当前位置: 仪器信息网 > 行业主题 > >

小型流速仪原理

仪器信息网小型流速仪原理专题为您提供2024年最新小型流速仪原理价格报价、厂家品牌的相关信息, 包括小型流速仪原理参数、型号等,不管是国产,还是进口品牌的小型流速仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小型流速仪原理相关的耗材配件、试剂标物,还有小型流速仪原理相关的最新资讯、资料,以及小型流速仪原理相关的解决方案。

小型流速仪原理相关的资讯

  • 热销美国进口直读式流速仪 现货供应
    直读式流速仪FP111\FP211\FP311 ● 水流监控操作简便 ● 数字显示单位英尺/秒或者米/秒 ● 重量轻,结实、可靠 ● 高精确度 ● 经历了世界各地专业水文工作者12年的使用检验 ● 使用涡轮测量 ● 带测量标尺的望远镜手柄 ● 即时显示,换算成平均速度 ● 防雨计算机读取数据 ● 可以装箱储存 ● 多语言支持:德、英、法、意、西、瑞士 ● 可以应用于地下水井、河流、溪流、废水处理、工业水处理 产品介绍 FP111\FP211\FP311直读式流速仪是一种可以精确测量水流速度的仪器。它有一个涡轮位移传感器和一根可伸缩,顶端带有数字显示功能的直杆组成。该仪器将给出水流的平均速度,可以广泛应用于各种水流的测速工作。 涡轮传感器 仪器利用涡轮传感器实现精确的位移测定。水流带动涡轮沿摩擦很小的轴转动,旁边的磁性金属在涡轮转动时会产生电信号脉冲,通过转换装置可以将转速转换成水流速度在手柄屏幕上显示出来。涡轮的清洗非常方便。 数字显示屏 数字显示装置将涡轮传感器传来的电信号放大并转换成水流速度显示出来。防水屏可以显示水流的瞬时速度和平均速度,并且有四个按钮来变换功能和屏幕清零。供电电池可以使用五年,屏幕也可以显示最大速度,测量日期和秒表功能。 探测手柄 流速计手柄可以在一定范围内延长:1.1~1.8m(FP111) 或1.7~4.6m(FP211)或0.76~1.7m(FP311)。表面镀铝使其重量轻,寿命长。 真实平均速度 首先按RESET按钮将屏幕清零,将流速仪置入水中开始读数,当流速显示稳定后,仪器会得到真实的平均速度。该数值将一直保存到下一次清零操作。 流量测量 流量=流速× 横断面面积。导管的截面积由型号决定,水渠,河流的截面积可以通过多点测量计算出来。对于小型导管,截面各处的流速很均匀,只需测一处的平均流速即可;对于河流,需要多测几个点处的流速得到平均速度。 参数 适用范围:清水和浑水河流 测量范围: 0.1~6米/秒 温度范围: -20~+70℃ 标称精度:± 0.03米/秒 显示:四位液晶 ,测杆伸缩管长度5米
  • 小型蠕动泵的多功能应用及性能优势介绍
    小型蠕动泵是一种非常实用的流体输送设备,广泛应用于医疗、化工、食品加工等行业。它以其独特的工作原理和出色的性能而闻名,为用户提供了高效、稳定和可靠的流体输送解决方案。本文将为您深入探讨小型蠕动泵的多功能应用及性能优势。1.小型蠕动泵在医疗行业中具有广泛的应用。由于其温和的流体输送方式,小型蠕动泵成为医疗设备中用于输送创伤护理药物和生化试剂的理想选择。其精确的流量控制和可调节的流速功能,使其能够有效地满足各种医疗操作的需求。此外,小型蠕动泵还具有耐腐蚀性和可靠性高的特点,可用于输送各种药液,确保治疗效果的准确性和稳定性。2.小型蠕动泵在化工行业中也有着重要的应用。化工生产中经常需要输送各种粘稠液体和腐蚀性介质,而小型蠕动泵具有出色的适应性。它采用蠕动原理,通过旋转的蠕动轮实现流体的输送,无需接触流体,避免了流体与泵体之间的摩擦和反应,从而保证了化学品的纯净度和质量稳定性。此外,小型蠕动泵还具有自吸能力和抽吸高度大的优势,能够满足化工生产中的各种特殊需求。3.小型蠕动泵在食品加工行业也有着广泛的应用。在食品生产过程中,需要精确地控制流体的输送和添加剂的投放量,小型蠕动泵可以提供高精度的流量控制,确保食品生产的安全和质量。小型蠕动泵的材质选择十分严格,符合食品卫生与安全的要求。同时,小型蠕动泵具有易清洗和维护的特点,为食品加工企业提供了便利。结语:小型蠕动泵以其多功能的应用和出色的性能优势,在各行各业得到了广泛的应用。无论是医疗行业的药物输送、化工行业的介质输送,还是食品加工行业的流量控制,小型蠕动泵都能够提供高效、稳定和可靠的解决方案。相信随着科技的不断进步和用户需求的不断增长,小型蠕动泵在未来会有更广阔的应用前景。
  • 国瑞力恒发布烟气流速检测仪新品
    GR-3020型烟气流速检测仪产品概述GR-3020型烟气流速检测仪(以下简称检测仪)为便携式监测仪,广泛应用于锅炉、炉窑以及各种排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数的测定。适用范围本仪器采用皮托管法测量管道中气体流速,可对各种锅炉、工业炉窑以及排风管道的烟气流速、烟气流量、标干流量、动压、静压及烟温等参数进行检测,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测。采用标准JJG 518-1998 《皮托管检定规程》GB/T 16157 -1996《固定污染源排气中颗粒物测定与气态污染物采样方法》主要特点1. 采用进口高精度微压差传感器,24小时压力漂移小于0.15Pa。;2.流速测量精度高,测定下限可达0.3m/s;3.内置可充电锂电池,一次充连续电工作48小时以上;4. 手持式测量监测仪,轻巧便携,操作简便;5. 自动计算气体的平均流速、平均压力、烟气流量等参数。 6. 具有自动零点修正,软件校准功能,保证测量精度;7.具有烟道布点功能,自动推荐采样点数和测点距离;8.大容量数据存储,可存储800组数据文件;9.宽温液晶显示器,中文操作界面;10.大尺寸、宽温高亮彩色显示屏显示;11.具有掉电保护功能,采样中掉电采样数据不丢失;12.内置蓝牙模块,可选配蓝牙打印机进行数据打印工作原理将皮托管正端正对气流方向,负端背向气流方向,烟道气流经皮托管正负气嘴时会产生压力差,微处理器根据采集的动压、全压、烟温信号计算出静压、流速和风量的值,然后根据大气压、湿度、管道截面积等参数的输入值自动计算出标杆流量。技术指标流速检测仪主要技术指标详见表1。表1 检测仪主要技术指标技术指标参数范围分辨率准确度烟气动压(0~2000) Pa0.01Pa不超过±2.0%烟气静压(-35~35) kPa0.01 kPa不超过±4.0%烟气温度(0~600) ℃1 ℃不超过±3 ℃大气压(50~110) kPa0.1 kPa不超过±4.0%烟气流速(0.3~45) m/s0.1 m/s不超过±5.0%外型尺寸(长×宽×高)190mm×95mm×50mm连续工作时间≥48小时功耗约0.5W整机重量0.6kg创新点:GR-3020型烟气流速检测仪 采用皮托管法测量管道中气体流速,仪器采用进口高精度传感器,传感器24小时自身漂移小于0.15Pa,尤其适用于低流速的检测;内置可充电锂电池,一次充连续电工作48小时以上;手持式测量监测仪,轻巧便携,操作简便。 烟气流速检测仪
  • 250万!广东工业大学计划采购便携式流速仪等设备
    一、项目基本情况项目编号:0809-2241GDG12245项目名称:便携式流速仪等设备采购项目采购方式:公开招标预算金额:2,500,000.00元采购需求:合同包1(便携式流速仪等设备):合同包预算金额:2,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表医用型洁净工作台4(台)详见采购文件60,000.00-1-2其他专用仪器仪表立式压力蒸汽灭菌器1(台)详见采购文件19,700.00-1-3其他专用仪器仪表藻类强化人工湿地试验设备2(台)详见采购文件198,000.00-1-4其他专用仪器仪表冷冻离心机2(台)详见采购文件84,340.00-1-5其他专用仪器仪表无人机2(台)详见采购文件40,000.00-1-6其他专用仪器仪表消解装置(20孔)3(台)详见采购文件20,400.00-1-7其他专用仪器仪表智慧屏1(台)详见采购文件32,000.00-1-8其他专用仪器仪表紫外分光光度计4(台)详见采购文件59,200.00-1-9其他专用仪器仪表户外GPS4(台)详见采购文件8,000.00-1-10其他专用仪器仪表便携式多参数水质测定仪4(台)详见采购文件272,000.00-1-11其他专用仪器仪表便携式流速仪4(台)详见采购文件275,600.00-1-12其他专用仪器仪表深度仪4(台)详见采购文件20,000.00-1-13其他专用仪器仪表持杆式D型拖网4(支)详见采购文件4,000.00-1-14其他专用仪器仪表彼得逊采泥器4(台)详见采购文件18,000.00-1-15其他专用仪器仪表全自动水质监测无人船1(台)详见采购文件159,800.00-1-16其他专用仪器仪表沉降柱6(台)详见采购文件55,800.00-1-17其他专用仪器仪表水质分析仪2(台)详见采购文件97,200.00-1-18其他专用仪器仪表混凝沉淀实验装置4(台)详见采购文件44,000.00-1-19其他专用仪器仪表实验室pH计6(台)详见采购文件19,200.00-1-20其他专用仪器仪表生物接触氧化池4(台)详见采购文件32,800.00-1-21其他专用仪器仪表膜生物反应器2(台)详见采购文件37,200.00-1-22其他专用仪器仪表生化培养箱3(台)详见采购文件24,600.00-1-23其他专用仪器仪表BOD测定仪4(台)详见采购文件91,200.00-1-24其他专用仪器仪表COD消解仪1(台)详见采购文件6,500.00-1-25其他专用仪器仪表智能数字微压计4(台)详见采购文件8,000.00-1-26其他专用仪器仪表污泥脱水装置4(台)详见采购文件44,000.00-1-27其他专用仪器仪表电热恒温鼓风干燥箱2(台)详见采购文件19,200.00-1-28其他专用仪器仪表电子天平14(台)详见采购文件32,400.00-1-29其他专用仪器仪表电子天平22(台)详见采购文件1,960.00-1-30其他专用仪器仪表生物显微镜10(台)详见采购文件87,000.00-1-31其他专用仪器仪表PCR仪1(台)详见采购文件42,000.00-1-32其他专用仪器仪表恒温加热搅拌器6(台)详见采购文件22,200.00-1-33其他专用仪器仪表旋涡振荡器6(台)详见采购文件7,800.00-1-34其他专用仪器仪表溶解氧仪4(台)详见采购文件13,200.00-1-35其他专用仪器仪表空气恒温摇床2(台)详见采购文件73,600.00-1-36其他专用仪器仪表马弗炉1(台)详见采购文件19,800.00-1-37其他专用仪器仪表超声清洗器2(台)详见采购文件9,200.00-1-38其他专用仪器仪表小型生态修复工程模拟系统4(台)详见采购文件122,000.00-1-39其他专用仪器仪表物候观测系统2(台)详见采购文件60,000.00-1-40其他专用仪器仪表手持式气象站2(台)详见采购文件24,000.00-1-41其他专用仪器仪表植物冠层分析系统1(台)详见采购文件60,000.00-1-42其他专用仪器仪表植物光合作用测量系统2(台)详见采购文件98,000.00-1-43其他专用仪器仪表鸟类声纹监测设备2(台)详见采购文件46,000.00-1-44其他专用仪器仪表双筒望远镜4(台)详见采购文件12,000.00-1-45其他专用仪器仪表单筒望远镜2(台)详见采购文件14,000.00-1-46其他专用仪器仪表三脚架2(台)详见采购文件4,100.00-本合同包不接受联合体投标合同履行期限:合同生效30天内完成货物安装调试并交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人,投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:提供2021年度财务状况报告或基本开户行出具的资信证明,或最近一期财务报表(适用在上一年度或本财务年度成立的法人或其他组织),或人民银行出具的个人信用报告(适用于自然人)。4)履行合同所必需的设备和专业技术能力:提供承诺函原件或填报设备和专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(便携式流速仪等设备)落实政府采购政策需满足的资格要求如下:本项目预留采购份额无法确保充分供应、充分竞争,或者存在可能影响政府采购目标实现的情形,不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:合同包1(便携式流速仪等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人或重大税收违法失信主体或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为记录名单”中的禁止参加政府采购活动期间。(以采购代理机构于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目(或采购包)投标(响应)。为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参与本项目投标(响应)。投标(报价)函相关承诺要求内容。(3)本采购包不接受联合体投标。三、获取招标文件时间: 2022年11月18日 至2022年11月24日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月08日 14时30分00秒 (北京时间)递交文件地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:广州市越秀区广仁路一号广仁大厦6楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.本项目为教学科研设备采购项目。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东华伦招标有限公司地 址:广州市越秀区广仁路一号广仁大厦七楼联系方式:020-83172166-8283.项目联系方式项目联系人:广东华伦招标有限公司电 话:020-83172166-828广东华伦招标有限公司2022年11月17日
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 隆重推出:地下水流速流向探测仪
    我公司隆重推出AquaVISION地下水流速流向探测仪。AquaVISION地下水流速流向探测仪通过采用专有的硬件和AquaLITE软件来完成测量地下水实时流速、流 向和粒子尺寸的艰巨任务。 AquaVISION地下水流速流向探测系统可以在具体的深度区间里准确确定地下水流速、流向和粒子尺寸。它可以在持续数小时的时间里,每分钟产生数以千计的、具有统计可靠性的数据 欢迎光临我们的网上展位了解产品的详细信息!
  • 应用案例|声学多普勒流速测量仪
    现状马来西亚雨水管理和公路隧道("SMART")项目的规模宏大--隧道长度为12公里,直径为11.8米,可收集多达400万立方米的洪水--这是一个艰巨而伟大的项目。这条隧道的设计概念极富创意,让人叹服,可以在旱季通过地下隧道疏导吉隆坡拥挤的交通,并在洪灾期间将雨水安全地分流到市中心地下。同时,支持这项大规模隧道和大型集水盆地的系统也同样令人惊叹,它被称为SMART工程的智能系统。这是一个由洪水检测设备和自动化管理机械组成的网络,与监控数据采集和控制 (SCADA)“大脑”连接,利用其收集的信息自动启动洪水管理闸门和水泵。技术由系统集成商Greenspan Technology Pty Ltd,设计的洪水检测和自动化管理系 统通过28个远程监测站来指导项目沿线31个闸门、7个大型水泵和4个独立发电装置(发电机组)的决策。三级系统Greenspan公司驻新加坡的国际经理Bruce Sproule解释,SMART项目设计为分三个阶段运作,以防止类似2007年那样的洪水对城市造成严重破坏。准确及时的流量和流速信息对SMART项目的成功和吉隆坡180万居民 的安全至关重要。为了确保高质量的数据流,Sproule的团队在项目总监Mark Wolf和项目经理Marc Schmidt的带领下,布置了一个由22个雨量计、50个与气泡系统相连的压力传感器和16个SonTek Argonaut声学多普勒测流组成的阵列。Greenspan公司的控制中心运营小组在Mark Van Elswyk的带领下,维护着由高频电台、GSM、光纤信号和微波传输组成的通信系统,以保持传感站点和SCADA系统之间的持续通信。通过以太网连接的Argonauts每分钟报告一次数据;通过高速VHF连接的Argonauts每5至10分钟广播一次。SCADA工程师Jarrah Watson、Nick Hitchins和Peter Johnson保持控制/采集系统精细地调整。河流、暂存池和隧道的数据与Greenspan公司的时间序列数据库中的降雨信息相结合,然后通过该公司的预测模型进行传输。结果驱动自动闸门,控制进入SMART集水井和隧道的流量,并在下游水量可以积累到排放水平时,启动大型水泵,对隧道进行排水。这是更准确的信息,Sproule说。如果受到潮汐影响或回水影响,可能会出现滞后现象,水深得来的流量数据是不准确的。Sproule说,当水位上升并且下游潮汐对吉隆坡洪水的影响越来越大时,预警模型就会从气体吹扫压力传感器的读数切换到声学多普勒测流仪的数据,以跟踪流量情况。他解释说,下游潮汐效应会产生滞后现象,从而减缓了洪水对来自上游力量带来的通常变化。关键是要追踪河流中到底发生了什么,而不是依赖于基于无障碍重力驱动条件的简单数学估计,这点非常重要。“这是更准确的信息,”Sproule说。“如果受到潮汐影响或回水影响, 水深换算的流量可能会出现滞后现象,而且数据不准确。”他补充说,Greenspan公司开发了自己的流速率定软件,以确保流量的准确计算。由于具有多个测量方向,SonTek-IQ非常适合存在滞后的情况。专有流量算法非常适合在灌溉渠道、天然河流和管道中收集数据。该仪器采用SonTek独有的SmartPulseHD自适应采样。使用垂直声束和压力进行水位自动校准。精心布置Sproule指出,在隧道内部和周围,SonTek Argonaut SL(侧视)测流仪布置在精心确定的高度,以便为高流量情况做好准备。两个Argonaut SW(浅水)测流仪测量下游排放点的双箱涵的流量和流速,为流量模型提供信息。即使洪水没有来临,信息流也提供了有价值的洞察力。Sproule指出,事实上,来自SW的数据显示,在洪水事件发生后,发现在其潜水面中储存了惊人数量的水,并在比Greenspan模型最初假设的更长的时间内才可以释放了这些水。Sproule指出,在洪水期间保护贵重设备可能是一项挑战。Greenspan公司的Wayne Farrell设计了“骑士头盔”站,用自动缩回的头盾保护传感器,让人想起中世纪的骑士头盔。“骑士头盔”站精心放置在测量系统中高水位的最佳高度,每次洪水过后都必须进行维护。Sproule 指出:“设计这些装置是为了防止仪器被大型残片冲走,但这些装置确实已经变成淤泥收集器。”他补充说,Greenspan公司开发了自己的校准软件,以方便测流仪的日常和暴雨后维护。该公司还开发了一个专有系统,为每个采样点建立8万个点的横断面。Sproule说,Greenspan团队还包括水文测量技术员BenNoble Clem Williams和Faizal Yusoff,他们认为SonTek Argonauts是SMART项目的必然选择。他解释说:“我们曾考虑过雷达/声纳,但价格非常昂贵,而且我们有很多使用SonTek设备的经验。”“在这个项目中,这是最简单、最准确的方法。我们在新加坡有一个八人的雨水监测小组,使用SonTek的设备已经14个月了,所以我们知道它能做什么,不能做什么。”服务支持很好,设备也很可靠。他补充道。仪器很可靠,一旦出现问题,公司会迅速做出响应。对于像SMART这样大规模的项目,快速响应至关重要。在2007年9月的一次系统测试中,该系统提前30分钟准确预测到了河流水位会上升,成功分流50万立方米水。随着车流穿过巨大的隧道,无声的传感器网络向Greenspan公司的SCADA系统报告时,Sproule对SMART项目进行了反思。“这是Greenspan公司设计过的最复杂的系统,”他指出,该系统平稳运行和保护吉隆坡11.8米高的隧道一样,是一个令人惊叹的奇迹。
  • 多普勒流速仪-一款便携式超声明渠流量计2024实时更新
    型号推荐:多普勒流速仪-一款便携式超声明渠流量计2024实时更新,在现代水利工程与市政管理中,准确测量流体的流速与流量是至关重要的环节。多普勒流速仪作为一种先进的测量工具,凭借其高精度、非接触式测量以及适用范围广等特点,在水文监测、灌溉系统优化及城市排水管理等领域发挥着不可替代的作用。本文将深入剖析多普勒流速仪的四大核心优势与应用场景,展现其在现代水务管理中的独特价值。 一、低水位适应能力 多普勒流速仪专为低水位环境设计,当水位仅需超过15厘米时即可有效工作,这一特性使其在浅流、小溪及部分低水位灌溉渠道中展现出卓越的测量能力。相比传统设备,它大大拓宽了测量范围,提高了数据的可获得性和准确性。 二、智能传感技术 结合先进的压力传感器与超声传感器,多普勒流速仪能够同时测量水深与流速。压力传感器精准捕捉水深信息,而超声传感器则利用多普勒效应,通过声波反射测量水流速度,两者结合,实现了流量的精准计算。这种智能集成的设计,既简化了操作流程,又提升了测量精度。 三、广泛应用场景 从广阔的灌溉明渠到错综复杂的市政下水管道,再到需精细监测的水文流域,多普勒流速仪均能游刃有余。在农业灌溉中,它帮助农民精确控制水量,提高灌溉效率;在城市排水系统中,它助力管理者及时发现并解决潜在堵塞问题;在水文监测领域,则提供了实时、准确的流量数据,为水资源管理与保护提供有力支持。 四、便捷高效的操作与维护 多普勒流速仪的设计注重用户友好性,其操作界面直观易懂,维护成本相对较低。即便是在恶劣的环境条件下,也能保持稳定的工作状态,确保数据的连续性和可靠性。这一特点使得它成为众多水务管理者首选的测量工具。 五、产品特点 1、采用Modbus通信协议,利用RS485总线进行通信。 2、单向监测流速流量。 3、水下传感器设备安装方便。有金属底座固定装置,安装简单。 4、设备全部采用电子设计,宽电压供电、低功耗,无机械部件。 5、具有测量准确、稳定的优点,可靠性高,抗干扰性强。 6、应用范围广泛。可以在自来水到黄河水的各种水环境中应用。 综上所述,多普勒流速仪以其低水位适应能力、智能传感技术、广泛的应用场景以及便捷高效的操作与维护,成为了现代水务管理中的一把利器。它不仅提升了流速与流量测量的准确性和效率,更为水资源的合理配置与高效利用提供了坚实的数据支撑。随着技术的不断进步,多普勒流速仪将在更多领域展现出其独特的价值。
  • 应用指南--expression CMS小型台式质谱仪实现流动化学反应监测和优化
    Flow chemistry 流动化学本意指在连续流动的系统中完成化学反应,不同于批次式反应,其创新地将传统独立分开的合成操作过程整合起来,加快了合成的速度,尤其是能进行危险的、不易实现的反应条件,对于绿色化学和实验室自动化领域具有非常重要的意义。 连续流动化学始于两种以上的物料—比如起始反应物,这些物料以设定流速用泵打入反应舱室、反应管或微型反应器,不同反应物料在此进行混合和反应。根据反应动力学和物料流速,需要保证反应物料在微型反应器中达到某一特定的停留时间,从而获得预期的反应转换率。因为反应是在连续流动的流体中进行,自然希望对反应进行监测以便得知各种反应条件状况,因此反应的监测就尤为重要。 本应用指南中,为大家介绍使用 expression CMS 进行的两种不同反应的流动化学合成实验案例。实验方法质谱系统:expression® CMS 小型台式质谱仪 一、仪器设置 实验中使用了两种略有不同的设置。在第一种方法中,使用注射器将反应混合物注入质谱中(通过阀门,图1)。 第二种情况,使用注射泵系统输送试剂,通过阀门切换自动将样品转移到质谱中(图2), CMS 的数据输入到反应优化和数据处理软件中。二、质谱条件扫描范围:m/z 100-m/z 800;扫描时间:400ms;扫描速度:1750 m/z units/s; 流速:0.2mL/min;流动相:MeCN,H2O(50:50)(0.1% 甲酸);离子源:ESI; 模式:正离子模式 Capillary Temp:200℃;Capillary Voltage:80V; Source Offset:30; Source Gas Temp:250℃; ESI Voltage:3500V;实验结果 反应数据(图3)显示实时监测到产物的增加和原料的减少,同时看到中间体和杂质,提供有关反应的有价值信息,该信息在对反应/过程把控上为实验人员提供了其他技术无法提供的的优势。 获得的详细数据有利于进一步优化反应(尤其对于工艺开发),加深理解反应机理,这对于进一步反应机理开发至关重要。 使用 CMS 监测流动池中不同停留时间的反应,可以密切监测反应进程,看到大量杂质/中间体的形成条件,并且可以选择最佳停留时间。该反应通过两种不同的中间体进行,如果反应没有得到适当控制和优化,最终可能会成为杂质。因此,密切监测和了解这一过程至关重要。 在本实验中,通过流动化学设备自动确定试剂配比,输送不同组分的反应混合物。通过 expression CMS 实时监测原料、产物和中间体,有利于后续优化反应。结论 1、expression CMS 是与流动化学系统联用的理想质谱仪。 2、expression CMS 上具有多个信号输入和输出口,使其具有独特且灵活的接口功能。 3、expression CMS 分析提供了有关反应的详细实时信息,这些信息通常是其他分析技术(例如色谱、核磁共振、红外/近红外、紫外)无法提供的。 4、ESI 和 APCI 多种离子源选项扩展了可监控的反应范围。 5、Advion Interchim Scientific 在质谱与新型合成化学联用的解决方案方面经验丰富,可提供多种质谱联用方案。
  • 实验室多功能小型热泵蒸发仪
    成果名称 实验室多功能小型热泵蒸发仪 单位名称 中国科学院理化技术研究所 联系人 芦琳 联系邮箱 lulin8625@163.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 实验室多功能小型热泵蒸发仪自控系统 该项目立足热能与动力工程专业领域,提出将基于世界领先水平的低功率水润滑单螺杆水蒸气压缩机,开发为&ldquo 实验室多功能小型热泵蒸发仪&rdquo ,取代传统蒸发皿,不仅填补了市场空白,为广大实验室和企业研发提供了方便简洁的新手段,而且对于该项新技术的市场认可具有很大意义。 开发&ldquo 实验室多功能小型热泵蒸发仪&rdquo ,用以模拟不同物料、不同蒸发工艺的实验特性研究,为大规模工业实际应用奠定坚实的实验基础;利用该仪器,在科研院所或工厂开展新型热泵蒸发技术的现场培训,掌握该节能环保蒸发仪的实际操作规律和特性,为大型热泵蒸发系统的操作奠定基础。 创新点: (1)采用国产化单螺杆水润滑水蒸气压缩机关键设备。 (2)建立实验室多功能小型热泵蒸发仪设计理论,开发国产化的实验热泵仪器装备。 (3)实现蒸发温度从70℃&mdash 110℃、传热温差5℃&mdash 20℃的宽广范围内的蒸发操作,满足不同实际蒸发工艺要求。 性能指标: (1)基于体积流量3.8m³ /min与8.6m³ /min的两种不同型号的单螺杆水蒸气压缩机,完成实验室多功能小型热泵蒸发仪优化设计及生产平台的建立;开发样机,并实际生产,压缩机容积效率达到80%,压缩机绝热内效率大于65%。 (2)结合实际需要,完成两种蒸发量大于100kg/h,可实现蒸发温度从70℃&mdash 110℃、传热温差5℃&mdash 20℃的宽广范围内进行蒸发操作的实验室多功能小型热泵蒸发仪样机。 应用研发: 在原理样机的基础上,根据科研仪器设备的需要进行重新设计、加工和测试,同时沟通联系相关用户进行试用,努力将研制和实际应用结合在一起。 从系统设计优化;关键工艺研究;关键设备研制;样机设计和验证;系统改进及性能提高;用户试用研究和反馈;可靠性、安全性设计和产品定型;小批量生产和产业化推广等方面进行了应用研发,尽可能满足市场对该类科研仪器的需求。 应用前景: 不同行业的企业和科研院所都是小型热泵蒸发仪的潜在用户。我们近年的工作中,已发现很多专家、企业家都有试用的意向,潜在用户已达数十。未来如果大规模推广,年销售1000套是有可能的,考虑单套的价值50万元,可以实现5个亿的年产值;短期内年销售数十套将很容易,这也是超千万的营业额,故而前景很好。 知识产权及项目获奖情况: 基于水润滑单螺杆水蒸气压缩机的&ldquo 实验室多功能小型热泵蒸发仪&rdquo 是具有我国自主知识产权的科研仪器,属于国内首创,国际上也无相关产品的报道。 &ldquo 实验室多功能小型热泵蒸发仪的研发培育&rdquo 项目获得北京市科委首都科技条件平台支持。
  • 【ISCO】RediSep®正相色谱柱的最佳流速
    一、应用概述液相色谱柱具有一个理想的流速或流速范围,在这个范围内,色谱柱的效率蕞高。衡量色谱柱性能的这一指标通常被称为范迪姆特曲线,在该曲线中,将理论塔板高度(HETP)与流速作图。在这种情况下,对于给定的色谱柱,塔板数被绘制成与流速的关系图。峰越窄,理论塔板数就越多。通过色谱柱的流速优化以获得最大的理论塔板数。 低流速会因扩散而降低柱效率。扩散是由于样品在通过检测器之前,于管道和色谱柱中停留的时间过长而导致的。 在高于理想流速的情况下,效率会因湍流而损失。湍流的影响与扩散相同。结果峰在基部变宽并呈现圆顶形状。在某些情况下,色谱柱可能会在效率下降之前出现超压的情况。二、一般方法正相色谱柱安装在ISCO CombiFlash® Sq 16x上,该设备被编程以运行不同的流速。正相双峰标准是4-甲氧基苯乙酮和苯乙酮。流动相A是己烷,流动相B是乙酸乙酯。对标准品进行理论塔板数分析,并将塔板数与流速作图。每种色谱柱尺寸都有一个针对该尺寸优化的冲提流速。在任何单一运行中,流速是口隹一被改变的参数,以建立效率曲线。 通过使用氯仿作为流动相并注射庚烷作为未保留的标准品,可以确定正相色谱柱的有效柱体积。从注射到检测的时间间隔是仪器和色谱柱的空白体积。扣除仪器的空白体积后,剩余部分即为色谱柱的有效间隙空白体积。三、分析结果RediSep 4克正相色谱柱根据所述方法,测定的色谱柱体积为4.8 mL。这些色谱柱的最佳流速约为18 mL/min。4克色谱柱具有非常灵活的流速范围,在该范围内(16-22 mL/min)性能非常相似,并且可以使用更宽的范围(12-25 mL/min)。这是通过使用标准品测试色谱柱确定的。通过改变流速,可以改变色谱柱的效率,从而改变理论塔板数,然后将这些数据与流速作图(图1)。图1:4克正相效率曲线 RediSep 12克正相色谱柱根据所述方法,测定的色谱柱体积为16.8 mL。最佳流速约为30 mL/min。12克色谱柱具有非常灵活的流速范围,在该范围内(25-40 mL/min)性能非常相似,并且可以使用更宽的范围(15-50 mL/min)。这是通过使用标准品测试色谱柱确定的。通过改变流速,可以改变色谱柱的效率,从而改变理论塔板数,然后将这些数据与流速作图(图2)。图2:12克正相效率曲线 RediSep 40克正相色谱柱根据所述方法,测定的色谱柱体积为48 mL。在效率曲线中,通过在多种流速下采集数据以最小化变异性。所使用的标准品是40克正相双峰标准。40克色谱柱具有非常灵活的流速范围,最佳性能出现在35-40 mL/min,而更宽的可用范围是25-50 mL/min。这是通过使用标准品测试色谱柱确定的。通过改变流速,可以改变理论塔板数,然后将这些数据与流速作图(图3)。 图3:40克正相效率曲线RediSep 120克正相色谱柱根据所述方法,测定的色谱柱体积为192 mL。在效率曲线中,通过在多种流速下采集数据以最小化变异性。所使用的标准品是120克正相双峰标准。120克色谱柱具有非常灵活的流速范围,最佳性能出现在75-95 mL/min,而可用范围是60-120 mL/min。上限流速的决定因素显然是背压而不是色谱柱性能。这是通过使用一致的标准品测试色谱柱确定的。通过改变流速,可以改变理论塔板数,然后将这些数据与流速作图(图4)。 图4: 120克正相效率曲线四、总结RediSep 4克正相色谱柱的柱体积为4.8 mL,最佳流速约为18 mL/min,范围为16-22 mL/min。 RediSep 12克正相色谱柱的柱体积为16.8 mL,最佳流速约为30 mL/min,范围为25-40 mL/min。 RediSep 40克正相色谱柱的柱体积为48 mL,最佳流速约为40 mL/min,可用范围为25-50 mL/min。 RediSep 120克正相色谱柱的柱体积为192 mL,最佳流速约为85 mL/min,范围为60-120 mL/min。 表1包含了有关在运行结束时清除色谱柱中溶剂所需的空气吹扫时间的附加参数。使用时,固体样品负载筒也必须进行吹扫。对于5克筒尺寸,空气吹扫时间需增加1分钟;对于25克尺寸,需增加2.5分钟。
  • 蠕动泵流速:提升效率的关键因素揭秘
    在工业领域,蠕动泵作为一种常见的输送设备,其流速对于工艺流程的效率起着至关重要的作用。本文将深入探讨蠕动泵流速的影响因素以及如何优化蠕动泵的性能,帮助读者更好地了解蠕动泵在工业生产中的重要性。蠕动泵的流速受多种因素影响,包括管道直径、泵头设计、泵的转速等。首先,管道直径直接影响着介质在管道中的流速,直径越大,流速越快。其次,泵头设计的优劣也会影响流速,优质的泵头设计能够提高泵的运转效率。此外,泵的转速对于流速也有显著的影响,适当调节泵的转速可以达到更理想的流速效果。为了优化蠕动泵的性能,我们可以从多个方面入手。首先是选择合适的泵型和规格,根据具体工艺需求选择合适的蠕动泵型号和规格,确保其满足工艺要求。其次是注意泵的维护保养,在日常使用中定期检查泵的运行状况,及时清洗维护,保证泵的正常运转。此外,定期对泵进行性能检测,及时修正问题,可以有效提升蠕动泵的流速和效率。除了以上提到的因素外,环境温度、介质粘度等也会对蠕动泵的流速产生影响。在实际应用中,需要根据具体情况综合考虑各种因素,全面优化蠕动泵的流速表现,以提升生产效率,降低能耗成本。通过对蠕动泵流速的细致剖析,我们不仅能更好地理解蠕动泵在工业生产中的关键作用,还能为工艺流程的优化提供重要参考。只有充分理解蠕动泵流速的影响因素,才能更好地利用蠕动泵的优势,提升生产效率,实现可持续发展。
  • 美韩研制出超小型血液检测仪
    据韩国联合通讯社报道,韩国浦项工科大学5月17日表示,该校机械工程系李相贤(音译)博士和美国密歇根大学艾伦亨特教授率领的联合研究小组利用某些绝缘体在纳米级时具有导电性的原理,成功开发出可测定红血球大小等各类血液指标的超小型血液检测仪。   该研究小组通过实验证明,玻璃等非导体分解至纳米大小时,具有同普通半导体一样的导电性,只要输入很低的电压,电流就能通过。在此基础上,他们开发成功了液体玻璃纳米电极,其在制造微流体实验室芯片(Lab-on-a-chip)等尖端医疗设备或纳米大小的半导体方面大有作为。   研究小组将电极应用于纳米大小的仪器,制成了一种超小型化学分析装置,并用细微加工技术将其集成在硬币大小的芯片里,由此开发出超小型血液检测仪,只需一滴血液的1%,就能测定红血球大小等各类血液指标。   由于用这种液体玻璃纳米电极研制化学分析装置时不需要同时集成导体和非导体,因此它还可用于制造针对单一细胞的超小型医疗设备。   该研究结果刊登于5月17日《自然纳米技术》网络版。
  • 重庆研究院小型拉曼光谱仪样机研制成功
    日前,中国科学院重庆绿色智能技术研究院智能装备与仪器仪表研究中心成功研制出了光谱分辨率可达10 cm-1的小型拉曼光谱仪样机,样机通过了可靠性测试,可应用在工农业生产、食品安全和生物医药等领域的现场监测和样品快速检测。该研究得到了重庆市科技攻关(重大)计划项目的支持。   拉曼光谱是基于光与物质互相作用发出的带有物质特征信息的散射光谱。它具有非接触性、非破坏性、实时原位和样品用量极少等特点,可快速、准确地分析和鉴别物质(或分子)种类。拉曼光谱应用广泛,具有&ldquo 以光之名,把握万物之准&rdquo 的美誉。而小型拉曼光谱仪技术研究和应用开发,可为工农业生产、食品安全、生物医药、环境保护、公共安全等领域提供现场监测和快速检测,对提升人民生活质量和保障社会安全方面意义重大。   针对便携式拉曼光谱仪的小型化、高分辨和高灵敏度探测等需求,研究人员在新型消彗差交叉C-T光栅光谱仪的光学设计中,充分考虑消彗差条件,采用12度非对称C-T光路,在解决同心及非同心系统的像差问题的同时,保证了长波段的光通量,光谱仪的理论分辨率达到9 cm-1 在电学设计中,针对所用CCD型号研制了一种高增益、低噪声的信号处理电路。最后,通过选用光学探头与光栅光谱仪的匹配设计,便携式拉曼光谱仪的实际光谱分辨率可达10 cm-1。   目前,重庆研究院已完成多种外形尺寸的便携式和手持式拉曼光谱仪原理样机的研制。这些样机对若干样品的测试结果与标准库数据一致,从原理和技术上证实了小型拉曼光谱仪设计的合理性和使用的可靠性,下一步,团队研究重点将放在体积更小、性能更优的微型拉曼光谱仪上,并开展小型拉曼光谱仪的工程化和产业化应用。
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 我国科研团队成功研制皮摩尔级小型荧光光谱仪
    作者:孙丹宁 来源:中国科学报利用紫外激发产生特征荧光的原理,用于测试微量物质的含量与成分,是当前最灵敏的痕量检测方法之一,在生命科学、食品安全和环境监测中具有重要应用。但在这一领域,国产高端仪器仍是空白。大连理工大学黄辉教授课题组与范剑超教授、赵剑教授和刘蓬勃副教授合作,发明了一种小型高灵敏度的荧光光谱仪。相关成果发表在《分析化学》。小型荧光光谱仪示意图。大连理工大学供图该小型荧光光谱仪基于发明的导光金属毛细管技术,可大幅提高荧光检测的信噪比,因此能够采用便宜微型的LD或LED作为激发光源,以取代昂贵笨重的氩离子激光器或大功率氙灯。同时,合作团队还发明了荧光光谱的同步校准技术,可克服光源功率波动和样品吸收导致的干扰。目前,研制的光谱仪已通过国家计量院的鉴定,并在国家海洋环境监测中心(大连)进行测试和试用。检测精度超过国外主流高端产品,海洋溢油检测指标处于国际领先水平。其水体有机碳TOC的检测精度达4ng/mL,可媲美大型专业仪器。相关论文信息:https://doi.org/10.1021/acs.analchem.3c02200
  • 众瑞仪器发布ZR-3260型自动烟尘烟气综合测试仪(B款,小型化)新品
    产品简介ZR-3260型自动烟尘烟气综合测试仪(B款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;获得中国环境保护产品认证证书 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;配备高负载低噪声大流量抽气泵,流量可达80L/min;准确的电子流量计控制,实时监测计温,计压,自动调节流量;交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、用于固定污染源中颗粒物(含超低浓度)的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定; 2、该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样; 3、可扩展β 射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量; 4、可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取; 5、烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度; ZR-3260型自动烟尘烟气综合测试仪(B款,小型化)
  • 小型车载气象站简单介绍《2022已更新》#气象服务
    小型车载气象站简单介绍《2022已更新》#气象服务مقدمةموجزةمن"2022"تحديث"خدماتالأرصادالجوية型号:TH-CZ2_天合环境气象设备口碑不错_是值得信赖选择的好设备.在公路上遇到大风时,速度越快,越容易失控。沿江沿海城市每年都会发生大风航行事故。城市街道上有很多人和车,刮风时必须放慢车速。为了测量行驶过程中风速和风向的变化,山东天合环境制造商推出了一个新的车载气象站。一、产品简介TH-CZ2小型车载气象站是一款高度集成、低功耗、可快速安装、便于移动监测的高精度自动气象观测设备。广泛运用于气象、农林、环保、海洋、机场、港口、科学考察、校园教育等领域。该设备采用二要素一体式传感器,可对风速、风向进行实时观测,传感器外壳采用进口ABS材质,更有效对抗盐雾等环境,防护等级达到IP65以上。标配485转USB(有线连电脑)、蓝牙(无线连安卓手机),可毫秒级采集。选配网卡传输,传输间隔最低1min。二、技术参数1、风速:超声波原理,0~60m/s(±0.1m/s),可测真实风速2、风向:超声波原理,0~360°(±2°)3、数据存储:不少于50万条;4、功耗:1.75W5、锂电池:容量12000maH,续航时间≥50h6、总重量:≤5kg;7、布设时间:1人,不大于2分钟完成布设;上位机软件介绍三、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速3、设备底部配备高强度磁铁(橡胶包裹),可无损吸附于车顶。4、减震防护拉杆箱,方便携带5、内置电子罗盘,自动找北6、北斗与GPS双模定位,最高精度0.1米1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本安卓APP介绍1、安卓单机版数据接收、存储、查看、分析软件2、支持蓝牙数据接收3、手机休眠后软件后台接收、处理4、json数据自动添加设备,modbus设备支持扫码添加设备5、支持历史数据查看、分析、导出表格,支持曲线展示、单数据点查看。6、支持数据后处理功能7、支持外置运行javascript脚本云平台介绍(选配)1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本
  • 实验小技巧丨教您几招,治疗SPE小柱流速慢难题!
    小柱流速慢怎么办?在进入主题之前,先简单介绍下固相萃取(SPE)技术。  固相萃取(Solid Phase Extraction,简称SPE)技术,发展于上世纪70年代,由于其具有高效、可靠、消耗试剂少等优点,在许多领域取代了传统的液-液萃取而成为样品前处理的有效手段,在实验室中得到了越来越广泛的应用。它利用分析物在不同填料中被吸附的能力差将目标物提纯,有效地将目标物与干扰物分离,大大增强对分析物,特别是痕量分析物的检出能力,提高了被测样品的回收率。使用SPE效果对比图  万千世界的奇妙,造就了样品基质的千差万别,蔬菜,水果,肉蛋奶,水,土壤,橡胶,纺织品等等,不管是食品还是环境的样品,复杂程度也是各不相同。复杂程度一般的样品可以用简单提取作为前处理方法,但是对于特别复杂的样品就需要经过特殊的前处理,比如用SPE小柱,做进一步的净化,把目标物和杂质分离,进而在色谱仪器上得到一个漂亮色谱图,大家看现行的一些标准就会发现,有些样品基质的前处理肯定是会用到SPE手段的。  在用到SPE前处理的时候,各位分析检测工程师碰到最烦人最令人抓狂的问题是不是流速慢、流速不均、堵、下不去的情况;过小柱过到令人崩溃,既然流速都保证不了,怎么敢奢求回收率。 没关系,聚光科技(杭州)股份有限公司下属子公司上海安谱实验科技股份有限公司凭借多年来在样品前处理领域的深厚积累,教您几招,治疗小柱流速慢的难题。  SPE的基本操作,包括活化、平衡、上样、淋洗、洗脱,五个步骤。问题无外乎出现在这几个步骤里面,别急,我们一个个过来看。 SPE操作过程活化平衡  一般反相或者离子交换类型的小柱分别用到甲醇和水进行活化和平衡,正相小柱会用到石油醚或者正己烷来活化平衡。  1) 填料装填过紧导致流速过慢。可以通过加压加快流速,或者购买对流速有严格质控厂家的产品解决,安谱实验对CNW小柱每个批次的流速都有严格的质控范围,质控范围之外的小柱会被剔除。  2) 填料粒径过小导致流速变慢。比如同样的活化溶剂下,100-200 目的 florisil 就会比60-100 目的更慢些。可以根据样品基质类型和使用习惯选择合适规格的小柱。  3) 柱管体积差异。500mg 3mL;500mg 6mL,这两种规格形成的填料高度不一样,显然500mg 6mL,直径大,填料高度低,流速相对就快,就像地铁站早高峰,闸口多,通过速率快,闸口少,自然就拥堵,通过速率慢。可根据样品基质类型和使用习惯选择合适柱管的小柱。  4) 溶剂顺序加错。对于反相类型小柱,如果不小心把水当成活化溶剂,就会出现流速很慢的问题,因为水对于疏水性反相填料的浸润性是很差的,所以不小心把水当成甲醇来活化,可能等到花儿都谢了,它还是流不下来,注意别加错哦。  5) 活化和平衡溶剂不互溶。比如二氯甲烷活化,水平衡小柱,大家就会发现,水加入后,流速也会慢到让你崩溃。这是因为水和二氯甲烷的互溶性差造成的,可以加入过渡溶剂甲醇来解决,甲醇既可以与二氯甲烷互溶也可以和水互溶。  6) 空气进入填料。这个原因比较常见但也是比较难发现的原因,SPE小柱是由筛板,填料,柱管组成,不是有机的整体,所以在运输尤其是长途运输的过程中,就会出现微小的松动,导致空气进入填料,一般不容易被肉眼所发现。含有空气的填料在气压的作用下导致活化溶剂流下速度很慢。说到这大家可能就容易理解为什么同一批次的小柱,会出现轻微的流速参差不齐的情况,可以用 SPE 装置加正压的方式抽掉空气后,再一起加溶剂。上样  由于样品基质的复杂性,筛板孔径在 20um,在上样之前需要把颗粒物给过滤掉,比如含蛋白的样品需要加酸、盐、有机溶剂、加热等方式将蛋白处理掉;对于一般的基质,应采用过滤,离心或者高速离心,换大孔径填料等方式进行处理,现在好多第三方检测单位样品量非常多,但是该做的前处理步骤不能省,否则对仪器的损坏,对数据的可靠性都会有一定的影响。淋洗和洗脱  一般在淋洗和洗脱这两步出现流速慢的情形比较少,因为淋洗和洗脱都是不带基质的纯溶剂,一般上样步骤没有堵塞,就不会影响到淋洗和洗脱。可能出现流速慢的地方在于淋洗完小柱并干燥之后,因为一旦干燥小柱,就会使空气进入填料,这就回到了活化平衡导致流速慢的第 6 个原因,只要稍微加压就可以解决问题了。  当然我们在做实验的时候,不是每个步骤都要求快,鲁迅说过:欲速则不达,所以在小柱操作技巧里面,有两个步骤是需要控制流速的,分别是上样和洗脱;这两个过程是目标物与柱填料通过分子间作用力进行吸附和解吸附的过程,需要时间慢慢作用,大家一定要注意呦!
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 庆祝鼎昊源TL1000小型组织研磨仪入围科学仪器优秀新产品
    庆祝鼎昊源TL1000小型组织研磨仪入围科学仪器优秀新产品由仪器信息网举办的第十届“科学仪器优秀新产品”评选活动自2015年3月份筹备以来就受到了业内外人士的广泛关注。该活动在广大仪器厂商的积极响应下最终吸引了258家国内外仪器厂商共申报了590台2015年度上市的仪器新品。为了保证评选的公平性,本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在2016年中国科学仪器发展年会上揭晓并颁发证书。经过层层筛选,最终申报的新品中共有81台实验室常用设备通过出品组初审,23台实验室常用设备入围2015年“科学仪器优秀新产品”。其中我公司的TL1000小型组织研磨仪凭借独特的创新点成功入围。北京鼎昊源科技有限公司研发生产的TL系列组织研磨仪以其性能稳定可靠、操作简单、使用安全而受到客户的广泛好评。 TL1000小型组织研磨仪不仅继承了北京鼎昊源科技有限公司TL系列组织研磨仪的传统优势,沿用了最有效、最可靠的水平弧形振荡研磨的原理,同时增加了最新的静音技术和样品装载技术。独具特色的静音技术可以让实验室研磨更安静。通过创新尝试在研磨室内壁及四周采用吸音材料,使研磨过程在更加密闭的环境下进行,使研磨噪音大大降低,这在目前市场上国外或国内的水平式振荡驱动原理的研磨仪中尚属首创设计。专利的样品装载技术可以让操作变得更容易。鼎昊源TL1000的样品装载更加方便简单,专利技术的样品装载装置,可以自动定中心,并有防松脱安全锁紧置。除了上述的两点创新外,鼎昊源TL1000小型组织研磨仪在产品的体积上也做了突破。该仪器占用实验室台面的大小仅相当于一台笔记本电脑。外观小巧简单,让使用更灵活更方便。感谢仪器信息网与专家评审团对鼎昊源公司产品的支持与肯定,在今后的工作中,鼎昊源也将从用户角度出发研发并生产出更多的优秀仪器。扫码关注昊诺斯微信公众号
  • 庆祝鼎昊源TL1000小型组织研磨仪入围科学仪器优秀新产品
    由仪器信息网举办的第十届“科学仪器优秀新产品”评选活动自2015年3月份筹备以来就受到了业内外人士的广泛关注。该活动在广大仪器厂商的积极响应下最终吸引了258家国内外仪器厂商共申报了590台2015年度上市的仪器新品。为了保证评选的公平性,本届新品评审专业委员会邀请了超过60位业内资深专家按照严格的评审程序,对入围的新品进行网上评议。最终获奖的仪器将在2016年中国科学仪器发展年会上揭晓并颁发证书。经过层层筛选,最终申报的新品中共有81台实验室常用设备通过出品组初审,23台实验室常用设备入围2015年“科学仪器优秀新产品”。其中我公司的TL1000小型组织研磨仪凭借独特的创新点成功入围。 北京鼎昊源科技有限公司研发生产的TL系列组织研磨仪以其性能稳定可靠、操作简单、使用安全而受到客户的广泛好评. TL1000小型组织研磨仪不仅继承了北京鼎昊源科技有限公司TL系列组织研磨仪的传统优势,沿用了最有效、最可靠的水平弧形振荡研磨的原理,同时增加了最新的静音技术和样品装载技术。 独具特色的静音技术可以让实验室研磨更安静。通过创新尝试在研磨室内壁及四周采用吸音材料,使研磨过程在更加密闭的环境下进行,使研磨噪音大大降低,这在目前市场上国外或国内的水平式振荡驱动原理的研磨仪中尚属首创设计。 专利的样品装载技术可以让操作变得更容易。鼎昊源TL1000的样品装载更加方便简单,专利技术的样品装载装置,可以自动定中心,并有防松脱安全锁紧置。 除了上述的两点创新外,鼎昊源TL1000小型组织研磨仪在产品的体积上也做了突破。该仪器占用实验室台面的大小仅相当于一台笔记本电脑。外观小巧简单,让使用更灵活更方便。 感谢仪器信息网与专家评审团对鼎昊源公司产品的支持与肯定,在今后的工作中,鼎昊源也将从用户角度出发研发并生产出更多的优秀仪器。
  • PP刊登旭月IAA新成果 旭月IAA流速技术值得信赖
    2018年7月,Plant Physiology刊出了佛山科学技术学院喻敏教授与澳大利亚塔斯马尼亚大学Shabala教授的铝毒最新研究成果Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport。研究利用了非损伤微测技术(Non-invasive Micro-test Technology, NMT),检测了豌豆根部IAA流速及根表pH。IAA流速数据全部利用扬格NMT Physiolyzer® (NMT活体生理检测仪)完成,根表pH数据利用扬格NMT Physiolyzer® 以及MIFE® (非损伤微测技术的一种)共同完成。除了两家通讯单位外,华中农业大学资环学院石磊教授、中科院南京土壤所沈仁芳研究员、南京农业大学资环学院朱毅勇教授课题组,以及德国波恩大学Franti?ek Balu?ka教授,均参与了此项研究。硼能够缓解高等植物的铝毒,但机制尚不够明确。本研究利用非损伤微测技术、溴甲酚绿pH检测等技术,证明了铝毒抑制根表pH梯度时,硼提升了根表pH梯度,促进过渡区碱化,伸长区酸化。硼明显降低了过渡区的铝积累,从而缓解了铝导致的根部伸长受阻。利用基于非损伤微测技术的NMT Physiolyzer® ,检测IAA流速发现,在IAA极性运输最活跃的过渡区,硼部分缓解了因为铝而受到抑制的IAA极性运输过程。该研究成果解释了硼缓解铝毒的新机制,为在酸性土壤施用硼肥,降低植物铝积累和减轻植物铝的毒性作用,保障酸性土壤地区农业生产和农产品质量安全等,提供了有力的科学技术支撑,且具有重要的应用前景。-/+B时,Al胁迫不同时间后,根表各区域的pH值。研究利用非损伤微测技术,检测根表pH发现,铝胁迫下,硼可以使过渡区在一定时间内维持相对较高的pH。无论是否施加铝胁迫,硼处理后根部的伸长率明显高于对照组。H+-ATPase抑制剂处理后,硼处理组与对照组相比,伸长率的差异消失。同样,IAA极性运输抑制剂NPA处理后,硼处理组与对照组相比,原本高于对照组的伸长率的差异(铝胁迫下)。并且,因为硼所致使的过渡区根表相对较高的pH,因NPA的抑制作用,也消失了。这表明,硼缓解铝毒,不仅与H+-ATPase有相关性,而且与IAA极性运输存在某种关联。-/+B及-/+Al胁迫后,根表各区域IAA流速。正值代表外排。IAA流速数据结果显示,过渡区根表IAA外排最大,提示IAA向顶性运输是从静止中心经过渡区到达伸长区。这一结果与根表pH梯度的数据是相吻合的,即IAA外排大的位置,根表pH相对较高(过渡区),反之则较低(伸长区)。过渡区较大的IAA外排也一定程度上反映了此区域细胞胞质内的IAA含量较低,从而调控质膜H+-ATPase促进根表碱化。-/+B及-/+Al胁迫后,各处理、各基因型样品根表pH值。最终结果显示,硼促进了被极性运输生长素外排转运体PIN2驱动的生长素极性运输,并且引起下游信号对质膜H+-ATPase的调节,使得根表pH升高。这一过程对降低铝在根尖的积累至关重要。佛山科技学院喻敏教授,从2011年开始利用旭月非损伤微测系统,开展离子流、分子流实验,并于2018年采购了扬格非损伤微测系统。扬格NMT Physiolyzer® 除可以检测离子流外,还可以检测MIFE® 等设备无法检测的IAA、H2O2、O2等分子的流速。
  • 光谱仪的未来将趋向微小型化发展
    微型光谱仪具有许多大型光谱仪所不具备的优点,如重量轻、体积小、探测速度快、使用方便、可集成化、可批量制造以及成本低廉等,像普通光谱仪一样微型光谱仪有着巨大的应用市场,可以应用在实验室化学分析、临床医学检验、工业监测、航空航天遥感等领域,因而引起了人们广泛的兴趣。微型光谱仪的实现可以应用多种技术,目前常用的方法包括:采用新型滤光技术制作微型光谱仪 利用光纤的化学传感性制成光纤探针进行光谱分析 使用微细加工制作集成式微型光谱仪等。  利用光纤制作的微型光谱仪,光纤传感器的主要特点是具有很高的传输信息容量,可以同时反映出多元成分的多维信息,并通过波长、相位、衰减分布、偏振和强度调制、时间分辨、收集瞬时信息等来加以分辨,真正实现多道光谱分析和复合传感器阵列的设计,达到复杂混合物中特定分析对象的检测,这对电传感器和声传感器而言是望尘莫及的。光纤的探头直径可以小到与其传播的光波波长属于同一数量级,这样小巧的光纤探头可以直接插入那些非整直空间和无法采样的小空间(如活体组织、血管、细胞)中,对分析物进行连续检测。  OceanOptics公司的MichaelJ.Morris等人研制一种紧凑级联光纤DIP探针微小光谱仪,该系统的设计是使用单股光纤以获得高分辨率光谱信息,对于决定液体的吸收、发射和散射,或测量pH或有毒金属浓度使用固定指示材料。光谱仪的模式限制光学设计得到很高的光通量,常规应用中可以使用50μ m的光纤。微型光纤光谱仪还有美国Stwenchristesen等人研制的便携式光纤拉曼光谱仪,便携式光纤拉曼光谱仪可以对化学试剂鉴定盒进行非接触分析,它包括二极管激光器、中阶梯摄谱仪、电荷桐合器件(CCD)检测器和一个带有滤光涂层的光纤探针,这种光谱仪被用来分析密封玻璃容器中的化学试剂和其它有毒化学物。拉曼光谱是通过使用一个带有25m光纤的EICRamanProbe探针获得的。探针输出功率在紫翠玉激光器下为80mW,而二极管激光器为137nW。这种微型拉曼光谱仪也可以用T单个活细胞的分析。  由于光谱仪的结构特点以及光谱仪广泛的应用领域,在微小光谱仪的研究中可以采用多种方法和多种思路。比如改善AOTF的波长覆盖范围、波长分辨率和通光本领,可以使它能应用于各种光谱化学分析,而用这样的元件可以制成结构简单、性能良好、成本低廉的光谱仪,或者使用分辨率较高的中阶梯光栅,与一般棱镜结合,进行交叉色散,可以得到分辨率很高的二维光谱图,所以可以根据微小光谱仪的本身特点和工作环境要求来进行设计。  微加工技术的发展以及MEMS、MOEMS的出现使许多学科技术的研究都朝着微小型化的方向发展,更需要一些特殊条件下(如外星、地下、深海、危险区等)的工作仪器。光谱仪在未来的新世纪必将出现高度智能化和微型化的趋势,微型光谱仪可以说是微型仪器的一种。微型仪器实际上是具有仪器功能的MEMS/MOEMS产品,是MEMS技术的实际应用。  微型仪器的核心技术之一是微型传感技术,采用各种新原理、新概念的各类传感器是实现微型仪器的关键和必要条件。现在仪器朝着微小型化、智能化的发展使我们又面临一个新的考验,也是我们发展的一个机遇。
  • 安谱实验小型仪器重磅亮相CISILE 2017
    2017年4月6日-8日,由中国仪器仪表行业协会主办的第十五届中国国际科学仪器及实验室装备展览会(cisile)在北京国家会议中心隆重召开。本届cisile展示面积达25000平方米,汇聚了来自德国、西班牙、新加坡、韩国、土耳其等国际及国内的595家企业。 自2003年创办以来,cisile旨在加强行业应用和国际交流、科学仪器的成果转化,推动我国科学仪器的产业化、现代化发展,目前已成为我国科学仪器领域规模最大、水平最高的国际化专业展会之一。 聚光科技实验室业务平台展位 此次,安谱实验在cisile 2017重点展示了安谱实验小型仪器产品线部分产品,其中有荣获“国产好仪器”称号的安谱防腐型氮吹仪,有经久耐用、输出气体纯度高的氢气发生器,有噪音小、输出空气洁净的空气发生器。 展会现场 安谱防腐型氮吹仪 荣获“国产好仪器”称号的国内首家防腐型氮吹仪,安谱防腐型氮吹仪的工作原理是将氮气快速、连续、可控地吹到加热样品表面,根据被浓缩溶剂的蒸发速度和沸点,设定加热温度,实现大量样品的快速浓缩。整机覆盖防酸涂层、适用于腐蚀性环境。 展会现场 安谱氢气发生器 增加了光音报警功能,当液体低于设定值时,会发出警示音,同时液位视窗会闪烁红色光,提醒操作人员需加液体。当液位低于极限值时,仪器将自动停止产气,保护仪器。 安谱空气发生器 适用于国内、外各种型号的气相色谱仪和实验室需要空气源的其他仪器。仪器采用低噪音空气泵作为空气源,是理想的实验室空气源仪器。 另外,安谱实验也展示了试剂产品线、标准品产品线、spe前处理产品线、色谱耗材产品线的实力产品,吸引了广大客户、经销商,以及来自食品检测、疾控系统、出入境系统等专业观众纷纷在安谱实验展台驻足,对安谱实验的产品都表现出了浓厚的兴趣。 spe及样品瓶 标准品和气液相柱 客户咨询产品
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • SonTek 发布新型 “FlowTracker2” 声学多普勒流速仪!
    我们很高兴的通知大家,赛莱默分析仪器旗下品牌SonTek新型“FlowTracker2” 声学多普勒流速仪正式上市! 在采集水流速和流量信息的仪器演变过程中,声学多普勒流速仪 (ADV) 被视为是旗舰性质的进步。多年以来,对于全世界的政府水务机构和环境监测组织而言,当需要测量河流、溪流和运河中水量和流速时,ADV 成为了一项不可或缺的工具。 利用世界知名水文学家、研究人员和科学家在技术和应用专业知识方面的成就,SonTek 很高兴能揭示一款全新的(但又广为人知的)涉水型流量仪 — FlowTracker2! FlowTracker2 具有原型 FlowTracker 的所有特性,用户对此已经有所了解并抱有信心。但现在的新型号包含现代化、人性化且直观的新特性,可优化数据采集过程,但又能持续为用户提供无与伦比的数据测量精度 — 尤其是在浅水的测验环境中。这些特性包括: SonTek 拥有专利的“SmartQC”,可确保用户知晓何时会出现质量问题,挽救数据(节省时间!); 改善的 ADV 声学测量技术:更高的采样频率、更低的噪音和更低的标准误差; 复杂但易用的高科技技术,可创建表格及时间序列图形,用于编辑复杂、专业的报告; 可通过 蓝牙 或 USB 接口与计算机连接; 还有更多! SonTek 总经理 Hakan Erdem 说:“由于流量测验的需求不断增长,我们承诺将致力于提供尖端技术,为我们地球村健康和安全重大决策的人们提供可靠数据。”另一方面,“在为客户研制可靠、顶尖的仪器领域,我们是骄傲的领先者,而且我们将沿着这一方向继续前进。” FlowTracker2 可用于以下领域:流量监测、灌溉规划、社区发展和可持续性、洪水模拟和响应等更多方面。 欲知更多有关 FlowTracker2 的详情,请联系赛莱默分析仪器区域销售,或拨打4008-150-062免费咨询电话。
  • 超精密3D流速测量Argonaut-ADV
    Argonaut-ADV采用SonTek的知名ADV技术,非常实用 ,可在湖泊、溪流或沿海岸部署,价格合理。而且,可以在低流速或浅水环境使用,是沼泽和湿地研究的最终解决方案。具备独特的自动流速范围缩放能力,无需预设流速范围,一切由仪器自动完成。内置记录器、SDI-12接口和电池使Argonaut-ADV可以自主工作,也可以连接数据记录仪实时报告数据。■ 低流速,分辨率为0.0001 m/s■ 浅水(使用2-D探头选项可浅至 2-3 cm)标配RS-232和SDI-12输出■ 自动流速范围设置■ 到边界的距离的监测■ 电池容量大,可长时间部署Argonaut-ADV软件示例
  • 空间中心在空间热等离子体探测仪器小型化方面取得进展
    空间热等离子体探测载荷需要对两种不同电荷极性的粒子(带正电荷的离子和带负电荷的电子)进行探测。静电分析器作为热等离子体探测经典的探测方案,利用内、外两个极板间狭缝的电场对入射等离子体进行探测。   在特定电压极性下,只能探测一种电荷极性的等离子体(电子或离子)。等离子体包含两种不同电荷极性的粒子,所需的静电分析器电压极性相反,单台仪器难以同时满足两种电荷极性粒子的探测需求。常用的解决办法是利用两台独立的探头,分别施加不同极性的电压,实现对离子和电子的探测。这种方法造成仪器的重量、功耗需求增加,不利于仪器的小型化。   为了解决单个探头上双电荷极性粒子同时探测面临的离子、电子信号串扰和电场极性匹配的技术难题,中国科学院国家空间科学中心空间环境探测重点实验室等离子体探测研究团队提出了一种新的双通道静电分析器的设计理念,研制了双电荷极性热等离子体分析仪,实现了仪器的充分小型化。   双通道静电分析器采用三个特殊设计的异形曲面极板,形成内、外两个探测通道,当中间极板加特定极性的电压时,内外两个探测通道内电场强度方向相反,可分别用于不同电荷极性的热等离子体的探测。   在双通道静电分析器设计基础上,采用大视场静电偏转板、顶盖电极、微通道板等方案实现了电子和离子同时探测,具有2π大视场以及可变探测灵敏度的优点。科研团队研制的双电荷极性热等离子体分析仪原理样机进行了详细的地面定标试验,定标结果显示仪器具有宽能谱、高分辨、大视场、大通量动态范围的优点,   论文审稿人对该成果给出了的高度评价。该研究为我国未来小型化空间热等离子体探测载荷发展及其在地球和深空探测领域的应用提供了重要技术支撑。相关研究成果发表在美国物理联合会(AIP)旗下仪器仪表类期刊Review of Scientific Instruments上。仪器结构剖面(a)和实物照片(b)
  • 小型蠕动泵:体型小便携,流量平稳可控
    小型蠕动泵是一种小型携带式泵设备,广泛用于诊治、试验室、环保等领域。特点是结构简单、使用方便、流量操纵、稳定性高,备受用户亲睐。小型蠕动泵工作原理非常独特。它通过调节气压来驱动泵头里的摆杆挪动,进而产生泵送效果。泵头采用特殊的硅胶材料,可确保泵送流程的密封性和耐用性。同时,小型蠕动泵还配有精准的控制系统,能够及时控制流量与压力,达到客户的不同需求。小型蠕动泵用途广泛。在医学领域,它被用来药液运送、血透、人工呼吸等方面。其优点是流量平稳可控,能确保药液输送的精确安全度。在实验室领域,小型蠕动泵常用于检测液态运送、试品剖析等方面。结构紧凑,操作简便,非常适合实验室的研发。此外,小型蠕动泵还广泛用于环保企业,用以废水处理、气体抽样等方面。其高可靠性和流量可特性使之成为环保领域的重要设备之一。除上述领域外,小型蠕动泵还可用于食品产业、化工、电子制造等领域。它小巧便携,用户能够轻松带上与使用,满足不同液态输送的规定。同时,小型蠕动泵的维护也很简单,用户仅需定期清理和更换泵头,以确保其长期高效运行。总之,小型蠕动泵以其体型小、便携、流量平稳、可控的特征,已成为很多领域不可或缺的设备。它用途广泛,功能完善,遭受用户的好评和青睐。我们坚信,随着技术的进一步发展,小型蠕动泵将用于更多领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制