当前位置: 仪器信息网 > 行业主题 > >

干度仪工作原理

仪器信息网干度仪工作原理专题为您提供2024年最新干度仪工作原理价格报价、厂家品牌的相关信息, 包括干度仪工作原理参数、型号等,不管是国产,还是进口品牌的干度仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干度仪工作原理相关的耗材配件、试剂标物,还有干度仪工作原理相关的最新资讯、资料,以及干度仪工作原理相关的解决方案。

干度仪工作原理相关的论坛

  • 螺杆泵工作原理

    螺杆泵是利用螺杆的回转来吸排液体的。图1表示三螺杆泵的剖视图。图中,中间螺杆为主动螺杆,由原动机带动回转, 两边的螺杆为从动螺杆,随主动螺杆作反向旋转。主、从动螺 杆的螺纹均为双头螺纹。 由于各螺杆的相互啮合以及螺杆与衬筒内壁的紧密配合,在泵的吸 入口和排出口之间, 就会被分隔成一个或多个密封空间。随着螺杆的转动和啮合,这些密封空间在泵的吸入端不断形成,将吸入室中的液体封入其 中,并自吸入室沿螺杆轴向连续地推移至排出端,将封闭在 各空间中的液体不断排出,犹如一螺母在螺纹回转时被不断 向前推进的情形那样,这就是螺杆泵的基本工作原理。螺杆泵有单螺杆泵、双螺杆泵和三螺杆泵。 螺杆泵的工作原理是:螺杆泵工作时,液体被吸入后就进入螺纹与泵壳所围的密封空间,当主动螺杆旋转时,螺杆泵密封容积在螺牙的挤压下提高螺杆泵压力,并沿轴向移动。由于螺杆是等速旋转,所以液体出流流量也是均匀的。 螺杆泵特点为:螺杆泵损失小,经济性能好。压力高而均匀,流量均匀,转速高,能与原动机直联。 螺杆泵可以输送润滑油,输送燃油,输送各种油类及高分子聚合物,用于输送黏稠液体。管道离心泵的安装关键技术:水泵安装高度即吸程选用2007-8-8化工泵概述2007-8-14真空泵概述2007-8-14排污泵概述2007-8-14离心泵概述2007-8-14清水泵概述2007-8-14消防泵产品概述2007-8-14油泵概述2007-8-14供水设备概述2007-8-14螺杆泵工作原理2007-8-16旋涡泵工作原理2007-8-16磁力泵工作原理2007-8-16轴流管道泵工作原理flash动画2007-8-16离心泵工作原理flash动画2007-8-16

  • 餐具洁净度检测仪工作原理

    [size=18px]  餐具洁净度检测仪工作原理  餐具洁净度检测仪的工作原理主要基于ATP(腺苷三磷酸)的生物发光检测方法。以下是详细的工作原理介绍:  检测原理:  餐具洁净度检测仪通过检测餐具表面微生物细胞内的ATP含量来评估其洁净度。ATP是所有生物活细胞中的能量分子,因此,通过检测ATP的残留量,可以间接反映清洁的效果。  ATP拭子含有可以裂解细胞膜的试剂,当拭子与餐具表面接触时,这些试剂能够迅速将细胞内的ATP释放出来。  反应过程:  释放出的ATP与试剂中含有的特异性酶(如荧光素酶)发生反应,产生光(荧光)。这个反应基于萤火虫发光原理,即“荧光素酶—荧光素体系”。  产生的荧光强度与样品中ATP的含量成正比,因此,通过测量荧光的强度,就可以快速准确地评估餐具表面的微生物数量。  数据解读:  仪器配备有大屏幕触摸显示屏,能够实时显示检测结果。同时,根据环境检测需求,可以设定ATP含量的上下限值,实现数据快速评估预警和表面洁净度的快速筛查。  由于ATP是所有生物活细胞中的能量分子,因此ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,从而准确评估餐具的卫生状况。  仪器特性:  灵敏度高:能够检测到极微量的ATP,保证检测的准确性。  速度快:相比传统的培养法需要18-24小时以上,ATP荧光检测仪只需十几秒钟即可完成检测,大大提高了检测效率。  可操作性强:操作简便,只需简单的培训即可由一般工作人员进行现场操作。  应用领域:  餐具洁净度检测仪广泛应用于餐饮器具表面消毒效果的清洁度即时评价、饮用水中细菌微生物的快速测定、人员手部清洁检查、酒店住宿环境卫生监测等领域。  综上所述,餐具洁净度检测仪通过检测餐具表面微生物细胞内的ATP含量来评估其洁净度,具有快速、灵敏、准确等优点,是保障食品安全和公共卫生的重要工具。[/size]

  • 四极杆的工作原理

    分析器起着分离或区分导入离子的功能,是质谱仪的核心部件,四极杆是目前使用最为广泛的质量分析器,今天小析姐整理了四极杆分析器的基础知识分享给大家,希望能对你有所帮助。 [color=#000000]1953年,西德物理科学家Wolfgang Paul和Helmut Steinwedel描述了四级杆质谱仪。在4根平行杆之间,叠加的射频(RF)和恒定的直流(DC)电势能够作为质谱分离器,或过滤器,仅限于特点质量范围的离子,以恒定振幅振荡,能够在分析器上收集。[/color] [color=#000000]现代仪器制造商将四级杆瞄准到特定的应用中,既可用于分析无机元素(包括同位素),又可用于分析有机小分子,还可用于分析生物大分子,在生命科学、材料科学、环境科学、药物硏发、食品安全和石油化工等领域发挥着巨大而不可替代的作用。随着科学技术的发展,质谱的分析能力愈加强大,在方方面面的应用越来越普遍。[/color] [color=#000000]工作原理 [/color][color=#000000]概述:质谱仪是用来检测物质含量(定量分析)和鉴定物质类别(定性分析)的仪器。其主要原理是将分析样品中的待测组分电离成带电离子;带电离子在电场或者磁场的作用下进行空间或者时间上的分离;分离后的带电离子被检测器检测,得到包含有不同带电离子质荷比和相对强度的质谱图,进而推算出分析样品中不同组分的分子量。[/color] [color=#000000]通过质谱图或者精确的分子量测量,可以对待测组分做定性分析;利用检测到的离子强度,可以对待测组分做准确的定量分析。[/color] [color=#000000]带电离子进入电场,受到电场力和前进方向的影响,将逐渐靠近与所带电荷相反电极运动。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/303852.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [font=微软雅黑, &][size=14px][color=#000000]离子的运动轨迹[/color][/size][/font] [color=#000000]在工作状态中,四极杆能通过控制电压发挥离子选择、分子量测定、离子通过等功能。那么问题来了: [/color] [color=#000000]金属条们怎样发挥他们的洪荒之力做到对离子运动的控制的呢?[/color] [color=#000000]在它的设计中(如下图),对着的两根杆连在一起,是同极;再分别施加直流电压(U)和射频电压(V,可理解为交流电)。下图中z轴是离子进入四极杆的方向,x表示离子在横向的运动,y表示离子在纵向的运动。[/color] [img]https://file.jgvogel.cn/134/upload/resources/image/303853.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000]四级杆原理[/color] [color=#000000]离子进入四极杆后,运动方向是z轴,x轴方向和y轴方向受到直流和交流电的交替影响,在x,y轴方向发生偏移,只要保证偏移幅度在一定范围内,就能在四极杆中以一定的轨道运动,因此,每个离子在四极杆中都存在稳定区域,而这个稳定区域如果与离子的质荷比相关。就能解开四极杆测量质荷比的秘密。[/color] [color=#000000]计算步骤表述简略如下:[/color] [img]https://file.jgvogel.cn/134/upload/resources/image/303854.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000]其中,U是直流电压,V是交流RF电压的振幅,ω是RF电压的角频率。给上述等式求导和转化,得到Paul等式如下(纪念四极杆原理的研发者Paul和Steinwegen而命名):[/color] [img]https://file.jgvogel.cn/134/upload/resources/image/303855.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000]u表示离子的位置,x,y都可以,au和qu分别表示离子在直流和交流电压影响下的稳定区域(在x和y轴的运动范围)。从等式中得到,稳定区域仅和离子的质量、电荷两个变量相关,其他参数都是常数。 [/color] [color=#000000]将上面两个公式相比,将看到离子的稳定区域和U, V是呈线性关系的。用U和V表示稳定区域如下图( m1

  • 【转帖】表面粗糙度仪的工作原理

    表面粗糙度仪的工作原理 引 言表面质量的特性是零件最重要的特性之一,在计量科学中表面质量的检测具有重要的地位。最早人们是用标准样件或样块,通过肉眼观察或用手触摸,对表面粗糙度做出定性的综合评定。1929年德国的施马尔茨(G.Schmalz)首先对表面微观不平度的深度进行了定量测量。1936年美国的艾卜特(E.J.Abbott)研制成功第一台车间用的测量表面粗糙度的轮廓仪。1940年英国Taylor-Hobson公司研制成功表面粗糙度测量仪(3)测量方式不灵活,例如:评定长度的选取,滤波器的选择等;(4)测量结果的输出不直观。造成上述几个方面不足的主要原因是:系统的可靠性不高,模拟信号的误差较大且不便于处理等。图4 改进后的表面粗糙度测量仪工作原理框图要采用计算机系统对传统的表面粗糙度测量仪进行改进,就要编制相应的计算机软件,最好采用比较直观的菜单形式。可以按如图5所示的菜单使用流程图编制软件:图5 菜单使用流程框图3.2 改进后的表面粗糙度测量仪的功能及使用效果由于采用计算机系统,将模拟信号转换为数字信号进行灵活的处理,显著地提高了系统的可靠性,所以既大大增加了测量参数的数量,又提高了测量精度。例如:哈尔滨量具刃具厂制造的2205型表面粗糙度测量仪的测量参数多达二十六个,测量范围为0.001~50另一方面,若在表面粗糙度测量仪测量实验的教学过程中引入改进后的表面粗糙度测量仪,就实验的直观教学功能而言,也很有意义。改进后的电动输廓仪,通过计算机软件与硬件的结合(尤其是软件)大大加强了实验过程的直观性,这体现在以下几个方面:(1)整个实验过程非常直观地通过软件的各级菜单进行控制。操作简单、一目了然。(2)输入与显示同步,即在测量进行过程的同时,触针在被测表面上滑行的轨迹动态地显示在计算机屏幕上。(3)测量结果及相关图形能非常直观地、准确地输出在显示器、打印机或绘图仪上。很显然,以上这些直观的教学效果是其它传统的表面粗糙度测量实验方法所不具备的。它在得到正确的测量结果的同时,还充分运用了直观教学的原理,帮助学生加深对表面粗糙度的概念及其各种参数的直观理解。"FONT-FAMILY: " Courier New?;4 结 语(1)传统的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和工作台等主要部件组成,从输入到输出全过程均为模拟信号。而在传统的表面粗糙度测量仪的基础上,采用计算机系统对其进行改进后,通过模-数转换将模拟量转换为数字量送入计算机进行处理,使得仪器在测量参数的数量、测量精度、测量方式的灵活性、测量结果输出的直观性等方面有了极大的提高。(2)从前面的分析知,整个改进方案并不复杂,因此对于目前仍广泛使用的传统的表面粗糙度测量仪的改进具有一定的意义。(3)随着电子技术的进步,某些型号的表面粗糙度测量仪还可将表面粗糙度的凹凸不平作三维处理,测量时在相互平行的多个截面上进行,通过模-数变换器,将模拟量转换为数字量,送入计算机进行数据处理,记录其三维放大图形,并求出等高线图形,从而更加合理的评定被测面的表面粗糙度。

  • 高低温试验箱之-70度制冷工作原理

    高低温试验箱之-70度制冷工作原理

    [b] 高低温试验箱[/b]是一种集高温实验、低温实验、湿热循环系统实验为一体的仿真模拟环境试验设备,基本的温度范畴有0℃~+150℃-20℃~+150℃-40℃~+150℃-70℃~+150℃,在其中复杂的应属-70℃~+150℃今天我们详细分析高低温试验箱价格之-70℃的制冷工作原理。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/04/202104021125284461_2655_1037_3.jpg!w348x348.jpg[/img][/align] 为何复杂的应属-70℃~+150℃这一温度范畴呢,先不用说高温150度,由于高温相对性低温很容易操纵,通俗化点说就是说没有什么科技含量 关键讲讲低温,清除减温速度这些方面,0℃~-40℃低温一般选用一台制冷压缩机就可以考虑,也就是说说白了的单极致冷 而制得-70℃低温时务必应用两部制冷压缩机另外工作中才可以考虑,也就是说白了的复叠式致冷。  1、-70度提高高低温试验箱多选用复叠式致冷,各自分成高温一部分和低温一部分,高温一部分多选用致冷R404A或是R507A中温冷媒,低温一部分多选用R23A做低温冷媒,高温一部分和低温一部分是两个彻底单独的制冷机组,但相互也是相互配合。  2、当客户设置高低温试验箱温度为-70度时,控制板会輸出命令给交流接触器,起动R404A系统软件的制冷压缩机,制冷压缩机排出来超高压的汽体历经冷却器、干躁过滤器、针织毛线管等设备终进到蒸发冷凝器,也就是说人们一般常说的板式热交换器 为起动R23制冷做提前准备,返回低温一部分R404A制冷压缩机,这般不断循环系统。  3、接着当R404系统软件正常运行几分钟以后,R23系统的制冷压缩机启动,制冷压缩机排出来超高压汽体历经蒸发冷凝器即板式热交换器,经管道节流阀降压产生低温底压液体冷媒,之后进到个人工作室內箱安裝的空调蒸发器里边,根据挥发吸热反应的基本原理和循环系统电机持续强制性循环系统个人工作室气旋,带去个人工作室的发热量做到减温目地。  重中之重说下的是蒸发冷凝器,它既当做着一级R404系统的蒸发器,另外兼具着二级R23系统的冷却器,属于-70度高低温试验箱制冷机组中的一个较为关键的零配件。

  • 粒度仪的工作原理!看看也不错,了解下也不错。

    粒度仪的工作原理MIE散射理论用数学语言精确描述了折射率为n、吸收率为m的特定物质的,粒径为d的球型颗粒,在波长为λ单色光照射下,散射光强度随散射角θ变化的空间分布函数,此函数也称为散射谱。根据MIE散射理论可以看出颗粒越大,前向散射越强而后向散射越弱;随着颗粒粒径的减小,前向散射迅速减弱而后向散射逐渐增强。激光粒度仪正是通过设置在不同散射角度的光电探测器阵列,测试颗粒的散射谱,由此确定颗粒粒径的大小。这种散射谱对于特定颗粒在空间具有稳定分布的特征,因此称此种原理的仪器为静态激光粒度仪。由同一粒径颗粒组成的颗粒群称为单分散颗粒群。实际上单分散颗粒群是极少的。颗粒群体通常由大量大小不同的颗粒组成。以粒度为横坐标,以颗粒单位粒径宽度内的颗粒含量(体积含量、个数含量、表面积含量等)为纵坐标,绘出的曲线称为粒度分布曲线(又称频率分布)。如果纵坐标采用某一粒度下颗粒的累积含量则绘出的曲线称为累积分布曲线(又称积分分布)。需要注意的颗粒含量有多种不同的意义,它们之间差别很大。常用的是体积含量,因此称为体积粒度分布曲线。探测器可以做的非常窄大约几个微米,因此分辨率非常高;测试过程颗粒散射不会受到人为因素的干扰,因此测试重复性超群;根据傅立叶变换的平移不变性,颗粒在样品池中的运动速度不会影响频谱分布,因此适用于动态颗粒的测试,这是其他粒度测试方法所无法比拟的,这成为了颗粒在线测试理论依据。

  • 四级杆质谱仪原理

    四级杆质谱仪(Quadrupole Mass Spectrometer)来源于其四级杆质量选择器。在四级杆中,四根电极杆分为两两一组,分别在其上施加射频(Radio Frequency, RF)反相交变电压。位于此电势场中的离子,被选择的部分稳定后可到达检测器(Detector),或者进入之后的空间进行后续分析。  原理:  虽然现实中使用的四级杆质量选择器大多使用圆柱形,然而理想的质量选择器外形为双曲线形。质量选择器的大小通常在几厘米到几十厘米之间。  四级杆质量选择器的四根极杆被对应的分为两组,分别施加反相射频高压。其中两组电压的表达式分别为:  两组电压只有符号相反。其中U为直流(DC)分量,V为射频(达到发射频率的交流电,RF)分量的振幅(在此处用到的是V_rms而不是Vp-p)。 在通常情况下,U的值为500-2000 V,V为0-3000 V 。  在这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量过大的离子因为不能受到足够的电场牵引,最终导致碰触极杆或者飞出电场而无法通过质量选择器。  在四级杆质量选择器的硬件中,通常的做法是调整射频工作频率w来选择离子的质量,调整U与V的比值来调整离子的通过率。本节对应的图片可见,三角形区域为该质量的离子稳定的区域。U与V的比值在此体现为斜率。可见,U/V越大,离子的选择精度越高,仪器的解析能力越强,但是能稳定通过的离子数量减小;而U/V比值越小,离子通过的数量多,但是解析度下降。经过权衡之后,大多数四级杆质谱仪的解析能力大约都是1Th,体现在质谱图上就是半峰宽度大约为1Th或者1Da。  值得指出的是,当U值为零,即四级杆上仅施加射频电压时,所有离子均可通过。这样操作的意义是,可以使离子束更加聚拢。通常当作离子镜(Ion Lens)使用。最典型的扩展就是八极杆和六极杆的出现,实际是源自四级杆的基本工作特性。

  • 【原创大赛】数显式密度计工作原理和注意事项

    数显式密度计工作原理和注意事项一、密度计的工作原理 密度计根据重力和浮力平衡的原理制作的,无论放在什么液体中,密度计的重力G不变,漂浮在液面上时,浮力F等于重力G,即:密度计受到的浮力F也不变。当密度计沉入的液体的密度越大,由阿基米德原理F=ρgv可知,浮力F、g不变,液体密度ρ越大,物体排开液体的体积V越小,也就是说密度计浸入液面下的体积越少,液面对应密度计的刻度就越靠下边(密度计的刻度值下端大上端小);当然了,如果密度计沉入的液体的密度越小,出现的情况则跟以上所说的情况相反,这样我们就可以从液面对应密度计上的数值知道液体的密度了。目前质检中心数显式密度计主要有梅特勒DE45和安东帕DMA4100两种型号的仪器,现以梅特勒DE45为例来说明测定原理,它是根据U型玻璃管的电磁感动振动原理,通过测量不同样品的共振频率来测定样品的密度。可精确、快速地测量各种液体及气体的密度。一个完整的来回变化运动是一个周期,其持续时间振动周期T。每秒振动周期数是频率f。每一玻璃管都以一特征频率或固有频率振动。当玻璃管内充以物体后其频率会发生变化。其频率是管内充以物质质量的函数。当质量增加时,其频率降低,即振动周期T增加。在DE45中有一块磁体固定在测量管上,由变送器使其振动。由一传感器测量振动周期T。二、分析步骤1、打开仪器前先检查仪器上方的干燥筒里面的硅胶是否失效。2、仪器预热一段时间后在进行测量。3、按键盘上的PUMP干燥测量管,5至10秒后在按PUMP结束干燥。4、吸取甲醇样品,用10ml注射器吸取一定量待测液样品;将注射器插入样品入口,注入测量槽约2ml。在注入时要仔细观察U形管中不能有气泡,注射器留在样品入口处,5、按MEASURE键开始测量,按DISPLAY键使从Oscillation(振动值)显示变成Density(密度)显示,待稳定后直接记录结果。三、结果处理1[/siz

  • 【资料】CA砂浆流动度测定仪的使用原理和工作时间是什么?

    CA砂浆流动度测定仪(漏斗)的使用原理:CA砂浆流动度与可工作时间是保证板式轨道CA砂浆现场灌注施工质量的重要指标。从乳化沥青与水泥砂浆掺合到一起后,CA砂浆的固化作用就开始了,砂浆的粘性逐渐增加,流动性逐渐丧失而最终固化。  为确定CA砂浆流动度指标,试验采用容积为650ml的特制漏斗进行测定,将拌和好的砂浆注入漏斗,打开出口开始,至砂浆全部流出所经历的时间,即为流动度。适当的流动度对于砂浆的性能与灌注质量非常重要,流动度过小,砂浆材料会出现离析,影响其强度和耐久性;流动度过大,砂浆粘稠,就难以将轨道板与基础间的填充密实,直接影响灌注质量。  然而影响CA砂浆流动度的因素很多,在拌和方式、投料顺序一定的条件下,流动度随温度、外加剂、主要原材料的配合比、水灰比的变化而不同。  CA砂浆流动度测定仪CA砂浆的可工作时间是指CA砂浆处于规定的流动度范围内所经历的时间。这个时间应该较长而不至影响现场砂桨的灌注施工。因为考虑到现场从砂浆拌和站配制好的运输过程、灌注作业所需要的时间,规定CA砂浆的可工作时间不少于30min。所以操作人员要注意工作时间和使用。资料来源于:http://www.czfangyuan.net/czfyyq-Article-116304/

  • 【资料】常见的4种密度计及其各自工作原理

    [font=宋体][size=3] 目前,市场上较常见的密度计有浮子式密度计、静压式密度计、振动式密度计和放射性同位素密度计。[/size][/font][size=3][font=宋体] 浮子式密度计[/font][font=Times New Roman] [/font][font=宋体]它的工作原理是:物体在流体内受到的浮力与流体密度有关,流体密度越大浮力越大。如果规定被测样品的温度(例如规定[/font][font=Times New Roman]25[/font][font=宋体]℃),则仪器也可以用比重数值作为刻度值。这类仪器中最简单的是目测浮子式玻璃比重计(图[/font][font=Times New Roman]1[/font][font=宋体])[/font][font=Times New Roman], [/font][font=宋体]简称玻璃比重计。[/font][/size][size=3][font=宋体] 静压式密度计它的工作原理是:一定高度液柱的静压力与该液体的密度成正比,因此可根据压力测量仪表测出的静压数值来衡量液体的密度。膜盒(见膜片和膜盒)是一种常用的压力测量元件,用它直接测量样品液柱静压的密度计称为膜盒静压式密度计。另一种常用的是单管吹气式密度计(图[/font][font=Times New Roman]2[/font][font=宋体])。它以测量气压代替直接测量液柱压力。将吹气管插入被测液体液面以下一定深度,压缩空气通过吹气管不断从管底逸出。此时管内空气的压力便等于那段高度的样品液柱的压力,压力值可换算成密度。[/font][/size][size=3][font=宋体] 振动式密度计[/font][font=Times New Roman] [/font][font=宋体]它的基本工作原理是:物体受激而发生振动时,其振动频率或振幅与物体本身的质量有关。如果在物体内充以一定体积的液体样品,则其振动频率或振幅的变化便反映一定体积的样品液体的质量或密度。[/font][/size][size=3][font=宋体] 放射性同位素密度计[/font][font=Times New Roman] [/font][font=宋体]仪器内设有放射性同位素辐射源。它的放射性辐射(例如[/font][font=Times New Roman]γ[/font][font=宋体]射线),在透过一定厚度的被测样品后被射线检测器所接收。一定厚度的样品对射线的吸收量与该样品的密度有关,而射线检测器的信号则与该吸收量有关,因此反映出样品的密度。[/font][/size][size=3][font=Times New Roman][/font][/size]

  • 【求助】静电力显微镜中电场梯度成像的工作原理

    紧急求助静电力显微镜中电场梯度成像的工作原理, 组里最近买了一台omicron的真空AFM,除了向扫描表面之外,还想进行电场梯度成像。我的助教在导电的针尖上加了一个偏压(AC bias),想测量电场梯度。我是个新手,接触AFM 才2个月,所以想请教各位,在经过这个改变后,我们的AFM 是不是就可以测电场梯度了,另外,静电力显微镜中电场梯度成像的3个方法中,相检测 (phase detection)、频率调制 (frequency modulation)和振幅检测 (amplitude detection) 的工作原理是怎样的。哪个个方式更合适我们的AFM呢请多多指教咯^__^

  • 食品细菌毒素检测仪工作原理介绍

    食品细菌毒素检测仪(也称为病害肉检测仪)是一种用于检测肉类和其他食品中细菌毒素的专用设备。它的主要功能是快速、准确地检测食品中的有害物质,确保食品的安全和质量。  工作原理:  食品细菌毒素检测仪主要利用光谱技术、化学分析方法和人工智能算法,对肉类样本进行快速、准确的分析。它能够检测出肉类中是否存在有害微生物、毒素以及其他潜在的病理变化。通过特定的化学反应或光谱信号,仪器能够识别并量化食品中的细菌毒素含量。  检测范围:  食品细菌毒素检测仪广泛应用于肉类、乳制品、水产品等食品的检测。它可以检测多种细菌毒素,如肉毒杆菌毒素、葡萄球菌肠毒素等,这些毒素可能导致食物中毒或其他健康问题。  技术特点:  高灵敏度和高特异性:能够检测出极低浓度的细菌毒素,确保食品的安全性。  操作简便、快速:可以在短时间内完成大量样品的检测,提高了检测效率。  广泛的应用范围:不仅适用于肉类,还可用于检测乳制品、水产品等多种食品。  自动化程度高:一些先进的食品细菌毒素检测仪具备自动化操作和数据处理功能,减少了人为操作的误差。  使用步骤:  准备工作:检查设备是否正常工作,确认肉类是否符合检测的标准,如新鲜度、加工工艺、保存时间等。  样品处理:按照仪器说明书的要求,对肉类样品进行前处理,如剪碎、捣匀、称取等。  检测操作:将处理好的样品放入仪器中,设定相关参数,如样品名称、编号、检测方法等。然后启动仪器进行检测。  结果分析:等待仪器完成检测后,查看和分析检测结果。根据结果进行相应的后续操作,如进行再次检测、病原体分离、处理等。  总之,食品细菌毒素检测仪是一种重要的食品安全检测设备,它能够帮助监管部门和食品生产企业及时发现和处理食品中的细菌毒素污染问题,保障消费者的健康和安全。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151128149732_9693_4214615_3.jpg!w690x690.jpg[/img]

  • 红外热像仪工作原理

    热像仪的操作以红外热像仪的工作原理为基础。热像仪通常作为一种开源节流的检测工具,可用于诊断、维护和检查电气系统、机械系统和建筑结构,另外,科学研究和企业研发人员也可以通过热成像技术攻克各类研究过程中的难题。那么,到底什么是红外热成像技术呢?而红外热像仪工作原理又是什么呢?就让福禄克红外热像仪来告诉你吧!  红外热成像  红外热成像是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。  人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。  例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。  热像仪工作原理  热像仪旨在检测目标所放出的红外辐射。参见下图。目标是指使用热像仪进行检查的物体。http://www.wzxxw.cn/p/m/1224/20(6).jpg  目标是指使用热像仪进行检查的物体。热像仪旨在检测目标所发出的红外辐射。  红外辐射通过热像仪的光学镜片聚焦于探测器,从而引起反应,通常是电压或电阻的变化,该变化由热成像系统中的电子元件读取。热像仪产生的信号将转换成电子图像(温度记录图)并显示在屏幕上。温度记录图是经过电子处理后显示在屏幕上的目标图像,在该图像中,不同的色调与目标表面上的红外辐射分布相对应。在这个简单的过程中,热像仪可以查看与目标表面上发出的辐射能量相对应的温度记录图。  热像仪组件  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、探测器和处理电子元件、控件、数据存储设备、配有手带的把柄以及数据处理和报告制作软件。这些组件因热成像系统的类型和型号而异。参见下图。http://www.wzxxw.cn/p/m/1224/21(5).jpg  典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、控件和配有手带的把柄。http://www.wzxxw.cn/p/m/1224/22(5).jpg  热像仪通常都带有一个便携包,用于放置热像仪、软件及现场使用的其它相关设备。  镜头。热像仪至少配有一个镜头。热像仪镜头可以捕获红外辐射并使之聚焦于红外探测器上。探测器将作出反应并生成电子(热)图像或温度记录图。热像仪镜头用于采集传入的红外辐射并使之聚焦于探测器上。大多数长波热像仪的镜头包含锗 (Ge)薄层增透膜,可以改善镜头的透光能力。  福禄克最新发布的全新25微米微距镜头和4倍长焦预校准镜头,将极端目标温度变化尽收眼底。25微米微距镜头可以识别在印刷电路板等上的超微目标,甚至是肉眼难以看见的缺陷。新的4倍长焦镜头让用户能够看到放大四倍的远处目标,从而能够轻松检测电线或高火炬塔等目标。http://www.wzxxw.cn/p/m/1224/23(8).jpg  显示屏。热图像显示在热像仪的液晶显示屏 (LCD) 上。LCD 显示屏必须足够大,而且足够清晰,以便在各种场合的不同光线条件下轻松查看图像。此外,显示屏通常还会提供其它信息,例如电池电量、日期、时间、目标温度(以 °F、°C 或 °K 为单位)、可见光图像以及与温度有关的色谱键。参见图 1-5。http://www.wzxxw.cn/p/m/1224/24(5).jpg  图1-5 热像图显示在热像仪上的液晶屏(LCD)上。  探测器和处理电子元件。探测器和处理电子元件用于将目标处理成为有用的信息。目标发出的热辐射将聚焦于探测器(通常是电子半导体材料)上。热辐射可使探测器作出可测量的反应。该反应在热像仪中经过电子处理,形成热图像,并显示在热像仪的显示屏上。  控件(操作菜单)。控件用于执行各种电子调整,以优化显示屏上的热图像。可以对温度范围、热跨度和级别、调色板和图像融合度等变量执行电子调整。此外,还可以对辐射率和反射背景温度执行调整。参见图 1-6。近几年已出现触摸屏热像仪实现所有操控。http://www.wzxxw.cn/p/m/1224/25(6).jpg  图1-6 借助控件,可以对变量(例如温度范围、热跨度和级别和其它设置)执行电子调整。  数据存储设备。包含热图像和相关数据的电子数字文件存储在各类电子记忆卡或存储器以及传输设备中。许多红外成像系统还允许存储补充语音或文字数据以及通过集成的可见光摄像机采集的相应可见光图像。  数据处理和报告制作软件。与大多数现代热成像系统配合使用的软件不仅功能强大,而且容易使用。数字热图像和可见光图像可以导入个人计算机中,然后在此处通过各种调色板显示,而且还可以进一步调整所有辐射参数和分析功能。之后,经过处理的图像将被插入报告模板中,或者发送至打印机、以电子形式存储或者通过互联网发送给客户。福禄克红外热像仪使用的是SmartView红外分析软件。

  • 【原创】干燥箱简介和工作原理

    干燥箱外壳一般采用薄钢板制作,表面烤漆,干燥箱工作室采用优质的结构钢板制作。外壳与工作室之间填充硅酸铝纤维。加热器安装底部,也可安置顶部或两侧。温度控制仪表采用数显智能表,PID调节:配置999.99小时时间控制器并与报警装置相连接。使干燥箱的操作更简便,快捷与有效。干燥箱广泛用途: 适用于烘烤有化学性气体及食品加工行业的欲烘烤物品、基板应力的去除、油墨的固化、漆膜的烘干等。广泛使用于电子、电机、通讯、电镀、塑料、五金化工、食品、印刷、制药、PC板、粉体、含浸、喷涂、玻璃、陶瓷、木器建材……等等的精密烘烤、烘干、回火、预热、定型、加工等。 干燥箱工作原理: 通过数显仪表与温感器的连接来控制温度,采用热风循环送风方式,热风循环系统分为水平式和垂直式。均经精确计算,风源是由送风马达运转带动风轮经由电热器,将热风送至风道后进入干燥箱工作室,且将使用后的空气吸入风道成为风源再度循环加热运用,如此可有效提高温度均匀性。如箱门使用中被开关,可借此送风循环系统迅速恢复操作状态温度值。

  • 温度开关工作原理和安装要求

    [size=15px][b]工作原理:[/b][/size]温度开关是一种用双金属片作为感温元件的温度开关,电器正常工作时,双金属片处于自由状态,触点处于闭合/断开状态,当温度升高至动作温度值时,双金属元件受热产生内应力而迅速动作,打开/闭合触点,切断/接通电路,从而起到热保护作用。当渐度降到重定温度时触点自动闭合/断开,恢复正常工作状态。[size=15px][color=white][back=#3c40eb][b]安装要求:[/b][/back][/color][/size]1、采用接触感温式安装时,应使金属盖面贴紧被控器具的安装面,为确保感温效果,应在感温表面涂上导热硅脂或其他性能类似的导热介质。2、安装时不可把盖面顶部压塌、松动或变形,以免影响性能。3、不能让液体渗入控温器内部,不得使外壳出现裂纹,不得随意改变外接端子的形状。4、产品在不大于5A电流的电路中使用,应选择铜芯截面为0. 5-1㎜2导线连接;不大于10A电流的电路中使用,应选择铜芯截面为0.75-1.5㎜2导线连接。5、产品应在相对湿度小于90[[%]],环境温度40℃以下通风、洁净、干燥、无腐蚀性气体的仓库中存放。

  • 执行器的工作原理

    执行器的工作原理: 在齿轮级,发动机的转速可通过两套齿轮传送到输出杆上。主减速器由行星齿轮完成,副减速器由蜗轮实现,它被一套绷紧的弹簧固定在中心位置。在发生过载的情况下,也就是输出杆超过了弹簧的设定转矩时,中央蜗轮会发生轴向位移,对开关及信号装置进行微调,为系统提供保护。 受由外部变化控制杆操纵的耦合的作用,输出杆在发动机工作时与蜗轮耦合,在手动操作时与手轮耦合。当发动机不工作时,可以很容易地断掉电机驱动,并且只需压一下控制杆即可连上手轮。由于电机驱动优先于手动操作,因此当发动机再次启动时,会自动发生反向动作。这样就可以避免当发动机运转时还开启手轮,有利于保护系统。

  • 【生活中的物理知识(一)】杠杆原理在生活中的应用

    正如前面的帖子中所说,物理知识是和我们的生活息息相关的,有很多的物理原理在我们的生活中应用,其中这里面也包含了杠杆原理。利用这些原理来处理我们生活中的一些事情,可以节省力气,提高效率等等。不是有这么一句话么“给我一个支点,我可以把地球给撬起来。”这就是杠杆原理的伟大作用。大家在生活中也一定遇到了许多利用杠杆原理的地方,可以列举出来供大家学习讨论。如果有创造性地利用杠杆原理的地方,那就更好了,可以说出来供大家参考。也可以设计能够利用杠杆原理来方便我们工作生活的方案,让大家讨论评比,好的让版主给与奖励。版主一定要支持哦!

  • 触针式表面粗糙度测量仪的原理

    目前,检测表面粗糙度比较常用的方法是比较法、光切法、干涉法、触针法和印模法等,而其中触针法因其测量迅速方便、测量精度高、使用成本较低等良好特性而得到广泛使用。当采用触针法对加工工件表面进行表面粗糙度测量时,探测头上的触针在被测表面轻轻划过。由于存在轮廓峰谷的起伏,所以触针将在垂直与被测轮廓表面方向上产生上下起伏的移动。这种移动量虽然非常微细,但足以被敏感的电子装置捕捉并加以放大。放大之后的信息则通过指示表或其他输出装置以数据或图形的方式输出。这就是触针式表面粗糙度测量仪的工作方式。其中,按其传感器类型可以分:电感式、压电式、光电式等;按其指示方式又可分为:积分式、连续移动式。触针式表面粗糙度测量仪由传感器、驱动箱、指示表、记录器和工作台等主要部件组织。其中电感传感器的工作原理为:传感器测杆一端装有触针(由于金刚石耐磨、硬度高的特点,触针多选用金刚石材质),触针的尖端要求曲率半径很小,以便于全面的反映表面情况。测量时将触针尖端搭在加工工件的被测表面上,并使针尖与被测面保持垂直接触,利用驱动装置以缓慢、均匀的速度拖动,当触针在被测表面拖动滑行时,将随着被测面的轮廓峰谷表面作反向上下运动,并将运动幅度放大,从而使包围在磁芯外面的两个差动电感线圈的电感量发生变化,并将触针微笑的垂直位移转化为同步成比例的电信号。

  • 双金属温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]双金属温度计的工作原理是利用二种不同温度膨胀系数的金属,为提高测温灵敏度,通常将金属片制成螺旋卷形状,当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。由于螺旋卷的一端固定而另一端和一可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度来。这种仪表的测温范围一般在-80℃~+500℃间,允许误差均为标尺量程的1.5%左右。[size=15px][b]分类:[/b][/size]普通双金属温度计、耐震型双金属温度计、电节点双金属温度计。按双金属温度计指针盘与保护管的连接方向可以把双金属温度计分成轴向型、径向型、135°向型和万向型四种。①轴向型双金属温度计:指针盘与保护管垂直连接。②径向型双金属温度计:指针盘与保护管平行连接。③135°向型双金属温度计:指针盘与保护管成135°连接。④万向型双金属温度计:指针盘与保护管连接角度可任意调整。[size=15px][color=white][back=#3c40eb][b]选型与使用:[/b][/back][/color][/size]在选用双金属温度计时要充分考虑实际应用环境和要求,如表盘直径、精度等级、安装固定方式、被测介质种类及环境危险性等。除此之外,还要重视性价比和维护工作量等因素。此外,双金属温度计在使用过程中应注意以下几点:A、双金属温度计保护管浸入被测介质中长度必须大于感温元件的长度,一般浸入长度大于100mm,0-50℃量程的浸入长度大于150mm,以保证测量的准确性。B、各类双金属温度计不宜用于测量敞开容器内介质的温度,带电接点温度计不宜在工作震动较大的场合的控制回路中使用。C、双金属温度计在保管、使用安装及运输中,应避免碰撞保护管,切勿使保护管弯曲变型及将表当扳手使用。D、温度计在正常使用的情况下应予定期检验。一般以每隔六个月为宜。电接点温度计不允许在强烈震动下工作,以免影响接点的可靠性。E、仪表经常工作的温度最好能在刻度范围的1/3~2/3处。

  • 【分享】干湿球温度计(简称干湿温度计)的工作原理

    干湿球温度计(简称干湿温度计)的工作原理干湿球温度计  干湿球温度计(dry and wet bulb thermometer )是一种测定气温、气湿的一种仪器。它由两支相同的普通温度计组成,一支用于测定气温,称干球温度计;另一支在球部用蒸馏水浸湿的纱布包住,纱布下端浸入蒸馏水中,称湿球温度计。   根据测出的干球温度和湿球温度,查“湿空气线图”,可以得知此状态下空气的温度、湿度、比热、比焓、比容、水蒸气分压、热量、显热、潜热等资料。例如:干球18度,湿球15度时,其度差3度之纵栏与湿球15度之横栏交叉68度就是表示湿气为68%。   通过测的的数值,对照湿空气线图可以计算空气加热,冷却,加湿和减湿的状态变化。 干湿球湿度计的特点  早在18世纪人类就发明了干湿球湿度计,干湿球湿度计的准确度还取决于干球、湿球两支温度计本身的精度;湿度计必须处于通风状态:只有纱布水套、水质、风速都满足一定要求时,才能达到规定的准确度。干湿球湿度计的准确度只有5%一7%RH。 干湿球湿度计的原理  干湿温度计的干球探头直接露在空气中,湿球温度探头用湿纱布包裹着,其测湿原理就是,在一定风速下,湿球外边的湿纱布的水分蒸发带走湿球温度计探头上的热量,使其温度低于环境空气的温度;而干球温度计测量出来的就是环境空气的实际温度,此时,湿球与干球之间的温度差与环境的相对湿度有一个相应的关系,但该关系是非线性的。用公式表达起来相当复杂。这两者之间的关系会受好多因素的影响如:风速,温度计本身的精度,大气压力,干湿球温度计的球泡表面积大小,纱布材质等等。   相对湿度=水汽分压/饱和蒸汽压(压力、温度一定的情况下)

  • 压力式温度计工作原理

    [size=15px][b]工作原理:[/b][/size]压力式温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的。当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值。[size=15px][b]组成及分类:[/b][/size]压力式温度计由敏感元件温包,传压毛细管和弹簧管压力表组成。[list][*]若给系统充以气体,如氮气,称为充气式压力式温度计,测温上限可达500℃,压力与温度的关系接近于线性,但是温包体积大,热惯性大。[*]若充以液体,如二甲苯、甲醇等,温包小些,测温范围分别为-40℃~200℃和-40℃~170℃,[*]若充以低沸点的液体,其饱和汽压应随被测温度而变,如丙酮,用于50℃~200℃。但由于饱和汽压和饱和汽温呈非线性关系,故温度计刻度是不均匀的。[*][color=#3e3e3e]特点:[/color][/list]必须将温包全部浸入被测介质;毛细管最长不超过60m;仪表精度低,但使用简便,而且抗震动。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制