当前位置: 仪器信息网 > 行业主题 > >

尿素浓度仪原理

仪器信息网尿素浓度仪原理专题为您提供2024年最新尿素浓度仪原理价格报价、厂家品牌的相关信息, 包括尿素浓度仪原理参数、型号等,不管是国产,还是进口品牌的尿素浓度仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合尿素浓度仪原理相关的耗材配件、试剂标物,还有尿素浓度仪原理相关的最新资讯、资料,以及尿素浓度仪原理相关的解决方案。

尿素浓度仪原理相关的资讯

  • “汽车人”看过来,你不可轻视的车用尿素!
    背景全球能源、环境以及气候变化等问题日益突出。众所周知,与汽油发动机相比,柴油发动机热效率高出30%,排放产生的温室效应比汽油低45%。柴油车比一般的小轿车造成的污染还大,柴油车排放的氮氧化物(NOx)和颗粒物(PM)由于对人类健康和大气环境造成的危害在一些国家和地区已引起高度的关注。就我国而言,2021年7月,我国全面实施重型柴油车国六排放标准,新实施的国六标准对于排放的要求更加严格,基本实现与欧美发达国家接轨。这意味着车辆尾气的排放控制必须采用更为先进的技术。选择性催化还原技术(SCR)是针对柴油车尾气排放中NOx的一项处理工艺,也是目前重型柴油机降低排放的最主要手段之一。这项技术必须依靠尿素溶液对尾气中的氮氧化物进行处理,利用尿素溶液在发动机高温尾气气化后产生的氨,作为柴油机动车辆尾气选择性催化还原的还原剂,从而使尾气中的氮氧化物转化为无害的水蒸汽和氮气,减少排放。因此,车用尿素可以说是重型卡车、客车等柴油车达到国六排放标准的必备产品。对于车用尿素有以下几项检测指标:车用尿素溶液是透明、清澈的的液体,呈淡蓝色,浓度在31.8%-33.2%之间,用于还原氮氧化合物。目前使用的车用尿素溶液一般由32.5%高纯尿素和67.5%的去离子水组成。车用尿素又名柴油机尾气处理液,国内俗称为:汽车尿素,车用尿素,汽车环保尿素,车用脱硝剂,而叫的最普遍的就是车用尿素。 车用尿素作为重型柴油车实现国六排放至关重要的一环,其作用是为了减少氮氧化合物排放,是降低柴油车污染物排放量的关键。以下小编列举几项车用尿素的检测指标:01尿素含量尿素含量直接影响NOx的催化效率和尿素溶液的凝固点。尿素溶液的浓度过高或过低不仅不能提高NOx的转化效率,反而会造成氨气的漏失(由于过高的NHs/NOx 比造成的氨气漏失),形成二次污染物(氨气)。02密度车用尿素溶液的密度与浓度密切相关,有资料表明,在一定温度下尿素溶液的密度与浓度具有一一对应的关系,且密度随浓度增大而增大。检测密度有助于辅助验证车用尿素溶液的浓度和质量。03折光率车用尿素溶液的浓度与折光率也密切相关,跟密度类似,在一定温度下尿素溶液的折光率与浓度也有着——对应的关系,且折光率随浓度增大而增大。测量折光率有助于进一步辅助验证车用尿素溶液的浓度和质量。04碱度尿素在酸、碱、酶作用下(酸、碱需加热)能水解产生氨,碱度太高说明部分尿素不纯或已经分解,该项指标控制的是尿素中氨的含量。05缩二脲尿素的生产过程中会产生副产物缩二脲。此外,若存储不当,尿素溶液易缩合为缩二脲。缩二脲作为尿素溶液中的杂质,需要进行严格控制。06不溶物不溶物是尿素溶液中的不溶于水的杂质,不溶物的存在对车用尿素溶液的输送管路和喷嘴具有危害,可造成堵塞。07甲酸、金属离子、磷酸盐等甲酸、金属离子作为车用尿素溶液的杂质,也要加以严格控制。磷及磷酸盐由于能使车用尿素溶液SCR系统的催化剂中毒失活,也是标准中的需要严格控制的项目之一。安东帕车用尿素解决方案:折光法相比传统测定尿素的方法,折光法具有分析速度快、测定效率高、检测尿素浓度范围广、不需任何化学试剂和无污染等优点。安东帕 Abbemat全自动折光仪内置的专用曲线可以快速方便地测试车用尿素的浓度、DEF、AUS32 以及 ADBLUE 浓度。整个测试过程中无需消耗化学试剂,只需少量样品,数秒钟即可读取浓度值。可协助尿素生产企业、车用尿素液运输渠道、加油站、柴油发送机生产部门更高效地管理和控制车用尿素的浓度。安东帕Abbemat系列的全自动折光仪(Abbemat 3X00、300、500、350、550)全部采用 LED 光源、内置 Pel tier 半导体恒温控制器、蓝宝石棱镜,高清彩色超大触摸屏,仪器内置多达百种测量方法。其独特的全光反射测量原理可帮助操作人员不受样品颜色和浊度的干扰,准确而又稳定地测定深色样品的折光率。如果使用劣质尿素溶液,废气中氮氧化物无法完全转换为氮气和水,会出现排放超标的现象,而长期使用劣质尿素将对车辆的后处理系统造成致命性的损伤,需要花费大量的人力财力来弥补。因此车用尿素的质量把控至关重要。以上,你了解了吗?安东帕中国总部
  • ATAGO(爱宕)发布柴油机专用尿素液浓度计PAL-UREA
    随着环保观念的深入,近年来我国的尾气排放标准一年一个台阶。中国将于2010年起强制执行重型柴油机国Ⅳ排放标准。 目前来说SCR(选择性催化还原技术)技术成柴油机国Ⅳ标准首选技术。国内发动机生产商都开始使用SCR技术来达到环保要求。 柴油机尾气处理液(国内俗称为:汽车尿素液,车用尿素溶液,汽车环保尿素液),是SCR技术中必须要用到的消耗品。应用于柴油发动机中。它使用在SCR技术中,用来减少柴油车尾气中的氮氧化物污染的液体。其组成成分为32.5%的高纯尿素和67.5%的去离子水。   SCR系统包括尿素罐(装载柴油机尾气处理液),SCR催化反应罐。SCR系统的运行过程是:当发现排气管中有氮氧化物时,尿素罐自动喷出柴油机尾气处理液,柴油机尾气处理液和氮氧化物在SCR催化反应罐中发生氧化还原反应,生成无污染的氮气和水蒸气排出。 如果不装载柴油机尾气处理液、或纯度不够、或质量伪劣,都会发生车辆发动机自动减速。同时,质量伪劣的柴油机尾气处理液会污染SCR催化反应罐中的催化剂,造成严重后果。 其实在欧洲,2006年就已经开始实施这个政策。欧洲柴油机尾气处理液称为Adblue。在美国,2010年开始,随着EPA2010标准的实施,也全面加大了汽车尿素液的应用实施力度,在美国,柴油机尾气处理液称为DEF(Diesel Exhaust Fluid)。主要代表有BlueDEF等。然而在国内,对于柴油机尾气处理液的生产目前尚属于新兴行业。 日本ATAGO(爱宕)生产的PAL-Urea柴油机专用尿素液(DEF)浓度计是专门针对柴油机行业使用的。在欧洲和美国PAL-Urea 已经被认可为简便且准确测量的唯一可信赖的产品。柴油机专用尿素液(DEF)在32.5%的浓度下才可以发挥其作用。使用 PAL-Urea 保持合适的浓度才可以保证其尿素液的作用。 PAL-Urea 又轻又小,测量方法简便,只要放样品按开始键等3秒钟就可以得到其浓度。它的电源为2个AAA电池,可以测量大约1万1000次。
  • 泳池水质普遍余氯低尿素高
    7月6日,北京市卫生监督所检查人员来到朝阳区朝阳公园检查露天游泳池水质通过手机扫描二维码可获得水质实时监测数据。  随着夏季来临,气温不断攀升,北京市各大游泳场馆人气爆棚。然而,眼前的一池碧水是否真像看到的这么干净?近日,记者跟随市卫生监督所工作人员,对多家室外游泳馆水质进行检测,发现所检测的游泳场馆泳池水质均存在余氯偏低、尿素较高等问题。  据市卫生监督所公共场所卫生监督科副科长刘颖介绍,按照国家标准,游泳场馆水质检测主要针对五项卫生指标(水温、余氯、PH值、浊度、ORP)。其中,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖,从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,泳池还普遍存在尿素较高的问题,同样对人体有害。  经过记者的探访和了解,游泳馆水质不达标多为经营者为省钱偷工减料所致。  □现场  刚加消毒药剂余氯仍低于国标  7月6日下午2时许,记者跟随市卫生监督所工作人员来到北京团结湖公园海滨乐园。记者在现场看到,不少人正在泳池里游泳嬉戏。  随后,市卫生监督所的工作人员走到一处游泳池旁边,从游泳池里取出水,用检测余氯的试纸进行检测。大约1分钟后,检测数据显示余氯值为0.1mg/L。随后,工作人员又走到另外一个泳池,让游客在泳池中央取出一小瓶水进行检测,检测结果显示余氯为0.2mg/L。  记者了解到,为了保持游泳池水的卫生,杀灭池水中的致病微生物,各游泳场馆在循环过滤池水的同时会加入一定剂量的含氯消毒药剂,从而产生游离性余氯。游泳池水余氯浓度的国家标准为0.3-0.5mg/L,然而,在本次检查中,该泳池余氯比国家标准低。而该游泳馆一名负责人向市卫生监督所工作人员承认,游泳馆刚对泳池加入含氯消毒药剂不到1个小时。  刘颖介绍,余氯浓度过低对池水起不到消毒效果,池水里的细菌及致病微生物就可能会过多地繁殖从而引起疾病传播 而过高则可能对人体的眼黏膜、皮肤黏膜及口腔黏膜等产生刺激作用,特别是对儿童、妇女和老年人等敏感人群会更明显。另外,夏季气温高阳光照射强烈,会对余氯进行分解,因此,夏季余氯消耗会特别大。余氯补得不够或者没有的话会非常危险。  除滨海乐园外,市卫生监督所还对朝阳公园沙滩主题乐园进行了检测,现场检测了几个点的余氯,其中一个点的余氯数据也略低。  泳池尿素超标来源排汗和小便  根据国家相关标准规定,游泳池水质的尿素应小于等于3.5mg/L。但是根据往年的数据来看,游泳池尿素超标问题普遍存在。  刘颖表示,尿素含量过高时,尿素中的氨会与含氯消毒剂形成氯胺类物质,使游泳者产生厌恶感,刺激皮肤、眼角膜、腐蚀头皮等。  刘颖说,现在不少游泳池采取溢流式循环过滤,其原理是将泳池溢出来的水收集到水箱中,再用循环泵把水抽到沙缸里进行过滤之后重新放回游泳池。虽然毛发等杂质会被过滤掉,但细菌含量等无法降低,而尿素必须换新水才能降低含量。尿素通过过滤循环设备是去除不掉的,每天有人在里面不停地游、排汗或者排尿,尿素会越来越高,所以泳池管理方需要即时补充新水。  “目前我们也在通过其他的方法不换水把尿素去掉。就是通过尿素分离技术,把有机物分解掉。但是这种技术需要费用也较高,只有个别游泳场馆在用。”刘颖说。  据了解,游泳池中之所以有尿素,一方面是人在游泳中会不停地排汗,另一方面就是有人在游泳池中小便。  □原因  为省钱消毒环节“偷工减料”  记者了解到,北京有不少游泳池采取溢流式循环过滤,为了省钱,有些游泳池甚至不开或者只在夜间开启循环系统。但长期不换水、循环系统不开,而为保持水体清澈,一些游泳馆就大量、反复使用聚合氯化铝沉淀剂,吸附水中悬浮物。肉眼看上去清澈透明,实际上水体富含大量铝离子,会对人体尤其是眼睛带来损害。  此外,一些游泳场馆在消毒上也存在“偷工减料”。有业内人士表示,一般来说,一个1000立方米的游泳池用的消毒剂、沉淀剂等各种消毒物料,一个月的费用要1万元左右。市场上各类消毒剂质量和价格参差不齐,为省钱,一些经营者就选用廉价消毒剂,消毒效果难以保证。  □对策  实时监测系统可随时看水质  为应对即将到来的游泳高峰期,目前,全市百家泳池已于上月启动“扫一扫泳池水质我知晓”活动。市民在游泳馆明显处可通过手机扫描此二维码,在游泳前第一时间了解该泳池的余氯、浊度、pH值等数值。如果发现不达标的情况,公众可以通过公共卫生服务热线12320对发现的问题进行投诉。  记者获悉,市卫生监督所在100家游泳场馆安装了实时监测系统,所选择的多是室外的、人多的、学校的、社区的以及承担一些国际国内重大赛事,这占到游泳总人数的百分之八十左右。  目前,北京市游泳场馆电子监管指挥中心建设完毕,实时监测游泳场馆水质的五项主要卫生指标(水温、余氯、PH值、浊度、ORP),并在5分钟到7分半钟更新一组数据。一旦触及预警线,会立刻报警,监督员会立即赶赴现场进行处理。遇到高温天气,卫生监督部门将加强对室外泳池的监督检查。  “为了保证水质,市卫生监督部门今后会对游泳场馆,特别是问题游泳馆加大检查频率”,刘颖说,市卫生监督所将专项监督检查重点解决市民所关注的池水浑浊和尿素含量超标的问题,各级卫生监督机构将通过培训和指导等方式督促游泳场馆经营者加强自身管理,同时对违法行为依法给予行政处罚。  □小贴士  游泳者如何判断和维护水质?  1.到现场一般需要先看下水质的现状,浑浊度现行的国标标准是5,真到5的话已经很浑浊了,没法看了。所以用肉眼看基本上很清澈可以见底,那肯定是在国家标准范围内。  2.站在泳池边闻闻有没有氯气的味道,最好是有淡淡的氯气的味道,不能太浓,也不能闻不到。太浓的话说明余氯超标,会对人体有伤害,闻不到说明余氯太少,达不到消毒效果。  3.像PH值或者浑浊度可能会在实时监测系统上看看数据,然后再结合现场感官现状做一个初步判定。  4.因为男士皮屑多,女士化妆品多,到水里后有机物溶解进去通过一般方法不容易去掉,必须通过强氧化剂分解掉。所以建议广大游泳爱好者养成泳前淋浴等习惯。  国家标准:  水温:22-26  余氯:0.3mg/l-0.5mg/l  PH值6.5-8.5  浊度:0-5  ORP:650  尿素3.5mg/l
  • 车用尿素液的测定方法
    国家环保部《关于实施国家第四阶段车用压燃式发动机与汽车污染物排放标准的公告》规定自2013年7月1日起,所有生产、进口、销售和注册登记的车用压燃式发动机与汽车必须符合国四标准的要求。”所谓车用压燃式发动机与汽车,主要是指柴油发动机和柴油车。 据经济之声报道,大货车尾气排放污染,是严重影响PM2.5指标参数的重要因素。据环保部的数据,2011年我国的柴油车仅占机动车总保有量的6.3%,而氮氧化物排放量却占到全国当年汽车氮氧化物排放量的67.2%,颗粒物PM的排放量也占到了汽车总排量的78.8%。治理重型柴油车尾气污染成为机动车减排的重中之重。随着国4排放标准的强制实施,这些状况会有一些改善。 这项技术的实施主要借助与SCR技术,所谓的“SCR技术”,简单点说,就是用尿素处理液催化把尾气里的氮氧化合物转化为没有污染的氮气和水。这种办法能吸收尾气里80%的氮氧化合物。目前,国内各重型柴油车生产厂主要选用这种技术来满足国四排放标准。 汽车尿素的学名是柴油机尾气处理液。应用于柴油发动机中。其组成成分为32.5%的高纯尿素和67.5%的去离子水。 尿素含量直接影响NOx的催化效率和尿素溶液的凝固点。在SCR还原系统中,尿素溶液的浓度是关键因素之一,过高或过低的浓度不仅不能提高NOx的转化效率,反而会造成氨气的滑失(由于过高的NH3/NOx比造成的氨气漏失),形成二次污染物氨气。 早在2006年ATAGO(爱拓)就开发出多种型号的车用尿素浓度计,投放到欧洲和北美市场,测试DEF、AUS32和ADBLUE浓度。方便快速的协助相关单位去管理和控制车用尿素的浓度,比如尿素生产企业、车用尿素液运输渠道、加油站、柴油发送机的生产部门等单位 ATAGO(爱拓)现在有两类尿素浓度测定仪,分别是PAL-UREA和RX-5000i这两个型号,PAL-UREA为数显迷你车用尿素浓度计,手持式数字显示,具有方便携带,测量简便的特点,而RX-5000i是台式尿素含量检测专用折光仪,测量比手持式较为精准。 尿素浓度测定仪 、尿素含量检测专用折光仪等检测仪器快速检测车用尿素的浓度, 内置专用曲线可以测试车用尿素浓度、DEF、AUS32和ADBLUE浓度,相比传统的凯氏定氮法,这类仪器不消耗化学试剂,检测快速方便,一次加样0.3ml,3秒钟即可读取浓度值, 新标准强制实施之后,每个加油站都需要常备车用尿素液,柴油汽车就是像日常加油一样,去加油站都得补充车用尿素液,车用尿素DEF浓度计, 车用尿素浓度测定仪将在这场变革中发挥出重要的作用。 如果您想进一步了解产品、技术参数以及应用解决方案等信息,请关注ATAGO(爱拓)。
  • 车用尿素水溶液中的尿素含量测定解决方案 | 德国元素Elementar
    对于重型卡客车来说,由于尾气排放检测日益严格,使用车用尿素是达到国家规定排放标准的关键。而车用尿素的使用不仅净化车内尾气,而且可减少氮氧化物排放。其通过与尾气中的氮氧化物发生化学反应,将这些有害物质转化成无害的氮气和水。这不仅有助于优化发动机性能和降低燃料消耗,还能显著减少柴油消耗,降低成本。当尿素溶液不足时,车辆可能无法启动,因此保持尿素溶液充足是确保车辆正常行驶和环保达标的重要措施。车用尿素为32.5%的高纯尿素和67.5%的去离子水组成的高纯度透明液体。当车用尿素溶液中的尿素含量过高时,会形成结晶造成管路、喷嘴、尿素泵的堵塞。当车用尿素溶液中尿素含量过低时,又会影响氮氧化物的转化效率,无法实现有效转化,达不到环保要求。如何快速、简便测定车用尿素水溶液中的尿素含量显得尤为重要。依据GB/T 29518-2013 柴油发动机氮氧化物还原剂-尿素水溶液(AUS 32中附录A的方法),通过杜马斯定氮法来精确测定水溶液中的氮含量,再换算成尿素含量。德国元素Elementar 在杜马斯快速定氮分析仪的研发脚步从未停歇。自1964年公司推出第一台杜马斯定氮仪后,公司响应食品、农产品、饲料等样品的分析需要更大样品量的需求,于1989年,进一步推出了首款克级样品量的杜马斯定氮仪,逐步推动了杜马斯定氮法在全球的应用。德国元素Elementar rapid MAX N exceed与rapid N exceed杜马斯定氮仪均基于Dumas燃烧原理,通过热导检测器 (TCD) 测度氮含量。两种系统均可实现全自动的氮测定,可将单次分析所需的时间缩短至仅 3-4 分钟。且rapid MAX N exceed与rapid N exceed杜马斯定氮仪均满足GB/T 29518-2013 柴油发动机氮氧化物还原剂尿素水溶液(AUS 32中附录A的方法)要求。实验案例一,将尿素水溶液直接称重于不锈钢坩埚或锡囊中:二,自动化进样分析三,实验结果:表中为不同仪器10次测定结果展示。从结果可看出,德国元素Elementar rapid MAX N exceed 与 rapid N exceed 均具有高精准性,且不同分析的氮含量结果完全相同,在 99 % 置信区间的实验误差范围内与理论值完全一致。所有相对标准偏差均低于 0.5%。车用尿素的样品特点决定了测量基质为液体,N元素含量较高。德国元素Elementar 的rapid系列杜马斯氮分析仪在这个应用过程中兼顾了仪器的分析精准性、操作便捷性和使用经济性,能够最大程度上满足各方面的应用需求。rapid N exceed和rapid MAX N exceed两款杜马斯氮元素分析仪均满足标准要求,可快速、准确、便捷的实现车用尿素的质量控制。
  • 国内首台尿素在线检测装置问世
    记者11月22日从中科院合肥物质科学研究院获悉,由该院技术生物所和河南心连心化肥有限公司共同完成的,国内第一台尿素产品质量在线检测装置近日研发成功并投入生产应用。将装置安放在尿素传送带的上方,就能实时精确监测出尿素中尿素、缩二脲、水分的含量。   我国化肥产品结构以氮肥为主,占化肥总量的60%,而氮肥中60%以上为尿素。在尿素产品的生产过程中,高温会促使其产生缩二脲,当缩二脲浓度较高时会对作物生长有抑制作用,由于尿素易溶于水、易吸湿结块,因此准确测量尿素、缩二脲、水分三者含量难度较大,而如果测量精度不够,又很难保证尿素产品的品质。传统测定方法操作复杂、耗时长、消耗化学试剂成本高,同时不利于环保,因此发展尿素产品质量快速检测方法意义重大。   技术生物所科研人员在利用近红外漫反射光谱定量分析技术建立尿素中尿素、缩二脲和水分含量模型的基础上,研发出在尿素生产线上在线检测尿素、缩二脲、水分含量等尿素质量指标的装置。通过调试改进,克服了工业现场震动较大、化肥移动速度快对测量精度的影响,实现了对尿素产品品质在线检测的目标。
  • 车用尿素是什么,您知道吗?
    岛津傅立叶变换红外光谱应对尿素溶液一致性确认 何为车用尿素?我们最熟识的尿素是农业上使用的肥料,但你知道吗?其实医药、食品、化妆品中都使用尿素。近年来,柴油车上也用上了尿素(水溶液),但是不同于工农业尿素,车用尿素由32.5%高纯尿素和67.5%的去离子水组成,学名是“柴油机尾气处理液”,它不是用在气缸里面“烧”的,而是在排气管里面“烧”的,作用是处理汽车尾气中氮氧化物。 汽车尾气处理技术柴油车主要排放一氧化碳、碳氢化合物、氮氧化物和颗粒污染物等,控制的重点是氮氧化物(nox)和颗粒污染物(pm)。目前gb17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市重型柴油车将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物和颗粒物排放限值分别加严了77%和67%,并新增了粒子数量(pn)的限值要求。 为了达到国六排放标准,通常需要多种尾气后处理技术共同作用,其中选择性催化还原(scr)技术是当前普遍使用的尾气处理技术之一,该技术用来降低发动机尾气中的nox,其原理是在含有nox的尾气中喷入尿素水溶液,使其中的nox还原成无污染的氮气和水,从而大大减少废气的排放量。 岛津irspirit-t红外光谱仪对尿素水溶液aus32进行一致性确认尿素水溶液是scr技术中必须要用到的消耗品,如果使用劣质产品,废气中氮氧化物无法完全转换为氮气和水,会出现排放超标的现象;长期使用劣质尿素将对车辆的后处理系统造成致命性的损伤,需要花费大量的人力财力来弥补,目前国内外大部分标准均采用红外光谱法对其进行定性测试。 使用岛津irspirit-t型傅立叶变换红外光谱仪测定了市售尿素水溶液红外光谱(衰减全反射法),测试谱图特征峰与参考谱图一致,表明该产品符合gb 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(aus32) 》一致性确认的技术要求。 图1 参考谱图(衰减全反射法) 图2 市售车用尿素溶液红外光谱图(衰减全反射法) irspirit-t具备同类产品最佳的信噪比性能和最高的分辨率水平,尺寸小巧,还兼具标准样品室,良好的扩展性可以满足各种不同测试需求,一体式设计单次反射atr装置(qatr-s)只需要一滴液体,即可以快速简单测得试样红外光谱图,而且便于清洁,非常适合尿素水溶液一致性确认。 撰写人:段伟亚、马超
  • ATAGO全自动折光仪RX-5000 α成功应用于尿素含量的测定
    尿素是常用的氮肥品种。在尿素的生产和使用中,均要求能快速、准确地测定尿素的含量。目前,虽已有多种测定尿素含量的方法,但各有自己的优点和使用范围,因此测定标准并没有统一。根据现存尿素的测定过程,可分为间接测定和直接测定。间接测定通过脲酶将尿素分解为氨、硝酸盐或氮气,然后利用现有标准方法测定含氮物质的量,并据此计算出尿素的浓度;直接测定则是通过加入某些能够和尿素反应生成带色产物的物质,通过比色等方法进行测定。目前间接测定溶液中尿素含量的方法以H2SO4消化比色法为代表;直接测定法以二甲氨基苯甲醛(PDAB)比色法应用最广。 华南农业大学资源环境学院郑丽行、樊小林教授与上海化工院国家化肥检测中心刘刚,杨一合作,采用ATAGO 折光仪RX-5000 &alpha 直接测定纯尿素溶液中尿素的含量,并与二甲氨基苯甲醛(PDAB)比色法以及H2SO4消化比色法的测定结果进行比较。结果发现,折光率与溶液中尿素含量呈极显著线性相关,相关性曲线为Y=7025.7X-9361.7 (25℃)最小检出限位0.5g/Kg,最大检出限为600g/Kg。 他们的研究建立了测定尿素含量的折光率法,此方法具有检测范围广,准确度高、精度高、测量速度快,工作效率高、简单易行等特点。另外,该法测定过程不需要任何化学药品,在节约成本的同时,还避免了化学试剂可能造成的环境污染。 此方法既可作为尿素企业及缓/控释尿素企业尿素释放率质量控制的检验方法,也可以作为教学、科研部门测定尿素含量的方法。 技术指标: 1.能够快速且高精度地测量各种液体的折射率,Brix,浓度; 2.具有内置的恒温装置,无需外接水浴,实现温度控制; 3.测量范围:折射指数(nD):1.32700 至 1.58000; 4.分辨率:折射指数(nD):0.00001;温度:0.01° C; 5.测量精度:折射指数(nD):± 0.00004; 6.重复性:折射指数(nD):± 0.00002; 7.※可根据用户需求,自定义60个样本曲线; 8.SUS316不锈钢样品槽提高耐蚀性和耐伤性,蓝宝石棱镜精准耐用。 Atago全自动折光仪Rx5000a
  • 国内首款车用尿素溶液快速检测仪研发成功
    继北京和上海之后,珠三角成为国内又一个全面实施国Ⅳ排放标准的区域,8月1日起,所有的国Ⅲ车辆就将禁止在珠三角上牌,而杭州、南京等城市也已积极开始准备实施国Ⅳ排放标准 而全国范围内的国Ⅳ排放标准,则预计将在中石化全面提供符合国Ⅳ标准的柴油之时,也就是2010年7月份起正式实施。   国Ⅳ排放标准实施步伐的日益加快使得国内汽车生产厂家再一次面临“大考”,尤其是商用车领域内的重卡、客车,由于符合国Ⅳ排放标准的重卡及客车普遍使用了需要与车用尿素溶液配套使用的SCR发动机技术,因此,寻找合格的车用尿素溶液供应商,同时解决产品加注和快速检测这两项难题,就成了国内汽车厂家急需在短期内解决的重要课题。   作为国内最大的车用尿素溶液生产厂家,总部位于江苏南京的可兰素公司于2010年年初通过了美国石油学会关于车用尿素溶液产品的DEF(Diesel Exhaust Fluids)认证,成为中国第一家,也是目前唯一一家通过这一国际认证的企业 同时,可兰素公司也是国内为数不多的、具有车用尿素溶液加注设备生产能力的供应商,而于7月8日起正式上市的车用尿素溶液快速检测仪的成功研发,则标志着可兰素公司已经成为国内首屈一指的集生产、加注、检测为一体的车用尿素溶液解决方案的提供商。   可兰素公司最新研发的这款车用尿素溶液快速检测仪,长度不足20厘米,重量只有区区140多克,外形酷似一台袖珍显微镜 别看它体积小,功能却一点不含糊:将车用尿素溶液的检测试液滴在这台仪器的检测板上之后,检测人员便可通过检测仪内的读数变化,判断出车用尿素溶液浓度是否合格。   与ICP光谱仪等目前国内通用的车用尿素溶液检测设备相比,车用尿素溶液快速检测仪具有成本低、便于携带、检测迅速等多项优点,而误差率仅有1%,因此非常适合汽车厂家、公交公司等大型用户在使用车用尿素溶液产品时的现场检测,也填补了国内目前在此类快速检测设备上的一项空白。
  • 英国 B+S 全新推出车用尿素溶液折光仪,德祥
    英国 B+S 全新推出车用尿素溶液折光仪,德祥 英国Bellingham+Stanley (B+S) 公司是全球专业从事折光仪和旋光仪研制和生产的百年老厂,其生产的各种折光仪和旋光仪质量精良,享誉全球。 当前,我国的机动车保有量已逼近2亿辆,这些机动车排放的尾气所含的主要污染物有氮氧化物、碳氢化合物和碳烟颗粒物,对大气环境和人体健康构成了巨大危害,成为破坏国内城市空气质量的&ldquo 头号杀手&rdquo 。随着机动车尾气排放&ldquo 国Ⅳ&rdquo 标准已在京、沪等部分城市开始实施,&ldquo 国Ⅴ&rdquo 标准也已提上日程,意味着国内车辆尾气的排放控制必须采用更为先进的技术。目前,SCR(选择性氧化还原)技术是最适合重型卡车、客车的&ldquo 国Ⅳ&rdquo 和&ldquo 国Ⅴ&rdquo 排放解决方案。而这项技术必须利用尿素溶液(又称为AUS-32和AdBlue)作为催化剂,对尾气中的氮氧化物进行处理,生成无害的氮气和水。因此,合格的车用尿素溶液成了重型卡车及客车要想达到&ldquo 国Ⅳ&rdquo 和&ldquo 国Ⅴ&rdquo 排放标准的必备产品。 顺应这一需求,B+S隆重推出专用于车用尿素水溶液的折光仪:RFM990-AUS32 台式数显折光仪 和 PRH-DEF32 在线过程折光仪。RFM990-AUS32 和 PRH-DEF32是目前市场上*遵从ISO22241-2规程中关于折光系数和温度测量/控制说明的折光仪,帮助您的产品达到国内外的车用尿素水溶液质量控制标准 &mdash &mdash ISO 22241-1、DIN 70070、JIS K 2247-1、DB11/552-2008等。 RFM990-AUS32台式数显折光仪: 主要用于质量控制和研发实验室。 þ 特有特有尿素标度和尿素温度补偿,您可以直接从仪器上读数得到尿素溶液的浓度,并可在室温下完成测量并得到20℃下的值; þ 内置帕尔贴(Peltier)温度控制装置,精确、稳定控制样品温度; þ 超高精度,达到小数点第5位。 PRH-DEF32 在线过程折光仪: 用于生产线上实时在线监控、连续测量。 þ 温度补偿至20℃; þ 远程控制; þ 不锈钢材质,密封符合IP66标准; þ 超高精度,达到小数点第5位。
  • 合肥研究院制备可穿戴传感器实现对尿素的视觉监测
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队在可穿戴水凝胶贴片及体液中尿素视觉监测方面取得进展,通过在三维多孔聚丙烯酰胺(PAM)水凝胶中嵌入上转换光学探针,设计制备了一种可穿戴传感贴片,并将该贴片与智能手机的颜色识别器结合,实现了对尿素的现场快速定量分析。相关研究成果发表在Analytical Chemistry上。   尿素是人体含氮物质最终代谢的主要产物,会通过汗液、尿液、唾液和血液排出,其在临床诊断中被认为是肾功能的重要指标,因此有效检测尿素水平对于疾病的研究和早期诊断至关重要。可穿戴传感器由于可以直接佩戴在人体皮肤上且具有非侵入性的特性受到广泛关注,三维网络状结构的水凝胶具有良好的柔韧性、拉伸性和生物相容性,这些特性使其成为可穿戴传感器的理想材料,然而目前报道的大多数荧光水凝胶都是由短波长激发的,在检测生物样品时容易受到自发荧光和背景荧光的干扰。上转换纳米粒子(UCNPs)与传统的荧光材料相比,能消除生物样品的自荧光和背景干扰,提高检测灵敏度。因此,利用UCNPs设计可穿戴传感器是检测人类生物标志物的有效策略。   鉴于此,研究团队设计了一种基于上转换光学探针的聚丙烯酰胺水凝胶传感器。探针由UCNPs和对二甲氨基肉桂醛(p-DMAC)组成,基于内滤效应(IFE),尿素与p-DMAC反应产生的红色产物猝灭UCNPs的绿色荧光,使上转换荧光从黄色转变为红色,实现尿素的荧光检测。在此基础上该研究结合PAM水凝胶制作了柔性可穿戴传感器,并利用3D打印技术构建便携式传感平台。   研究团队设计的上转换荧光探针和水凝胶传感器的检测限(LOD)分别为1.4μM和30μM。水凝胶传感贴片为检测体液中的生物标志物提供了便利和准确的传感策略,在疾病预警和临床诊断设备上具有应用潜力。图(a)设计可穿戴水凝胶传感贴片;(b)汗液中尿素的传感和水凝胶的SEM图像;(c)水凝胶传感贴片在980 nm激发光和日光下对尿素的响应;(d)便携式尿素检测传感平台;(e) G/R比值与尿素浓度在0-40 mM范围内的线性关系。
  • 游泳池水中尿素怎么测?看过来!
    p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 泳池水中尿素含量的检测可以反映出泳池水的新旧程度。尿素超标不仅严重影响游泳池水质,还极有可能对皮肤黏膜造成损伤。尿素含量的检测是泳池水质卫生标准中很重要的一项检测指标,游泳池水质卫生标准中规定尿素值含量需≤3.5mg/L,超过这个范围,说明水中的尿素已经超标了。 /span /p p style=" text-indent: 2em line-height: 1.75em " 雷磁品牌的DGB-423型便携式水质分析仪,集成特定吸收峰波长470nm的 LED光源,采用二乙酰一肟-安替比林分光光度法,配套尿素工作试剂包和校准试剂,减少试剂用量和繁琐的配溶液过程,使水质尿素的检测工作变得更简便。 /p p style=" text-indent: 2em line-height: 1.75em " 如何使用雷磁 DGB-423型便携式水质分析仪测定泳池水中尿素含量,请观看以下视频: /p p script src=" https://p.bokecc.com/player?vid=96910D50E84D76D39C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-indent: 2em " 相关链接: /p p style=" text-indent: 2em " 想了解更多?点击查看 a href=" https://www.instrument.com.cn/netshow/C315074.htm" target=" _self" style=" color: rgb(79, 129, 189) text-decoration: underline " span style=" color: rgb(79, 129, 189) " strong 雷磁 DGB-423型便携式水质分析仪 /strong /span /a 产品详情 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/Buyer/" target=" _self" style=" text-indent: 32px white-space: normal color: rgb(79, 129, 189) font-family: 微软雅黑 " strong 仪采通 /strong /a ,一键直达,快速发布采购需求 /p
  • 助力机动车尾气处理,海能仪器为车用尿素检测提供解决方案(内附资料)
    作为雾霾的来源之一,机动车尾气一直是阻碍国家环保工作的一大“重犯”,如今,机动车数量不断攀升,“国五”、“国六”标准相继出台,如何环保有效地进行尾气处理,早已成为不可忽视的问题。 现阶段,我国普遍采用SCR(选择性催化还原法)技术,在催化剂的作用下,喷入还原剂氨或尿素,把尾气中的NOx还原成N2和H2O。其中,主要试剂就是柴油车尾气处理液(俗称车用尿素)。 标准《GB 29518-2013 柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中规定了车用尿素的技术要求、试验方法和检验规则。“尿素含量”作为其中最主要的一个参数,在该标准里明确规定了用燃烧法自动定氮仪进行检测。海能对于杜马斯定氮仪的研究已经相当成熟,并推出多款相关产品,其中海能D100杜马斯定氮仪就是一款采用燃烧法的自动定氮仪,完全符合GB 29518-2013国标要求。海能D100杜马斯定氮仪是国内第一台杜马斯定氮仪,广泛适用于车用尿素、肥料、食品、谷物、乳制品、动物饲料、植物、烟草等样品中氮/蛋白质的测量。 检测过程中,检测设备除满足稳定、准确、便捷的核心要求之外,还需要拥有强大的数据存储、分析、共享监管的能力。海能仪器,专注于分析仪器与分析方法研究,致力为环境保护、食品、药品、农业、粮油等领域提供解决方案。参照行业相关检测标准,通过与相关监测机构、企业、第三方检测机构多年合作经验积累,海能仪器整理了车用尿素检测解决方案。获取详细解决方案,请点击此处查阅:海能仪器:车用尿素中总氮含量检测的产品配置单(杜马斯定氮法)GB29518-2013柴油发动机氮氧化物还原剂尿素水溶液国标解读:海能D100 杜马斯定氮仪海能D100 杜马斯定氮仪
  • 仪器创新应用,中山大学廖培钦/陈小明团队在电化学合成尿素方面取得新进展!
    【科学背景】尿素是全球使用最广泛的氮肥,在农业中发挥着举足轻重的作用,占全球粮食生产的约40%。此外,尿素还是制药和各种精细化工工艺中的重要原材料。传统上,工业生产尿素依赖于Bosch-Meiser工艺,该工艺涉及在极端条件下反应CO2和氨。然而,该工艺需要大量能源,消耗了全球Haber-Bosch工艺生产的80%的氨,并排放大量的CO2和含氮废水。因此,开发环境友好且低能耗的尿素生产方法至关重要。相比传统的基于化石燃料的精炼厂,电化学合成提供了一种可持续且碳中和的替代方案。此外,它还具有去中心化和模块化的优势,有利于系统集成和创新,同时实现现场和按需生产。因此,尿素的电化学合成已成为研究热点。然而,现有催化剂通常面临法拉第效率(FE)低或电流密度不足的问题,从而导致尿素产率受限。为了应对这一挑战,科学家们致力于开发更高效的催化剂,并深入研究其潜在机制,以推进通过电化学共还原CO2和硝酸盐合成尿素的技术。在这方面,金属氧化物纳米颗粒由于其在能量转换和高附加值产品催化合成中的应用,受到了广泛关注。然而,这些纳米颗粒通常面临尺寸分布不均、结构不稳定以及在尺寸小于5纳米时易于聚集的问题。为了解决这些问题,中山大学化学学院陈小明院士与廖培钦教授团队合作提出将金属氧化物纳米颗粒封装进纳米孔的方法。这种封装策略不仅可以提高纳米颗粒的稳定性,还可能改善电流密度和法拉第效率(FEurea)。基于此,作者采用后合成修饰(PSM)策略,将超小的γ-Fe2O3纳米颗粒(3@Ni-HITP。研究结果显示,该材料在中性条件下,通过CO2和硝酸盐的共还原反应,表现出先进的电催化性能和较高的尿素产率。这一研究不仅为尿素的可持续生产提供了新的思路,还揭示了MOF材料在纳米催化剂封装中的潜力。【科学亮点】(1)实验首次采用导电Ni-HITP作为封装材料,成功合成了均匀且尺寸小的γ-Fe2O3纳米颗粒,形成了一种高效的电催化剂γ-Fe2O3@Ni-HITP。(2)实验结果显示,γ-Fe2O3@Ni-HITP在CO2和硝酸盐共同作用下,展现出显著的尿素合成产率。具体来说:&bull γ-Fe2O3@Ni-HITP表现出高效的尿素合成活性,其关键是利用γ-Fe2O3纳米颗粒中相邻的两个Fe(III)离子作为活性位点,促进了关键的C–N偶联反应。&bull 导电的介孔MOFs提供了限域空间,有助于保持金属氧化物纳米颗粒的均匀尺寸和分散性,从而提高了催化剂的稳定性和效率。&bull 催化剂的优良导电性进一步增强了电化学反应的电流密度,为高效尿素合成提供了可靠支持。【科学图文】图1:Ni-HITP和γ-Fe2O3@Ni-HITP合成的示意图。图2:γ-Fe2O3@Ni-HITP的形貌和结构表征。图3:γ-Fe2O3@Ni-HITP对CO2和硝酸盐的共还原性能。图4:大面积窗口(5&thinsp ×&thinsp 5 cm² )流动电池对电催化CO2和硝酸盐共还原性能的研究。图5: CO2和硝酸盐电化学共还原反应机制的研究。【科学结论】通过使用导电的Ni-HITP作为封装材料,采用PSM策略成功合成了均匀且尺寸小的γ-Fe2O3纳米颗粒,形成了一种用于尿素电合成的催化剂γ-Fe2O3@Ni-HITP。以CO2和硝酸盐为原料,γ-Fe2O3@Ni-HITP表现出较高的尿素产率。机制研究表明,γ-Fe2O3纳米颗粒中相邻的两个Fe(III)离子作为活性位点在促进关键的C–N偶联过程中起到了关键作用。此外,作者的实验结果表明,导电的介孔MOFs可以提供有利于合成均匀且小尺寸金属氧化物纳米颗粒的限域空间。此外,催化剂的优良导电性有助于电催化中的电流密度。原文详情:Huang, DS., Qiu, XF., Huang, JR. et al. Electrosynthesis of urea by usingFe2O3 nanoparticles encapsulated in a conductive metal–organic framework. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00603-8
  • 罗维朋/罗威邦发布德国罗威邦多参数水质分析仪-MD100 8合1 尿素新品
    Lovibond® 德国罗威邦® 水质检测 MD100 8合1 泳池水质测试仪 ◆ 可测试中国泳池水质标准GB 37488-2019各项参数◆ 防水设计 IP67◆ 测试结果准确、可重复◆ 15分钟快速测试尿素,无需其他装置◆ 德国制造,质量保障◆ 2 年保修Lovibond® 8合1泳池水质检测仪是一款多参数光度计,适用于池边快速简单地水质测试。无需其他装置,8合1泳池水质检测仪可测定人工泳池国家标准中的各项参数。套装中配有测试试剂,开机即可使用,是您泳池水质管理的得力助手。可用于测试泳池水质常规参数pH、氯(游离、结合、总)、碱度、钙硬度、氰尿酸、尿素,和专业泳池水质测试参数铁、铜。创新点:MD100 8合1 泳池水质检测仪为中国泳池水质国家标准设计,可测试GB 37488-2019中的各项参数,且添加了专业泳池水质所需测试参数铁、铜。 其中,尿素测试可在15分钟内完成,无需其他设备,弥补了市场上现有仪器的缺陷。MD100 8合一泳池水质检测仪使用酶解法制备尿素测试样品,具有定向、快速、环保的特点,为水质尿素测定提供了高效的解决方案。 德国罗威邦多参数水质分析仪-MD100 8合1 尿素
  • 广东省质量检验协会立项《尿素中总氮含量的测定 杜马斯燃烧法》等两项团体标准
    各有关单位:按照有关法律法规和《广东省质量检验协会团体标准管理办法》规定,结合行业发展需要,经审核,同意《尿素中总氮含量的测定 杜马斯燃烧法》和《柴油中硝酸醋型十六烷值改进剂含量的测定 红外光谱法》两项团体标准立项。联系人:招原春(020)38835232邮箱:gdaqi@gdaqi.org广东省质量检验协会2023年12月4日关于《尿素中总氮含量的测定 杜马斯燃烧法》等两项团体标准立项的通知.pdf
  • 河北省质量检验协会发布团体标准《柴油车尾气处理液中尿素与缩二脲含量的测定 高效液相色谱法》、《柴油车尾气处理液中8种无机阴离子的测定 离子色谱法》
    各有关单位:河北省质量检验协会组织制定的团体标准《柴油车尾气处理液中尿素与缩二脲含量的测定 高效液相色谱法》(T/ZLJYXH 3-2023),已由河北省产品质量监督检验研究院、中国石油天然气股份有限公司河北销售分公司、河北德嵘检测科技有限公司、河北庚驰环境检测技术有限公司、河北品质检测科技有限公司、河北迪谱检测服务有限公司等六家起草单位共同完成,并于2023年10月20日通过了专家委员会的审定。河北省质量检验协会组织制定的团体标准《柴油车尾气处理液中8种无机阴离子的测定 离子色谱法》(T/ZLJYXH 4-2023),已由河北省产品质量监督检验研究院、河北庚驰环境检测技术有限公司、河北德嵘检测科技有限公司、中国石油天然气股份有限公司河北销售分公司、河北品质检测科技有限公司、河北迪谱检测服务有限公司等六家起草单位共同完成,并于2023年10月20日通过了专家委员会的审定。经协会审查,现决定对上述两个标准予以批准并发布。河北省质量检验协会2023年11月2日
  • ATAGO(爱拓)手持浓度计免费赠送火热招募中
    ATAGO(爱拓)成立70多年来,一直致力于物理特性测试仪器的研发和推广,作为全球折光仪与旋光仪的市场领导者,我们贴近基层客户测试需求和民用市场需求开发的手持数显浓度计广受用户认可,ATAGO(爱拓)也一直致力在各个领域于推广手持便携式浓度测试工具,为了让更多用户使用上国际先进技术的手持浓度计,我们特别回馈,推出&ldquo 100台PAL数显手持浓度计免费赠送试用&rdquo 活动,用户可根据自身检测需求选择合适的PAL系列的型号,免费试用一年。试用期间,客户可完全享有仪器的使用权和支配权。 只要您符合以下情况,即可联系我们免费申请获取ATAGO(爱拓)PAL迷你系列任意一款:联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐 A: 需要测试以下样品浓度的工业生产客户、全国连锁餐饮企业客户、果蔬生产或贸易流通企业; B:经营状况良好,对管理和质量控制有严格的要求和期望; C:愿意测试,并且愿意配合提供试用报告。 获赠企业资格确认ATAGO(爱拓)拥有最终的选择权和解释权,获赠名单将定期公布。 活动期限:即日起至申请数量结束,活动停止。先到先得。 产品型号 名称 赠送试用数量 适用对象 PAL-1 糖度计 80个 适用于几乎任何果汁、调味品等食品与饮料的糖度测量和清洗液、工业助剂等水溶性液体的浓度测定 PAL-03S 盐度计 1个 盐水、腌制水等溶液的NaCl(g/100g)浓度控制 PAL-06S 海水盐度计 1个 PAL-S 乳制品浓度计 2个 测量含脂类、深色及乳状样品,如牛奶等乳制品的干物质含量 PAL-Pâ tissier 糕点糖度计 2个 适用于糕点制作过程中添加物的白利度控制和波美度控制 PAL-27S 豆浆浓度计 2个 餐饮豆浆浓度控制 PAL-91S 乙二醇浓度 2个 汽车、供暖、制造等行业冷冻液或防冻液浓度控制 PAL-39S H2O2(双氧水)浓度计 2个 适用于医疗、化工、食品等行业中需要使用双氧水的场合 PAL-40S NaOH(烧碱)浓度计 2个 适用于纺织化纤、化工、食品、造纸等行业中需要使用NaOH的场合 PAL-38S DMF(二甲基甲酰胺)浓度计 2个 适用于皮革化纤、化工、造纸等行业中需要使用DMF的场合 PAL-Urea 车用尿素液浓度计 2个 适用于柴油发动机尾气处理中车用尿素液浓度控制 PAL-102S 切削油浓度计 2个 适用于金属加工、机械制造等过程中水溶性切削液浓度控制 PAL迷你系列更多的产品应用详情可登陆我们的官网:http://www.atago-china.com 或联系ATAGO(爱拓)中国分公司 联系方式:TEL 020-38108256 FAX 020-38109695 info@atago-china.com 孙小姐
  • NexION 系列ICP-MS:用于测定尿液中微量元素的理想工具
    在尿液、血液和血清等最常用来监测人体健康状况的待分析体液中,尿液尤为特别,其功能是排出人体代谢物,包含了大量的尿素、尿酸、蛋白质、脂肪、肌酸酐、钠、钾、碳酸盐、碳酸氢盐和氯化物等。不同的尿液样品成分含量会千差万别,并会受到食物、环境和工业接触因素的影响。因此,不同的尿液样品基体和待测元素含量水平相差甚远,给分析造成了较大难度。电感耦合等离子体质谱法(ICP-MS)已经成为测定尿液样品中微量元素的最常用工具,但在实际检测中需要攻克两大难关:1. 基体产生的多原子离子干扰2. 用于评估污染物接触的某些元素如砷(As)、镉(Cd)、汞(Hg)等的含量极低而ICP-MS仪器本身在尿液分析过程中也会遭遇最大挑战:基质中的有机物在锥孔和离子透镜系统的沉积导致信号漂移或减弱,通常情况下清洗锥和离子透镜费时费力,严重影响工作效率珀金埃尔默公司NexION® 系列ICP-MS是测定尿液样品中微量元素的理想工具,它所带来的解决方案会帮助您解决所遇到的一切挑战。• 配合独特的四级真空系统、固态射频发生器、三锥接口和四极杆离子偏转器,使得NexION ICP-MS的基体耐受性非常高,且保障仪器开机快速,运行稳定,四极杆离子偏转器免清洗免维护,三锥接口维护方便简单频次低。• NexION ICP-MS通用池系统具有标准 (Standard)、碰撞(KED)和反应(DRC)三种模式,可选择的碰撞/反应气体种类丰富,真正有效消除各种质谱干扰,实现高基体样品中的高灵敏度检测。• 如果将NexION ICP-MS与相关高通量和快速进样设备相搭配,通过Syngistix软件可以实现无缝集成,可以大大提高检测实验室的工作效率扫描下方二维码,即可下载资料《NexION 1000G 电感耦合等离子体质谱仪》
  • 《穹顶之下--柴静雾霾调查》使用master手持折射仪,ATAGO(爱拓)为环保尽自己的一分力
    2015年2月28日《穹顶之下--柴静雾霾调查》在视频中 1小时19分钟33秒时,柴静与美国加州空气资源部官员一起使用ATAGO(爱拓)N-1a手持便携式浓度计检测柴油发动机的不达标情况,这个型号已经停产,但是能为美国加州空气资源部服役至少8年以上,我们倍感荣幸,现在替代型号master系列手持便携式浓度计将继续为环保尽自己的一份力!执行监测柴油发动机达标处理现场摘录图一ATAGO(爱拓)N-1a手持便携式浓度计使用折光原理方法比激光粒度颗粒计数更具有参考价值 汽车尿素的学名是柴油机尾气处理液。应用于柴油发动机中。其组成成分为32.5%的高纯尿素和67.5%的去离子水。 尿素含量直接影响NOx的催化效率和尿素溶液的凝固点。在SCR还原系统中,尿素溶液的浓度是关键因素之一,过高或过低的浓度不仅不能提高NOx的转化效率,反而会造成氨气的滑失(由于过高的NH3/NOx比造成的氨气漏失),形成二次污染物氨气。 早在2006年ATAGO(爱拓)就开发出多种型号的车用尿素浓度计,手持便携式浓度计,投放到欧洲和北美市场,测试DEF、AUS32和ADBLUE浓度。方便快速的协助相关单位去管理和控制车用尿素的浓度,比如尿素生产企业、车用尿素液运输渠道、加油站、柴油发送机的生产部门等单位 标准强制实施之后,每个加油站都需要常备车用尿素液,柴油汽车就是像日常加油一样,去加油站都得补充车用尿素液,车用尿素DEF浓度计, 车用尿素浓度测定仪将在这场变革中发挥出重要的作用。 最后,期望使用科学地方法来保护我们的祖国家园,为祖国的花朵建设蓝天白云的空气,为环保尽自己最大的一份力量。
  • 预防催化剂中毒,元素分析不用愁
    岛津ICP光谱测试尿素水溶液多种金属元素 GB17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市车辆将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物(NOx)和颗粒物(PM)排放限值分别加严了77%和67%,并新增了粒子数量(PN)的限值要求。 为了达到国六排放标准,尾气后处理系统都会设置选择性催化还原(SCR)系统,以便有效降低尾气中氮氧化物含量。尿素水溶液是SCR 系统主要消耗品,在催化剂作用下,将氮氧化物还原成氮气和水。SCR催化剂通常以TiO2为载体,负载W、Mo、V、Mn 等活性金属。如果尿素水溶液金属离子浓度过高,特别是钾离子和钙离子,会减少催化剂表面的活性位,造成催化剂中毒,从而降低NOx的转化率,缩短SCR催化剂的寿命,所以在GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》中对各种金属离子杂质含量有明确的限量要求。 表1 分析参数 岛津ICPE-9820全谱发射光谱仪测试尿素水溶液多种金属元素 ICPE-Solution独特的“自动确定最佳波长”功能,可以从全部波长范围的测定数据中,在数据库中自动检索提取可能存在的光谱干扰信息,自动确定最佳波长。 精确称取20±0.01g车用尿素溶液样品于100 mL容量瓶中,加入50 mL去离子水,再加入5 mL硝酸,去离子水定容至刻度并摇匀,使用ICPE-9820上机测试。 图1 Ca元素标准曲线图2 Ca元素谱峰轮廓图 表2 车用尿素样品分析结果注:N.D.表示未检出。 采用ICPE-9820高盐进样系统和直接进样(标准加入法)测定了柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中的10种杂质元素,结果表明所测市售尿素水溶液金属含量符合GB 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(AUS 32)》要求,该方法无需分离基体、无需样品前处理、不加内标,测定结果准确,方法操作简便,可满足柴油发动机氮氧化物还原剂尿素水溶液(AUS 32)中杂质元素的检测技术需求。 撰写人:段伟亚、孙友宝
  • “让折射仪又好、又小、性价比更高”——“创新100”访北京领航力嘉机电有限公司
    北京领航力嘉机电有限公司成立于2013年,是一家液体浓度测量产品及行业解决方案供应商,专注于液体测量仪器的设计与制造,主要从事光学测量仪器的研发和生产,主要提供便携式数字折射仪、在线液体浓度传感器等产品,是国家高新技术企业、中关村高新技术企业。仪器信息网独家对话领航力嘉创始人马玉峰,关注这家液体浓度测量产品企业的发展与成长。北京领航力嘉机电有限公司创始人 马玉峰“创业初期是领航力嘉生存的关键期,我们怀着‘要做国内最好的折射计产品’的初心,努力克服资金紧张、人员不足、办公环境简陋等各方面的困难,齐心协力,迈出了科技攻关的第一步,对标国际水平填补国内市场空白,完成企业市场定位由OEM向ODM的角色转换。“马玉峰回忆。“让折射计产品又好、又小、性价比更高”,是领航力嘉技术团队最朴实的愿望,在此基础上,领航力嘉的产品开发始终遵循“4S”原则——“Small”、“Smart”、“Low cost”、“Scale”,即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产,让折射计产品服务于更多人群和更多行业领域。根据光学折射原理,领航力嘉产品可在线测量DMAC、NMP、DMF、车用尿素、切削液、乳化液、乙二醇、氨水、酒精清洗液等各种化工液体的浓度百分比、折射率、温度等参数,产品广泛应用于食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域。目前,领航力嘉已针对食品饮料、果蔬加工、制糖业、日用化工、生物制药、临床检验、石油化工、金属制造等诸多领域提供细分化产品与专业的行业解决方案。领航力嘉产品不仅畅销全国各地,还远销至欧洲、北美及东南亚等海外市场,收获了用户的广泛好评。仪器信息网:领航力嘉目前的研发能力如何?马玉峰:领航力嘉拥有业内领先的自主核心技术和可持续研发能力,是国家高新技术企业、中关村高新技术企业,目前有员工25人,研发人员占比超过30%,办公面积约800㎡。领航力嘉成创立初期的核心团队成员均拥有十年以上的折射计产品研发经验,这为项目的顺利启动奠定了坚实的基础。领航力嘉已有自主研发的专利包含:发明专利1枚、实用新型专利8枚、外观专利5枚、软件注册权6枚。并已申请ISO9001认证证书、14001认证证书。仪器信息网:领航力嘉目前有着怎样的竞争优势?马玉峰:领航力嘉的竞争优势主要体现在三个方面。一是技术优势。领航力嘉的产品功能,主要包括:精准折射率测量,温度测量,折射率与浓度或密度的转换,测量数据上传云端或工控机,云端大数据的监控及分析。二是应用优势。领航力嘉主张折射计产品应该小型化,微型化,数据化,网络化,走进各行各业,走进千家万户。由于折射计产品具备无损、快速、稳定、可测液体种类多等优势,适合与大数据和物联网相结合,并进行数据分析,提供有效的数据服务,并由此形成新的应用。三是性价比优势。领航力嘉产品始终坚持“小型化”、“低成本”、“可规模化生产”的研发路线,为让折射计产品能服务更多行业用户与消费者,市场售价仅为国外品牌同类产品的30%左右。仪器信息网:领航力嘉当前的业绩增长点集中在哪几个方面?马玉峰:领航力嘉目前主要的业务增长点集中在C端、B端和G端。C端包括小家电消费市场的应用,如智能控糖水杯。B端体现在在线传感器面向工业物联网的应用逐步丰富,当前产品重点关注的使用场景包括车用尾气管理、锂电池过程液体管理、结构加工用液体管理、精酿啤酒酿造过程管理等。G端包括环保监测领域应用,如道路交通执法。仪器信息网:领航力嘉目前有着怎样的市场布局?马玉峰:经过20多年的积累,本人及技术团队实现了在折射仪行业内的基础技术原始积累,包括光学原理、光学结构、制造工艺、电路设计、软件算法等。在企业的发展理念上,也更加重视整体规划和市场布局。同时,坚持“4S”产品研发思路,重视知识产权的保护、积极开拓国内市场,使得领航力嘉产品的市场竞争力和市场占有率不断提高。1.技术发展从技术发展的角度来看,领航力嘉通过创新的光学设计,不仅使产品性能更加稳定,同时还大幅度降低产品的成本,使折射计产品小型化,甚至微型化;同时还结合“大数据应用”和“互联网+”的设计理念,填补了多项行业空白,为数字折射计产品的普及和推广应用打下了坚实的基础。2.贸易发展从贸易的角度来看,过去我们的中高端仪器仪表类产品长期依赖进口,高端仪器仪表产品几乎被国外公司垄断,全球知名的折射计研发及生产厂家有日本ATAGO、德国B+H、奥地利安东帕、瑞士梅特勒-托利多、和美国鲁道夫公司等,其中日本ATAGO在我国国内市场占据明显优势,主要通过代理商来销售。特别是传感器类仪器仪表产品,不仅价格昂贵,而且80%以上来自国外。这些年来,经过我们的不断努力,不仅大大降低了数字折射计产品的生产成本,使产品的外形设计趋于微型化,还解决了产品规模化生产等问题,从而提高了产品在国内市场和国际市场的竞争力和市场占有率,收获了来自海内外用户的广泛好评。让“中国发明,中国制造”真正走向世界!3.社会效益一直以来,由于国内相关企业在液体测量仪器方面技术研发基础比较薄弱、品牌意识欠缺等原因,导致国外的折射计产品占据了国内高端仪器仪表的绝大部分市场。面对这样的现状,我们深感责任重大,虽然我国测量仪器设备的总体水平确实落后于国际先进水平,尤其是光学测量系统的设计水平,但我们必须迎难而上,打破国外企业的技术垄断,打造出中国智能测量领域的民族品牌。面对这样的差距,我们需要加大加快投入力度,重视技术研发和生产线的改造升级。仪器仪表行业是从业人员的长征路,我们一直在与时间赛跑,通过二十多年的努力,我们在折射计领域已经取得了长足的进步,我们的折射计产品从无到有,从有到精,不断前进。与此同时,折射计产品的应用领域也得到了前所未有的扩展,目前应用领域有食品加工、汽车、医疗、能源、纺织、印刷、化工等多个行业及实验室、高校、科研院所等单位。产品可以用来测量食品饮料的糖浓度,测量人体尿液指标,测量蓄电池电解液参数(蓄电池电量测量及寿命诊断),测量汽车用玻璃水、冷冻液的冰点及刹车油的沸点,测量柴油车的燃油添加尿素的指标(ADBLUE)以及汽、柴油的品质等等。不仅打破行业壁垒,细化用户群体,更实现了良好的社会效益。仪器信息网:领航力嘉产品在工业物联网中的定位?马玉峰:领航力嘉深耕折射计行业20年, 具有“国家高新技术企业”、“中关村高新技术企业”双高认证,拥有自主知识产权的ODM产品体系,产品覆盖国内和海外欧、美、韩、印市场, 不仅支持测量数据云存储,更实现了产品的物联网化转型,致力于成为国内一流的工业液体光电传感器供应商。领航力嘉产品在工业物联网中的定位即顺应“工业4.0”的发展需求,强调工业物联网的搭建, 突出传感器的应用。中国制造2025,强调生产的智能化,在智慧物流(供应链)和数据学习能力中形成优势,包括:1、基于传感器、控制器、移动设备的物联网硬件体系 无线/有线网络,射频标签(RFID), 传感器构成基础服务的硬件架构。2、基于软件平台的服务互联网包括PLM、SCM、CRM、ERP等功能 的自动化集成,通过云服务和边缘计算实现。3、基于信息物理系统的数据融合 在CPS系统中的物理对象和虚拟对象通过网络通信,生产数据通过网络被各处理节点触达。4、未来的数据供应商(MaaS) 打通分立的物理感知系统,通过采集数据(大数据)和决策策略(智能学习) 的共享和分享,在信息系统间实现提效。仪器信息网:领航力嘉折射计产品的发展趋势?马玉峰:领航力嘉折射计产品的发展趋势有三个方面:1.与大数据和物联网相结合,并进行数据分析,提供有效的数据服务。云端的大数据处理和数据分析,是现代信息社会的发展趋势。2.小型化,微型化发展未来人们需要许许多多的传感器来量化我们的生活,感知工业生产中的各个环节,大型而笨重的传统测量设备正在逐步远离我们的工作与生活。作为用于液体折射率测量的折射计,由于其具备无损、快速、稳定、可测液体种类多等优势,更加适合于目前的技术潮流。让数字折射计小型化,微型化,数据化,网络化,走进各行各业,走进千家万户,这是折射计产品不可逆转的发展趋势。3.应用场景多样化目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。仪器信息网:您如何评价公司目前的发展情况,您对公司未来发展有怎样的愿景,最想要实现的一件事是什么?马玉峰:领航力嘉作为国内仪器仪表行业的新生力量,面对激烈的技术竞争和商业竞争,经过这几年的艰苦奋斗,已经取得了不俗的成绩。这些都得益于,我们始终以市场需求驱动发展,实现产品的快速迭代,进而形成良性的生态循环。最想实现的目标:让原来“高、大、上”的实验室科学仪器走出实验室,进入更广阔的工业领域及民用市场。只有这样,才能实现科技普惠大众的理念。仪器信息网:您认为企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?马玉峰:目前政府相关部门已经出台了一系列政策来支持鼓励仪器仪表行业的发展,但是仅仅这些还不够,仪器仪表类产品的研发与制造是一个前期投资高、回报周期长的行业,很多公司在最初几年很难盈利,即使产品研发成功,但测量仪器的精准度、稳定性、可靠性都是需要客户在较长时间(半年甚至是一年)的实际使用后才能得出可信的结论。因此,客户认可滞后、销量滞后,依然会使公司面临亏损的尴尬局面。国家可以继续加强政策上的激励和资金上的支持,从而为仪器仪表行业注入新的活力。仪器仪表行业作为技术密集型行业,也希望国家能建立一套完整的知识产权保护机制,在仪器仪表产业链的薄弱环节,积极鼓励创新,营造良好的产业环境。仪器信息网:您如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?马玉峰:国产科学仪器的发展,需要科技创新、企业创新和人才创新。互联网、物联网和大数据的发展,必然给国产科学仪器带来更多机遇。目前领航力嘉已经拥有了超过100种的液体折射率数据,这些数据对应着近十几个不同行业中各种液体的相应技术指标和参比参数;可以换算成各种领域的行业数据,应用范围非常的广泛,对工业生产有极好的质量控制和监督作用。过去二十多年,我们在折射计领域已经取得了长足的进步,折射计产品的应用已经渗透到工业生产和人们生活的很多领域。未来十年,折射计产品在社会经济发展中也存在着巨大的发展空间。新技术、新产品的出现必将带来巨大的市场,而国产替代化,也将催生一批新的仪器仪表企业。在中国经济转型和产业升级的浪潮中,只要我们稳扎稳打,刻苦攻坚,始终坚持“科研创新,科技自强”的信念,就一定会迎来属于我们自己的新时代!领航力嘉主要折射计产品简介:2013年,领航力嘉创始人马玉峰及技术团队成立北京领航力嘉机电有限公司,开始创业的征程。有了之前二十余年产品研发工作的积累,并明确创业的目标和方向,深挖国内市场需求,并制定了领航力嘉的产品开发“4S”原则,即:“Small”、”Smart”、”Low cost”、”Scale”。即未来领航力嘉所有的研发产品必须要满足以下4个条件:小巧、智能化、低成本、可规模化生产。(一)离线折射计产品的研发与推广自2014年开始,领航力嘉技术团队相继开发了MSDR-P系列智能数字折射仪产品;MDSR-M系列笔式折射仪产品;MDSR-D系列台式折射仪产品;行业内首个数字折射仪云端数据平台,并相继取得了包括国家发明专利在内的二十项知识产权成果。这些产品均具备与云端数据库进行数据交互的功能,完成了产品智能化的框架构成,与同类产品相比,具有独特的技术优势。产品在国内外市场获得认可的同时,产品与客户的黏度提升,甚至已经改变了部分客户及经销商对数字折射仪产品的使用习惯和销售策略,也将更高品质、更高性价比的折射计产品普及应用到更多领域,实现了科技进步、企业盈利与社会经济同步发展的目标。(二)在线折射计产品的研发与推广随着国家对环境污染治理的重视,机动车尾气排放第六阶段标准(国六标准)的落地以及中国制造2025(强调生产、物流的智能化)的开展。领航力嘉自2017年开始,进军液体浓度在线测量传感器领域,并于2018年做出快速开发车用尿素浓度在线检测传感器的决策。2019年,领航力嘉完成在线传感器产品的标准作业程序,同年送测B端客户。2020年,领航力嘉在线传感器产品的应用场景,已扩展至新能源锂电池制备(NMP回收液),柴油车尾气治理液监测(车用尿素液),机械加工过程监测(切削液)等多个领域,并实现量产出货。2022年,领航力嘉又将液体浓度传感器产品的应用扩展至制药行业,开辟了又一行业应用新领域。领航力嘉折射计系列:(一)便携式数字折射计MSDR-P系列MSDR-P系列折射计,2014年研发成功,并于当年获得第一项实用新型专利证书,2015年进入规模化量产阶段,该系列产品可测量液体的糖度、盐度、蜂蜜的波美度、酒类产品的酒精度、清洗液/玻璃水/车用尿素的浓度等等,适用于日常民用,以及食品、医疗、车用等行业。MSDR-P系列折射计,可搭配蓝牙模块,支持自定义修改刻线和云端数据存储,自进入国内市场以后,以其亲民的价格、稳定的性能和多场景应用,收获了大量的用户好评,市场份额逐年快速提升。MSDR-P系列折射计产品,主要依靠数学在电子技术上构建的优势和“互联网+”应用,获得了产品与服务的成功。在此基础上,后期MSDR-P系列产品线逐渐增加了MSDR-P0、MSDR-P1、MSDR-P2、MSDR-P3多种型号及定制化产品,从外观设计、价格、功能等各个方面满足了不同用户的需求。MSDR-P系列产品以2B2C销售模式为主,兼顾G端政府采购。近两年,我们着力推进G端环保监测用市场发展, 2020年产品中标广州市移动源监测能力建设项目,形成示范效应。主要解决柴油车车用尿素浓度检测的问题,因为车用尿素溶液能够将氮氧化物转换成无害的氮气和水排入大气中,实现节能与环保。(二)台式数字折射计MSDR-D系列MSDR-D系列折射仪产品采用线阵CMOS高精度传感器,采样精度高,重复性好。测量面采用蓝宝石玻璃,硬度更高,不易划伤,同时采用5寸大液晶显示屏,数据读取更便捷。标配18650锂电池,可自主更换。该系列产品拥有PC软件扩展功能,用户可以自定义刻线编程,定制属于自己的刻线,也支持经销商利用云端数据库下载不同应用。MSDR-D系列折射仪产品适用于科研实验室、食品饮料行业品质监控、医疗卫生、化工及汽车等多个行业领域,可满足特定客户定制需求。(三)在线传感器系列
  • 新品推荐|天尔多功能饮用水检测仪器 TE-80
    天尔TE-80饮用水多功能水质检测仪是我们公司最新研发生产的一款便携式水质测定仪器,可广泛应用于饮用水、自来水、疾控、环保部门、城市供水、纯净水厂、饮料厂、化工、制药、食品等领域中水质污染物的快速检测.依据光电检测原理和化学比色测量原理研发设计,可用于测定饮用水中浊度、色度、余氯、总氯、二氧化氯、有效氯、化合性氯、亚氯酸盐、氨氮、亚硝酸盐、臭氧、尿素、总硬度、钙硬度、镁硬度、锰、铁、六价铬、高锰酸盐指数、pH、溶解氧、氯化物、电导率等项目(支持定制),搭载高清彩色液晶触摸屏,操作便捷,内置高容量锂电池,自带高强度防水耐酸碱便携箱,是一款可在野外,实验室提 供检测,监察,数据管理集一体的便携式水质检测系统.1.采用5寸高清液晶触摸显示屏,操作便捷,可直接显示被测物的浓度值及当次测量的吸光度,且嵌入实验操作步骤;2.内置工作曲线,配制标准溶液,即可实现样品的快速测定。曲线具有修正功能,用户可根据检测需求对相应的项目进行曲线修正和调整;3.具有独特干扰补偿算法,可有效屏蔽色度、光衰产生的测量偏差,设备使用方便、数据检测准确;4.用户可自设报警限值,超过限值自动提示;5.仪器可自动调零和自动校正,提高检测效率;6.内置热敏打印机,可随时打印当前数据及历史数据.检测项目:项目测量范围检测方法浊度0-20NTU/0-200NTU散/透射光法色度0.0-50.0°/0-500°铂-钴标准比色法余氯0.02-2.00mg/LDPD法总氯0.02-2.00mg/LDPD法二氧化氯0.04-5.00mg/LDPD法 有效氯1.0%-15.0%碘量光度法化合性氯0.02-2.00mg/LDPD法亚氯酸盐0.02-2.00mg/LDPD法氨氮0.02-5.0mg/L纳氏试剂法氨氮0.02-2.5mg/L水杨酸法亚硝酸盐0.005-0.200mg/L重氮偶合法臭氧0.01-2.00mg/LDPD法尿素0.05-5.00mg/L麝香草酚法总硬度0.05-4.00mg/L邻甲酚酞络合酮钙硬度0.05-4.00mg/L邻甲酚酞络合酮镁硬度0.10-4.00mg/L邻甲酚酞络合酮锰0.02-5.00mg/L甲醛肟法铁0.1-4.0mg/L邻菲咯啉分光光度法六价铬0.05-1.00mg/L二苯碳酰二肼法高锰酸盐指数0.5-5.0mg/L碱性高锰酸钾法pH6.5-8.5pH标准缓冲溶液法溶解氧0.5-15.0mg/L碘量光度法氯化物0.5-25.0mg/L硫氰酸汞分光光度法
  • 吃饼干治糖尿病?新研究让口服胰岛素成为可能
    吃块饼干,治糖尿病。这个很多“糖友”梦寐以求的成果出现在11月16日的国际顶刊《自然化学生物学》上。北京大学药学院刘涛团队与华东师范大学叶海峰团队利用合成生物学技术开发出了一种新细胞。在他们的研究中,植入这种工程细胞的糖尿病小鼠,只要吃下特定的氨基酸饼干,就能提高胰岛素水平,进而降糖。“这是首次将基因密码扩展技术用于细胞治疗。”论文通讯作者之一、北京大学药学院教授刘涛告诉科技日报记者,吃下饼干的小鼠只需要90分钟就能降糖,和注射胰岛素起效时间相当。创造胰岛素微型“无人工厂”在“糖友”体内产生胰岛素,光靠饼干就可以吗?其实不是,“饼干”只是一把钥匙,真正生产胰岛素的是一座微型“无人工厂”。胰岛素作为人体的一种蛋白要求极高,胰岛素水平高了会发生低血糖、低了或者无效危害更大。细胞能做到精准的控制吗?“我们有一套独特的控制系统,控制的核心是一种人造的密码子。” 论文通讯作者之一、华东师范大学生命学院、上海市调控生物学重点实验室研究员叶海峰解释,自然界里有3个不编码氨基酸的密码子(终止子,功能是终止蛋白质翻译),通过人为改造可以让其中一个只听“饼干”的命令。饼干里的特殊氨基酸在自然界找不到,所以平时不会开启。经过改造的密码子就此有了双重身份。人工氨基酸一来,密码子配对,开启胰岛素的翻译过程,人工氨基酸一走,密码子还是“终止子”,整个流水线关闭。这才有了“吃饼干”合成胰岛素的完整治疗过程。给饼干开通一个专线快递前面说了,饼干里的氨基酸在自然界里找不到,那自然也找不到匹配的运送系统。“原来负责转运氨基酸的信使RNA都有自己的密码子,就像京东快递是负责这几个密码子、顺丰快递负责另外几个密码子、圆通也有自己要负责的密码子,现在多出来一个非天然的快递单怎么办呢?”刘涛打了一个很形象的比方,为了解决这个问题,合成生物学又出手了。“我们给‘饼干’开通了一个专线快递。”刘涛说,一种人工的合成酶能够把非天然的氨基酸送到快递员手上,即通过氨酰化的生化反应,把非天然氨基酸与特定的转运RNA连接起来,让它直送到胰岛素的装配生产线上。经过一系列“神操作”,饼干里的非天然氨基酸有如神助地直接成为生物体内胰岛素的重要组成部分。这种“专线快递”特点的正规名称叫“生物正交”,是指人造反应不会被机体内源的元件识别,也不干扰内源的生物化学过程。也就是说,胰岛素的整个制造过程不会干扰到其他生命活动。更具临床实用价值“利用我们的技术,只需要纳摩尔每升级别浓度的非天然氨基酸,给药1分钟就足以激活系统,表达释放胰岛素 。”刘涛说,这种非天然氨基酸与很多功能饮料中添加的成分类似,对人体非常友好。动物试验研究显示,将改造过的工程细胞经材料包埋后植入小鼠皮下,给小鼠喂食含有非天然氨基酸的饼干,可以在一个月内稳定且有效地降低小鼠血糖。一系列动物安全性实验也表明,服用一个月有效剂量的非天然氨基酸后,小鼠并未表现出明显的体重减低或其它生化指标的改变。“或许某一天,只需要每天饭前服用一粒非天然氨基酸药物,或含有非天然氨基酸成分适合糖尿病患者的食物,就可以控制血糖了。”刘涛说。浙江大学药学院院长顾臻教授在论文同期刊发的评论中认为,通过合成生物学方法创建工程细胞,进而产生治疗性蛋白质是解决包括胰岛素在内的蛋白质分子稳定性差、生物半衰期短及其不受控释放等挑战的极具吸引力的替代方法。据介绍,该研究获得国家“重大新药创制”专项、科技部合成生物学重点专项、国家自然科学优秀青年基金、北京市杰出青年基金、上海市科委等项目的支持。
  • 天瑞仪器眼镜行业解决方案
    前 言 眼镜架的镍析出量超标,会导致人体健康受损。国际标准化组织和欧盟标准化组织对此有着严格的管理措施,中国制造的眼镜架产品广泛采用镀镍工艺,这种工艺成本低廉。但镍是一种容易导致皮肤接触性过敏的重金属元素。医学观察证明了长期接触含镍物品,会引起皮肤过敏甚至致癌。早在上个世纪90年代,国际标准化组织(ISO)和欧盟标准化组织(CEN),就在标准中对金属眼镜架的镍析出量及检测提出了严格的要求,而中国目前与眼镜产品有关的各项标准,尤其是国家标准《GB/T14214眼镜架通用要求和试验方法》,对此尚未涉足。 国际上对金属眼镜架的镍析出量有着严格的规定和检测标准,镍析出量不合格的产品,不允许销售给最终消费者。早在1994年6月,欧盟就颁布了94/27/EC 指令,规定了产品相关镍析出量的标准。1997年7月,欧盟又发布了3个协调标准,明确了对镍析出量进行定性分析的方法。ISO/TS24348《眼镜架&mdash 对金属和合金镜架的模拟佩带以及镍析出量的检测方法》国际标准于2007年正式颁布,其中明确规定:眼镜架与佩带者的皮肤直接和长时间接触的金属和合金部分的镍析出量,不得超出0.5&mu g/cm2/每周。即将颁布的ISO12312-1《太阳镜》国际标准直接引用了这个规定,并要求:太阳镜的设计和制造不得危及佩带者的健康或安全,应把由镜片或镜架材料析出的可能伤害佩带者皮肤的危险降至最低。 中国有近4亿屈光不正消费者、1.5亿老花镜消费者、加上太阳镜的使用人群,眼镜产品覆盖了约8亿人。产品质量问题,实质上已经与人们的健康息息相关。镍析出量,不得不成为一个产品质量领域令人关注的话题。 眼镜中镍释放量的测定 1 原理 被测试镍释放的对象被放入人造汗水测试液中一星期。使用原子吸收或电感耦合等离子体光谱测试溶液中溶解的镍的浓度。镍的释放用微克每平方厘米每星期(ug/cm2/week)表示。 2 试剂 除了特殊说明,所有试剂为分析纯或更高级别且不含镍。 去离子水、氯化钠、DL-乳酸、尿素、氨水、硝酸、脱脂溶液。 3 主要前处理设备 3.1 pH计 3.2 恒温水浴锅 4 样品前处理 4.1 测试溶液的准备 测试溶液准备人造汗水由去离子水组成并含有:0.5%(m/m)氯化钠,0.1%(m/m)乳酸,0.1%(m/m)尿素, 1%(m/m)氨水。在使用之前,确保测试溶液的pH在6.40~6.60之内。测试溶液应在制备后的3h之内使用。 4.2 释放程序 4.2.1 将样品搁于支架并悬于测试容器中(4.1)。加入一定量的测试溶液约1mL每平方厘米测试面积。悬空的样品应完全浸入测试溶液中。记下样品面积和所用测试溶液的体积。盖紧容器阻止测试液的蒸发。平稳的将容器放入恒温水浴锅,(30± 2)℃,168h,不要搅动。 4.2.2 一周之后,从测试液中去除样品,用少量去离子水冲洗,将冲洗液加入测试液中。定量转移测试液到合适体积的容量瓶中。为了防止溶解镍再沉淀,加入稀硝酸和去离子水到测试溶液中,使其在定容至刻线后含有约1%的硝酸。 4.3 平行样 至少做2个相同的样品。 4.4 空白试验 重复空白试验应在测试样品的同时进行。使用相同的容器和支架,相同的程序除了容器中没有样品。使用相同量的测试液,冲洗液和稀硝酸。 5 样品测试 5.1仪器 5.1.1 AAS-6000型原子吸收光谱仪(天瑞仪器) 5.1.2 ICP-2000型单道扫描式ICP原子发射光谱仪(天瑞仪器) 5.2 工作曲线标准溶液的配制 单位:mg/L 6 结果数据 6.1 镍的释放 样品的镍释放,d,表示每微克每立方厘米每星期(ug/cm2/week),方程如下: d=V× (C1-C2)/1000× a 式中: a----测试对象的样品面积,cm2 V----测试溶液的稀释体积,mL C1----一周后稀释的测试液中镍的浓度,ug/L C2----一周后空白溶液中镍浓度的平均值,ug/L 6.2 结果的校正 将6.1所得结果乘以0.1,得到校正分析值。 7 结果与讨论 7.1 实验谱图 7.1.1 AAS 7.1.2 ICP 7.2 方法检出限 方法检出限公式:DL=3SD/k 式中:DL----方法检出限 SD----测量10次样品空白溶液的强度的标准偏差 k-----标准曲线的斜率 计算结果见下表: 单位:mg/kg
  • 浙江省食品学会发布《食品中多种植源性过敏原同步定量确证同位素稀释质谱法》团体标准(征求意见稿)
    各有关单位和专家:根据浙江省食品学会关于2022年度第一批团体标准立项的通知的要求,由南开大学组织起草工作组完成了《食品中多种植源性过敏原同步定量确证同位素稀释质谱法》团体标准的标准工作组讨论稿的研讨、标准征求意见稿的起草,现公开征求意见。有关单位和专家,请对该稿进行审阅,提出宝贵意见或建议。请于2023年6月5日前将有关意见和建议反馈至浙江省食品学会。联系人:石双妮 邮 箱:spxh@zjgsu.edu.cn联系电话:15958168583 浙江省食品学会2023年5月5日 浙江省食品学会征求意见反馈表.doc食品中多种植源性过敏原同步定量确证同位素稀释质谱法》团体标准(征求意见稿)征求意见.pdf食品中多种植源性过敏同步定量确证同位素稀释质谱法(征求意见稿).docICS 67.050CCS N50/59团体标准T/ZFS XXXX—2023     食品中多种植源性过敏原同步定量确证同位素稀释质谱法同位素稀释质谱法Simultaneous detection and quantitation of multiplex plant allergens in foodstuff—the isotope dilution mass spectrometry method征求意见稿草案版次选择(工作组讨论稿)(征求意见稿)(送审讨论稿)(送审稿)(报批稿)(本草案完成时间:2023.4)在提交反馈意见时,请将您知道的相关专利连同支持性文件一并附上。XXXX - XX - XX发布 XXXX - XX - XX实施 浙江省食品学会  发布目次前言 II1 范围 32 规范性引用文件 33 术语和定义 34 缩略语 35 原理 46 试剂 47 仪器和设备 48 试样制备和保存 48.1 标准溶液制备及保存 48.2 基质溶液制备及保存 59 分析步骤 59.1 试样前处理 59.2 标准曲线绘制 59.3 仪器参考条件 69.4 测定 710 结果计算和表述 811 精密度 812 线性和定量限 813 回收率 8前言本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。本文件由浙江省食品学会提出。本文件由浙江省食品学会归口。本文件起草单位:南开大学、浙江工商大学、杭州海关技术中心。本文件主要起草人:王敏、傅玲琳、食品中多种植源性过敏原同步定量确证同位素稀释质谱法范围本标准规定了加工食品中小麦、大豆、花生、榛子、核桃、杏仁、腰果和芝麻过敏原定量确证液相色谱-串联质谱检测方法。 本标准适用于饼干、巧克力、冰淇淋、早餐谷物、奶制品等食品基质中小麦、大豆、花生、榛子、核桃、杏仁、腰果和芝麻过敏蛋白的液相色谱-串联质谱测定和确证。规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682 分析实验室用水规格和试验方法AOAC SMPR 2016.002 Standard Method Performance Requirements (SMPRs®) for Detection and Quantitation of Selected Food Allergens术语和定义下列术语和定义适用于本文件。食物过敏 Food allergy免疫机制介导的食物免疫反应不良反应,即食物蛋白引起的异常或过强的免疫反应。免疫反应可由IgE或非IgE介导。表现为一疾病群,症状累及皮肤、呼吸、消化、心血管等系统。过敏原 Allergen能够引起机体免疫系统异常反应的成分。过敏蛋白 Allergen protein能够引起机体免疫系统异常反应的成分中的蛋白质。多肽 Peptide两个或两个以上的氨基酸脱水缩合形成的有机化合物。特征肽段 Characteristic peptide唯一在靶蛋白的胰蛋白酶消化产物中发现、其氨基酸序列具有专属性的多肽。缩略语下列缩略语适用于本文件。DTT:二硫苏糖醇(dithiothreitol)IAA:碘代乙酰胺(iodoacetamide)IDMS:同位素稀释质谱法(the isotope dilution mass spectrometry)LC-MS:液相色谱-串联质谱法(liquid chromatography-tandem mass spectrometry)PRM:平行反应检测(parallel reaction monitoring)Tris:三羟甲基氨基甲烷[tris(hydroxymethyl)aminomethane]原理利用质谱技术筛选出过敏原特征肽段。利用同位素标记特征肽段(重标肽段)和目标特征肽段(轻标肽段)具有相同的理化性质的特点,以同位素标记肽段为内标,建立轻标肽段与重标肽段丰度比与过敏原含量的线性关系,内标法定量。试剂除非另有说明,本方法所用试剂均为分析纯,水为符合GB/T 6682规定的一级水。碳酸氢铵(NH4HCO3)。二硫苏糖醇(C4H10O2S2,DTT)。碘代乙酰胺(ICH2CONH2,IAA)。三羟甲基氨基甲烷(C4H11NO3,Tris)尿素(CH4N2O)。盐酸(HCl)。考马斯亮蓝染色液。胰酶(Trypsin):质谱级。蛋白分子量标准(10-170K)。0.1%的甲酸(CH3COOH):色谱纯。含0.1%甲酸的乙腈(CH3CN):色谱纯。Tris-HCl(pH 9.2):购买pH 9.5的Tris-HCl,加浓盐酸调pH值到9.2±1.0。500mM NH4HCO3:称取3.95g碳酸氢铵,用水溶解后定容至100mL。500mM的DTT(二硫苏糖醇):称取0.771g的二硫苏糖醇,用500mM的碳酸氢铵溶液溶解后定容至10mL。4℃冰箱冷藏可保存一个月。500mM的IAA(碘代乙酰胺):称取0.925g的碘代乙酰胺,用500mM的碳酸氢铵溶液溶解后定容至10mL。4℃冰箱避光冷藏可保存一个月。8M尿素:称取48g的尿素,用500mM的碳酸氢铵溶液溶解后定容至100mL。4℃冰箱冷藏。胰蛋白酶:20μg的胰酶,加入1mL的1%乙酸溶液,即为2%的胰酶溶液。仪器和设备液相色谱-串联质谱仪:UHPLC和配有HESI源的obitrap高分辨率质谱。分析天平:感量0.1mg。恒温水浴锅。离心机:转速不低于12000g。组织研磨器。各规格移液器。pH计:测量精度为0.01。真空离心浓缩仪。注射器和0.22μm的水系滤膜(聚醚砜滤膜)。酶标仪。试样制备和保存标准溶液制备及保存因难以购买到标准物质,实验中以摩尔浓度处理,肽段浓度与靶蛋白同摩尔浓度,以此定量。实验用到的特征肽段和重标特征肽段均要求纯度大于98%。目标肽段,也称轻标肽段,为不含同位素标记氨基酸的各肽段。目标肽段用0.1%的甲酸溶液配置成106fmol/μL的储备液,每管分装成10μL,在-80℃长期冻存。使用时每次使用一管,不重复使用。内标肽段,也称重标肽段,为对应的含有同位素标记氨基酸的肽段。重标肽段也使用0.1%的甲酸溶液配置成106fomol/μL储备液,每管分装成10μL,在-80℃长期冻存;使用时每次使用一管,不重复使用。基质溶液制备及保存超市购买面粉、巧克力、冰淇淋、麦片、饼干、早餐谷物粉等产品,参照其配料表含有的成分,同时提取总蛋白并酶解后(详细步骤同8.1试样前处理),进行质谱扫描,采用full MS-ddMS2扫描模式,确认其含有的蛋白成分。参照AOAC SMPR 2016.002要求的基质,且不含目标蛋白的基质用于肽段稀释。基质参照其说明书的保存条件密封保存;提取的蛋白用Bradford方法测定提取液中总蛋白的浓度,提取液置于-20℃冰箱内保存。质谱分析前的酶解产物用肽段定量试剂盒进行定量,并置于-80℃冰箱内保存。在制样的操作过程中,应防止样品受到污染或发生残留物含量的变化。分析步骤试样前处理蛋白提取、还原、烷基化和酶解2-3g的食品样本充分研磨后,称量3g放入50mL离心管中,加入20mL 300mM Tris(pH 9.2)、2M尿素,20℃震荡温浴30min,90℃水浴10min。5000g离心10min。取1mL上清用1mL溶解buffer(200mM的NH3HCO3,pH 8.2)稀释。选做步骤:取10μL上清跑SDS-PAGE;用蛋白定量试剂盒蛋白浓度。加入40μL的500mM的DTT,75℃温育30min;80μL 500mM的IAA(避光),室温温育30min。加入100μL的1%的胰酶乙酸溶液,37℃过夜。次日,3000g离心30秒,取上清在90℃孵育10min,终止酶解。12000g离心30min,取上清(底部多留一些,上清取500μL足够)。脱盐用MonoSpin C18脱盐柱(GL Sciences Inc.)或其他等同产品进行脱盐,方法参见产品说明书。简述为:调节样本pH值:样本用甲酸调节pH约为3-4。condition柱子:加入200μL的乙腈,5000g离心1min。加入200μL0.1%的甲酸,5000g离心1min。上样:将样本加入柱子上,5000g离心1-2min。加入300μL0.1%的甲酸,5000g离心1min。将柱子放入回收管内,加入300μL80%的乙腈(含0.1%甲酸),5000g离心1-2min。离心所得溶液即为脱盐后的肽段。真空悬干 用真空浓缩仪悬干脱盐后的肽段。上样前用500μL0.1%的色谱纯甲酸回溶悬干后的肽段,12000g离心30min或过0.22μm的PES滤膜。质谱扫描前建议用肽段定量试剂盒确定肽段浓度,根据质谱要求适量上样。标准曲线绘制轻标肽段系列标准溶液制备:取轻标肽段的储存液用不含目标肽段的食物基质制备得到的胰酶酶解物稀释至2500,1000,500,250,100,50,25,10,5,2.5,1,0.5,0.25 fmol/μL的标准浓度。重标肽段溶液的制备:向上述轻标肽段系列标准溶液中加入固定量的重标肽段,最终小麦重标浓度为100 fmol/μL,杏仁重标肽段浓度为200 fmol/μL,其余重标肽段浓度均为50 fmol/μL。取10μL上述配置好的系列标准溶液,进行LC-MS检测,采用PRM扫描模式。条件参考8.3仪器参考条件部分。计算轻标肽段和重标肽段产物离子的面积,从而得出丰度比与轻标浓度对应关系的标准曲线,并得到最低定量限(S/N=10时的最低浓度)。仪器参考条件液相色谱条件仪器:Thermo Scientic™ Vanquish Binary Flex UHPLC或相当者。其中Thermo Scientic™ Vanquish Binary Flex UHPLC型号的UHPLC包含以下组件:System Base Vanquish Flex (P/N VF-S01-A);Binary Pump F (P/N VF-P10-A-01);Split Sampler FT (P/N VF-A10-A);Column Compartment H (P/N VH-C10-A);MS Connection Kit Vanquish (P/N 6720.0405);Vanquish F Pumps 100 μL Mixer Set (P/N 6044.5100);Vanquish Split Sampler HT Sample Loop, 100 μL (P/N 6850.1913)分离条件:流动相A: 0.1%甲酸/水 流动相B: 0.1%甲酸/乙腈 色谱柱:Shim-pack GISS-HP C18 (metal free column),3.0μm×2.1 mm×150 mm (P/N: 227-30924-03)柱温:40℃,still air液相色谱梯度见表1。高效液相色谱梯度洗脱程序Time(min)Flow rate(mL/min)%A%B00.29010300.26040310.21090360.21090370.29010420.29010质谱条件质谱仪器:Thermo ScienticTM Q Exactive或相当者。质谱源参数:表2。扫描所选的质谱源参数Sheath gas flow rate35Aux gas flow rate10Sweep gas flow rate0Spray voltage3.8kVCapillary temp320℃S-lens RF level55.0Aux gas heater temp350℃扫描模式:PRM。扫描条件:见表3,表4和表5。Properties of the methodGlobal settingUser roleStandUse lock massesOffChrom.peak width (FWHM)5sTime Method duration42 minProperties of PRMGeneral runtime0 to 42 minPolaritypositiveDefault charge state2Inclusion2MS2Resolution70,000AGC target1e6Maximum IT100msIsolation window1.6 m/zFixed first mass-(N)CE/ stepped (N)CE27inclusion list设置Mass(m/z)CS (z)PolarityStart [min]End [min]479.610003positive11.4513.45481.943003positive11.4513.45525.793002positive13.7115.71528.793002positive13.7115.71560.786002positive8.4810.48563.786002positive8.4810.48571.800002positive11.8613.86574.800002positive11.8613.86576.288002positive5.977.97579.288002positive5.977.97678.847002positive7.299.29682.347002positive7.299.29684.355003positive14.6016.60687.688003positive14.6016.60713.433402positive19.2021.20716.433402positive19.2021.20849.968002positive20.1622.16852.968002positive20.1622.16测定定性和定量测定该方法能同时完成定性和绝对定量。按9.1试样前处理的步骤对样本进行处理,除了在胰酶酶解步骤后加入和标准曲线绘制时等量的重标肽段。采用和标准曲线绘制时同样的液相色谱条件和质谱条件进行扫描。用和标准曲线绘制时一样的参数进行数据处理,得到轻标肽段和重标肽段的丰度比。每例样本进行三个平行实验。待测物质的保留时间,与重标肽段的保留时间偏差在±2.5%之内,且样本中所选肽段定性离子均出现(附录A中表A.1),则样本中含有相应的主要过敏原。根据内标法原理,将测得的产物离子峰的丰度比值代入基质相近的标准曲线,得到样本中含有的过敏原的绝对数量。对于同时有多个特征肽段的过敏原物质,应根据质谱响应选择最佳肽段用于定量,其余肽段用于辅助过敏原物质定性。空白实验除不加试样外,均按以上操作步骤进行。结果计算和表述试样中过敏原物质的含量按式(1)进行计算,计算结果保留两位有效数字。 ()式中:C ——试样中被测组分的含量,单位为毫克每千克(mg/kg); X ——从标准工作曲线得到的被测组分溶液浓度,单位为飞摩尔每微升(fmol/μL); V ——样品定容体积,单位为毫升(mL);M ——过敏原蛋白的分子量,单位为千克每摩尔(kg/mol) M ——样品称样量,单位克(g)。精密度在重复性条件下,获得的三次独立测定结果差值的绝对值,不得超过其算术平均值的20%。线性和定量限不同基质中的定量标准曲线、线性范围及定量限参见附录D中表D.1。回收率不同基质中添加浓度水平各待测过敏原的回收率范围参见附录E中表E.1。附录A(资料性附录)过敏蛋白特征肽段情况9对过敏原特征肽段基本情况见表A.1。表A.1 9对过敏原特征肽段基本情况FoodAllergen/Allergenic proteinPeptide sequencesChargeprecursor ion (m/z)product ion (m/z)hazelnutCor a 9.0101ADIYTEQVGR2576.28882y6+(689.35768)/y7+(852.42101)/y5+(588.31)ADIYTEQV*(13C5,15N)GR579.28882y6+(695.35768)TNDNAQISPLAGR2678.847y6+(600.34639)/y7+(713.43405)/y5+(513.31436)TNDNAQISPL*(13C6,15N)AGR682.347y6+(607.34639)walnutJug r 4.0101ISTVNSHTLPVLR3479.61267y6+(698.45544)/y4+(484.32419)/y5+(597.40826)ISTVNSHTLPVL*(13C6,15N)R481.946y4+(491.32419)almondPru du 6.01GNLDFVQPPR2571.80121y7+(858.44683)/y6+(743.41989)/y3+(369.22448)GNLDFV*(13C5,15N)QPPR574.80121y7+(864.44683)cashewAna o 2ADIYTPEVGR2560.786y5+(557.30419)/y7+(821.41519)/y6+(658.35187)ADIYTPEV*(13C5,15N)GR563.78y5+(563.30419)wheatTri a 30.0101YFIALPVPSQPVDPR2849.96826y10+(1091.58438)/y8+(895.46321)/b4+(495.2602)YFIALPVPSQPV*(13C5,15N)DPR852.96826y8+(901.46321)peanutAra h 3.0201/Ara h 3.0101RPFYSNAPQEIFIQQGR3684.35559y6+(748.41005)/y5+(601.34163)/y4+(488.25757)RPFYSNAPQEIFIQQGR*(13C6,15N4)687.68889y6+(758.41005)soybeanGly m 6.0101VLIVPQNFVVAAR2713.4334y4+(416.26159)/y5+(515.33001)/y9+(1001.55269)VLIVPQNFVV*(13C5,15N)AAR716.4334y4+(422.26159)SesameSes i 6.0101AFYLAGGVPR2525.79303y6+(556.32017)/y5+(485.28306)/y7+(669.40423)AFYLAGGV*(13C5,15N)PR528.79303y6+(562.32017)附 录 B (资料性附录) 多种过敏原特征肽段平行反应监测(MRM)总离子流图和各过敏原特征肽段PRM监测的色谱图各特征肽段PRM监测的总离子流图见图B.1。图B.1 各过敏原特征肽段PRM监测的总离子流图各过敏原特征肽段PRM监测的色谱图见图B.2—B.10。图B.2 hazelnut-TNDNAQISPLAGR特征肽段PRM监测的色谱图图B.3 hazelnut-ADIYTPEVGR特征肽段PRM监测的色谱图图B.4 walnut-ISTVNSHTLPVLR特征肽段PRM监测的色谱图图B.5 almond-GNLDFVQPPR特征肽段PRM监测的色谱图图B.6 cashew-ADIYTPEVGR特征肽段PRM监测的色谱图图B.7 sesame-AFGYLAGGVPR特征肽段PRM监测的色谱图图B.8 peanut-RPFYSNAPQEIFIQQGR特征肽段PRM监测的色谱图图B.9 soybean-VLIVPQNFVVAAR特征肽段PRM监测的色谱图图B.10 wheat-YFIALPVPSQPVDPR特征肽段PRM监测的色谱图附 录 C (资料性附录) 各过敏原特征肽段在食品基质中的产物离子峰丰度及标准曲线(以巧克力基质为例)各过敏原特征肽段在巧克力基质中的产物离子峰丰度及标准曲线见图C.1—C.9。图C.1 hazelnut-TNDNAQISPLAGR在巧克力基质中的产物离子峰面积积分及定量标准曲线图C.2 hazelnut-ADIYTPEVGR在巧克力基质中的产物离子峰面积积分及定量标准曲线图C.3 walnut-ISTVNSHTLPVLR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.4 almond-GNLDFVQPPR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.5 cashew-ADIYTPEVGR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.6 sesame-AFGYLAGGVPR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.7 peanut-RPFYSNAPQEIFIQQGR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.8 soybean-VLIVPQNFVVAAR在巧克力基质中的产物离子峰面积积分及定量标准标曲图C.9 wheat-YFIALPVPSQPVDPR在巧克力基质中的产物离子峰面积积分及定量标准标曲附 录 D (资料性附录) 过敏原特征肽段在不同基质中定量标准曲线 过敏原特征肽段在不同基质中的定量标准曲线见表D.1。表D.1 9种过敏原特征肽段在不同基质中定量标准曲线过敏物质过敏原蛋白特征肽段序列基质标准曲线R2线性范围(fmol/μL)LOQ(fmol/μL)Hazelnut(榛子)Cor a 9TNDNAQISPLAGRMilkY=0.000819271+0.00639148*X0.99640.25-50000.25ChocolateY=0.00145016+0.00608113*X0.9950.1-50000.1BiscuitY=-0.000765783+0.0064886*X0.99970.5-50000.5Ice creamY=2.99676e-006+0.00635137*X0.99840.5-50000.5ADIYTEQVGRMilkY=0.00894978+0.0182694*X0.9970.05-50000.05ChocolateY=0.0106178+0.019469*X0.99740.25-50000.25BiscuitY=-0.00338933+0.0201378*X0.99930.25-50000.25Ice creamY=0.0190442+0.020233*X0.99940.05-50000.05Walnut(核桃)jug r 4ISTVNSHTLPVLRMilkY=0.00184402+0.0139691*X0.99920.25-50000.25ChocolateY=0.00350352+0.0143829*X0.99800.1-50000.1BiscuitY=-0.00257807+0.0146963*X0.99890.25-50000.25Ice creamY=-0.00469043+0.0150491*X0.99970.5-50000.5Almond(杏仁)Pru-du 6.01GNLDFVQPPRMilkY=0.00226581+0.00536408*X0.99811-50001ChocolateY=0.000702014+0.00518816*X0.99670.25-50000.25BiscuitY=-0.00299185+0.00518975*X0.99980.5-50000.5Ice creamY=-0.00347664+0.00555273*X0.999601-50001Cashew(腰果)Ana o 2ADIYTPEVGRMilkY=0.000886739+0.018806*X0.9980.1-50000.1ChocolateY=0.00201993+0.0196693*X0.99710.05-50000.05BiscuitY=-0.00265033+0.0190874*X0.99950.25-50000.25Ice creamY=-0.00213384+0.0203167*X0.99910.1-50000.1Seasame(芝麻)Ses i 6.0101AFYLAGGVPRMilkY=0.000795617+0.0209114*X0.99910.05-50000.05ChocolateY=0.00319378+0.0221981*X0.99770.05-50000.25BiscuitY=-0.00214066+0.0217603*X0.99830.25-50000.25Ice creamY=-0.000468343+0.0225037*X0.99920.1-50000.1Peanut(花生)Ara h 3.0201/Ara h 3.0101RPFYSNAPQEIFIQQGRMilkY=0.0143236+0.00972135*X0.99780.25-50000.25ChocolateY=0.0247901+0.00940702*X0.99931-50001BiscuitY=-0.0254018+0.010404*X0.99910.1-50000.1Ice creamY=-0.00905408+0.00812061*X0.99191-50001Soybean(大豆)Gly m 6.0101(p04776)VLIVPQNFVVAARMilkY=0.0181235+0.0205746*X0.99681-50001ChocolateY=0.405889+0.0166467*X0.99005-50005BiscuitY=0.222468+0.0337489*X0.99030.5-50000.5Breakfast cerealY=0.405889+0.0166467*X0.99005-50005Wheat(小麦)Tri a 30.0101YFIALPVPSQPVDPRMilkY=0.000472005+0.00316418*X0.99920.25-50000.25ChocolateY=0.00774612+0.0172714*X0.99770.25-50000.25Ice creamY=-0.00342608+0.0206805*X0.99910.25-50000.25Breakfast cerealY=0.00224107+0.0175693*X0.99840.25-50000.25附 录 E (资料性附录) 过敏原特征肽段在不同基质中定量标准曲线(以巧克力基质为例)在巧克力基质种各特征肽段不同加标水平的回收率见表E.1。表E.1 在巧克力基质种各特征肽段不同加标水平的回收率过敏物质蛋白名称肽段序列回收率测定次数添加水平(fmol/μL)2.5252502500榛子Cor a 9.0101TNDNAQISPLAGRDay1-187.3%104.2%99.9%100.6%Day1-291.5%102.8%101.0%100.6%Day1-391.5%100.9%100.7%100.2%Day1-487.3%100.5%100.7%100.1%Day1-5100.0%104.2%100.8%100.6%Day291.50%102.30%101.60%99.30%Day391.50%97.70%100.50%99.90%Day4100%99.10%103.70%102.10%Day587.26%99.54%101.42%102.45%ADIYTEQVGRDay1-1100.0%103.4%99.0%99.7%Day1-296.8%101.0%98.3%99.3%Day1-393.7%103.0%97.9%100.9%Day1-495.3%100.6%97.5%97.5%Day1-598.4%100.0%97.8%98.1%Day2103.20%101.90%96.80%101.40%Day387.00%100.70%98.30%100.90%Day487.00%96.70%99.32%99.24%Day596.42%99.26%100.57%98.66%核桃Jug r 4.0101ISTVNSHTLPVLRDay1-1113.9%102.0%99.5%101.0%Day1-294.1%100.8%103.7%98.8%Day1-3102.0%98.0%100.5%96.8%Day1-490.1%99.2%103.9%98.5%Day1-5105.9%100.6%101.7%97.6%Day2107.92%102.44%101.98%97.84%Day3107.92%99.39%98.96%97.07%Day4105.94%98.17%99.45%100.85%Day5100.00%99.39%99.19%101.10%杏仁Pru du 6.0101GNLDFVQPPRDay1-193.9%104.1%101.3%98.6%Day1-2112.3%102.9%101.2%98.3%Day1-393.9%105.3%99.2%101.2%Day1-4100.0%104.7%98.4%100.5%Day1-5106.1%102.9%97.6%99.3%Day2106.14%99.41%97.69%99.83%Day393.86%106.46%100.86%99.75%Day4106.14%110.57%102.05%101.25%Day5106.14%107.18%101.98%102.42%腰果Ana o 2ADIYTPEVGRDay1-197.3%103.4%99.6%102.7%Day1-297.3%100.1%97.6%100.2%Day1-398.6%96.7%101.6%101.2%Day1-4101.4%99.1%99.4%101.8%Day1-594.6%98.4%99.9%103.3%Day2100%100.29%96.51%100.16%Day394.59%99.86%99.35%103.29%Day494.59%101.72%99.66%100.67%Day598.65%100.00%98.06%105.37%
  • 糖尿病并发症套餐式检测仪
    成果名称 糖尿病并发症套餐式检测仪 单位名称 中国科学院化学研究所/北京怡成生物电子技术有限公司 联系人 孙红霞 联系邮箱 hongxsun@iccas.ac.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介: 本项目创新性将高特异和高灵敏的纳米超分子探针技术与生物传感器技术和微纳器件加工技术相结合,针对糖尿病并发症三个重要监测指标:血清总胆固醇、尿微量白蛋白和钾离子,开发相应的快速检测试条,并研制了可检测上述试条的 &ldquo 套餐式&rdquo 快速检测设备(检测时间&le 10min,标准偏差&le 15%,误差&le 20%),为广大糖尿病患者有效预防和及早发现并发症提供了便利。 应用前景: 成果的主要用途:针对糖尿病并发症相关的三个重要监测指标:血清总胆固醇、尿微量白蛋白和钾离子进行检测,帮助糖尿病患者有效预防和及早发现并发症。 适用领域:该成果属于医疗器械领域,适用于医院床旁检测及糖尿病患者家庭日常监测。 市场预测:我国现有糖尿病患者1亿人左右。糖尿病人几乎都伴随有高血压、心血管疾病、肾脏损伤、失明、足部溃疡等并发症。但我国市场上除血糖仪产品外,罕见用于糖尿病并发症检测的快速检测产品,因此本项目成功实施的社会和经济效益非常巨大。在经济效益方面,以3%糖尿病患者拥有本项目开发的糖尿病&ldquo 套餐式&rdquo 快速检测微系统计算,每台系统售价500元,单是检测系统的销售额就达到15亿元;以每台系统每年消耗传感器试条10支、平均价格5元/支计算,每年试条/试纸的销售额达到1.0亿× 3%× 10× 5元=1.5亿元。 知识产权及项目获奖情况: 国家发明专利: [1] 微量尿蛋白检测方法和试剂盒, 201310027719.X [2] 微量尿蛋白检测方法、系统和试剂盒, 2013100227507.1 [3] 钾离子浓度检测方法、系统和试剂盒,PCT/CN2013/077335 奖励: &ldquo 基于纳米超分子可控组装的检测探针设计及临床应用&rdquo 中国分析测试协会奖,二等奖。(2014年)
  • 莱恩德首发|抗生素检测仪的原理、应用和发展趋势
    点击此处可了解更多产品详情:抗生素检测仪 随着抗生素的广泛使用,细菌耐药性的问题日益严重。为了有效控制抗生素的使用,避免耐药性的产生,开发了抗生素检测仪。本文将介绍抗生素检测仪的原理、应用和发展趋势。    一、抗生素检测仪的原理    抗生素检测仪主要基于微生物学原理,通过测量细菌生长抑制率来检测抗生素浓度。该仪器利用微孔板技术,将待测样品中的细菌与特定浓度的抗生素共培养,通过测量细菌生长抑制率,计算出抗生素浓度。该仪器可检测多种抗生素,包括β-内酰胺类、大环内酯类、氨基糖苷类等。    二、抗生素检测仪的应用   抗生素检测仪在临床医学、药理学和微生物学等领域具有广泛的应用价值。在临床医学中,抗生素检测仪可用于监测感染患者的抗生素浓度,指导医生合理用药。在药理学中,抗生素检测仪可用于研究新药和优化现有药物的疗效。在微生物学中,抗生素检测仪可用于检测病原菌对不同抗生素的敏感性,为医生提供针对性的抗生素治疗方案。    三、抗生素检测仪的发展趋势    随着科学技术的不断发展,抗生素检测仪也在不断升级和完善。未来,抗生素检测仪将朝着更快速、更准确、更便携的方向发展。同时,随着大数据和人工智能技术的普及,抗生素检测仪将实现智能化分析和预测,为临床决策提供更加准确的支持。此外,随着新材料和新技术的出现,抗生素检测仪的制造也将更加环保和可持续。    总之,抗生素检测仪在控制抗生素使用、预防细菌耐药性产生方面具有重要作用。未来,随着科学技术的不断进步,抗生素检测仪将会得到更加广泛的应用和发展。莱恩德首发|抗生素检测仪的原理、应用和发展趋势
  • 武汉大学药学院黎威教授课题组:可穿戴式自供电微针贴片用于增强深部黑色素瘤治疗
    黑色素瘤是一种与表皮层黑色素细胞密切相关的高度恶性皮肤癌。经皮递药是手术替代或者补充治疗皮肤癌的有效方法,它可使药物能够穿透皮肤屏障并直接作用于肿瘤部位。然而,随着黑色素瘤的进展,表皮黑色素瘤细胞会持续浸润真皮,形成皮肤深部黑色素瘤。深部皮肤肿瘤的有效治疗依赖于经皮给药系统中的增强药物渗透。虽然微针(MNs)和离子导入技术在经皮给药方面已展现出效率优势,但皮肤弹性、角质层的高电阻和外部电源要求等需求挑战,仍然阻碍了它们治疗深部肿瘤的有效性。基于此,武汉大学药学院黎威教授和姜鹏副教授课题组设计开发了一种集成柔性摩擦电纳米发电机(F-TENG)的可穿戴自供电载药微针(MNs)贴片,旨在增强深部黑色素瘤的治疗。微针由水溶性微针基质材料与带负电荷的pH响应纳米粒子(NPs)混合而成,其中纳米粒子中装载着治疗药物。该装置充分利用MNs和F-TENG的优势(F-TENG能够利用个人机械运动产生电能),治疗性NPs可以在MNs贴片插入皮肤后渗透到深层部位,在酸性肿瘤组织中迅速释放药物。在深部黑色素瘤小鼠模型对比实验中,使用集成的F-MNs贴片的治疗效果优于普通MNs贴片,预示这集成F-MNs贴片在深部肿瘤治疗的巨大潜力。该贴片通过摩方精密microArch® S240(10μm精度)制备完成,相关研究成果以题为“Enhancing Deep-Seated Melanoma Therapy through Wearable Self-Powered Microneedle Patch”的文章发表在《Advanced Materials》。武汉大学药学院博士研究生王陈媛、硕士研究生何光琴和博士研究生赵环环为共同第一作者,武汉大学药学院黎威教授和姜鹏副教授为共同通讯作者。首先,研究者采用气体扩散法合成了具有pH响应性质的Ce6@CaCO3 NPs, Ce6@CaCO3 NPs为100 nm左右均匀分布的球形结构,表面修饰PEG进一步增强纳米粒子的胶体稳定性。在pH = 7.4的中性环境中,纳米粒子维持稳定的结构,使得封装的药物难以释放。在pH = 5.5的酸性环境中,纳米粒子结构被破坏,可实现药物的快速释放(如图1)。图1 Ce6(DOX)@CaCO3-PEG NPs的合成与表征a) Ce6(DOX)@CaCO3-PEG NPs的合成和药物释放过程示意图。b)合成Ce6@CaCO3 NPs的TEM图像。c)游离Ce6、游离DOX和Ce6(DOX)@CaCO3-PEG的紫外可见光谱(蓝色和黑色虚线矩形分别表示Ce6和DOX的特征吸收峰)。d) DLS测定的Ce6(DOX)@CaCO3-PEG NPs的粒径分布。e) Ce6@CaCO3和Ce6(DOX)@CaCO3-PEG NPs的Zeta电位。f) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中孵育0.5 h后的代表性TEM图像。g) Ce6(DOX)@CaCO3-PEG NPs在不同pH值(7.4、6.5和5.5)的PBS中随时间变化的水动力直径变化。Ce6(DOX)@CaCO3-PEG NPs在不同pH值PBS中h) DOX或i) Ce6的体外释放谱。每个点代表平均值±SD (n = 3个独立重复实验)。***p 图2 Ce6(DOX)@CaCO3-PEG NPs的体外行为a) B16-F10细胞对Ce6(DOX)@CaCO3-PEG NPs的摄取。b) Ce6(DOX)@CaCO3-PEG NPs孵育4 h后细胞摄取量的定量测定c)激光照射下游离Ce6或Ce6@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的Ce6浓度相当。d)游离DOX或Ce6(DOX)@CaCO3-PEG孵育后B16-F10细胞的细胞活力。两种处理的DOX浓度相当。e) 660 nm激光照射不同处理下B16-F10细胞内ROS检测。f)用Ce6@CaCO3-PEG或Ce6(DOX)@CaCO3-PEG NPs处理B16-F10细胞在激光照射或不照射下的细胞活力。g)不同处理后B16-F10细胞的活/死测定。这些处理具有相同的DOX或Ce6浓度。绿色荧光:钙素-AM 红色荧光:碘化丙啶(PI)。每个点代表平均值±SD (n = 3个独立重复实验)。*p . ns表示无显著性。同时,研究者通过硅橡胶和导电织物制备了一种典型的接触和分离模式的柔性摩擦电层F-TENG,可以通过接触通电和静电感应的耦合效应将生物机械能转化为交流电(AC)输出。然而,为了有效地为离子电泳系统供电,交流输出必须转换成直流(DC)。因此,作者制作了电源管理系统(PMS),将F-TENG的交流转换为直流,同时显著放大电流。最后将柔性的F-TENG与载药微针结合,制备成一种可穿戴的装置(如图3)。 图3 一种工作在接触分离模式下的柔性TENG (F-TENG)。a) F-TENG的原理图(左)和照片(右)。b) F-TENG工作机理示意图。c)短路电流,d)开路电压,e) F-TENG的转移电荷。f)连接整流桥和LED灯的F-TENG输出电流。g)连接电源管理系统和LED灯的F-TENG输出电流。(f)和(g)中的插图是15秒内电流峰值的放大视图和LED灯的光学照片。h)手动驱动F-TENG连接到PMS的电流。i)可穿戴式F-MN贴片原理图。可穿戴的F-MN贴片j)贴在人体手臂上之前和k)贴在没有皮肤穿刺的情况下的演示照片。 微针通过真空浇筑法,将载药的纳米粒子与水溶性基质PVA/suc混合后填入PDMS模具中制备得到,并用导电的PPy作为微针背衬填入。制备好的微针与F-TENG通过导电胶连接得到F-MN装置。此外,将偶联FITC荧光的葡聚糖作为模型药物被微针递送到到皮肤后,通过荧光分布可以看出连接F-TENG的微针装置具有更高效和深部的药物递送(如图4)。图4 F-MN贴片的制备与表征。a) MN贴片制作工艺示意图。b)制备的MN贴片的光学图像和c) SEM图像。d) FITC -葡聚糖负载MN贴片的代表性明场(左)和荧光显微镜图像(右)。e)右旋糖酐-MN贴片插入后大鼠皮肤代表性明场和荧光显微镜图像。f)荧光图像和g)植入或不植入F-TENG的大鼠皮肤后残余MNs的相应荧光强度(FI)。h)代表性显微镜图像,i)药物穿透深度,j)外用葡聚糖溶液或葡聚糖-MN贴片加F-TENG或不加F-TENG后大鼠皮肤组织切片对应的荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 表示无显著性。微针尺寸:高850 μm,尖端直径10 μm,底座直径400 μm.而后,作者在小鼠体内观察F-TENG产生电流的能力以及在体内药物递送的效果。将F-MN装置应用在小鼠肿瘤部位后,F-TENG能够将运动产生的机械能转化为电能,在小鼠体内维持恒定的电流,有效促进微针中负载的药物向更深部的肿瘤渗透,同时也提高了药物在体内的递送效率和作用时间(如图5)。 图5 F-MN装置提高了体内给药效率。a)经F-MN贴片处理的荷瘤小鼠照片。(插图:治疗小鼠时,MN贴片被连接。正极连接小鼠左前肢,负极连接MN贴片)。b) F-MN贴片作用于肿瘤部位的示意图。c)治疗过程中通过MN贴片的电流。d)不同处理小鼠给药后24 h的荧光图像。红色虚线圈表示肿瘤部位。e)不同处理的荷瘤小鼠及肿瘤部位照片。f)代表性图像,g)相应的药物穿透深度,h)局部应用NPs或MN贴片或f -MN贴片后肿瘤部位组织切片在体内的相对荧光强度。每个点代表平均值±SD (n = 3个独立重复实验)。*p 图6 F-MN贴片在B16-F10黑色素瘤小鼠中的抗肿瘤行为。a)处理过程示意图。b)不同肿瘤深度荷瘤小鼠的代表性超声图像和c)肿瘤组织的组织学切片。d) (c)中的深度量化。e)五组不同处理小鼠的平均肿瘤生长曲线。f)第9天各给药组小鼠肿瘤重量。g)第9天各组离体肿瘤形态。h)各组小鼠治疗后体重。i)各治疗组小鼠存活率曲线。j)各组肿瘤组织切片H&E、Ki67、TUNEL染色分析。每个点代表平均值±SD (n = 5个独立重复实验)。*p 图7 F-MN贴剂的体内生物安全性评价。a)各组主要器官切片H&E染色分析。不同处理后小鼠血清生化指标b)丙氨酸转氨酶(ALT)、c)血尿素氮(BUN)、d)肌酐(CR)、e)总胆红素(TBIL)各组全血中f)白细胞(WBC), g)红细胞(RBC), h)血小板(PLT)的数量。数据以mean±SD (n = 5个独立重复实验)表示,ns表示无统计学意义。结论:在这项研究中,作者开发了一种与F-TENG集成的可穿戴自供电MN贴片,并首次用于治疗深部实体肿瘤。F-MN贴片能够通过可溶解的纳米颗粒将载药的纳米颗粒递送到皮肤中,并通过纳米发电机将个人机械运动转化为电能,从而提供足够的驱动力将治疗性纳米颗粒推进深部肿瘤,进而显著提高药物递送穿透效率。在到达酸性肿瘤位置后,pH响应性NPs表现出快速解离和释放化学分子(DOX)和光敏剂(Ce6),从而显示出强大的协同根除肿瘤细胞的能力。在小鼠深部黑色素瘤模型中,单次给药这种F-MN贴片能够实现明显的肿瘤生长抑制。此外,荷瘤小鼠的生存期明显延长,体内生物安全性令人满意,这表明了该贴片在临床治疗深部实体瘤方面具有很大的潜力。这种有效的装置具有出色的传输能力,可以很轻松地将生物大分子或治疗性NPs经皮输送到深部,将来也可局部或全身用于治疗其他疾病,如糖尿病。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制