当前位置: 仪器信息网 > 行业主题 > >

太阳光强度检测

仪器信息网太阳光强度检测专题为您提供2024年最新太阳光强度检测价格报价、厂家品牌的相关信息, 包括太阳光强度检测参数、型号等,不管是国产,还是进口品牌的太阳光强度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳光强度检测相关的耗材配件、试剂标物,还有太阳光强度检测相关的最新资讯、资料,以及太阳光强度检测相关的解决方案。

太阳光强度检测相关的资讯

  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。 下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格) 作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。 两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。 该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • “AWS1000太阳光伏环境监测仪”应用于青海公伯峡黄河水电有限公司
    AWS1000太阳光伏环境监测仪 AWS1000太阳光伏环境监测仪是一款高性能的气象监测系统,可测量风向、风速、环境温度、相对湿度、大气压力、雨量、全球水平总辐射、电池板阵列辐射强度仪、组件温度等指标,是一款高性能的环境监测系统。 AWS1000太阳光伏环境监测仪采用荷兰Kipp&Zonen高品质辐射表和美国CSI公司的超稳定数据采集系统,严格满足WMO对于辐射测量精度和稳定性的要求,具备高可靠性、高准确性、易维护、易备份等特点。 2016年8月份,我公司提供的太阳光伏环境监测仪/太阳辐射监测仪中标于黄河公伯峡水力发电有限公司,并于2016年10月9日安装完毕,系统试运行超过15天,系统运行稳定,得到客户认可。 系统测量指标:风向、风速、温度、湿度、气压、雨量、太阳总辐射、组件温度、太阳能供电系统。
  • 植物工厂太阳光谱利用新思路
    近日,中国农业科学院农业环境与可持续发展研究所设施植物环境工程创新团队在植物工厂太阳能多光谱高效转换研究方面取得新进展。该研究提出了太阳能分频导光-光热协同转换的植物光谱互补方法,建立了多波长尺度下光与物质相互作用的理论模型,对进一步降低植物工厂能耗具有重要的意义。相关研究成果发表在《能源转换与管理(Energy Conversion and Management)》上。将太阳光传导照明技术应用于植物工厂,可大大降低植物工厂的光源能耗。然而太阳光中只有部分可见光能直接参与作物光合反应过程,剩余光谱则会引起植物工厂内环境温度的升高,增加空调的制冷能耗。该研究团队提出了一种应用于植物工厂的光谱、光强协同优化系统。该系统在为植物传导光合光谱的同时,也可将非光合有效辐射光谱转换为热能进行储存,系统导光与转能的总效率超五成。同时,为了更好的匹配植物工厂光电需求,该研究将进一步与光伏、温差发电等技术相结合,为实现低能耗和可持续的植物工厂发展开辟新路。该研究得到国家重点研发计划、国家自然科学基金、北京市科技计划等项目资助。原文链接:https://doi.org/10.1016/j.enconman.2022.115788
  • 太阳光功率计CEL-NP2000-Sun180正式发布
    CEL-NP2000-Sun180太阳光功率计主要用在户外测量波长范围为300nm~3000nm的太阳光总辐射,可以实现测试太阳光0-180°连续全天候角度下的光功率辐射值,实现全天候测量。太阳光功率计感应面向下可测量反射辐射值,也可用于测量入射到斜面上的太阳辐射,加遮光环可测量散射辐射。CEL-NP2000-Sun180太阳光功率计可广泛应用于户外气象、太阳能利用,太阳光测量,农林业、建筑材料老化及大气环境监测等部门的太阳辐射能量的测量。太阳光功率计由双层石英玻璃罩、感应元件、遮光板、表体、干燥剂等部分组成。双层玻璃罩是为了减少空气对流对辐射表的影响。内罩是为了截断外罩本身的红外辐射而设的。感应元件是太阳光功率计的核心部分,由快速响应的绕线电镀式热电堆组成,感应面涂特种无光黑漆、热结点,当有太阳光照射时温度升高,与另一面的冷结点形成温差电动势、电动势与太阳辐射强度成正比,实现实时的测量。主要技术指标:1.灵敏度:7~14μvw-1m-22.光谱范围:300nm~3000nm3.测量角度:0-180°(全方位)4.测试范围:0~2000Wm-25.年稳定度:≤±2%6.余弦响应:≤±7%(太阳高度角10°时)7.方 位:≤±2%(太阳高度角10°时)8.响应时间:<10s(95%响应)9.非 线 性:不大于±2%10.温度漂移系数:不大于±2%(-10~40℃)11.输出信号 0~20mV
  • 科学家通过红外光上转换实现高效的太阳光合成
    基于太阳光开展能源转化和工业生产,是解决全球能源危机、助力我国实现“双碳”目标的重要路径之一。太阳光中蕴含着大量的红外光子,这些光子不为人眼所见,且能量较低,通常难以有效转化和利用。胶体量子点是一类溶液法生产的理想捕光材料,它们的吸光范围很容易被拓展至红外波段。同时,吸光后的激发态量子点能够参与丰富的光化学转化过程,生产太阳燃料或者精细化学品,是国际上的重要科学前沿。近日,中国科学院大连化学物理研究所(以下简称“大连化物所”)研究员吴凯丰团队在量子点光化学研究中取得重要进展。团队率先实现了低毒性量子点敏化的近红外至可见上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成,有望对光合成技术产生深远影响。相关成果发表在《自然-光子学》上,共同第一作者是大连化物所博士梁文飞、聂成铭和副研究员杜骏。利用低毒性量子点开展近红外光子上转换和有机催化合成红外光到可见光的上转换在能源、医学、国防等诸多领域具有重要意义。比如对太阳能电池而言,上转换能使器件可以有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。在各类上转换技术中,基于有机分子三线态湮灭的光敏化技术可对非相干、非脉冲光源实现上转换,具有较强的实用前景。然而,此前报道的近红外光敏剂普遍效率较低或含有贵金属和有毒金属,相对廉价环保的高效近红外光敏剂仍有待开发。前期工作中,团队深入系统地研究了量子点敏化有机分子三线态的动力学机制,并探索了这些新机制在光子上转换、有机光合成等领域的初步应用。此次研究中,团队聚焦于CuInSe2基近红外量子点,该类量子点相对绿色环保,可用于替代剧毒性的铅基近红外量子点。团队制备了ZnS包覆的Zn掺杂CuInSe2核壳量子点,有效解决了该类量子点缺陷多和稳定性差的难题。随后,在量子点表面修饰羧基化的并四苯分子作为三线态受体,并采用红荧烯分子作为湮灭剂,构建了溶液相上转换体系。该体系成功实现了近红外至黄光的上转换,量子效率高达16.7%。进一步地,团队将该上转换体系与有机光催化融合,将上转换产生的红荧烯单线态直接用于“原位”有机氧化、还原、光聚合等反应,巧妙避免了上转换光子传播至溶液表面所经历的量子点重吸收损失。此外,得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换-有机催化融合体系可在太阳光下高效快速运行。在室内窗台上(光照强度约32 mW cm-2),几秒内即可实现丙烯酸酯的光诱导聚合。“一个世纪以来,在阳光下进行有机合成是许多科学家的想法,但前期的探索主要局限于利用太阳光中的可见光子。”吴凯丰说,“这项研究将太阳能合成的范围扩大到了阳光中丰富的可见光和近红外光子,将有力地推动光合成技术的发展。”该工作不仅实现了低毒性量子点敏化的近红外至可见高效上转换,还发展了一种高效快速太阳光合成的新路径。这一交叉创新型研究成果对光化学和光合成技术的发展具有重要意义。
  • 大连化物所实现低毒性量子点近红外上转换与太阳光合成
    近日,大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学研究中取得新进展,实现了低毒性量子点敏化的近红外光至可见光的上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成。红外光到可见光的上转换在能源、医学、国防等诸多领域具有重要意义。例如,对太阳能电池而言,上转换能使器件有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。在各类上转换技术中,基于有机分子三线态湮灭的光敏化技术可对非相干、非脉冲光源实现上转换,具有较强的实用前景。然而,此前报道的近红外光敏剂普遍效率较低或含有贵金属和有毒金属,相对廉价环保的高效近红外光敏剂仍然有待开发。吴凯丰研究团队一直致力于胶体量子点的超快光物理与光化学研究。在超快光化学领域,团队深入系统研究了量子点敏化有机分子三线态的动力学机制,并探索了这些新机制在光子上转换、有机光合成等领域的初步应用。在这些前期基础之上,团队开发了CuInSe2基量子点,用于替代剧毒性的铅基近红外量子点,实现三线态敏化和近红外上转换。本工作中,团队首先制备了ZnS包覆的Zn掺杂CuInSe2核壳量子点,有效解决了该类量子点缺陷多和稳定性差的难题。团队在量子点表面修饰羧基化的并四苯分子作为三线态受体,并采用红荧烯分子作为湮灭剂,构建了溶液相上转换体系。时间分辨光谱研究表明,该类量子点的光生电子和空穴都会在皮秒尺度被局域在量子点本身的缺陷位点。该局域化电子—空穴对仍然能够在纳秒尺度传递至量子点表面的并四苯分子,高效生成自旋三线态,并进一步传递至溶液中的红荧烯分子,进行三线碰撞湮灭。该体系实现了近红外至黄光的上转换,量子效率高达16.7%。此外,团队进一步将该上转换体系与有机光催化融合,将上转换产生的红荧烯单线态直接用于“原位”有机氧化、还原、光聚合等反应。该设计巧妙避免了上转换光子传播至溶液表面所经历的量子点重吸收损失。此外,得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换—有机催化融合体系可在太阳光下高效快速运行。在室内窗台上(光照强度约32 mW cm-2),几秒内即可实现丙烯酸酯的光诱导聚合。该工作不仅实现了低毒性量子点敏化的近红外至可见高效上转换,还发展了一种高效快速太阳光合成的新路径。这一交叉创新型研究成果对光化学和光合成技术的发展具有重要意义。相关成果以“Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals”为题,于近日发表在《自然—光子学》(Nature Photonics)上。该工作的共同第一作者是我所1121组梁文飞、聂成铭博士、杜骏副研究员。上述工作获得了中科院稳定支持基础研究领域青年团队计划、国家重点研发计划、国家自然科学基金、我所创新基金等项目的支持。
  • 我公司为新疆兵团九师170团提供太阳光伏环境监测仪
    2015年4月7日,新疆生产建设兵团发展和改革委员会向第二、四、五、六、七、九、十、十二、十三师发改委下发《兵团发改委关于下达兵团2015年光伏发电项目建设实施方案的通知》兵发改能源发【2015】147号文件。 文件指出:结合来报发电项目请示和2015年度光伏电站建设实施方案,综合2014年项目建设情况、电力市场等因素,对2015年新疆兵团50万千瓦光伏发电规模予以安排。文件要求加强项目管理、加快推进项目前期工作,于4月20日前向新疆发改委报送备案材料,对4月底前仍未完成备案手续的项目取消资格。要求督促项目开工建设,确保7月完成主体工程,早日并网运行。6月底前仍未开工建设的项目要调整方案,不得擅自变更项目投资主体和建设内容。 加强光伏发电项目信息统计报送工作,10月中旬对师年度项目完成情况考核,并网规模未达到50%的,调减下一年度规模指标。对屋顶光伏分布式发电项目及全部自发自用的地面分布式项目,兵团发改委随时受理备案。认真规划2016年光伏发电建设实施方案,11月底上报新疆发改委。 2015年11月,我为公司为新疆兵团九师170团提供一套太阳光伏环境监测仪,主要监测风向、风速、环境温度、相对湿度、气压、总辐射、直接辐射、散射辐射、组件温度等技术指标,为兵团光伏电站提供实时数据监测数据,结合电站的发电量,来完成光伏电站光功率预测评估等功能。
  • 光纤阵列太阳光学望远镜(FASOT)取得科学和技术关键进展
    通过对光纤阵列太阳光学望远镜(FASOT)原理样机在2013年加蓬日全食期间取得的观测资料处理和分析,中国科学院云南天文台FASOT团组在弱偏振信号测量方面取得了科学和技术两项关键性进展,为正在研制的第一和第二代FASOT以及未来的大型日冕仪COMPASS打下了坚实的基础。常规获取太阳大气中磁场矢量三维结构精确信息的成功与否很大程度上取决于仪器对弱磁场产生的弱偏振信号的感知(灵敏度)和精确测量(准确度)能力。因此弱偏振信号的灵敏且精准探测成为FASOT的关键技术。法国天文学家Donati等人于1990年(Astronomy and Astrophysics,1990,232,L1)首创了偏振光学开关技术来降低偏振测量噪声。这项技术通过交换由偏振分析器出射的双光束偏振态来最大程度降低影响偏振测量灵敏度和精确度的因素。屈中权等人在2017年(Solar Physics, 2017,292:37)提出了简化偏振光学开关(RPOS)技术方法。它不再需要在常规偏振观测时在每个偏振调制态都进行双光束偏振态互换,只需进行一组可以将望远镜各光路以及此时视宁度等消光信息精确传递下去的偏振光学开关模式的测量,将其与常规偏振观测数据进行交叉对比就可提高偏振测量的灵敏度和准确度。这也确定了新的观测模式以及简化了偏振分析器结构。在12月1日发表的题目为“由日食偏振光谱测量揭示的太阳高层大气的复杂性”论文(the Astrophysical Journal, 2022, 940:150)中,研究人员对5种实现RPOS的方法产生的结果进行了精确度的检验。这一技术不仅克服了传统偏振光学开关的三大缺点(时间分辨率低,存储空间大,结构复杂),还提高了测量的灵敏度和工作效率。通过2013年加蓬日全食观测,FASOT原理样机在国际上首次同时获得同一视场内516-532nm波段中日冕、过渡区和色球发射谱线的辐射强度I和归一化的线偏振光谱Q/I观测资料(见附图)。应用以上技术,分析了这些形成于不同高度的谱线I和Q/I空间和色散方向的分布特征,发现不同谱线线偏振面旋转速率不一致,在不同空间点会产生超过一个量级的偏振大小变化,日冕禁线与其他谱线的偏振存在很大的差别,Q/I轮廓呈现多样性。在对这些现象做出相应的解释之后得出结论:高光谱分辨率和对两条或者以上的谱线同时进行全斯托克斯光谱测量成为日冕磁场矢量测量仪器如COMPASS必备的功能。该工作得到国家基金委国家重大科研仪器研制项目11527804与国家基金委和中国科学院天文联合基金重点项目U1931206支持。论文链接图1.谱线强度和归一化线偏振强度随高度的变化
  • 加拿大Spectrafy 太阳光谱辐射仪
    加拿大Spectrafy 太阳光谱辐射仪 加拿大Spectrafy公司是由创始人兼首席执行官理查德?比尔博士成立的,是生产太阳光谱辐射的专业制造商,产品广泛应用于气象、太阳辐射、光伏和科研等领域,是非常优越的产品。 2016年,我公司与加拿大Spectrafy公司建立长期合作伙伴关系,承担中国地区太阳光谱仪的市场推广和技术服务。太阳光谱辐射仪SolarSIM-G1太阳光谱辐射仪SolarSIM-D2
  • 中国科学家通过红外光上转换实现高效的太阳光合成
    中国科学院大连化学物理研究所发布消息称,该所吴凯丰研究员团队近日在量子点光化学研究中取得重要进展。团队率先实现了低毒性量子点敏化的近红外至可见上转换,并将该体系与有机光催化融合,实现了高效快速的太阳光合成。相关成果发表在《自然-光子学》上。基于太阳光开展能源转化和工业生产,是解决全球能源危机的重要路径之一。太阳光中蕴含着大量的红外光子,红外光到可见光的上转换在能源、医学、国防等诸多领域具有重要意义。比如对太阳能电池而言,上转换能使器件可以有效利用阳光中大量的低能量红外光子,颠覆性地提升太阳能转换效率。然而,近红外光敏剂普遍效率较低或含有贵金属和有毒金属,相对廉价环保的高效近红外光敏剂仍有待开发。据介绍,前期工作中,团队深入系统地研究了量子点敏化有机分子三线态的动力学机制,并探索了这些新机制在光子上转换、有机光合成等领域的初步应用。此次研究中,团队聚焦于铜铟硒(CuInSe2)基近红外量子点,该类量子点相对绿色环保,可用于替代剧毒性的铅基近红外量子点。此外,得益于近红外光子的有效利用和量子点的宽谱吸收特性,该上转换有机催化融合体系可在太阳光下高效快速运行。在室内窗台上几秒内即可实现丙烯酸酯的光诱导聚合。“一个世纪以来,在阳光下进行有机合成是许多科学家的想法,但前期的探索主要局限于利用太阳光中的可见光子。”吴凯丰说,这项研究将太阳能合成的范围扩大到了阳光中丰富的可见光和近红外光子,将有力地推动光合成技术的发展。吴凯丰表示,该工作不仅实现了低毒性量子点敏化的近红外至可见高效上转换,还发展了一种高效快速太阳光合成的新路径。这一交叉创新型研究成果对光化学和光合成技术的发展具有重要意义。
  • ACP 陕科大陈庆彩课题组:太阳光照射条件下大气PM2.5的光化学反应特征和机理研究 | 前沿用户报道
    供稿:陈庆彩成果简介近日,陕西科技大学陈庆彩教授课题组,以关中地区大气污染治理中的不确定性环境因素为背景,探讨了西安市大气pm2.5在太阳光照射条件下的光化学反应特征和机理,确认太阳光光照可以增加大气pm2.5中的发色团的氧化状态,并影响它们的光化学反应活性。相关成果以《photodegradationof atmospheric chromophores: changes in oxidation state and photochemicalreactivity》为题发表在atmospheric chemistry and physics上。背景介绍大气气溶胶中存在具有吸光能力且可以促进光化学反应的发色团有机物质(棕碳,brc),从而对全球气候和大气环境质量具有潜在重大影响。目前对于大气颗粒物中brc的研究主要集中在光学特征的研究,对于其光化学反应特征研究则相对较少。发色团有机物质光化学反应特征表现在,在太阳光照射下,发色团发生光激发反应,驱动一系列活性氧物质(ros)的产生,进而对气溶胶中多相化学反应产生潜在影响。本研究试图探明com光降解对气溶胶中碳质组成、光学性质、荧光团组成和光化学反应的潜在影响。图文导读太阳光光照可以增加大气pm2.5中的发色团的氧化状态,并影响它们的光化学反应活性。具体如下:(1)光降解对气溶胶样品碳组分产生了显著影响。在poa中,水溶性和甲醇可溶性有机碳(wsoc和msoc)分别下降了22.1%和3.5%。结果表明, wsoc比msoc更容易被光降解。在环境pm中,wsoc几乎没有变化,msoc下降18.2%,与poa形成对比。poa是新鲜的,但环境pm经历了长期的气溶胶老化。结果表明,在环境pm中wsom发生光降解和矿化后,有机物(om)得到了充分的光降解,而高分子量的msoc不能被充分的光降解,因此在实验室中仍在进行光降解。不同阶段的oc比例下降趋势相似表明环境pm中不同分子量的om可能具有相似的光降解能力且光降解后om的分子量基本不变。图:光降解前后碳含量和组成的变化,∗和∗∗分别表示在0.1和0.01水平上的显著差异。(2)光降解对气溶胶样品光学性质产生了显著影响。光降解后,com的吸收系数和总荧光体积(tfv)均显著降低,说明com发生了光漂白。在poa中,tfv平均下降75%,wsom和msom的tfv的下降有显著的相似之处。燃烧木材的com的tfv仅下降了9%,而燃烧木材样品的msom的荧光体积几乎没有变化。这主要有两个原因:一方面,在燃烧木材的样品中,只产生少量的甲醇溶性om。另一方面,甲醇溶性木材燃烧com难以光降解。此外,荧光团的光降解还取决于光化学环境,如溶液ph、盐度、温度。因此,我们认为燃烧木材的com的光降解在很大程度上取决于光降解环境。在环境pm中tfv的衰减速率常数低于在poa中的衰减速率常数。在环境pm中,msom的tfv下降了79%,而wsom下降了27%。结果表明,在环境pm中,msom比wsom更容易被光降解。图:光降解过程中光吸收和荧光强度的变化。图(a)光吸收,散射图显示了350nm处的吸收系数;图(b)和图(c)分别显示了在poa和环境pm样品中荧光体积的衰减曲线。(3)光解改变了气溶胶样品中发色团含量和组成。结合水溶性和甲醇溶性样品建立parafac模型,以说明荧光团在wsom和msom中的分布。我们发现了四个荧光团,c1和c2的荧光峰出现在(ex./em.= 224/434 nm)和(ex./em. = 245/402 nm),分别与高氧化和低氧化的hulis相似。c3和c4的峰出现在(ex./em. = 220/354 nm)和(ex./em = 277/329 nm),这两个荧光团是蛋白质类有机物(plom-1和plom-2)。在光降解过程中,荧光团的含量发生显著变化。在poa的wsom中,高氧化的hulis(c1)相对含量增加了63.0%,低氧化的hulis (c2)相对含量减少了88.0%。比例变化表明,由于光氧化作用,低氧化的hulis (c2)可能转化为高氧化的hulis (c1)。plom(c3和c4)下降19.7%,表明c3和c4可被光降解。在poa的msom中,高氧化态hulis(c1)的含量增加了17.5%,这是由于光诱导的二次反应。在环境pm的wsom中,高氧化的hulis(c1)含量增加了6.9倍,低氧化的hulis (c2)含量减少了40.2%,其变化与poa相似。因此,高氧化hulis可用于跟踪气溶胶光老化程度。图:样品光降解前后生成1o2的变化:(a) poa和(b)环境pm。(4)光降解对气溶胶光化学反应活性有显著影响。通过3com∗和1o2的产率定量分析了光降解对光化学反应的影响。在环境pm中,光解样品对tmp的消耗速率常数(ktmp)比原始样品平均下降11%,相反,在poa中,光降解后ktmp平均增加75%。在光降解后,不同气溶胶中的三线态生成保持不变或增加。com可以产生三线态,并进一步产生1o2。1o2的产率在环境pm和poa中都下降表明com的光降解对光化学反应有抑制作用。在poa中,在光激发前,原始样品和光解样品中都很少有1o2;在黑暗60min后,原始样品和光解样品都产生了1o2,说明在poa中没有光激发也可以产生1o2,原始样品中1o2含量高于光解样品;经过60min的光激发后,与未经过光激发的样品相比,原始样品和光解样品中1o2的含量都增加了3倍。原始样品中1o2的含量也高于光解样品(高出42%),证明了com光降解对1o2的生成有抑制作用。当三线态被山梨酸淬灭时,1o2的含量几乎没有变化,表明低能量的3com∗可能是poa中1o2的主要前体且com光降解并不改变poa中低能量3com∗产生1o2的机制。在环境pm中,与poa中相似,在光激发前,原始样品和光解样品中1o2的含量非常低。而黑暗60 min后与poa不同1o2含量几乎没有变化表明如果没有光激发,在环境pm中不可能产生1o2。当三线态被山梨酸淬灭时不生成1o2,表明1o2的前体被淬灭,环境pm中1o2主要由高能3com∗产生。horiba aqualog 同步吸收-三维荧光光谱仪大气颗粒物中的发色团物质组分复杂,基于horiba aqualog 同步吸收-三维荧光光谱仪,使用a-teem方法可以有效鉴定和识别多种简单发色团类型,并能够提供构建光化学反应活性之间的结构-活性之间的关系,对于揭示具体种类发色团产生了光化学反应提供了重要方法途径。如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。 研究总结研究发现,经过7天的光降解,com的荧光强度和吸收系数分别降低了71%和32%。光降解对发色团的化学成分和气溶胶老化程度有影响,低氧化的腐殖质类物质(hulis)通过光氧化转化为高氧化的hulis。光降解也会改变光化学反应能力,在一次有机气溶胶(poa)和环境颗粒物(pm)中,光降解对光化学反应的影响是相反的,在环境pm中,光降解后三线态com (3com∗)的生成略有减少,但在poa中,3com∗的生成增加。然而,在poa和环境pm中,单线态氧(1o2)的生成都明显减少,这可能与1o2前体的光降解有关。关于气溶胶中com光降解的新认识,增加了研究与光化学和气溶胶老化相关的溶解性有机物(dom)的重要性。这项研究将有助于更好地了解com光解特性以及com光降解对气溶胶老化的影响。文献信息photodegradation of atmospheric chromophores: changes inoxidation state and photochemical reactivity文章署名作者:牟臻、陈庆彩*、张立欣、关东杰、李豪文章链接:https://doi.org/10.5194/acp-21-11581-2021扫码查看文献陈庆彩教授基本简介陈庆彩,教授、博导,陕西科技大学大气污染与控制研究团队负责人。毕业于名古屋大学,主要从事区域大气污染与控制、大气pm2.5健康效应等相关科研工作。入选陕西省“百人计划”、获陕西省青年科技新星称号、陕西省高校自然科学奖、日本大气化学学会奖、bruker和horiba企业科技奖、政府生态建设专家、名古屋大学特邀教员,担任environmental advances/research等期刊编辑/编委。主持国家和省部级课题6项,以第一或通讯作者发表学术论文40余篇,包括领域顶级期刊es&t论文8篇,授权国家专利和软著12项。
  • 三永发布高准直太阳光模拟器新品
    日本SAN-EI公司推出高准直太阳光模拟器(高平行太阳光模拟器),准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。AM1.5G /AM0 太阳光光谱;准直接半角不稳定性2% 均匀性可定制;照射距离可定制;照射角度和方向可定制;创新点:高准直稳态太阳光模拟器,准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。 高准直太阳光模拟器
  • 发布Spectrafy SolarSIM-ALB 太阳光谱反照率仪新品
    Spectrafy SolarSIM-ALB 太阳光谱反照率仪SolarSIM-ALB是加拿大Spectrafy公司于2020年3月份推出的新产品,SolarSIM-ALB提供反照率光谱测量的新标准。SolarSIM-ALB由两个背靠背的A类SolarSIM-G传感器组成,是wei一能够同时测量宽光谱和反照率光谱的传感器。SolarSIM-G采用硅和InGaAs光电二极管,加上硬膜滤光片,可以精确地测量几个窄波段的全球太阳辐射光谱和反射光谱。SolarSIM-ALB 配备专用 的 分析 软件然 ,通过测量可以精确地解决总辐射光谱和反照率光谱。标准的SolarSIM-G数据输出,如GHI、光谱辐照度和PV光谱校正因子,可用于下面和上面辐照度监测 。 一体设计全球wei一一个测量太阳总辐射光谱和反照率光谱的仪器,提供数字输出接口 安装简单容易安装 ,维护少 。模块化设计,便于维护和校准。自动PV校正因子。 准确&可靠光谱测量技术开启了新的测量标准。SolarSIM-G采用高质量的光学元件和电子组件,确保多年后的数据稳定和准确的性能。 SolarSIM-ALB应用包括太阳能资源评估、光伏面板开发、认证和O&M、农业监测、紫外线指数测量、材料测试,甚至多光谱和高光谱成像。技术指标:ISO标准等级次基准( Secondary Standard)ISO 9060:2018 标准 Class AISO 9060:2018 子类分类 “平坦频谱”兼容阳光ISO 9060:2018 子类分类 “ 快速响应 ” 可选总光谱辐射仪光谱选择280~1200nm1200~4000 nm 280~4000 nm光谱分辨率(FWHM) 1 nm波长精度 ± 0.1 nm光谱测量不确定度 光谱误差方向/余弦响应校准不确定度1.1%视角上180o, 下170o电源/功耗12VDC;2W曝光时间 1 Hz尺寸和重量132 x 132 x 250 mm;2.4kg线缆标配10m信号输出两线制RS485、直接到电脑、串口太网或数据记录仪工作温度-30~+65℃;0~99.99%RH序号型号备注1SolarSIM-ALB SolarSIM-ALB sensor hardware with 10m RS-485communication cable.3SolarSIM-ALB-SGlobal spectral irradiance measurement option forthe SolarSIM-ALB (280 - 1200nm)4SolarSIM-ALB-S+ Global spectral irradiance measurement option forthe SolarSIM-ALB (1200 - 4000nm) 2COMBOX A USB/RS-485 interface box necessary to connect the SolarSIM-G directly to a laptop/PC. 创新点:SolarSIM-G采用硅和InGaAs光电二极管,加上硬膜滤光片,可以精确地测量几个窄波段的全球太阳辐射光谱和反射光谱。 SolarSIM-ALB 配备专用的分析软件,通过测量可以精确地解决总辐射光谱和反照率光谱。 标准的SolarSIM-G数据输出,如GHI、光谱辐照度和PV光谱校正因子,可用于下面和上面辐照度监测 。 Spectrafy SolarSIM-ALB 太阳光谱反照率仪
  • SolarSIM-G高原太阳光谱辐射仪应用于西藏大学
    2020年11月初,北京博伦经纬公司与西藏大学在西藏珠峰地区、日喀则地区和那区地区安装了三套SolarSIM-G远程高原太阳光谱辐射数据采集系统。
  • 新年新气象—新品UH5700之测定可见光透过率和太阳光透过率
    前言新年新气象,日立推出了新产品UH5700,这是一款台式紫外可见近红外分光光度计,支持液体样品、固体样品透过率、反射率、吸光度的测定,丰富的附件满足多方面测定需求。图1 UH5700实验新软件UH5700使用了新型控制软件UV solutions Plus,操作步骤简单,数据处理功能丰富。图2 软件测定界面测定附件根据JIS R 3106*1测定了玻璃的可见光透过率以及太阳光反射率。使用玻璃滤光片支架附件测定了三种玻璃的透射光谱,附件外观如图所示。*1 JIS R 3106 平板玻璃的透过率、反射率、放射率、太阳能转化率的实验方法图3 玻璃滤光片支架附件详细参数请参考网址:https://www.instrument.com.cn/netshow/sh102446/s924855.htm 样品测定详细数据信息请点击网址:https://www.instrument.com.cn/netshow/sh102446/s924855.htm 总结新的台式紫外可见近红外分光光度计配合新型软件,可以方便快捷的计算出不同玻璃的光谱性能,新的一年将给您的研发领域注入新活力。
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 蓝菲光学成功交付研究所HELIOS® 太阳光积分球均匀光源
    某研究所需要一套能在高色温下输出高亮度的均匀光源。输出将通过准直器发送,以模拟太阳光进行某些测试程序。该系统将与其他单元一起在光学平台上使用,从而要求设备紧凑。蓝菲光学的标准HELIOS系统可满足客户对光谱输出和均匀性的要求。为了使系统能够与光学平台匹配紧凑,需要对产品进行设计更新,产品特点:大功率氙灯光源,在6,000K时亮度输出在100,000 lux以上具有可在3,000K下输出50,000 lux的QTH光源每个灯都装有可变衰减器,可连续调节带有自动快门的光谱仪带有快门和滤光片轮的硅探测器,包括光度学和900 nm带通滤光片定制的泡沫开口端盖可连接到其他光学元件,而不会损失光或污损设备标准的HELIOS(蓝菲光学)尺寸为14 x 28 x 23英寸,但是客户需要更紧凑的配置。 Labsphere(蓝菲光学)能够重新排列组件,使所有组件都能放在17 x 18 x 28英寸的框架中。尽管比标准的HELIOS系统小很多,该系统仍能满足亮度和极高的均匀性要求,从而保证测量的准确性和可靠性。特点结构紧凑,客户能够将Labsphere(蓝菲光学)的系统集成到他们的测试配置中;后半球没有开口孔,在积分球的背面创建了一个宽阔的无缝区域,以实现完美的均匀性;泡沫开口端盖使客户可以轻松地将准直仪连接到积分球上,而不会影响其数据的准确性;宽光谱控制和可用性,可通过Labsphere(蓝菲光学)的HELIOSense软件轻松调整光谱辐射度,色温和波长分布;精确可调的光源使用户可以在任何光照水平下(高达太阳光直射水平)进行测试。同时使用卤钨灯和氙灯时的光源均匀性光谱均匀性均匀性99.07%非均匀性偏差0.25%角度均匀性y均匀性97.93%非均匀性偏差0.44%灯信息安装灯泡色温(K) 照度(lux) 只有卤钨灯305041,790只有氙灯6372160,000同时安装两个灯5335205,000
  • 危险激光“玩具”网上现身 强度超阳光1000倍
    据外媒报道,一种类似星球大战中的激光剑的玩具在互联网上销售,引起了大家的注意。   据称,这种所谓的“玩具”叫做便携式激光器,它产生的激光是所有激光类型中最危险的,强度能达到太阳光的1000倍,不仅可以融化肌肤,致人失明,还能导致癌症。同时,它还可以融化塑料,点着香烟,在45英里之外开启都可以让飞行员眩晕。   清洗视觉服务项目负责人约翰• 科尔顿称:“这种激光器太吓人了。如果使用不当,后果不堪设想。无论如何,这种东西都不应该在网上买卖。”   科尔顿还表示,这种危险性也许正刺激了买家的购买欲望。网上一位订货的买主称:“我刚预定了一个。我要把它放在我的枪盒中,因为它就跟手枪一样危险。”   虽然这种激光“玩具”威力巨大,但是贸易标准负责人克里斯丁• 赫姆斯特却无法阻止英国人从网上进行购买。他表示:“我们很关注这种产品的销售,它应该只用于工业。因为这种激光器是由国外制造,所以我们无法阻止他们在网上的交易。
  • Fluxim发布多通道太阳能电池稳定性测量系统新品
    多通道太阳能电池稳定性测试系统整合了AAA级稳态LED太阳光模拟器和56通道的独立测试单元,配合光强稳定反馈控制系统和光谱调节功能,同时密闭的腔室可对样品的温度、湿度等进行控制,达到ISOS测试要求,从而对太阳能电池的长时间稳定性进行准确的测量与分析。 主要特点: * 集成了A++AA+级/AAA级稳态LED太阳光模拟器; * 寿命超过10000小时的LED灯; * A++级/A级光谱,并可根据应用调节; * 光强稳定性反馈控制系统; * 多达56通道的多路数据采集系统; * 高精度JV和稳定性测量; * 最大功率点追踪,Voc和Jsc每个通道独立选择; * 扫描电压±10V; * 最大电路50mA/通道; * 温度控制范围RT~150℃; * 测试环境控制(氧气、湿度度);创新点:1)多达56通道测试; 2)整合3A级LED太阳光模拟器 3)温度、湿度和光照强度控制 4)长时间太阳能电池稳定性测试 5)LED灯泡长寿命,A级或A+级光谱 6)自动化程序控制 多通道太阳能电池稳定性测量系统
  • 钙钛矿太阳能电池研究的前8种需要仪器:在科学期刊上发表文章的全面指南(上)
    对于希望在重要科学期刊上发表的钙钛矿太阳能电池研究者来说,某些仪器对于生成高质量、可发表的数据至关重要。以下是列出这些关键仪器的表格:1. 钙钛矿太阳能电池研究的太阳光模拟器1.1 什么是太阳光模拟器?定义:太阳能模拟器是一种人工光源,模拟自然阳光的光谱功率分布、强度和其他特性。它主要用于需要受控且一致的阳光条件的研究和测试环境。类型:有各种类型的太阳能模拟器,如稳态和脉冲型,主要差异在于它们提供光的方式(持续或短暂爆发)。1.2 钙钛矿太阳能电池研究中的重要性测试和特性分析:太阳光模拟器在评估钙钛矿太阳能电池性能中至关重要。他们提供了一个受控环境来测量效率、稳定性和对不同光强的反应等参数。测试的标准化:使用太阳光模拟器确保了太阳能电池在标准化条件下进行测试,使不同研究和实验室之间的结果比较更容易。1.3 钙钛矿电池太阳光模拟器的关键特性光谱匹配:模拟器的光应尽可能接近太阳光谱,因为电池的性能可能会随着不同波长的变化而变化。辐照度水平:精确控制光强是必要的,因为它会影响电池的功率转换效率和其他指标。均匀性:光的均匀分布对于确保一致和可靠的测试结果至关重要。1.4 挑战复制真实的阳光:可复制阳光的所有方面,包括其可变性,是一项挑战。长期稳定性测试:模拟阳光长期暴露的效果需要模拟器的长时间和一致的运行。1.5 在钙钛矿太阳能电池开发中的应用材料优化:研究人员使用太阳能模拟器测试不同钙钛矿组成对阳光的反应。设备工程:这对于测试钙钛矿太阳能电池的整体设计和架构至关重要。寿命和退化研究:理解这些电池在模拟阳光条件下随时间的退化情况。1.6 未来方向增强的模拟技术:正在进行的进步集中在更好的光谱匹配和包括温度和湿度等环境因素。高通量筛选:在自动化测试设置中使用,以快速评估多种钙钛矿配方。总的来说,太阳能模拟器在钙钛矿太阳能电池研究领域是重要的工具,使科学家能够在模拟真实世界阳光暴露的受控条件下,精确评估和优化这些有前途的材料。2. 钙钛矿太阳能电池研究的I-V曲线跟踪仪在钙钛矿太阳能电池研究中应用I-V曲线跟踪仪是评估和理解这些光伏设备性能特性的基本方面。以下是概述:2.1. 何为I-V曲线跟踪仪?定义:I-V (电流-电压) 曲线跟踪仪是一个用来测量光伏电池电气特性的电子仪器。它绘制出在不同条件下电池上的电流 (I) 与电压 (V) 的关系。功能:它提供了一个图形表示,显示太阳能电池的电流输出如何随电压变化。2.2. 在钙钛矿太阳能电池研究中的重要性性能分析:I-V曲线跟踪仪在钙钛矿太阳能电池研究中的主要用途是分析电池的性能。这包括确定参数,如开路电压(Voc)、短路电流(Isc)、最大功率点和填充因子。效率计算:这些测量对于计算太阳能电池的总体效率至关重要。2.3. 与钙钛矿电池相关的关键特性灵敏度和准确性:由于钙钛矿材料的性质,需要高灵敏度和准确性。动态测试能力:鉴于钙钛矿太阳能电池可能的不稳定性和滞后效应,进行动态I-V测量的能力是需要的。2.4. 挑战和注意事项滞后现象:钙钛矿太阳能电池经常在其I-V曲线中表现出滞后,这可能使得测量和解释其性能变得复杂。环境因素:温度、湿度、光强对钙钛矿太阳能电池I-V特性的影响是一个活跃的研究领域。2.5. 在钙钛矿太阳能电池开发中的应用材料和工艺优化:研究人员使用I-V曲线跟踪仪来测试不同的制造方法、材料和电池结构如何影响电性能。退化研究:通过监测I-V特性随时间的变化,可以研究长期稳定性和在运行条件下的退化。2.6. 进步和未来方向自动化和高通量测试:I-V曲线跟踪技术的进步正在朝向自动化系统发展,允许对多个电池进行高通量测试,加快研发过程。与其他测量技术的整合:将I-V曲线跟踪与其他分析技术,如光致发光或阻抗谱,结合起来,以更全面地理解钙钛矿太阳能电池。在变化环境条件下的实时监控:增强I-V曲线跟踪仪以在变化的光强、温度和湿度等环境条件下监控实时性能,这对于理解钙钛矿太阳能电池在实际条件下的实用性能至关重要。总之,I-V曲线跟踪仪是钙钛矿太阳能电池研究中需要的工具。它为这些电池的电性能和效率提供了关键的见解,帮助研究人员优化材料和工艺,并理解钙钛矿太阳能电池在不同条件下的行为和稳定性。随着钙钛矿太阳能电池背后的技术的发展,I-V曲线跟踪仪在这个激动人心的研究领域中的能力和应用也将随之发展。3. 钙钛矿太阳能电池研究的量子效率测量系统当量子效率(QE)测量系统应用于钙钛矿太阳能电池研究时,是理解和优化这些新型光伏设备的光响应和总体效率的必要工具。以下是其角色和重要性的概述:3.1. 什么是量子效率测量系统?定义:量子效率测量系统是一种用来评估太阳能电池量子效率的仪器。量子效率指的是太阳能电池将光子转化为电子的能力,这对于确定其功率转换效率至关重要。类型:主要有两种 - 内部量子效率 (IQE) 和外部量子效率 (EQE) 测量系统。IQE考虑到电池吸收的光,而EQE测量转化为电子的入射光子的比例。3.2. 在钙钛矿太阳能电池研究中的重要性光响应分析:QE测量提供了关于钙钛矿太阳能电池在不同波长下如何有效地将光转化为电的见解。这对于理解电池在太阳光谱中的性能至关重要。材料和设计优化:通过分析QE数据,研究人员可以优化钙钛矿太阳能电池的材料成分、结构和设计,以提高其效率。3.3. 关键特性和考虑因素光谱范围:广泛的光谱范围对于评估电池在整个太阳光谱中的性能至关重要。准确性和灵敏度:由于钙钛矿电池可能由于其特殊的材料性质而表现出复杂的行为,因此高准确性和灵敏度至关重要。3.4. 钙钛矿电池的QE测量挑战不稳定性和滞后:钙钛矿材料可能表现出不稳定性和滞后效应,这可能影响QE测量的准确性和重复性。环境敏感性:钙钛矿太阳能电池对环境因素如湿度和温度敏感,这可能会影响QE测量。3.5. 在钙钛矿太阳能电池开发中的应用效率基准测试:QE测量是用于将钙钛矿太阳能电池的效率与其他光伏技术进行基准测试的标准方法。损失分析:它有助于识别和量化太阳能电池内部的损失机制,比如非辐射复合损失。层优化:研究人员使用QE数据来优化太阳能电池结构中的各个层,如吸收层、传输层和接触层,以实现更好的光吸收和电子传输。3.6. 进步和未来趋势整合新的测量技术:QE测量系统的进步包括整合其他技术,如时间分辨光致发光,以深入了解载流子的动态。高通量和原位测量:开发更快、更自动化的QE系统,用于高通量筛选材料,以及在制备过程中进行原位实时分析。环境条件模拟:增强QE测量系统的能力,以模拟各种环境条件,使得钙钛矿太阳能电池在实际运行环境中的性能评估更为真实。总之,量子效率测量系统是钙钛矿太阳能电池研究的基础工具。它提供了关于这些电池将光转化为电能的效率的关键见解,指导材料选择、电池设计和工艺优化。随着钙钛矿太阳能电池领域的不断发展,QE测量的作用在推动太阳能电池效率和性能的边界方面仍然至关重要。待续:钙钛矿太阳能电池前8需要仪器:科学期刊发表文章全面指南(中)
  • 全光谱太阳能电池诞生可吸收所有波长阳光
    英国《工程师》网站近日报道,美国能源部劳伦斯伯克利国家实验室的研究人员已经研制出了一种廉价的太阳能电池,可以响应几乎所有太阳光谱。科学家称,开发的多波段光电设备是基于砷镓氮化物,这样制成的是一种简单的太阳能电池,很容易制备。   在该项目中,研究人员使用了砷镓氮化物,其成分类似于最普通的半导体:砷化镓。据介绍,将砷替换为氮是全光谱太阳能电池的关键一步。经过过去10年的努力,该实验室成功研发了一种频带反交叉模型,用于全光谱太阳能电池的研发。经过多次的试验之后,研究人员确定了最理想的合金组合,并计算出了各种金属在合金中的精确比例。试验证明,利用该方法制备全光谱太阳能电池很简单,使用有机金属化学气相沉积法就行,这是半导体产业最常见的制造技术之一,因此生产成本较低。
  • 2023 Nano-Micro (IF:26.6)阳军亮團隊通过晶化和定向调制提高刮刀法钙钛矿太阳能
    在太阳能技术不断发展的领域中,钙钛矿太阳能电池(PSCs)因其出色的光电特性而成为一个有前途的竞争者。然而,挑战在于开发可商业化的可扩展制造技术。在一项重大突破中,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队引入了一种新型添加剂——甲胺盐酸盐(MACl),以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。这种创新的方法极大地改善了钙钛矿薄膜的质量,使其具有令人瞩目的23.14%的转换效率(PCE)。钙钛矿太阳能电池的潜力: 钙钛矿太阳能电池因其高吸收系数、长载流子扩散长度和低陷阱密度而成为密集研究的对象。这些特性使得PSCs的认证PCE达到25.7%。然而,大多数高效率的PSCs是通过实验室规模的旋涂沉积制备的。虽然这种方法在受控实验室环境中被证明是有效的,但对于工业应用而言,它不具备可扩展性。因此,发展可扩展的大面积制造技术对于PSCs的商业化至关重要。可扩展性的挑战: PSCs可扩展的两步序列沉积制造的电池的转换效率远远落后于最先进的旋涂法制备的电池。两步序列沉积工艺涉及有机盐与铅卤化物反应,绕过了钙钛矿薄膜在一步过程中不可控的成核过程。然而,中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究重点就是解决这种性能差异。甲胺盐酸盐(MACl)的作用: 该研究团队引入MACl以调节两步序列刮刀法钙钛矿薄膜的晶化和定向。MACl在改善钙钛矿薄膜质量方面起着关键作用。它增加了晶粒尺寸和结晶度,从而降低了陷阱密度并抑制了非辐射复合。非辐射复合是太阳能电池中的一个重要损耗机制,吸收光能转化为热能而不是电能。通过抑制非辐射复合,MACl显著提高了太阳能电池的效率。此外,MACl促进了钙钛矿薄膜(100)面向上的优先定向。这种定向更有利于载流子的传输和收集,从而显著提高了填充因子。填充因子是太阳能电池的一个关键参数,代表电池的最大可获得功率,并指示电池的质量。填充因子越高,太阳能电池的效率越高。令人印象深刻的结果: 引入MACl导致基于ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag结构的PSCs取得了23.14%的最佳转换效率和优异的长期稳定性。该结构是PSCs的常见架构,其中ITO/SnO2是电子传输层,FA1-xMAxPb(I1-yBry)3是钙钛矿吸收层,Spiro-OMeTAD是空穴传输层,Ag是电极。该研究团队还分别实现了1.03 cm2的PSC和10.93 cm2的小型模块的卓越PCE,分别达到21.20%和17.54%。这些结果代表了大规模两步序列沉积高性能PSCs在实际应用中的重大进展。研究的影响: 中南大学物理与电子学院副院长阳军亮教授所率领的研究团队的研究在钙钛矿太阳能电池的可扩展制造技术发展中迈出了重要一步。引入MACl来调节钙钛矿薄膜的晶化和定向被证明是一个改变游戏规则的举措,极大地改善了钙钛矿薄膜的质量,并显著提高了转换效率。此外,该研究团队采用了Enlitech光焱科技的SS-X太阳光模拟器来测试太阳能电池的性能。SS-X模拟器采用氙气短弧灯作为宽带光源,具备A+级别的光谱模拟能力,并提供多种光斑面积选择,范围从50mm到220mm。该模拟器具有独家专利的自动变光强功能,精度高达1%。它还具备可变光谱功能,适用于测试叠层太阳能电池。使用先进的等离子沉积技术制造的AM1.5G滤光片确保光谱精度高,并具有长使用寿命。SS-X模拟器的优越光谱等级使其比其他模拟器更适合表征各种新型太阳能电池,例如低带隙有机太阳能电池和钙钛矿/Si串联太阳能电池。SS-X模拟器能够提供稳定且连续的照射强度,避免由于被测试太阳能电池的响应时间较慢而引起的表征误差。两步刮刀法制备的钙钛矿薄膜的表征。 a. 湿态原始钙钛矿薄膜的XRD图谱。 b. 热退火后的钙钛矿薄膜的XRD图谱。 c. 稳态光致发光(PL)发射光谱。 d. 时间分辨PL衰减曲线。使用不同MACl比例制备的两步刮刀法钙钛矿薄膜的PSCs的光伏性能和光电特性。a. 典型PSCs的J-V曲线和相应参数。 b. PSCs的Voc光强依赖关系。 c. PSCs的莫特-肖特基图谱。 d. 填充因子限制包括非辐射损耗(蓝色区域)和传输损耗(粉色区域)。 e. 钙钛矿薄膜的空间电荷限流(SCLC)测量。 f. EIS的Nyquist图谱。Performance of OAI-modified PSCs and mini-module. a. J-V曲线。 b.在最大功率点(MPP)测量的稳定功率输出。 c. 在约30%相对湿度的环境条件下,未封装的OAI改性器件的长期稳定性测量。 d. 1.03 cm2 PSCs和10.93 cm2 mini-module的J-V曲线。插图为1.03 cm2 PSCs和10.93 cm2 mini-module的图片。
  • 科学家研发出基于光纤的三维隐蔽型太阳能电池
    可再生能源和绿色能源是驱动未来经济发展的动力。作为重要的可持续能源技术之一,太阳能电池将成为主要能源以满足全球对能源的需求。在各类太阳能电池中,染料太阳能电池以其较高的性价比而得到了广泛应用。   传统的染料太阳能电池利用纳米颗粒和纳米线来提高其光电转换效率。然而这些都是基于二维的平面结构,从而限制了此类光电池效率的进一步提高。美国佐治亚理工学院(Georgia Institute of Technology)王中林教授领导的研究小组研制开发出纳米和光纤技术相结合的三维染料太阳能电池。其独特的三维结构大大提高了同类太阳能电池的光电转换效率。这一最新成果近期发表在德国《应用化学》(Angewandte Chemie) 上。   王中林教授,魏亚光博士和研究生本杰明温超布将太阳能电池结构和光纤技术结合在一起,利用纳米结构实现了三维光电池的设计。光纤和纳米线混合结构的三维染料太阳能电池主体结构包括光纤和垂直生长于光纤表面的氧化锌纳米线阵列(如图所示)。太阳光从光纤一端延轴向入射并传播。三维太阳能电池的核心设计思想在于入射光在光纤内传播过程中多次反射。每一次反射过程中,入射光会通过氧化锌纳米线与其表面附着的染料相互作用。多次反射增加了入射光子与纳米线表面的染料相互作用的次数,从而大大增加了对光线的吸收以及光电子的输运效率。实验结果表明,对于同一个三维染料太阳能电池,相对于光线照射在光纤侧壁,光线延轴向传播将太阳能电池的能量转换效率提高了六倍。在一个太阳(AM 1.5)光照下,基于氧化锌纳米线的三维染料太阳能电池的光电转换效率达到3.3%。这一效率比此前报道的同类型二维染料太阳能电池的最高效率高出120%,比使用带有二氧化钛薄膜涂层的氧化锌纳米线的染料太阳能电池效率高出47%。   新型的三维染料太阳能电池在科研和实际应用中具有以下突出特点。从物理学的角度来看,以纳米线为基础的二维染料太阳能电池的表面面积较小,从而限制了染料的加载和对太阳光的吸收。增加纳米线的长度可以增大表面积,但纳米线的长度受到材料制备和电子扩散长度的限制。三维染料太阳能电池的独特结构克服了上述困难:入射太阳光在光纤内多次反射,在不增加电子输运距离的情况下多次与纳米线表面的染料相互作用,大大增加了对光线的吸收以及光电子的输运效率。在应用上,三维染料太阳能电池具有以下主要优点:首先,光纤的使用使得太阳能电池得以远程工作和具有高移动性。它可以工作在太阳光无法到达的地层和海洋深处 其次,三维染料太阳能电池可以有更小的尺寸,更高的效率,更大的流动性,更可靠的设计,更灵活的形状,并有可能降低生产成本 第三,三维染料太阳能电池可以在不同的光强下有效工作,具有较高的动态工作范围。此研究成果为设计使用光纤和有机、无机材料混合结构的三维高效多功能太阳能电池开辟了崭新方法和思路。   光纤和纳米线混合结构的三维染料太阳能电池结构和基本工作原理示意图。A)三维染料太阳能电池包括光纤和垂直生长于光纤表面的氧化锌纳米线阵列。图中上半部为传统光纤用于光线的远程传输,下半部为太阳能电池用于光电转换。B) 三维染料太阳能电池的细节结构。
  • 爱美的你知道防晒霜对阳光中紫外线防护的具体意义吗?
    紫外线是隐形杀手,具有极强的破坏性,尤其对生物的细胞结构产生较大损伤,如果过度照射会造成皮肤癌等多种皮肤问题 太阳光中除了可见光外,还有大约1%的紫外光。其中波长为290nm以下的短波紫外线被高空中的臭氧层所吸收,只有波长为290--400nm的紫外线能够照射到地面,这就是太阳光中可能伤害皮肤的主要射线。目前是针对紫外线防晒的产品很多,防晒霜可谓是最为常见的一种,那么他们有是如何用起到作用的?  防晒霜能对皮肤起防晒作用,主要是其中添加了一些能阻挡紫外线作用的成分,当阳光照射到皮肤上,有些成分就能遮挡住紫外线,使紫外线散射,从而避免紫外线导致的危害。一般化妆品中的无机盐如二氧化钛、滑石粉和高岭土等就是紫外线散射剂。另外还有些物质能吸收紫外线,将其转变成热能或无害的长波辐射,同样也可以降低紫外线的损伤力,起到保护皮肤的作用,这就是所谓的紫外线吸收剂。  防晒用品的防晒能力可以用防晒系数SPF来表示,SPF值的计算方法是:假设在某段时间内紫外线的强度是一个恒定值,一个没有任何防晒措施的人暴露在阳光下经过曲后皮肤会变红,当他采用SPF值为n的防晒品,用量2mg/cm2时,在n×卫小时的时间后他的皮肤才会变红。  中波紫外线(UVB),波长在275--320nm之间,又称为中波红斑效应紫外线。UVB紫外线对人体具有红斑作用,太阳光中的UVB它可到达真皮层,晒伤皮肤,导致皮肤脱皮、红斑、晒黑等现象,故而SPF是防晒用品对阳光中的UVB的防御能力指数。因为太阳光中能够照射到地球上的紫外线波长大于290nm,所以本文测量的是各种防晒霜在波长290--320nm范围内的透光率。  资料来源:http://www.kzwxcsy.com/  标准集团(香港)有限公司
  • 我公司推出《Solrs-RSR型旋转式太阳标准辐射监测系统》
    Solrs-RSR型旋转式太阳标准辐射监测系统 Solrs-RSR型旋转式太阳标准辐射监测系统主要用于光伏太阳能发电系统而设计的,可测量说风向、风速、温度、湿度、太阳总辐射、太阳斜坡辐射、太阳直接辐射、太阳散射辐射等,主要为太阳能发电、资源评估、太阳辐射监测提供数据分析功能,是一款性价表较高的产品。 太阳光到达地球表面的辐射由两部分组成:直射光和由于大气中的云和颗粒物造成的散射光。直接辐射的测量需要利用直接辐射表安装在太阳跟踪器上,而散射的测量需要手动或者自动的遮挡住太阳的直射光,这两种辐射的测量都是比较昂贵的。 旋转式太阳标准辐射监测系统利用简单可靠、响应迅速的光电二极管来测量出总辐射GHI,采用旋转遮挡环的迅速遮挡测量散射辐射DIFF,并通过下面的公式计算出直接辐射DNI。 公式:GHI=DIFF+DNIcos (Z)太阳的高度角/天顶角传感器部分:美国NRG #40风速传感器 直径:51mm,高度:51mm 启动风速:0.78m/s 测量范围:0~70 m/s 工作温度:-55℃~60℃ 工作湿度范围:0~100%RH 重量:0.3kg美国NRG #200P风向传感器 测量范围:0~360° 精确度:电位计线性〈1% 死区:最大8° 启动风速:1m/s 工作温度:-55℃~60℃ 工作湿度范围:0~100%RHCampbell CS215环境温湿度传感器 温度量程:-40℃~70℃ 精度:±0.3℃(25℃时),±0.4℃(5℃~40℃),±0.9℃(-40℃~70℃) 响应时间:120 s(63%,1m/s) 输出分辨率:0.01℃ 湿度量程:0~100% RH(-20℃~60℃时) 精度(25℃时):±2% (10~90%RH) ;±4% (0~100%RH) 温度依赖性:好于±2%(20℃~60℃时) 短期滞后:<1.0% RH 长期稳定性:好于±1%RH/年 响应时间:20 s(63%,静止空气) 输出分辨率:0.03% RH 校准:NIST、NPL 电压:6~16VDC(推荐使用数据采集器的12VDC接口) 电流消耗:静止状态120μA,测量状态1.7mA(持续0.7秒) 工作温度:-40℃~70℃ 尺寸:长18cm,直径1.2cm/1.8cm(探头端/电缆端)荷兰Kipp&Zonen CMP10/CMP11总辐射/倾斜总辐射 ISO标准等级:次基准(Secondary Standard) 光谱波长(50%点):285~2800nm 最大辐射强度:0-4000W/m2 灵敏度:7~14μV/W/m2 水平泡精度:0.1° 响应时间(63%):1.7s 响应时间(95%):5s 阻抗:10~100Ω 热辐射偏移(200W/m2):7W/m2 温度偏移(5K/h):2W/m2 方向误差(在80o,1000W/m2时):10W/m2 温度响应(-10℃~40℃): 1% 非稳定性(年变化):0.5% 非线形误差(100~1000W/m2):0.2% 倾斜误差(0~90°,1000W/m2):0.2% 信号输出(0~1500W/m2):0~20mV 光谱选择性(350~1500nm):3% 视角:180° 工作环境:-40℃~80℃,0~100%RH 防护等级:IP67太阳直接辐射和太阳散射辐射 旋转辐射采用LI200X硅晶体短波辐射传感器由Li-Cor公司生产 光谱范围:400~1100nm  响应时间:10μs 精度:±3% 灵敏度:0.2kW/m2/mV 线性:在3000 W/m2时,大偏差能达到为1% 余弦响应:±7%(太阳高度角10°时) 温度依赖性:0.15%/℃ 精度:在自然采光下,绝对误差±5%,通常为±3% 分流电阻:在40.2~90.2Ω可调节 工作环境:-40~65℃,0~100% RH 尺寸:2.38 cm×2.54 cm 重量:28gCR1000数据采集器 CR1000数据采集器是Campbell数据采集器里面性价比最高的一款。它提供传感器的测量、时间设置、数据压缩、数据和程序的储存以及控制功能,由一个测量控制模块和一个配线盘组成,具有强大的网络通讯能力。 主要技术参数:  最大扫描速率:100Hz  模拟输入:16个单端通道(8个差分)  脉冲通道:2个  工作温度: -25~50℃(标准),-55℃~85℃(扩展)  内存:标准为4M内存,可扩展至2G  供电电压:9~16VDC  A/D转换:13bit  微型控制器:16-bit H8S Hitachi,32-bit内部CPU
  • 涂料氙灯老化试验与紫外光老化试验差异分析
    标准集团(香港)有限公司专业生产(供应)销售涂料氙灯老化试验机列产品,公司具有良好的市场信誉,专业的销售和技术服务团队,凭着经营涂料氙灯老化试验机系列多年经验,熟悉产品的各项技术支持,供货周期短价格最优,欢迎来电咨询!一、自然气候老化试验自然气候老化试验方法是国内外广泛采用的方法。其主要原因是自然气候老化实验结果更符合实际,所需的费用较低而且操作简单方便。虽然我们可以在任何地方进行自然气候老化试验,但国际上比较认可的试验场地是美国的佛罗里达,因为其阳光充足。但自然气候老化试验的不足之处是试验需要的时间长,试验人员可能没有这么多年的时间等待一个产品的测试结果。另外,即使是佛罗里达,气候不可能年复一年的完全相同,故试验结果的再现性也不理想。二、氙弧辐射试验氙弧辐射试验被认为是最能模拟全太阳光谱的试验,因为它能产生紫外光、可见光和红外光。正因为如此,在国内外被认为是最广泛采用的方法。GB/T1865-1997(等同于 IS0113411:1994)详细地介绍了这种方法。但这种方法也有它的局限性,即氙弧灯光源稳定性及由此带来的试验系统的复杂性。氙弧灯光源必须经过过滤以减少不期望的辐射。为达到不同的辐照度分布可有多种过滤玻璃类型供选择。选用何种玻璃取决于被测试材料类型及其最终用途。改变过滤玻璃可以改变透过的短波长紫外光类型,从而改变材料遭受破坏的速度和类型。通常运用的过滤有 3 种类型:日光、窗玻璃和扩展的紫外光类型(国标 GB/T1865-1997 中提到的方法 1 和方法 2 对应于前两种类型)。典型的氙弧辐射都配备一个辐照度控制系统。辐照度控制系统在氙弧辐射试验中很重要,因为氙弧灯光源的光谱自身内在稳定性就比荧光紫外灯光的光谱差。国外有人考察了一盏新氙弧灯和一盏用过 1000h 的旧氙弧灯光谱的区别。结果发现,光谱能量分布不但在光源的长波长范围随灯的使用时间延长变化显著,而且在短波长的范围内也有明显变化。这种变化引起的原因是氙弧灯的老化,是它的自身内在特性。对这种变化也可采取多种补救措施。例如提高更换灯管的频度以减轻灯光老化的影响。或者可用传感器控制辐照度。尽管存在因灯老化引起的光谱能量分布变化,氙弧灯仍不失作为耐候性和耐日光照射试验的一种可靠的和反映实际的光源。大多数氙弧辐射试验在模拟润湿条件时采用水喷淋和/或温度自动控制系统(国标 GB/T1865-1997 提出的"表面用水喷淋")。水喷淋方法的局限是当温度相对较低的水喷到温度相对较高的试板上时,试板会冷却下来,这会使材料遭破坏的过程减缓。在氙弧辐射试验中,要求使用高纯度的水以防止试板表面形成沉积物。因此运行费用较高。三、紫外光灯照射试验紫外光灯照射老化试验利用荧光紫外光灯模拟太阳光对耐久性材料的破坏性作用。这与前面提到的氙弧灯有区别,荧光紫外灯在电学原理上与普通的照明用冷光日光灯相似,但能生成更多的紫外光而非可见光或红外光线。对于不同的曝晒应用,有不同类型的具有不同光谱的灯供选择。UVA-340 型的灯在主要的短波长紫外光光谱范围能很好地模拟太阳光。UVA-340 灯的光谱能量分布(SPD)与从太阳光谱中 360nm 处分出的光谱图很近似。UV-B 型灯也是通常使用的加速人工气候老化试验用灯。它比 UV-A 型灯对材料的破坏速度更快,但其比 360 nm 更短的波长能量输出对很多材料会造成偏离实际的试验结果。辐照度(光强度)控制对于获得准确而有重现性的结果是很有必要的。大多数紫外光老化试验装置都配备了辐照度控制系统。这些精确的辐照度控制系统使用户做试验时能选择辐照度量。通过反馈控制系统,辐照度能被连续和自动地监控并精确地得到控制。控制系统通过调节灯管的功率而自动地对因灯管老化或其他原因造成的照度不足进行补偿。荧光紫外光灯因自身内在的光谱稳定性使辐照度控制简单化。所有的灯源随时间老化都会变弱。但荧光灯与其他类型的灯不同,它的光谱能量分布不会随时间变化。这一特点提高了试验结果的重现性,因而也是一大优势。有试验表明,一盏使用了 2h 的灯和一盏使用了 5 600h 的灯在配备了辐照度控制的老化试验系统中的输出功率无明显区别,辐照度控制装置能够维持光强度的恒定。此外,它们的光谱能量的分布也无变化,这同氙弧灯有很大区别。使用紫光灯老化试验的一个主要优势在于它能够模拟较为符合实际的室外潮湿环境对材料的破坏作用。材料置于室外时,据统计每天至少有 12 h 频繁地遭受潮湿作用。因为这种潮湿作用大多表现为凝露的形式,因而在加速人工气候老化试验中采用一个特殊的冷凝原理来模仿室外潮湿。在这样的冷凝循环过程中,要加热试验箱底部的水槽以产生蒸汽。热蒸汽保持试验箱的环境在高温下有 100%相对湿度。试验箱设计时,要使试板实际上构成试验箱的侧壁。这样试板的背面暴露在室温的室内空气下。室内空气的冷却作用使被测的试板表面的温度比蒸汽温度降低几度。这几度的温差可使水在冷凝循环过程中连续不断地降到被测试表面。如此产生的冷凝水是性质稳定的、纯净蒸馏水。这种水能提高实验结果的重现性,排除水沉积物污染问题并且简化试验设备安装和操作。因为材料在室外受潮的时间一般很长,所以典型的循环冷凝系统最少要有 4 h 的试验时间。冷凝过程在加温条件下进行(50℃),就会大大地加快潮湿对材料的破坏速度。长时间的、加热条件下进行的冷凝循环比其他诸如水喷淋、浸渍和其他高湿度环境的方法更能有效地再现潮湿环境破坏材料的现象。四、结 语虽然国标规定且国内目前通行的耐老化试验方法是氙弧辐射,但在国外氙弧辐射和紫外光老化试验都是应用广泛的试验方法。这两种方法是基于完全不同的原理。氙灯照射试验箱仿制全部的太阳光谱,包括紫外光、可见光和红外光,其目的是模拟太阳光。而紫外光老化试验并不企图仿制太阳光线,而只是模仿太阳光的破坏效果。它是基于这样的原理,长期在室外暴露的耐久性材料,受短波紫外光照射引起的老化损害最大.另外,即便是在自然气候下进行老化试验,还有一种加速的方法,就是将被测试样板装在能随太阳升起降落而转动的样板架,使样板大部分时间保持被阳光直射的状态,以获得加速试验结果。20 世纪 80 年代前采用碳弧灯或直接用紫外灯照射,进行平行试验,也可缩短检验周期,究竟哪种试验方法是最好的呢?没有简单的答案。选择哪种方法取决于要测试的材料,材料的最终应用场合,所关心的材料遭破坏的模式和财力等方面的因素。更多关于 氙灯老化试验机:http://www.standard-group.cc/productlist/
  • ‘阳光动力2号’来了,你对太阳能材料了解多少?
    2015年3月29日,阳光动力官方微博发布消息称,&ldquo 今早5点,&lsquo 阳光动力2号&rsquo 的飞行员之一贝特朗· 皮卡尔将驾机从缅甸曼德勒前往重庆。预计到达重庆江北机场时间为明天凌晨1点。&rdquo 随后,飞机将于当天继续飞往南京,预计到达时间为3月31日夜里或4月1日凌晨。 重庆是&lsquo 阳光动力2号&rsquo 的这次环球之旅一个目的地,&lsquo 阳光动力2号&rsquo 的此次旅程温差极大,从-41摄氏度~50摄氏度,飞行高度也有9000米,超越珠穆朗玛峰。是什么保障他们安全飞行?这就要把目光投向飞机的材料,比如光伏电池、碳纤维及其他新型材料。 在此,我们主要关注太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池材料可分为:1、硅太阳能电池材料;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶材料太阳能电池等。 如何针对太阳能电池及其他材料进行检测呢?2015年4月14日下午14:00,安捷伦公司分子光谱应用工程师张晓丹将通过仪器信息网网络讲堂在线为大家讲解针对太阳能材料检测领域的整体解决方案,涉及太阳能电池盖片、EVA膜透过率测试、镀膜测试、能隙测定等。 预了解更多内容,请扫描二维码报名。 本次会议报名及参会均不收取费用,欢迎想太阳能材料检测领域技术信息的网友报名。
  • 5万亿设备更新:高等职业学校光伏发电技术与应用专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。《方案》明确了5方面20项重点任务,其中在实施设备更新行动方面,提到要提升教育文旅医疗设备水平,明确指出将“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平;严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备……”以下为仪器信息网整理的高等职业学校光伏发电技术与应用专业仪器设备装备规范,以飨读者。表1 基础实验仪器设备装备要求实 训 教 学 场 所教学实训 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范电 工 电 子 实 验 室1.理解基 本电路原 理;2.会识读 电气图纸; 3.会根据 测量信号 分析电路 工作特性; 4.掌握常 用电子元 器件识别 的基本检测方法;5.掌握常 用电子仪 器仪表的 使用方法。1电 工 电 子 实 验 台1.能验证电路基本定理定律;2.具有基本电参数的测量功能;3.可完成 R、L、C 等电路元件的特性分析及 电路实验;4.具备单相、三相交流电路的实验功能;5.具有模拟电子电路、 具有数字电子电路的 实验功能;6.具有漏电保护功能。台10202万用表1.直流电压: (0~25)V;20000Ω/V (0~500)V;5000Ω/V; ±2.5%;2.交流电压:(0~500)V;5000Ω/V;±5.0%; 3.电阻: 量程,0~4kΩ~40kΩ~400kΩ~ 4MΩ~40MΩ 25Ω 中心; ±2.5%;4.音频电平: -10dB~+22dB。台10203信号发 生器1.频率范围: 0.1Hz~1MHz;2.输出波形: 正弦波、方波、三角波、脉冲 波;3.输出信号类型: 单频、调频、调幅等; 4.外测频灵敏度:100mV;5.外测频范围: 1Hz~10MHz;6.输出电压: ≥20Vp-p(1MΩ) ,≥10Vp-p(50Ω);7.数字显示; TTL/CMOS 输出;台10204双踪示 波器1.频宽: 20MHz;2.偏转因数: 5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式: CH1、CH2、ALT、CHOP、 ADD ;5.扫描时间因数: 0.2μs/div~0.5s/div; 6.触发方式: 自动、常态、TV-H、TV-V;7.触发源: 内(CH1,CH2,交替)、外、电源; 8.触发灵敏度:内触发不小于 1div,外触 发不小于 0.5Vp-p。台10205交流毫 伏表1.测量范围: 0.2mV~600V;2.频率范围: 10Hz~600kHz;3.电压测试不确定度: ±1%;4.输入阻抗: 1MΩ。台1020表2 基础实训仪器设备装备要求实 训 教 学 场 所教学实训 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范电气控制与PLC控制实训室1. 了解单 相、三相 交流电机 的基本电 气控制原 理 与 方 法 。 2. 掌 握 电气系 统 一般故 障的产生 原因与故 障排除方 法;3. 熟 悉 PLC 基 本 指令编程 方法,掌 握 用 PLC 控制简单 对象的方 法 和 技 能。1电气控 制 与 PLC 控 制实验 装置1.具有可靠的漏电保护功能;2.配有常用低压电器,可在该装置上完成 低压电器控制实验实训项目;3.采用可编程逻辑控制器进行控制实训项 目;4.输入电源:三相四线制,380V±38V, 50Hz;单相 ,220V±22V,10A,50Hz;直 流电源,24V/2A;5.I/O 点>20;6.可进行 PLC 硬件接线与软件编程功能, 能对 PLC 进行安装与维护操作;7.有可用 PLC 控制的控制对象,实现其动 作执行;8.有可供开放式连接的按钮及 I/O 量和模 拟量输入传感器。套1020电力电子实训室1.理解常 见电力电 子器件工 作原理; 2.理解常 见整流电 路工作原 理;3.理解逆 变电路工作原理。1电力电 子实训 装置1.具有可靠的漏电保护功能;2.可进行单相、三相不可控整流电路连接 与测试实验;3.可进行单相、三相可控整流电路连接与 测试实验;4.可进行单相桥式有源逆变电路实验; 5.可进行单相交流调压电路实验;6.可进行三相交流调压电路实验;7.可进行六种直流斩波电路(Buck、Cuk、 Boost、Sepic、Buck-Boost、Zeta)的电路 实验;8.可进行单相交直交变频电路实验;9.可进行正弦波(SPWM)逆变电路实验; 10.可进行全桥 DC/DC 变换电路实验。台1020表3 专业实验仪器设备装备要求实 训教 学 场 所实训教学目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准代码备注合格示范光 伏 原 理 及 应 用 实 验 室1. 了解光照 条件和其它环 境因素对太阳 能电池发电量 的影响;2.了解光伏产 业链不同环节 的生产工艺流 程;3.了解光伏发 电的应用;3.理解控制器、蓄电池、 逆变器的工作 原理,掌握其 使用方法;4.能进行光伏 发电系统的安 装与调试;5.能进行太阳 能电池的电性 能测试。1光伏电 池特性 测试仪1.能测试不同光强度下完整的 I-V 曲线、P-V 曲线、开路电压和短路 电流;2.能测试太阳能电池负载特性及转 换效率等。台20402太阳光 测试仪1.具有检测太阳光强度的功能;2.具有检测太阳光有效辐射 的功 能;3.具有检测分析太阳光光谱 的功 能。套10203环境检 测仪能够检测风速、温度、露点、湿度、 气压、海拔高度等环境参数套124光伏产 品展示 柜(室)1.展示硅砂、工业硅、太阳能级硅、 硅块、硅棒、硅片等原材料;2.展示各型电池片;3.展示单晶硅、多晶硅和非晶硅等 光伏组件以及其它类型光伏电池;4.展示典型光伏产品,如: 太阳能手电筒、太阳能充电器等;5.光伏产业工艺流程展示图。套115光伏发 电实验 装置1.系统包括:光伏组件、控制器、 逆变器、蓄电池、光源和负载;2.系统各部件之间相对独立,可根 据实验要求连接;3.能进行光伏发 电原理 的相关实 验,包括 I-V 特性曲线实验、直流 负载实验、充放电实验、逆变和交 流负载实验。套1020光伏系统安全 应符合GB/T 20047.1-2006表3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范光 伏 材 料 检 测 实 验 室1.能进行硅 片的外观特性检测;2.能利用冷 热探针法测 量半导体类型;3.能利用四 探针电阻率 测量法对半 导体材料电 阻率及薄层 电阻进行检测;4.能进行单 晶硅、非晶 硅的非平衡 少数载流子寿命的测量;5.会对硅片 制绒时的绒 面,丝网印 刷时的栅线 宽度等进行 检测;1游标卡尺测量范围: 0mm~200mm;测量精度:机械游标卡尺 0.02mm;数显游标卡尺 0.01mm。把4040示范数显游标卡尺不少于20把2翘 曲 度 测 量仪翘曲度测量范围:1μm~20μm; 重复精度:0.5%;测量参数:曲率半径、晶圆弯曲高 度、翘曲度。台23P-N 型测试 仪测量范围:电阻率: 0.01Ω ²cm~200Ω ²cm功耗:≤30W。台5104四 探 针 电 阻 率 测 试 仪数字电压表量程:0 mV~199.999mV;灵敏度: 1μV;输入阻抗: 1000MΩ 可测电阻范围: 1μΩ~1MΩ 可测硅片尺寸:Φ15 mm~Φ200mm。台5105半 导 体 少 子 寿 命 测 量仪寿命测试范围: ≥2μs;光脉冲发生装置:重复频率≥25 次/s;脉宽≥60μs;光脉冲关断时间≤5μs;红外光源波长:1.06μm~1.09μm;低输出阻抗,输出功率≥1W; 配用示波器:频带宽度不低于 10MHz。台11表3 专业实验仪器设备装备要求(续)实 训 教 学 场 所实训教学目 标仪 器 设 备序 号名称规格、主要参数或主要要求单 位数量执行标准 代码备注合 格示 范光 伏 材 料 检 测 实 验 室6.会根据单 晶硅和多晶 硅太阳能电 池的电性能 参数进行分 选。6电子天平量程: ≥100g;精度: ≤0.01g;称盘尺寸: ≥150mm³200mm。台127金 相 显 微 镜物镜倍数: 5X、10X、20X、50X、 100X;目镜倍数: 10X;观察功能: 明场、高级暗场、圆偏 光;可配图像分析系统(摄像头、图像 分析软件)。台5108太 阳 能 电 池分选机光谱范围:应符合 GB/T 6495.9-2006(等级 A)要求;辐照强度调节范围:70 mW/cm2~120mW/cm2;辐照不均匀度≤3%;辐照不稳定度≤3%;测试结果一致性≥99%;电性能测试误差≤2%;有效测试面积≥125mm³125mm; 有效测试范围:0.1W~5W;测试参数:短路电流、开路电压、 最大功率、最大电流、填充因子、 转换效率、测试温度。台129椭偏仪光源:氙灯;波长范围:250 nm~830nm; 波长分辨率:1.0 nm;入射角范围:20º~90º 入射角精度:0.001º 椭偏参数精度:D ±0.02º、 Y ±0.01º 光学常数精度优于 0.5% 膜厚准确度: ±0.1nm。台12表4 专业实训仪器设备装备要求实 训 教 学 场 所实训教学 目标仪 器 设 备序号名称规格、主要参数或主要要求单 位数量执行标准代码备注合 格示 范光 伏 组 件 加 工 实 训 室1.了解光 伏组件的组成;2.了解光 伏组件的 生产工艺流程;3.掌握电 池片切割、 测试、焊 接、串接、 敷设、组件 层压、修 边、装框、 接线盒安 装等操作方法;4.掌握光 伏组件光电性能的 检测方法; 5. 掌 握 异 常情况下 的处理方 法。1激光划 片机激光波长: 1.064μm;激光重复频率: 200Hz~50kHz;激光功率: ≥20W;划片线宽:≤300μm;最大划片速度:≥100mm/s;划片精度:≤10μm工作电源: 380V(220V)/50Hz使用电源功率:≥2.5kVA。台122台11表4 专业实训仪器设备装备要求(续)实 训 教 学 场 所执行标准 代码备 注合 格示 范光 伏 组 件 加 工 实 训 室同上
  • 勤卓科技发布勤卓紫外耐候加速老化箱紫外线加速老化试验箱新品
    紫外光加速老化试验机主要用于模拟对阳光、潮湿和温度对材料的破坏作用;材料老化包括褪色、失光、强度降低、开裂、剥落、粉化和氧化等。紫外光老化试验箱通过模拟阳光、冷凝、模仿自然潮湿,试样在模拟的环境中试验几天或几周的时间,可再现户外可能几个月或几年发生的损坏。 紫外光加速老化试验机中,紫外灯的荧光紫外等可以再现阳光的影响,冷凝和水喷淋系统可以再现雨水和露水的影响。整个的测试循环中,温度都是可控的。典型的测试循环通常是高温下的紫外光照射和相对湿度在100%的黑暗潮湿冷凝周期;典型应用在油漆涂料、汽车工业、塑胶制品、木制品、胶水等。 荧光紫外灯老化试验箱,中山紫外光加速耐候试验机,江门紫外线老化箱技术参数:型号 ModelQZUV3QZUV2QZUV1UV 照射 Exposure●●●冷凝 Condensation●●●光照控制 Irradiancs Control●● 可调光线 Adjustable irradiance●● 喷水 Water Spray● 热冲击 Thermal Shock● 自动侦路 Self-diagnostics●●●灯泡数量 Lamp Q' ty紫外线灯管 8 支,备品 4 支 Ultravloiet lamp 6pcs, spares 4 pcs (美国Q-LAB,Q-Panel,美国ATLAS,UVA340,UVB313,UVC351)记录器 Recorder选配 (Optional)辐射计 Q8-CR Calibration Radiometer选配 (Optional)UV 温度 Temp50 ℃ -75 ℃冷凝温度 Condensation Temp40 ℃ -60 ℃测试容量 Test Capacity48pcs 片/se spray( 75 x 150m m )50pcs片/basic ( 75 x 150m m )水凉及耗量 Water蒸馏水每分钟 蒸馏水每日 8 公升体积 Dimension(W x D x H)137 x 53 x 136cm重量 Weight136kg电源 Power1 &psi , 120V/60Hz,16A or 230V/50Hz, 9A,1800W(max)模拟阳光 阳光中的紫外线是造成大多数材料耐久性能破坏的主要因素。我们使用紫外灯来模拟阳光中的短波紫外部分,它产生很少的可见光或红外光谱能量。我们可以根据不同的测试要求选择不同波长的UV紫外灯,因为每种灯在总的紫外线辐照能量和波长都不一样。通常,UV灯管可分为UVA和UVB两种。 QZUV灯管 UVA-340灯管:UVA-340 灯管可极好地模拟太阳光中的短波紫外光,即从365 纳米到太阳光截止点 295 纳米的波长范围。 UVB-313灯管:UVB-313 灯管发出的短波紫外光比通常照射在地球表面的太阳紫外线强烈,从而可以最大程度的加速材料老化。然而,该灯管可能会对某些材料造成不符合实际的破坏。UVB-313 灯管主要用于质量控制和研究开发,或对耐候性极强的材料运行测试。 UVA-351灯管:模拟透过窗玻璃的阳光紫外光,它对于测试室内材料的老化最为有效。 潮湿冷凝环境 在很多户外环境中,材料每天的潮湿时间可长达12小时。研究表明造成这种户外潮湿的主要因素是露水,而不是雨水。QZUV通过独特的冷凝功能来模拟户外的潮湿侵蚀。在试验过程中的冷凝循环中,测试室底部蓄水池中的水被加热以产生热蒸气,并充满整个测试室,热蒸汽使测试室内的相对湿度维持在100%,并保持一个相对高温。试样被固定在测试室的侧壁,从而试样的测试面曝露在测试室内的环境空气中。试样向外的一面暴露在自然环境中具有冷却效果,导致试样内外表面具备温差,这一温差的出现导致试样在整个冷凝循环过程中,其测试面始终有冷凝生成的液态水。 由于户外曝晒接触潮湿的时间每天可以长达十几小时,因此典型的冷凝循环一般持续几个小时。QZUV提供两种潮湿模拟方法。应用zui多的是冷凝方法,它是模拟户外潮湿侵蚀的zui好方法。所有的QZUV型号都可运行冷凝循环。因为有些应用条件也要求使用水喷淋以达到实际的效果,所以有些Q8/UV型号既可运行冷凝循环又可运行水喷淋循环。 温度控制 在每个循环中,温度都可控制在一个设定值。同时黑板温度计可以监控温度。温度的提高可以加速老化的进程,同时,温度的控制对于测试的可再现性也是很重要的。 水喷淋系统 对于某些应用而言,水喷淋能更好地模拟最终使用的环境条件。水喷淋在模拟由于温度剧变和由于雨水冲刷所造成的热冲击或机械侵蚀是非常有效的。在某些实际应用条件下,例如阳光下,聚集的热量由于突降的阵雨而迅速消散时,材料的温度就会发生急剧变化,产生热冲击,这种热冲击对于许多材料而言是一种考验。QZUV的水喷淋可以模拟热冲击和/或应力腐蚀。 喷淋系统有12个喷嘴,在测试室的每一边各有6个;喷淋系统可运行几分钟然后关闭。这短时间的喷水可快速冷却样品,营造热冲击的条件。 照射强度控制:可选 选配照射强度控制选件可得到精确型和重复性好的测试结果;光强控制系统允许用户根据不同的测试要求设置不同的光照强度。通过其反馈回路装置精确控制照射强度;同时也可以延长荧光灯的使用寿命 创新点:优质钢板,造型美观,新颖 勤卓紫外耐候加速老化箱紫外线加速老化试验箱
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制