到的金矿,至少有三分之一来自这支仅有1万人的队伍,迄今已探获黄金1800多吨,帮助中国成为全球最大的黄金生产国。 br/ /p p   与其他武警部队相比,这支部队还有一个非常特殊的地方,就是除了军事训练之外,还要接受地质、测量、地球物理勘查、地球化学勘查、分析化验等专业训练。 br/ & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp img src=" https://img1.17img.cn/17img/images/201809/uepic/b46b92a3-2f90-42b9-a285-1bd4007c6126.jpg" title=" 原子吸收化验_副本.jpg" alt=" 原子吸收化验_副本.jpg" / /p p   从编制上看,黄金部队最高指挥机关为武警黄金指挥部,下辖3个总队,12个支队,每个支队均设有自己的分析实验室,配有原子吸收等相关分析仪器。 /p p   此次,武警黄金部队转为非现役专业队伍后,并入自然资源部,承担国家基础性公益性地质工作任务和多金属矿产资源勘查任务,现役编制转为财政补助事业编制。原有的部分企业职能划转中国黄金总公司。 /p p   虽然退出了现役,但我们会永远铭记他们为祖国做出的重要贡献,并向他们致以崇高敬意。 /p
  • 飞纳电镜助力中国金属学会电冶金分会成立大会
    2018年6月20 - 22日,“中国金属学会电冶金分会成立大会暨第一届全国电冶金高端论坛”在北京科技大学会议中心召开,会议宣布了中国金属学会电冶金分会正式成立,由李晶教授任秘书长。大会由朱荣教授主持,中国金属学会常务副理事长赵沛教授做了主题为“中国电冶金的发展”的大会报告,报告回顾了电冶金行业的发展历程,既有在奋斗中前进的历史,又有机遇与挑战并存的发展现状,并且对行业对光明前途做出了预测。大会宣布电冶金分会正式成立分会成立大会圆满结束后,来自全国各地五十多家科研、企业单位的一百多位代表进行合影留念,并展开了分会第一次会议及讨论,明确了电冶金行业每位工作者的责任和使命,决心在各自的岗位上为冶金技术发展以及绿色冶金之路做出自己的贡献。与会代表合影电冶金是电化学技术在提取冶金中的应用,指利用电能从矿石或其他原料中提取、回收和精炼金属的冶金过程。包括电炉冶炼、熔盐电解和水溶液电解等。主要流程是将矿石经焙烧、粉碎等处理后,用酸(如盐酸、硫酸)或碱(如硫化碱,即硫化钠加氢氧化钠)、盐(如硫酸亚铁)等,将矿石中的金属盐进行溶解,再对这种含金属离子的电解液进行电沉积加工。这时采用的阳极是不溶性阳极,而从阴极上获取金属材料。电冶金方法的采用,特别是电弧炉炼钢和熔盐电解炼铝是近代冶金技术的重大进步。与火法冶金比较,电冶金具有制品纯度高,并且能处理低品位矿石或复杂多金属矿的优点。大会报告随着经济的发展,我国的电冶金行业方兴未艾,企业与科研单位协作,形成产学研一体化发展。目前,环境保护已经成为各企业生产发展中需要考虑的的重要问题,北京科技大学冶金与生态学院是业内的科研领域的重要领导者之一。目前学院内已经引进两台飞纳台式扫描电子显微镜,用于铸坯质量控制的检验和钢铁夹杂物的观测。用户认为,飞纳电镜适应性强,对实验室环境没有特殊要求,并且操作简捷高效。针对于电冶金行业样品测试量很大的特点,飞纳电镜具有明显的优势。其中飞纳台式扫描电镜 Phenom XL 具有超大样品室,能够同时放入 36 个样品台。并且抽真空仅需20秒钟,极大地加快了实验效率,对科研和生产都有重要作用。工程师为大会老师介绍飞纳电镜
  • 空气监测(二):PM2.5 致命因素之重金属元素含量探究
    请即下载:PerkinElmer PM2.5 等颗粒物中重金属元素的 ICP-OES 快速分析解决方案 作者:PerkinElmer, Inc. PM2.5 又称气溶胶,指的是直径小于或等于 2.5 微米的超细悬浮颗粒物,也称为可入肺颗粒物, 是人类身边隐形的致命“杀手”。调查显示,铅、铁、锌、钙、镁、钛、镉、锌、锰、砷、铬、铜、镍、硒、铍、钒或钴等有害金属或类金属元素也常能在 PM2.5 等细颗粒物中被检出。而这些元素会与大气中其它物质结合成 PM2.5 等颗粒物并被人体吸入,从而影响人体的呼吸系统、新血管系统、神经系统及生殖系统的正常生理机能。如铅,其会严重影响儿童的智力发育,对老年人造成痴呆、脑死亡等,而铅若进入孕妇体内则会影响胎儿发育,造成畸形等。这些元素主要来源于土壤、岩石风化的尘埃、建筑尘和海盐粒等 钢铁厂等工业燃煤烟尘、冶金尘及其它工业生产过程和汽车尾气等。国内测定空气中细微颗粒物中金属元素现在较常用的方法有火焰原子吸收法、石墨炉原子吸收法、X-射线荧光光谱法等。由于火焰原子吸收法灵敏度相对低,且样品中金属元素含量也一般较低,多需采用大流量采样器采集大量样品,并经分离富集,样品前处理过程非常耗时、费力,且只能单元素测量;石墨炉原子吸收法由于检出限低,一般可省去富集过程,但不能进行多元素的同时测定,仪器操作相对繁琐,分析周期较长,且测量线范围也相对窄;X-射线荧光光谱法属于非破坏性分析方法,但准确性需待提高,同时很难找到合适的颗粒物标准样品,其主要用于方法的探索阶段及样品的粗筛。PerkinElmer 作为原子光谱领域无可争议的领导者可提供 PM2.5 等颗粒物中金属元素电感耦合等离子体发射光谱仪 (ICP-OES) 快速分析解决方案。从 1993 年推出全球第一套全谱直读螺旋线 圈式 ICP-OES 以来至 2011 年新一代的革命性的诱导平板 ICP-OES, PerkinElmer ICP-OES 检测方案已久经国内外权威机构的验证使用。如,国内正在起草制定的空气和废气颗粒物中金属元素的 ICP-OES / ICP-MS 测定的相关标准研究机构即为 PerkinElmer 的金属元素分析解决方案的仪器使用用户。 应用方案简介: 测量元素 70种之多,且可进行多元素的同时检测,符合 EPA IO-3.4 等国外空气颗粒物检测方法的要求 采用轴向观测及低信噪比的检测器,元素检出限可达亚 ppb 浓度水平 采用轴向和径向双向观测技术,线性范围从亚 ppb 至百分含量浓度水平,可减少样品制备时间 诱导平板等离子体技术的使用可节省氩气约 50% 分辨率优于0.007nm, 可最大限度地消除 ICP-OES 测量复杂基体样品谱线间的干扰问题,确保结果更准确 专利的 UDA 功能,可选择性地储存所有谱线,测量之后可任意调用,不管您在方法中是否设置相关元素或谱线,有利于获取更准确的结果或方便对更多的元素进行含量研究 OptimaTM 8X00 系列 ICP-OES 自动采样器(选配):实现全自动样品测量,通量可达 200 个样品/小时 请即点击下载以下的三篇应用文章: ICP-OES 法与 AAS 法在质控滤膜多金属测定中的应用比较 使用全新的 CCD 双向观测电感耦合等离子体发射光谱仪确定空气过滤器和尿液中的主要和次要元素以进行风险评估 高样品处理量的电感耦合等离子体发射光谱仪在美国EPA 200.7方法上的运用 © 2011 PerkinElmer, Inc. 版权所有
  • 为亚洲食品生产商优化金属检测效果
    升级后的梅特勒-托利多 ASN 9000 提高了污染物检测效果、灵活性和生产线效率 2012 年 7 月 ,梅特勒托利多推出了新型 ASN 9000 金属检测机,采用梅特勒托利多 Profile 检测头技术。ASN 9000 系列结合了多种可调超高频率技术,提供最高水准的检测性能,确保所有类型产品都能获得最佳检测效果,包括高水分含量和金属薄膜包装产品。ASN 9000 符合全球食品安全倡议 (GFSI) 标准,包括英国零售商协会 (BRC)、国际食品标准 (IFS) 和食品安全体系认证 (FSSC) 22000,确保食品生产商满足甚至超过法规要求,降低产品召回风险,有助于产品出口。 为提高检测灵敏度,ASN 9000 采用强大的两级灵敏度增强软件算法。这一先进的系统将金属污染物产生的微小信号,从产品本身产生的信号中分离出来,并将这些微小信号放大到可以被检测到的程度。增强的放大率能够检测到所有类型的金属,包括干燥或高水分含量产品中的铁、非铁和不锈钢。通常,具有这些特性的产品会带来&ldquo 产品效应&rdquo ,因为它们对金属检测机灵敏度的影响与一片金属带来的影响相同。 ASN 9000 软件所具有的一次通过自动设置程序,能够在几秒钟内对产品完成编程。产品记忆功能最多可存储 100 种设置,确保处理多件产品的用户仅用一台金属检测机,就能够轻松检测整个产品系列。用户还可以对 ASN 9000 进行相应设置,在所有类型的金属中着重检测某一种金属。 梅特勒托利多销售经理 Jonathan Richards 解释说:&ldquo 在竞争日益激烈的市场中,亚洲的食品生产商在寻求更加灵活的生产线,这样他们就能够在国际市场中与竞争对手一搏高下。ASN 9000 让我们的客户快速适应市场变化,无需牺牲产品检测精确度&rdquo 。 该系统的全彩触摸屏人机界面 (HMI) 菜单易于操作,拥有十二种语言,包括六种亚洲语言,减少了操作机器所需的培训量。 我们会为您的 ASN 9000 提供梅特勒托利多 800 系列和 1200 系列自动传送机系统。这些传送机采用不锈钢结构,包括平面式传送带和模块化传送带两种选择。传送带速度完全可调,并且可以通过 HMI 进行控制,简化了操作。无需工具,就可以将传送带取下清洗,并对其进行调整,从而检测不同高度的产品。 ASN Profile 密封检测头能够达到 IP69K 高压清洗防护等级,能在恶劣环境中使用。卫生设计使产生积灰的可能降低,可以轻松快速地进行清洁。检测头紧凑的结构最大程度减少了 ASN 9000 系统的占地面积,易于安装并且节省生产线空间。 为支持尽职调查并自动保存记录,可以在 ASN 9000 上使用 USB 端口选件下载操作数据,同时,可以通过以太网,满足生产商将检测设备应用于更加复杂的工厂管理和自动数据采集系统的需求。诸多自动剔除选件可供选择,确保所有受到污染的产品都能从生产线中剔除,进一步提高效率。ASN 9000 系统适用于梅特勒托利多定制 IPac 安装和验证文档包,为符合食品安全法规需求进一步提供支持。 关于梅特勒-托利多 梅特勒托利多是食品和制药行业金属检测与 X 射线检测解决方案的全球领先供应商。金属检测机与 Garvens 自动检重秤及 CI-Vision 共同成立了梅特勒托利多的产品检测部门。 有关 ASN 9000 系统或者有关金属检测流程与技术方面的更多内容,请致电 4008-878-788或发送电子邮件至 ad@mt.com 与梅特勒托利多金属检测部门联系。 关于梅特勒托利多的一般信息,请访问:http://www.mt.com/pi
  • 2015年新版药典新增As和Hg形态分析方法
    新药典的更新内容   根据2015年新版药典,电感耦合等离子体质谱(ICP-MS)法已经成为重金属安全性的检测的重要手段,不但新增了方法检出限和方法定量限,而且ICPMS方法可用于I、II、III部。   同时,在2015年新版药典中新增 As 和 Hg 形态分析。进一步确定了药物中的元素不仅需要考虑总量,也需要考虑形态和价态;元素的价态形态已经成为药物科研的一个前沿方向。新版药典 As 的形态及其价态分析应用于雄黄及其制剂;Hg 元素的形态及其价态分析应用于朱砂及其制剂。   新药典引入形态分析的背景知识   因为早期研究发现,元素形态不同,其毒性、生物利用度、生物累计效应及迁移率等性质就会有差别[1]。很多金属和非金属在毒理学和生物学上的重要性主要取决于其化学形态,不同元素形态具有不同的物理化学性质、毒性或疗效。色谱-ICP-MS联用作为分析体内药物代谢、毒理学的手段之一在元素的体内代谢机制、毒理学研究等方面具有独特的优势。例如,应用色谱-ICPMS分离生物体内含Se、As、Cd、Cu、Zn、Pb等元素与多种氨基酸、多肽和蛋白质的结合机理以及研究元素对酶的作用位点。此外,维生素、大环化合物等的研究和DNA片段与金属元素的作用也日益在色谱-ICPMS技术发展中得到应用。因此元素形态分析对控制药品的安全性具有重要的意义。   2015年药典新增的As和Hg形态分析就充分考虑到了不同形态毒理学性质的不同:As化合物被认为是对人的皮肤和肺有致癌作用的物质,不同形态的As具有各种化学和毒物学性质,其中As(III)和As(Ⅴ)的毒性最大,一甲基砷(MMA)和二甲基砷酸(DMA)具有中等毒性,而As-甜菜碱(AB)和砷胆碱(AC)相对来说是无毒的。在动物体内,无机砷的生物甲基化作用被认为是一个去毒性过程,产物被排泄或储存。为分析低含量(ppb级)As化合物的形态,不仅需获得有关化合物形态的信息,又要有极高的灵敏度,目前最为理想的方法应属HPLC或IC与ICP-MS联用,该方法对于砷化合物的生物检测极为有用。   Hg是人体必需监控的有毒元素,主要以甲基汞、Hg(II) 与乙基汞形式存在,其中生物与人类对Hg的甲基化及富集所产生的影响尤为重要。目前WHO法规不仅对人体中总Hg的限量极低(   针对元素形态分析的样品前处理与元素的总量分析有着较大的不同。对于注射剂、澄清、均匀的口服液(不含混悬液)等液体制剂中微量元素的形态分析,可在过滤和稀释后直接进行形态分析;而对于固体样品,则需要采用较温和的方法将微量元素的不同形态提取出来。提取方法既要考虑较高的回收率,又要保持初始的化学形态。传统的提取方法有水煎法、索氏提取法等。近几年,一些先进的提取技术如超临界流体萃取、微波辅助萃取、酶解法等在中药微量元素形态分析中也有应用。   由于西药多为人工合成药,而中药大部分是天然产物,因此元素的形态分析多应用于中药中。中药有多种剂型,服用方法大多为水煎剂和酊剂,所以研究较多的是中药中微量元素在水或乙醇中的溶出率。目前样品前处理方法制药分三类:第一类也是最常见的一类方法为经典的水提法或索氏提取法,例如王京宇等[2]在考察若干中药中25种元素在不同浸取液中的分布情况时,采用了水提、二氯甲烷浸取、残渣消化及不同浓度乙醇浸取等方法处理;第二类为聚焦微波辅助萃取[3] (microwave assisted extraction,MAE),是在微波能的作用下,选择性地将样品中的目标组分以其初始形态的形式萃取出来的一种技术。它具有高回收率、高选择性和低溶剂消耗的优点。更多的关于中药砷和汞形态分析的前处理方法及关键技术请参考《矿物药检测技术与质量控制》[4]中第十章(朱砂)、第十三章(雄黄)和第三十一章(朱砂和雄黄的毒理研究)内容。   严冬,宋娟娥   安捷伦科技(中国)有限公司   参考文献:   [1] Das A K, Chakraborty R, Cervera M L, et al. Metal speciation in biological fluids: a review [J]. Microchim Acta, 1996, 122 (3-4): 209-246.   [2] 王京宇,欧阳荔,刘雅琼,等 若干中草药中25种元素在不同浸取液中的分布 [J],中国中药杂志,2004,29(8):753-759.   [3] 傅荣杰,冯怡,等 微波萃取技术在中药及天然产物提取中的应用 [J]. 中国中药杂志,2003,28(9):804-807   [4] 林瑞超 主编. 《矿物药检测技术与质量控制》. 科学出版社,2013年出版.
  • 梅特勒托利多Signature金属检测机接口升级
    2012年梅特勒托利多对现有食品生产业客户使用的 Signature 金属检测系统进行了 Touch LS 接口升级。新的 Touch LS 接口具有一些创新功能,例如 32 种不同的账户和多语言功能等,增强了可用性和产品质量,并有助于改进生产线的尽职调查过程。采用升级后的 Signature 金属检测机, 食品生产商不仅提高了生产效率和竞争力,还可减少生产成本,并且符合当地和全球的食品安全标准,包括英国零售商协会 (BRC)、 国际食品标准 (IFS) 和食品安全体系认证 (FSSC) 22000。更新时长不足 2 小时,可最大限度缩短停机时间,并且无需将机器从生产线取下。 Touch LS 具有新的全彩色触摸显示屏和 21 种语言选项,提高了可用性,操作人员可通过金属检测机功能的简单导航选择语言,从而最大限度降低出错风险。升级还具有自动设置选项,可简化安装过程中的产品设置,自动改进生产过程中对不同产品的检测。升级增强了灵活性和高效性,使得食品生产商能在最短的停机时间内更换产品。可用性提高意味着需要接受的培训更少,成本更低。Touch LS 具有自动剔除计时器设置功能,设有剔除确认和剔除检查传感器选项,确保将识别出的所有污染物都从生产线剔除。全新的状况监控系统持续检查升级后的 Signature 金属检测机的运行情况,并提醒用户保持最佳性能。Touch LS 的密码保护、检测和访问日志功能可进一步提高食品生产商产品检测的安全性,并改进尽职调查。“在竞争激烈的市场,生产商必须对其技术进行性能扩展,以便提高市场份额”,梅特勒托利多的销售经理 Jonathan Richards 表示。“Touch LS 接口可满足这一需求。通过最大限度缩短安装时间,Signature金属检测机的现有用户可从最短的停机时间和更高的可用性中获益,从而最大限度提高生产线效率”。 关于梅特勒-托利多梅特勒托利多是食品和制药行业金属检测与 X 射线检测解决方案的全球领先供应商。金属检测机与 Garvens 自动检重秤及 CI-Vision 共同成立了梅特勒托利多的产品检测部门。有关 ASN 9000 系统或者有关金属检测流程与技术方面的更多内容,请致电 4008-878-788或发送电子邮件至 ad@mt.com 与梅特勒托利多金属检测部门联系。关于梅特勒托利多的一般信息,请访问:http://www.mt.com/pi
  • 全国生命分析化学研讨会:生物纳米技术
    仪器信息网讯 2010年8月20-22日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。   大会同期举办了“生物纳米技术”系列报告会,300余人参加了此会。会议由厦门大学陈曦教授、郑州大学冶保献教授、中国科学院化学研究所毛兰群研究员和北京大学黄岩谊研究员共同主持,16位来自科研院所和高校的专家学者做了精彩的报告。部分报告内容摘录如下:   福州大学 池毓务教授   低毒性纳米电致化学发光体及共反应物的研究   池毓务教授的课题组对低毒性纳米电致化学发光体和纳米共反应物进行了一些研究,从中发现了环境友好、生物低毒性、容易标记、具有良好电致化学发光活性的碳量子点(CODs)发光体和SnO纳米颗粒,详细研究了相关纳米材料的制备方法、它们各自组成的电致发光电致体系、电致化学发光性能、及其反应机理,并对它们的分析应用前景进行了评价。   复旦大学 卢建忠教授   基于金纳米微粒的化学发光免疫分析和特定序列DNA分析   免疫分析和特定序列DNA分析新技术的构建多年来一直吸引着国内外学者们的热情,检测方法涵盖了电化学、色谱、质谱、比色、荧光、同位素和化学发光法(CL)等。卢建忠教授课题组以金纳米颗粒为标记物,采用CL分析法,发展了一系列基于金纳米颗粒的CL免疫分析和特定序列DNA分析法。   哈尔滨工业大学 刘绍琴教授   自组装膜纳米结构薄膜的光学性质:从器件到传感器   刘绍琴教授研究小组采用层层自组装技术构筑基于量子点的生物传感系统:(1)将具有可逆光致变色性能的多金属氧酸盐Na-POMs与具有荧光性能的CdSs@CdS量子点有序组装在玻璃、石英或硅基底表面,成功构建了具有可逆光控荧光开关功能的纳米复合薄膜;(2)将量子点与酶进行有序组装,利用量子点光学特性与酶的催化活性和特异性相结合,构建了可直接用于检测血清样品中葡萄糖以及果蔬中有机磷农药残留的光学和光电生物传感器。   华东师范大学 施国跃教授   基于室温离子液体/纳米传感器的研究及其对大鼠脑渗析液中谷氨酸的实时在线检测   施国跃教授课题组以功能化的室温离子液体[C3(OH)2][BF4]为模板,采用原位电沉积的方法,在玻碳电极表面制备了平均粒径为2.5nm的Au/Pt合金纳米粒子并构筑了GlutaOX-[C3(OH)2 min][ BF4]-Au/Pt-Nafion生物传感器。结合微渗析在线体系,对大鼠纹状体内谷氨酸的含量进行了实时、在线、连续的测定。   西南大学 黄承志教授   长距离共振能量转移及其分析化学   黄承志教授在报告中首先介绍了长距离共振能量转移(LrRET)的研究背景及其基础理论,着重介绍了LrRET中供体-受体对的构建及其分析应用。他在报告中对LRET的研究进行了展望:(1)新材料(不同材质、大小、形状的供体和受体)的合成及组装技术将会进一步拓展LrRET理论;(2)LrRET对生物大分子的检测,特别是检测距离在10nm以上的生物分子相互作用中将会有广阔的应用前景;(3)LrRET将会在细胞和活体成像中得到广泛的应用;(4)在大量的实验基础上提出LrRET的机制。   东南大学 钱卫平教授   基于局域表面等离子体共振的新型纳米探针构建及其生物传感器应用研究   钱卫平教授研究了电子传递介质的金纳米壳生长过程中局部表面等离子体共振(LSPR)谱演变规律,构建了一种用于LSPR生物传感快速检测生物催化反应和抗氧化物质的抗氧化能力等的新型纳米探针,探索了利用LSPR谱变化检测生物体系中有重要生理意义的酶的活性和酶催化反应的底物和产物水平以及抗氧化物质的抗氧化能力等。   吉林大学 宋大千教授   金磁纳米粒子探针在SPR传感器中的应用   宋大千教授首先介绍了SPR技术的检测原理、仪器结构,然后介绍了金纳米粒子和磁纳米粒子在SPR中的应用和优缺点。他的课题组研究发现:通过控制纳米粒子的尺寸和组成,对其化学和物理性质进行调节,金磁纳米粒子同时具备了金纳米粒子和磁纳米粒子的优点,与其单组分金属纳米粒子相比,具有独特的光学、催化和电子学性质。   此外,在本次“生物纳米技术”报告会上作报告的还有:(排名不分先后) 姓名 职称 单位 报告题目 蒋兴宇 研究员 中国科学院纳米研究中心 微流控技术在生化分析研究中的应用 刘松琴 教授 东南大学 自由基聚合反应在生物传感器中的应用 李正平 教授 河北大学 利用恒温指数扩增反应高灵敏度检测microRNA 邱建丁 教授 南昌大学 纳米金/聚多巴胺/四氧化三铁/石墨烯复合纳米材料制备及其免疫传感器研究 汪莉 教授 江西师范大学 普鲁士蓝-壳聚糖/乙酰胆碱酯酶修饰玻碳电极检测西维因的电化学研究 苏星光 教授 吉林大学 磁性荧光编码微球用于马病毒的多元免疫分析与分离 刘继峰 教授 聊城大学 核酸碱基自组装膜表面沉积铂电催化剂以及在H2O2和CH3OH电化学中的应用 毕赛 研究生 青岛科技大学 基于细胞适体和限制性内切酶循环放大化学发光检测肿瘤细胞的研究 朱玲艳 研究生 青岛大学 电解胶束溶液法制备聚吖啶橙/石墨烯修饰电极及其应用
  • 摩方精密和瑞士Exaddon AG微纳金属3D打印达成合作
    2021年12中旬,瑞士Exaddon AG公司与重庆摩方精密科技有限公司(以下简称“摩方精密”)正式签署了战略合作协议,摩方精密将为Exaddon AG在中国区的微纳金属3D打印设备提供服务和推广。 重庆摩方精密科技有限公司于2016年成立,6年来一直致力于微纳3D打印领域的技术创新和应用转化,有着专业的团队和成熟的技术,以及丰富的微纳3D打印行业资源,得到客户的广泛认可。目前,摩方精密已拥有来自全球29个国家近850家合作客户。作为微纳3D打印的龙头企业,摩方精密主营业务是基于光固化的树脂及陶瓷浆料的打印设备,而在多年的经营中发现越来越多客户提出了更多更高的需求,例如需要更加精密的金属打印能力。因此,为了更好的服务更多的中国用户,摩方精密基于6年来的经验积累,在众多金属打印设备中选择了Exaddon AG的CERES,该系统是Exaddon AG公司基于电化学沉积(Electrochemical Deposition)技术推出的微纳金属3D打印机,可以打印超高精密金属器件,该系统非常适用于生物传感、高频通讯器件、微流控、传热和微机械等领域的创新研究,也有望在工业功能性器件的生产制备中发挥巨大潜力。 CERES 3D打印系统 “摩方精密是我们在微纳3D打印这个独特领域的一个非常理想的合作伙伴,摩方精密在亚太的微纳树脂及陶瓷浆料打印市场有着特别丰富的经验和积累,他们有着非常强大的市场销售团队及优质客户群体,现在与我们微纳金属3D打印相结合,相信未来可以更好地拓展微纳3D打印的市场!”Exaddon AG公司CEO Edgar Hepp说道。关于Exaddon AG瑞士Exaddon AG公司,致力于提供高精度和创新的微纳金属3D打印解决方案,力求在创新的前沿,基于电化学沉积技术的金属微增材制造技术,CERES可以在室温下以亚微米级分辨率打印复杂的微金属结构,尺寸从1 μm到1000 μm(人类的头发一般为80~90微米),并且无需进行后处理。 关于摩方精密重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)成立于2016年,专注于高精密3D打印领域,是全球高精密3D打印技术及精密加工能力解决方案提供商。目前,摩方在新加坡、波士顿、深圳、东京和重庆均设有办事处,拥有来自全球29个国家近850家合作客户。有关BMF的更多信息,请访问www.bmftec.cn网站。
  • 《金属材料 超高周疲劳 超声疲劳试验方法》正式发布,USF2000A助您轻松应对
    USF-2000A采用压电元件产生的20kHz振动波形,经放大后加载到试样上,实现高速度的疲劳试验。能测试通常难度很大的109、1010次的疲劳强度,可在约10分钟内生成107次的数据[1]。近年来,超高周次承载部件越来越多,金属材料超高周疲劳测试需求与日俱增,超声疲劳方法是完成超高周疲劳的有效手段之一。相比高周疲劳,超声疲劳由于试验频率大幅提高,试样尺寸设计、应力控制等都和高周疲劳不同,已不适宜采用高周疲劳试验标准。4月25日,由TC183(全国钢标准化技术委员会)归口,TC183SC4(全国钢标准化技术委员会力学及工艺性能试验方法分会)执行 ,中国钢铁工业协会主管的国家标准《金属材料 超高周疲劳 超声疲劳试验方法》正式发布,并将于2024年11月1日施行。背景通常认定如果循环次数大于107,样品就不会断裂,所以所有的工业品必须在这个疲劳极限以下进行设计,尽管如此,事故仍可能发生。随着工业技术的发展,许多金属零件的设计疲劳寿命逐渐增加,金属材料的高周疲劳行为已成为一项研究重点。金属疲劳是指机器、车辆或结构件的金属零件因反复施加应力或载荷而引起的弱化状态最终导致断裂的现象。因此,为了确保机器、车辆等的质量,需要对其零件进行疲劳检测。超声波疲劳试验是一种共振式的疲劳试验方法,通过压电原件产生20kHz振动波形,经放大后加载到样品上,实现高速度的疲劳试验,可快速地检测各种工业材料的疲劳极限。标准解读01原理超声疲劳试验采用超声发生器产生20kHz 的电信号,压电陶瓷换能器将电信号转换成相同频率的机械振动,经位移放大器放大后传递至试样,在试样中产生谐振波,使试样获得频率约为20kHz按正弦波变化的轴向位移和应力。02试样超声疲劳试验常用的试样类型有漏斗形、等截面圆形和板状。设计超声疲劳试样尺寸时,尺寸组合应满足试验系统谐振频率为20kHz的谐振条件,否则试样将不能起振,试验无法进行。设计试样尺寸之前应先根据GB/T 38897确定材料的动态弹性模量,再根据材料的密度和不同形状试样的几何尺寸理论公式计算满足试验谐振频率的端部长度值。岛津方案岛津超声波试验系统可参照GB/T 43896-2024《金属材料 超高周疲劳 超声疲劳试验方法》的测试方法对样品进行测试。USF-2000A超声波疲劳试验机01试验原理USF-2000A疲劳试验机的加载原理同普通的疲劳有很大的不同,它是由压电元件产生20 kHz的振动,将振动通过谐振腔放大再传导至加工成特定尺寸形状的试样,试样产生共振形成稳定的驻波,不断地收缩和伸长由此进行20kHz的疲劳试验。02主要特点☆ 在共振状态下进行试验,可产生高应力,能够进行1000 MPa级的钢材试验☆ 采用计算机设定和控制试验,可在桌面上进行试验☆ 试验设备的功耗小☆ 可简单地再现微小缺陷而产生的疲劳破坏☆ 能以20kHz的重复频率快速评价金属材料的疲劳寿命,一般100Hz频率下测试1010次循环试验需要3.2年,使用本机进行试验只需要6天。03应用案例仅需输入材料的模量、密度等信息,软件即可根据设置,自动生成技术图纸,开始试验。在达到规定循环次数或超过试验频率波动范围时,试验自动结束。同时,可在软件中选择指定振荡和停止时间(脉冲-暂停)比。空气冷却系统提供支持,有效避免样品过热。04定制化产品在平均应力为零的条件下很少使用实际组件。尽管如此,USF-2000A是一种标准超高循环疲劳试验系统,只能在零平均应力条件下实施试验。使用配有平均应力负载系统的超高循环疲劳试验系统,可在平均拉伸应力负载情况下实施千兆周期疲劳试验。近年来,超高周次承载部件越来越多,金属材料超高周疲劳测试需求与日俱增,超声疲劳方法是完成超高周疲劳的有效手段之一。USF-2000A提供金属和其他材料的负载容量信息以及确定度,可在6天内完成试验[1]而无需1年或更久。应用20 kHz周期频率,相比300Hz,完成1010次循环试验的速度可提高60多倍。特别是在汽车、航空航天和铁路应用领域,材料可靠性必须具备可预测性,岛津试验机可以为消费者提供更优质量和更高安全性,并为制造商提供安心保障。注[1] 实验数据可能随条件不同而变化本文内容非商业广告,仅供专业人士参考。
  • 赛恩思HCS-801G服务众兴集团旗下金辉稀矿
    内蒙古金辉稀矿股份有限公司成立于2007,坐落于内蒙古巴彦淖尔市乌拉特前旗黑柳子工业园区,隶属于大型民营企业众兴集团,以铁矿、多金属矿、非金属矿及贵金属等矿产资源开发为主。此次公司经多方调研,选择赛恩思HCS-801G高频红外碳硫仪作为其产品质检设备。此次设备HCS-801G配置双硫高碳池,满足客户测定硫精矿中碳硫元素的需求。赛恩思仪器售后工程师在现场对操作人员进行了设备使用后期维护保养的培训。客户后期使用过程中,赛恩思同样提供完善的售后保障服务,视频、电话、现场等多手段服务,免除客户的后顾之忧!四川赛恩思仪器现有HCS系列高频红外碳硫仪,OES系列直读光谱仪,ONH系列氧氮氢分析仪,满足客户的不同产品检测需求。诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制