当前位置: 仪器信息网 > 行业主题 > >

化学电离源原理

仪器信息网化学电离源原理专题为您提供2024年最新化学电离源原理价格报价、厂家品牌的相关信息, 包括化学电离源原理参数、型号等,不管是国产,还是进口品牌的化学电离源原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学电离源原理相关的耗材配件、试剂标物,还有化学电离源原理相关的最新资讯、资料,以及化学电离源原理相关的解决方案。

化学电离源原理相关的资讯

  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 闻风辨味,动静皆宜 | 谱育科技TRACE 8000化学电离飞行时间质谱仪
    挥发性有机物(VOCs)是臭氧(O3)和颗粒物的重要前体物,对VOCs的管控已成为“十四五”空气质量考核的重要指标之一。因此要求各地方政府部门对VOCs实施细致管控、精准溯源、科学治污。但VOCs监测存在污染来源广泛、成分复杂、扩散速度快、波及范围广等难点,这也对监测仪器提出了更高要求。VOCs监测的新手段—TRACE 8000谱育科技一直不断探索多种分析技术的组合方案,以解决单台仪器难以满足所有监测需求的难题。气相色谱质谱联用仪(GC-MS)结合了GC强大的分离能力以及电子电离(EI)源的定性能力,使其成为了VOCs检测方面的国际通用标准。而以化学电离(CI)源为主要电离方式的直接进样质谱,实现了VOCs的快速监测,并且具有较高的灵敏度。两种技术的优势互补,必将发挥出更强大的分析能力。产品方面,谱育科技相继自主研发了便携式、走航式、实验室台式等系列GC-MS产品,充分发挥GC-MS定性定量准确的优势,以满足不同的应用需求。“本届北京分析测试学术报告会暨展览会(BCEIA)上,谱育科技将推出化学电离飞行时间质谱仪(CI-TOFMS)——TRACE 8000。TRACE 8000 化学电离飞行时间质谱仪TRACE 8000的分离艺术快速的进样系统多快好省引入VOCs样品通过合理的气路设计,TRACE 8000实现了更多的进气量、更快的进样速度、更好的进气路径、更省的气路结构,真正做到了VOCs监测的秒级响应,并可从容应对不同气压条件下的进样环境。精准电离可选试剂离子的化学电离源通过巧妙的试剂离子切换技术,TRACE 8000可以采用质子转移反应、电荷转移反应等多种电离方式。更为关键的是,基于对化学电离规律、产物离子裂解规律的研究,TRACE 8000建立了业内全面的单组分化学电离谱图数据库,能够为每种VOC匹配更佳的试剂离子。精巧的离子传输系统离子与中性粒子分离的关键通过采用多级差分真空结构,融合提取透镜与聚焦透镜,TRACE 8000可以获得更好的离子与中性粒子(主要为气体分子)的分离效果,其灵敏度得到显著提升。适宜的TOF“离子分离”不是质谱仪器的唯一追求通过深入思考离子分离与VOCs定性之间的关系,TRACE 8000不追高、不盲从,为CI源匹配了最适宜的TOF质量分析器,可以实现大质量范围内的微秒级扫描,秒级检测限小于1ppb。优化的谱图解析算法“软硬兼施”分离VOCs通过建立多达上百种的VOCs谱图数据库,配合独有的谱图解析算法,TRACE 8000可以从新的维度,对硬件系统得到的谱图进行深入的软件解析,更好的确定离子与VOCs之间的对应关系,提供更为精准的定性定量分析。应用案例
  • 哈希中南八省(区)第十一届电力化学技术经验交流会圆满结束
    近年来,随着国家对能源产业建设的不断重视,为帮助广大电力客户了解哈希公司产品,并为大家提供难得的技术交流机会,为期两天的&ldquo 中南八省(区)第十一届电力化学技术经验交流会&rdquo 于2011年9月21日在桂林高尔夫度假酒店隆重举行,此次会议由哈希公司和福州福光水务科技有限公司共同协办,来自广东、广西、福建等八省区的主要电力用户(电科院、电厂及电网用户)的技术主管、设备维护主管,共计约80人出席,活动还得到了许多在建电力企业客户专家的积极参与。 哈希公司中国区电力与饮料行业高级销售经理王德群先生代表公司做了热情洋溢的讲话,主要介绍了哈希公司在中国电力行业的先进应用技术,以及公司在中国电力行业的发展情况与优秀案例。他表示:哈希公司作为全球领先的水质分析解决方案的提供商,一直致力于为客户提供最优质的产品与服务,面对中国市场,我们将不断提高产品技术的应用性,同时哈希公司在中国已建立了覆盖广泛的服务网络,能在短时间内为客户提供满意的技术服务,也是我们不断追求的目标。 本次研讨会在热烈的讨论声中圆满结束,不仅深入挖掘了已运行电力用户的常见问题,还研究并讨论了相应的解决方案,参会代表纷纷表示非常满意此次研讨会的效果,希望以后能多举办这样的活动,为客户提供技术交流的互动平台。此次会议加深了客户与哈希公司之间的彼此了解,再次为促进我公司在电力行业的健康发展做出了积极的贡献。
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 230万!中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购
    项目编号:SXZB-2203 0189Z002/01项目名称:中国科学院山西煤炭化学研究所原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统采购预算金额:230.0000000 万元(人民币)采购需求:标的名称:原位热解反应器耦合真空紫外光单光子/电子轰击双电离源飞行时间质谱系统,数量:1套,技术需求:1、能够对煤及其他含碳原料热解中间体和自由基进行原位、实时探测;2、进样方式:毛细管进样、膜进样、大气压直接进样、原位分子束取样;3、EI&PI双电离源系统,原位取样及检测时间小于1ms 具体详见招标文件。合同履行期限:2023年4月30日之前本项目( 不接受 )联合体投标。
  • 李海洋团队研发高效摩擦电离质谱离子源 可显著提升电离效率
    近日,中科院大连化学物理研究所快速分析与检测研究组李海洋研究员团队在微型质谱仪的大气压进样接口中发现了摩擦电离现象,并且通过改变粗糙度等措施,显著提升了微型质谱仪的电离效率。该工作不仅阐明了非连续大气压接口(DAPI)的微型质谱在开闭过程中摩擦电离现象的存在;同时,提供了一种无需光、热、辐射的新型质谱离子源。  非连续大气压接口的微型质谱具有体积小、便携等优点,被广泛应用于毒品、爆炸物和环境污染物的现场检测中。前期,李海洋团队发展了试剂分子辅助大气压化学电离源,并与离子阱质谱仪联用,实现了痕量检测毒品(Anal. Chem.,2019;Anal. Chem.,2020)、爆炸物、农药等。  该工作发现,在没有外加电离源时仍可在非连续大气压接口离子阱质谱上观测到很强的离子信号,并确证了夹管阀开启过程中,硅胶管内部摩擦可以引起电离;对硅胶管材质、内壁粗糙度、摩擦次数和频率等参数的优化后,信号强度增强近20倍。此外,团队还将该摩擦电离技术用于酮类水溶液流过后的硅胶管中,可以检测到管内壁残留的酮类化合物,初步展现这种不需要热、光、辐射、辅助气体或溶液的摩擦电离在表面检测方面的潜力。  上述成果以“Triboionization in Discontinuous Atmospheric Pressure Inlet for a Miniature Ion Trap Mass Spectrometer”为题,发表在《分析化学》(Analytical Chemistry)上。  文章链接:https://doi.org/10.1021/acs.analchem.1c02611
  • 一文了解化学电离质谱如何测量大气环境中OH自由基
    p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " span style=" line-height: 150% " 1. /span span style=" line-height: 150% font-family: 宋体 " 大气 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 活性自由基的来源与作用 /span /span /strong /p p style=" margin-left: 24px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大气 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 活性自由基是大气光化学反应的引发剂和催化剂,对于城市灰霾的形成和对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的平衡起关键作用,其浓度等级可作为衡量大气自身氧化水平的重要指标。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 其中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基是大气化学中最活跃的氧化剂,能与大气中绝大多数组分发生化学反应。例如大气中的甲烷( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ),可以快速与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应生成可溶解氧化物 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 2 /sub O /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 3 /sub COOH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 发生沉降,因此,虽然每年有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 5.15× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 排入地球大气层,但 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基可将其中的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 4.45× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 氧化,占 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 总量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 80% /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 以上,这使得 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对全球温室效应的影响比排放量估算整整低了一个量级。从某种程度来看, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基决定了这些组分在地球大气层中的寿命和浓度。不仅如此,酸雨、对流层臭氧平衡、城市光化学烟雾以及二次气溶胶形成等过程都有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的参与。除此之外, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 还可以与大气中的烯烃反应生成醛,后者再与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应从而产生光化学烟雾中有毒且具有强烈刺激性的化合物过氧乙酰硝酸酯( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " PANs /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在低空对流层中, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的主要来源有两个:一是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 320 nm /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 光波条件下光解产生的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O( sup 1 /sup D) /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与空气中水分子的反应,二是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与氮氧化物以及臭氧的反应。但是, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的平均寿命通常为几秒甚至更短,它在对流层的最大浓度仅有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 10 sup 6 /sup ~10 sup 7 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 个 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /cm sup 3 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,且变化十分剧烈。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基在大气光化学反应和光化学烟雾形成过程中的作用如图 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 所示。 /span /span /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-size: 16px line-height: 150% font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 385px " src=" https://img1.17img.cn/17img/images/202006/uepic/948b92d1-12cb-472e-a61b-c0944df80ea3.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 385" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 黑体 " 图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" text-indent: 2em font-family: 黑体 " 、 /span span style=" text-indent: 2em font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" text-indent: 2em font-family: 黑体 " 在大气光化学反应和光化学烟雾形成过程中的作用 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 2. /span span style=" line-height: 150% font-family: 宋体 " 常见大气活性自由基 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 的检测手段 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 直到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 世纪 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 90 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年代,测量对流层大气中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 浓度的技术才逐渐成熟。英国 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Leed /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大学的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Heard /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Pilling /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 教授在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Chem. Rev. /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 上撰写综述文章,全面评述了对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的各项测量技术,包括:化学电离质谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、气体扩张激光诱导荧光技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " FAGE /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、激光差分吸收光谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " DOAS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术、水杨酸吸收技术以及自旋捕获技术。表 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 给出了这几种测量方法的主要技术指标。 /span strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 " span style=" font-family: 黑体 " 表 /span span style=" font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" font-family: 黑体 " 浓度测定的各种技术及指标 /span /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse border: none margin-left: 9px margin-right: 9px " align=" center" tbody tr style=" height:31px" class=" firstRow" td width=" 95" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 测量技术 /span /strong strong /strong /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" LOD( /span /strong strong span style=" font-size:16px font-family:宋体" 个 /span /strong strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" /cm sup 3 /sup ) /span /strong /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 准确度 /span /strong strong /strong /p /td td width=" 59" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 单次测量时间 /span /strong strong /strong /p /td td width=" 34" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 机载 /span /strong strong /strong /p /td td width=" 130" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 研究团队 /span /strong strong /strong /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CIMS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 3+3 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" FAGE /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 6 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" DOAS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5~10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 7% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 4 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 14 /span /sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CO /span span style=" font-size:16px font-family:宋体" 示踪法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 16% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 自旋 /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size:16px font-family:宋体" 捕获法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" & lt 30% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 水杨酸吸收法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30~50% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 90 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span /p /td /tr /tbody /table p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " span style=" line-height: 24px font-family: 宋体 " FAGE是一种在低压条件下测量大气活性自由基的激光诱导荧光技术( /span span style=" line-height: 24px font-family: " times=" " new=" " LIF /span span style=" line-height: 24px font-family: 宋体 " ),自其被提出以来,已经广泛应用于自由基的检测,成为测量大气自由基的有效方法之一。正常工作时, /span span style=" line-height: 24px font-family: " times=" " new=" " FAGE /span span style=" line-height: 24px font-family: 宋体 " 利用特定波长的激光束,使低能级的 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基发生跃迁,通过检测其从高能级回落过程中产生的荧光,从而实现对于 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基浓度的测量。 /span /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " DOAS /span span style=" text-indent: 2em font-family: 宋体 " 是利用空气中气体分子的窄带吸收特性及强度来鉴别气体成分、推演气体浓度的一种技术,其测量原理基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " Beer-Lambert /span span style=" text-indent: 2em font-family: 宋体 " 定律: /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/766f80ed-bfa1-4612-b47e-bf2f50094303.jpg" title=" 化学式1.png" alt=" 化学式1.png" / span style=" text-indent: 0em font-family: 微软雅黑 " span style=" line-height: 150% font-family: " times=" " new=" " color:=" " E /span /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.1 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 24px font-family: 宋体 " 进而得到 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/98f4fc65-35a4-4751-a3df-6df88f1f708c.jpg" title=" 化学式2.png" alt=" 化学式2.png" / span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p span style=" text-indent: 2em text-align: right font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7d7e75da-8bc5-47f5-982a-14f4e5ec72a8.jpg" title=" 微信截图_20200618164858.png" alt=" 微信截图_20200618164858.png" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术最早由华盛顿州立大学于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1979 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年报道,它是一种基于光稳态技术对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基进行研究的方法,利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基对 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的强氧化性,从而实现了对于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的高灵敏度检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对于自旋捕获技术和水杨酸吸收技术,则由于其在检测中所需的时间均大于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 min /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,从而不适合应用于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的连续在线检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 是一种利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的化学特性对其进行检测的技术,其原位测量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的浓度是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Georgia Institute of Technology /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Eisele /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Tannar /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1989 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年发明的。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进行测量的关键在于通过过量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " SO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 将其滴定,从而把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 全部转化为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,再用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子通过化学电离方法把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 电离为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子,最终利用测量得到的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子的强度,完成对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的检测。其基本原理如下: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 23px " src=" https://img1.17img.cn/17img/images/202006/uepic/5db3950c-6bb1-429f-a5dc-74721da12853.jpg" title=" 化学式3.png" alt=" 化学式3.png" width=" 200" height=" 23" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.3 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 26px " src=" https://img1.17img.cn/17img/images/202006/uepic/5fd7a534-5c7d-4f54-8c3a-b3664554a285.jpg" title=" 化学式4.png" alt=" 化学式4.png" width=" 200" height=" 26" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.4 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 22px " src=" https://img1.17img.cn/17img/images/202006/uepic/23d266a5-b30f-41b8-b389-5fe3b01adda6.jpg" title=" 化学式5.png" alt=" 化学式5.png" width=" 200" height=" 22" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 ... /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.5 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 21px " src=" https://img1.17img.cn/17img/images/202006/uepic/8bde4373-fe29-4b3a-8810-266a5776b2ec.jpg" title=" 化学式6.png" alt=" 化学式6.png" width=" 200" height=" 21" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.6 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进而可以得到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的计算公式: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 44px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d1e9059-1c2a-4c7e-a908-8c34733ab6b9.jpg" title=" 化学式7.png" alt=" 化学式7.png" width=" 200" height=" 44" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.7 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 3. /span span style=" line-height: 150% font-family: 宋体 " 自主研发化学电离质谱测量 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 中科院大连化物所李海洋研究员带领的“快速分离与检测”课题组( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 102 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 组)基于质谱检测核心技术,致力于发展用于在线、现场、原位快速分析的质谱新仪器和新方法,聚焦于化工生产、环境监测和临床医学精确诊断对高端在线质谱的迫切需求,注重技术创新,以“做有用的仪器”为至高追求,先后攻克了新型软电离源、高分辨质量分析器等在线质谱多项关键技术,并于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 2017 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年与金铠仪器(大连)有限公司共同建立质谱发展事业部,携手推动高端质谱技术的发展。近年来,团队先后获得在线质谱仪从设计、生产到应用全链条认证,成功搭建了台式质谱仪、便携式质谱仪、毒品现场鉴别离子阱质谱仪等多个系列产品线,并实现了定型产品“高灵敏光电离飞行时间质谱仪”出口美国、团队成功入选辽宁省兴辽英才计划“高水平创新创业团队”等多项创举。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 455px height: 600px " src=" https://img1.17img.cn/17img/images/202006/uepic/65377ae1-b7f4-4dc3-9cd4-fe11db074f89.jpg" title=" f962b4b3bb4bb46555334acec7d0997_副本.png" alt=" f962b4b3bb4bb46555334acec7d0997_副本.png" width=" 455" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 针对大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 的检测难题,质谱发展事业部科研工作者基于垂直加速和双场加速聚焦技术,完全自主研发了一台大气压负离子直线式 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 用于大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 在线监测,其结构示意图如图 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 所示。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 14px font-family: 黑体 " /span /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/99cdf405-749e-4743-989c-4cc3c7893cf3.jpg" title=" 88.jpg" alt=" 88.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " 1.2& nbsp & nbsp /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 自行研制的大气压负离子直线式 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " TOFMS /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 的结构示意图 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " 基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " CIMS /span span style=" text-indent: 2em font-family: 宋体 " 技术的基本原理,针对大气活性自由基浓度低、寿命短等自身特点,利用 /span sup style=" font-family: 微软雅黑 text-indent: 2em " span style=" font-size: 16px font-family: " times=" " new=" " 63 /span /sup span style=" text-indent: 2em font-family: " times=" " new=" " Ni /span span style=" text-indent: 2em font-family: 宋体 " 放射源作为电离源,采用自由基转化反应管、试剂离子产生管与化学电离反应区相互平行同轴设计的结构,对自由基进行测量。如图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.3 /span span style=" text-indent: 2em font-family: 宋体 " 所示为同轴式自由基进样系统及电离源的反应原理图与结构设计图。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 614px " src=" https://img1.17img.cn/17img/images/202006/uepic/0e654476-5bf0-4572-bc19-9a0e78fb151e.jpg" title=" 99.jpg" alt=" 99.jpg" width=" 600" height=" 614" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 2em font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.3& nbsp /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 同轴式 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 自由基进样系统及电离源的反应原理图 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " 基于上述 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 检测方法,科研人员于 /span span style=" font-size: 16px font-family: " times=" " new=" " 2018 /span span style=" font-size: 16px font-family: 宋体 " 年 /span span style=" font-size: 16px font-family: " times=" " new=" " 4 /span span style=" font-size: 16px font-family: 宋体 " 月 /span span style=" font-size: 16px font-family: " times=" " new=" " 30 /span span style=" font-size: 16px font-family: 宋体 " 日对大连市沙河口区中山路 /span span style=" font-size: 16px font-family: " times=" " new=" " 457 /span span style=" font-size: 16px font-family: 宋体 " 号生物楼楼顶平台环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " · OH /span span style=" font-size: 16px font-family: 宋体 " 自由基进行了连续在线监测,时间范围为 /span span style=" font-size: 16px font-family: " times=" " new=" " 6:00 ~18:00 /span span style=" font-size: 16px font-family: 宋体 " 。测试过程中每张质谱图采集 /span span style=" font-size: 16px font-family: " times=" " new=" " 5 s /span span style=" font-size: 16px font-family: 宋体 " ,经过计算,得到环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " OH /span span style=" font-size: 16px font-family: 宋体 " 自由基浓度在一天内随时间的变化趋势如图 /span span style=" font-size: 16px font-family: " times=" " new=" " 1.4 /span span style=" font-size: 16px font-family: 宋体 " 所示,所得监测结果与相关文献报道规律保持一致,且分析速度更具优势,展现了所发展 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 的巨大应用潜力。 /span /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 449px " src=" https://img1.17img.cn/17img/images/202006/uepic/fb123cb4-f106-42c3-8e9e-13bd104b1612.jpg" title=" 10101.png" alt=" 10101.png" width=" 600" height=" 449" border=" 0" vspace=" 0" / /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.4& nbsp /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 环境空气中 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 自由基浓度在一天内随时间的变化 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong style=" font-family: 微软雅黑 text-indent: 2em " span style=" line-height: 150% font-family: 宋体 " 4.结语 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 由中科院大连化物所“快速分离与检测”课题组与金铠仪器(大连)有限公司共建的质谱发展事业部,采用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 技术设计研制了一套基于 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 63 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Ni /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 放射源的大气压化学电离源及进样系统,利用自行研制的大气压负离子 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 实现了对于大气中的超痕量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的原位、实时、在线、连续测量,展现了其在大气环境领域的巨大应用前景。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " br/ /span /span /p p style=" text-indent: 2em line-height: 1.75em text-align: right " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 供稿来源:金铠仪器(大连)有限公司 /span /span /p p br/ /p
  • 国产热表面电离质谱仪通过仪器性能鉴定
    2023年9月18日,西安交通大学组织专家在西安对西安交通大学、西北核技术研究院等联合研制的国产热表面电离质谱仪进行了仪器性能鉴定。鉴定委员会由来自中国核学会、中国计量科学院研究院、中核四〇四有限公司、中国工程物理研究院、中国原子能研究院、中核建中核燃料元件有限公司、中国核动力研究设计院、西北大学、暨南大学、西安交通大学、中国科学院青海盐湖研究所、中国科学院地球环境研究所等单位的14名国内专家组成,其中中国质谱学会原理事长、中国核学会李金英研究员为专家组组长,中国计量科学研究院首席科学家王军研究员为副组长。西安交通大学电气工程学院党委书记梁得亮教授、仪器科学与技术学院党委书记韦学勇教授、仪器科学与技术学院院长赵立波教授、科研院处长陈黎教授及项目组成员等30余人参加会议。科研院陈黎处长主持鉴定会。西安交通大学电气工程学院梁得亮教授首先代表学院感谢各位专家长期以来对国产质谱仪器的关心,质谱仪作为分析仪器皇冠上的“明珠”,国产化问题一直备受关注,希望各位专家多提宝贵建议,对国产仪器客观评价,帮助项目组进一步做好仪器迭代升级。中国质谱学会原理事长、中国核学会李金英研究员在线上主持仪器研制汇报与指标测试汇报环节。项目组技术骨干袁祥龙工程师对国产热表面电离质谱仪的研制目标、关键技术、工程化、未来展望等方面进行了汇报。项目组在国家重大科学仪器设备开发专项、国家重点研发计划等多项重点项目支持下,开展了离子光学理论研究、关键部件研制、测控软件开发、仪器工艺及可靠性迭代等多项工作,取得系列创新成果。中国计量科学研究院王松副研究员在国产热表面电离质谱仪上开展了为期三天的现场测试,会议上介绍了仪器指标测试大纲与测试报告,并分享了个人在国产仪器方面的使用感受。在听取了项目组和第三方测试单位的汇报后,鉴定委员会进行了热烈的讨论,认为国产磁质谱仪器十年磨一剑,取得了令人瞩目的成果、令人振奋,向项目组表示祝贺。专家们结合实际应用场景,就特定核素同时测量、探测器技术方案、微弱信号检测等与项目组进行了深入技术探讨;最后,还对仪器长期稳定性考核、自动化样品处理、知识产权布局等方面提出了具体建议。研究团队学术带头人李志明教授最后总结了团队磁质谱仪器研发历程、目前面临的挑战和未来研发计划,表示研究团队将以本次鉴定会为契机,“咬定青山不放松”,持续做好性能指标先进、“皮实耐用”的国产化质谱仪器。18日下午,鉴定委员会及其他与会专家到现场实地考察了国产热表面电离质谱仪,观看了仪器功能演示、软件操作和关键零部件研制情况,并现场开展样品测试。项目组现场还对在研的高分辨辉光放电质谱仪、高分辨气体质谱仪等仪器的关键部件进行了介绍。鉴定委员会一致认为:该仪器主要技术指标与国外先进商业仪器相当,其中峰形系数、系统稳定性和丰度灵敏度(带阻滞过滤器)指标优于国外仪器;突破了多工位热离子源、磁-电双聚焦离子光学设计、高稳定磁场控制、多接收离子探测等关键技术,在仪器设计与关键部件研制方面有多项创新,实现了同位素丰度高精密测量;自主开发了点样仪、样品带成型及焊接装置、样品带去气装置等全套辅助设备,可满足日常分析要求。热表面电离质谱是被公认为同位素分析最精确的分析方法之一,是一种准确的、可用于校准其他分析方法的参考技术,被广泛应用于核工业、同位素地球化学、计量标准、油气勘探、海洋学等领域。国产热表面电离质谱仪成功通过鉴定将推动我国高端磁质谱仪器向国产化替代迈进,打破关键领域仪器设备“受制于人”的被动局面,具有里程碑意义。
  • 新型可穿戴设备 利用电化学原理发电
    据PCWorld网站报道,目前可穿戴设备通常用于追踪锻炼和健身活动,但是,可穿戴设备可以用于为其他可穿戴设备提供电能吗?麻省理工学院的一项新研究将很快使这成为可能。  一直以来,电能都是制约可穿戴设备和其他移动设备发展的一个因素。但麻省理工学院研究人员本周宣布,他们已经发现了利用幅度很小的弯曲运动发电的方法。  PCWorld表示,他们的系统利用两层很薄的锂合金片作为电极,然后在两个电极之间夹一层浸泡有液态电解质的多孔聚合物。即使轻微的弯曲,也会在连接在两个电极间的外部电路中产生电压和电流,从而为其他设备供电。只需在一端施加很小的力,就能引起锂合金金属片弯曲,例如,把装置固定在手臂或腿上。  麻省理工学院研究人员指出,利用轻微运动发电还有其他方法,但它们利用不同原理。大多数方法利用了摩擦起电效应——例如把羊毛和气球相互摩擦,或压电效应。麻省理工学院材料科学和工程教授李举(Ju Li,音译)表示,这些传统方法存在“电阻大、弯曲刚度大、成本高”的缺陷。  麻省理工学院称,通过利用电化学原理,新技术能利用大量自然运动和活动生成电能,其中包括典型的人类活动,例如走路或锻炼。  这类设备不仅仅能低成本地批量生产,而且天生很柔韧,这使得它们与可穿戴设备更搭,在外力作用下不容易受损。  李举表示,测试设备已经证明这一系统非常稳定,在使用1500个周期后仍然能保持其性能。  PCWorld称,这一技术的其他潜在用途包括生物医学设备,或者应用在道路、桥梁、甚至是键盘中的嵌入式压力传感器。  麻省理工学院的这一成果当地时间周三发表在《Nature Communications》上。
  • 380万!中山大学计划采购化学电离飞行时间质谱仪
    一、项目基本情况项目编号:中大招(货)[2022]418号/CLF0122GZ12ZC41项目名称:中山大学海洋科学学院化学电离飞行时间质谱仪采购项目预算金额:380.0000000 万元(人民币)采购需求:中山大学根据国家招投标法律法规和学校管理要求,拟以公开招标方式采购下列货物及其相关服务。1、招标采购项目内容及数量:化学电离飞行时间质谱仪,1台(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。 2、项目预算及经费来源:项目预算 3,800,000.00 元人民币。经费来源为财政性资金。合同履行期限:交货时间:签订合同后240个日历天以内交货。交货地点:中山大学珠海校区。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:(1)具备投标条件的中华人民共和国的法人或其它组织;(2)符合《中华人民共和国政府采购法》第二十二条相关规定;(3)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人”、“重大税收违法失信主体” 、“政府采购严重违法失信名单”;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以代理机构于评标当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,同时对信用信息查询记录进行存档。如相关失信记录已失效或查询不到,则必须出具其信用良好的承诺书原件扫描件);(4)本项目不允许联合体投标。不接受中标备选方案。三、获取招标文件时间:2022年09月30日 至 2022年10月11日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中山大学智能电子采购系统(https://www.zhizhengyun.com)方式:详见“其他补充事宜”。售价:¥400.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年10月20日 14点30分(北京时间)开标时间:2022年10月20日 14点30分(北京时间)地点:在线开标。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、招标文件获取方式:本项目以电子招投标形式进行,投标人可于中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)浏览招标公告,确认参与项目的合格投标人应登录中山大学智能电子采购系统,缴纳系统技术服务费400元/标段,在网上获取采购文件及其它招标资料。2、报名方式及时间:2022年09月30日 09:00:00至2022年10月11日 17:00:00;登录中山大学智能电子采购系统,在网上报名获取招标文件及资料,否则不能参与本项目的投标。本项目不需要现场报名确认,若报名期限届满后,获取招标文件的潜在投标人不足三家的,采购人将可能顺延报名期限并予公告。请各投标人留意网上公告,采购人不再另行通知。3、电子投标文件的递交:投标人须凭企业数字证书(GDCA)在提交投标文件截止时间前完成电子投标文件的上传,递交网址:https://www.zhizhengyun.com。无中山大学智能电子采购系统企业数字证书(CA)的投标人需按该平台电子认证的要求,提前办理企业数字证书(GDCA)。如果投标文件于递交投标文件截止时间未能上传完毕,该投标文件将视为无效投标文件。投标截止时间前未完成投标文件传输的,视为撤回投标文件。在递交投标文件截止时间前,投标人可以替换投标文件。4、提交投标文件截止时间、开标时间和地点(1)提交投标文件截止时间和开标时间:2022年10月20日 14:30:00 (北京时间)。(2)投标文件解密时间:2022年10月20日14:30至10月20日15:00(如因系统原因无法正常解密,采购人可延长解密时间)。(3)解密完成后及时公布开标结果,投标人可登录中山大学智能电子采购系统查看开标情况。(4)开标地点:在线开标。5、招标公告期限为自发布公告之日起5个工作日, 2022年09月30日 09:00:00 至 2022年10月11日 17:00:00 止。6、本项目的发布、修改、澄清和补充通知将在中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)发布,敬请各投标人留意,采购人不再另行通知。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中山大学     地址:广州市新港西路135号        联系方式:李老师 020-84115084转807      2.采购代理机构信息名 称:采联国际招标采购集团有限公司            地 址:广东省广州市越秀区环市东路472号7楼、23楼            联系方式:李亚珍 020-87651688转分机号156            3.项目联系方式项目联系人:李亚珍电 话:  020-87651688转分机号156
  • 我国质谱电离源研究工作取得新进展
    电离源是质谱、离子迁移谱等检测仪器的关键部件之一。近年来,以“软电离”为核心的实时监测和在线分析技术得到了越来越广泛的应用。   中科院大连化学物理研究所李海洋研究员领导的科研团队基于光强为1011光子/秒的VUV灯,研制成功了一种可以快速切换的高效的新型单光子电离(SPI)和化学电离(CI)复合电离源。将该电离源与飞行时间质谱结合,成功对痕量挥发性有机物进行了分析检测。实验结果表明,在SPI模式下,对苯、甲苯、对二甲苯的检测灵敏度为3 ppbv、4 ppbv和6 ppbv。而利用SPI和CI模式的切换,实现了较宽电离能范围的复杂混合有机物的在线监测,并成功用于长链烷烃脱氢反应过程和水中消毒副产物的在线监测。该结果已刊登在美国化学会Analytical Chemistry上。   本次发表的论文是在前期研制开发的新型双极性电离源(UVRI)基础上(Analytical Chemistry, 2010, 82 (10):4151-4157)的又一次突破性进展。近3年来,课题组已有3篇关于新型电离源研制的文章发表在Analytical Chemistry,且研制的电离源已经在产业化爆炸物、毒品检测用离子迁移谱上得到广泛应用。
  • 大连化物所研发高效摩擦电离质谱离子源
    近日,大连化物所快速分析与检测研究组(102组)李海洋研究员团队在微型质谱仪的大气压进样接口中发现了摩擦电离现象,并且通过改变粗糙度等措施,显著提升了微型质谱仪的电离效率。该工作不仅阐明了非连续大气压接口(DAPI)的微型质谱在开闭过程中摩擦电离现象的存在;同时,提供了一种无需光、热、辐射的新型质谱离子源。  非连续大气压接口的微型质谱具有体积小、便携等优点,被广泛应用于毒品、爆炸物和环境污染物的现场检测中。前期,李海洋团队发展了试剂分子辅助大气压化学电离源,并与离子阱质谱仪联用,实现了痕量检测毒品(Anal. Chem.,2019;Anal. Chem.,2020)、爆炸物、农药等。  本工作发现,在没有外加电离源时仍可在非连续大气压接口离子阱质谱上观测到很强的离子信号,并确证了夹管阀开启过程中,硅胶管内部摩擦可以引起电离;对硅胶管材质、内壁粗糙度、摩擦次数和频率等参数的优化后,信号强度增强近20倍。此外,团队还将该摩擦电离技术用于酮类水溶液流过后的硅胶管中,可以检测到管内壁残留的酮类化合物,初步展现这种不需要热、光、辐射、辅助气体或溶液的摩擦电离在表面检测方面的潜力。  上述成果以“Triboionization in Discontinuous Atmospheric Pressure Inlet for a Miniature Ion Trap Mass Spectrometer”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是大连化物所102组博士研究生徐楚婷。该工作得到了大连化物所创新基金的支持。  文章链接:https://doi.org/10.1021/acs.analchem.1c02611
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
  • 岛津创新技术亮相第四届原位电离质谱会议
    2016年11月11日至12日,由中国质谱学会主办,华质泰科公司承办的第四届中国原位电离质谱会议在广州白天鹅酒店召开。本次会议邀请了30位来自美国、台湾、香港等地以及国内知名院校、相关行业的专家学者作大会报告,并得到了国内外多家高校、科研机构、企事业单位约150位分析工作者的支持和参与。诸位学者共聚一堂,讨论了原位电离质谱技术发展及应用新趋势等多个方面的话题。第四届中国原位电离质谱会议在广州白天鹅酒店召开在会议进行的“原位电离前沿基础:进展与展望”的主题报告中,中科院长春应化所、吉林省人参科学研究院院长刘淑莹教授,美国JEOL公司资深科学家、产品经理、DART共同发明人Chip Cody博士,国立中山大学化学系谢建台教授,美国Advion公司联合创始人兼CSO Jack Henion博士,东华理工大学陈焕文教授,香港理工大学应用生物与化学科技系姚钟平教授等带来精彩纷呈的大会报告。岛津公司自主研发的DCBI离子源技术在本次会议上亮相,岛津质谱中心投稿的Poster《解吸电晕束离子化技术(DCBI)在RoHS检测领域增塑剂快速筛选中的应用》,获得了与会者的关注。DCBI(解吸电晕束离子源)是一种可在常压下对固态或液态样品进行快速、直接分析的离子源,其工作原理是利用一被加热后的可见等离子电晕束,通过其产生的亚稳态氦原子和其它离子对样品直接进行解吸电离。可以实现高灵敏度实时分析,离子源安装和拆卸方便,可用于快速检测、公安法医、食品安全等广泛的应用领域。岛津公司展台传真关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 线上讲座 | 原位空间微纳尺度微区扫描电化学原理及应用
    线上讲座 | 原位空间微纳尺度微区扫描电化学原理及应用 主讲: 黄建书 博士, 阿美特克科学仪器部应用经理 讲座简介:传统的电化学方法基于样品的宏观平均响应表征,在局部腐蚀、能源材料、光/电催化活性、电致变色、微流控组装,生物医学、多维梯度材料等研究方面,面临诸多挑战。国内外相关研究表明,微区扫描电化学技术以其原位微纳尺度空间分辨率等特点,在上述热门研究方面显示出巨大优势及广阔应用前景。 主讲人: 黄建书博士,目前任阿美特克公司科学仪器部应用经理。主要负责普林斯顿及输力强电化学产品的技术支持,应用开发,市场推广等方面工作。多年来与国内外大学,科研单位及企业研发机构保持密切合作,尤其在原位超高空间分辨率微区扫描电化学应用方面积累了大量经验。曾多次在国内外学术会议上,进行普林斯顿及输力强电化学前沿应用报告。 主要内容: 金属及涂层表面腐蚀过程的演化分析 水分解,氧还原等光电催化活性位分布研究 电池电极材料离子脱嵌动力学表征 为了便于您时间安排,本次应用讲座,将连续举办两场,请您选择合适时间报名参加 第一场: 6月30日14:00-15:30 第二场: 7月07日14:00-15:30
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 太原理工大学化学工程与技术学科-岛津合作实验室正式挂牌成立
    2021年6月11日上午,太原理工大学化学工程与技术学科-岛津合作实验室签约挂牌仪式在太原理工大学省部共建煤基清洁高效利用国家重点实验室顺利召开。 太原理工大学是“211工程”重点建设大学,入选国家“双一流”重点建设高校。化学工程与技术学科早在2002年即入选国家重点学科。 太原理工大学省部共建煤基清洁高效利用国家重点实验室长期与岛津密切合作,配备有X射线光电子能谱、全二维气质联用仪、气相色谱、液相色谱、紫外光谱、红外光谱、热重分析、原子光谱等多套设备,有效服务于如针对煤、煤伴生物和煤衍生物的高效洁净转化,煤基含氧燃料及化学品合成、煤转化工程中的节能减排和能源战略等重大课题项目。 太原理工大学副校长吕永康发表致辞 在签约仪式上,太原理工大学副校长吕永康教授代表学校高度评价了岛津长期以来对太原理工大学的科研助力和技术服务,并表达了由衷的感谢。太原理工大学化学工程与技术学科作为国家重点学科,在高速发展的同时,对于高端科学仪器及专业技术服务的需求也日益增长,吕校长期待今后可以借助岛津全面的、高性能的仪器设备以及强大的技术背景,在煤化工研究中取得更多的突破及发展,在未来与岛津形成更加紧密而深入的合作。 岛津分析计测事业部市场部部长胡家祥发表致辞 岛津分析计测事业部市场部胡家祥部长代表岛津向合作实验室的成立发表致辞。胡部长提到,作为全球专业的分析仪器供应商,岛津一直致力于“以科学技术为社会做贡献”,不断加强技术创新,并热忱为科学研究领域提供服务。在国家能源转型和优化升级的背景下,煤科学技术将持续成为科学研究及产学研合作的重要方向。太原理工大学化学工程与技术学科的科研需求与岛津的分析技术理念高度一致。此次合作实验室的成立,将成为双方深化合作新的里程碑,未来双方将在前沿科技研究,应用开发,学术成果推广等多方面开展更为深入的合作,携手为煤化工技术进一步发展做出贡献。 吕永康副校长和胡家祥部长代表合作双方进行合作实验室的签约及揭牌仪式,宣告“太原理工大学化学工程与技术学科-岛津合作实验室”正式成立。 仪式结束后,双方就煤化工行业的最新研究进展进行了学术交流汇报。岛津分析计测事业部市场部化工行业担当李言老师分享了岛津在能源催化领域的解决方案和最新技术;太原理工大学博士生李旺分享了煤液化产品定性定量分析方法的最新研究成果。现场学术氛围浓厚,取得了良好的交流效果。 岛津分析计测事业部市场部化工行业担当李言原理工大学博士生李旺 会后胡部长一行参观了合作实验室,对于仪器设备使用,后续科研合作等话题进行了深入交流。 参观合作实验室与会专家合影留念
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 新品推荐:化学发光原理与计算机技术相结合仪器---A2070N化学发光定氮仪
    石油产品检测仪器有着30多年的发展历史。伴随着石油和石化工业的发展,石油产品检测仪器走过了从无行业标准到统一标准 从手动到自动的发展历程。石油产品检测仪形成了很多门类:闪点检测仪、倾点检测仪、凝点检测仪、石油分析仪、水分测定仪、光谱分析仪等等。氮测定仪更是石油产品检测中比较小众的存在。A2070N氮测定仪 (化学发光定氮仪)A2070N 氮测定仪是根据化学发光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。应用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0657、ASTM D46291、系统采用化学发光法测定总氮含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。样品种类 液体、固体和气体测定方法 化学发光法样品进样量 固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围 0.1-5000mg/L测量精度 化学发光定氮仪 进样量(μL) RSD(%) 0.1 20 25 5 10 10 50 10 5 100 10 3 5000 10 3控温范围 室温~1300℃控温精度 ±1℃气源要求 高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源 AC220V±10% 50Hz功 率 1500 W外形尺寸 主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量 主机:20kg 温控:40kg
  • 国际视野 共话原位电离质谱技术前沿——2021年原位质谱主题网络研讨会成功召开!
    仪器信息网讯 2021年7月8日,由仪器信息网与华质泰科生物技术(北京)有限公司联合举办的“2021原位质谱主题网络研讨会”在线上盛大召开。会议共邀请美国JEOL公司首席科学家/DART技术共同发明人Robert (Chip) Cody博士、马里兰大学药学院质谱中心主任Jace W. Jones、美国托莱多大学Emanuela Gionfriddo博士、美国德州大学圣安东尼奥医学研究中心韩贤林教授、美国威斯康星大学麦迪逊分校李灵军教授、国立台湾大学化学系徐丞志副教授、德国慕尼黑工业大学Christoph Haisch教授、英国剑桥大学代谢科学研究所主任Albert Koulman博士、英国斯旺西大学医学院质谱分析系主任William J. Griffiths教授、德国 Plasmion联合创始人Jan-Christoph Wolf博士等十二位原位质谱领域的资深专家,聚焦原位电离质谱技术新方法新应用,以及原位电离技术在食药安全、法证毒检、精准医疗、生命科学、检验检疫、聚类溯源、能源环境、与健康大数据管理等领域的应用发展等进行介绍和探讨。  会议由南京师范大学/加拿大英属哥伦比亚大学陈大勇教授与华质泰科生物技术(北京)有限公司首席技术官刘春胜博士共同主持。  美国JEOL公司首席科学家/DART技术共同发明者 Robert Chip Cody博士  Cody博士做了题为《实时直接分析质谱在病原学和临床检验中的应用前景》的报告。Cody表示, DART技术目前还没有任何批准的临床应用,但当前也有报道了一些非常前沿的应用进展。相信在不久的将来,一些临床应用很可能会获得批准。此外,报告还回顾了一些基于DART技术开展的临床化学和微生物学的研究情况。    美国马里兰大学药学院质谱中心主任 Jace W. Jones  Jones教授做了题为《AP-MALDI 和高分辨质谱用于病毒包膜脂质结构表征》得报告。报告介绍了Jones团队使用 AP-MALDI 与高分辨率质谱结合掺锂基质系统的高通量分析平台,并将其应用于包膜病毒总脂质提取物的检测和结构表征等研究进展。美国托莱多大学Emanuela Gionfriddo博士  Gionfriddo博士做了题为《通过原位质谱研究人源微生物与环境毒理》的报告。环境基质中人为污染物的快速定量分析对于监管检测至关重要。原位质谱(AIMS)极大地提高了样品通量,适用于现场分析。对于现场分析应用,瞬态微环境(TME)和可变背景可能干扰重现性。在这项工作中,Gionfriddo团队开发了一种有效的策略,将固相微萃取(SPME)与质谱联用,通过热解吸单元(TDU)和实时直接分析离子源(DART)来最小化这些影响。该方法适用于地表水中杀虫剂和药物的提取和分析。美国德州大学圣安东尼奥医学研究中心 韩贤林教授  韩贤林教授做了题为《基于多维质谱的鸟枪法脂质组学最新研究进展》的报告。报告介绍了基于多维质谱的鸟枪脂质组学,并简要讨论了克服鸟枪脂质组学中存在的“离子抑制”问题的策略,以进行细胞脂质组的综合分析。美国威斯康星大学麦迪逊分校 李灵军教授  李灵军教授做了题为《生物体原位化学反应下的空间质谱成像》的报告。质谱成像(MSI)提供了探测组织中分子信息的机会,无需目标分析物的前置知识,便可提供分析物的分布图。报告介绍了李灵军课题组在不同生物体系中多种信号分子分布成像方面的工作情况和最新进展,尤其是质谱成像在多肽组学、糖组学和脂质组学方面的挑战和重要性。国立台湾大学化学系 徐丞志副教授  徐丞志副教授做了题为《纸基-原位质谱定量测定肠道微生物短链脂肪酸与乳腺癌诊断》的报告。报告介绍了徐丞志团队以快速质谱鉴定为核心,结合原位质谱以及高分辨质谱仪的优势,建立了新式生物医学分析法,并开发细胞尺度下的质谱成像技术,将质谱技术应用在基础生物学研究以及医疗诊断研究的进展情况。  德国慕尼黑工业大学 Christoph Haisch教授  Haisch教授做了题为《原位质谱用于废气测量与颗粒物分析》的报告。报告介绍了HELIOS 与 SICRIT/MS 的结合实现稳健、通用且灵敏的气溶胶表征的相关研究进展。 英国剑桥大学代谢科学研究所主任 Albert Koulman博士  Koulman博士做了题为《高通量单细胞脂质组学的发展与应用--聚焦帕金森发病机理》的报告。单细胞基因组学和转录组学的研究表明,在组织水平上存在复杂的细胞异质性。为了解这种细胞间异质性对代谢的影响,有必要开发一种单细胞脂质质谱分析方法,测量群体中大量单细胞的脂质。这将提供细胞活动和膜结构的功能读数。利用 Triversa Nanomate 的液体萃取表面分析 (LESA) 功能,结合高分辨率 (HRMS) 质谱,成功搭建高通量非靶向单细胞脂质分析平台。这一技术进展突出了细胞异质性在个体多巴胺神经元功能代谢中的重要性,提示 A53T 突变型 α-突触核蛋白(SNCA)神经元膜功能受损。报告介绍了分析单个细胞的挑战,以及Koulman团队开发的获得单个细胞脂质质谱分析的解决方案。  英国斯旺西大学医学院质谱分析系主任 William J. Griffiths教授  Griffiths教授做了题为《脑内胆固醇代谢组的多重原位质谱成像与空间代谢研究》的报告。沃特世大中华区质谱产品经理 王志英  王志英做了题为《2021沃特世全新原位电离质谱,聚焦快检与成像》的报告。报告介绍了Waters近期推出两款新型质谱,RADIAN ASAP 和ACQUITY RDa,报告介绍了其原理、特性及最新的相关应用。岛津中国创新中心应用工程师 陈振贺  陈振贺做了题为《岛津敞开式源DPiMS的原理及应用》的报告。报告详细介绍了DPiMS技术的原理以及其在生物医学研究领域的应用进展。德国 Plasmion联合创始人Jan-Christoph Wolf 博士  Wolf 博士做了题为《SICRIT-MS 质谱鼻与工业食品分析》的报告。报告介绍了SICRIT质谱鼻技术在工业食品领域的一些应用情况,并简要阐述了该技术的优势和未来发展趋势。
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 北京大学化学学院天瑞奖助学金颁奖典礼隆重举行
    2011年1月14日,北京大学化学与分子工程学院2009-2010年度奖励奖学金颁奖典礼在化学学院A区204教室隆重举行。中科院院士徐光宪先生、教育基金会副秘书长李榕、学工部副部长查晶、校团委副书记孙力强、学生资助中心主任杨爱民等学校领导以及化学学院院长吴凯、党委书记刘虎威、副院长朱涛、付雪峰以及党委副书记马玉国、团委书记白宇参加了此次颁奖典礼,同时参加的还有在2009-2010年度获得奖励及奖学金的同学,典礼由化学学院党委副书记张莉主持。天瑞仪器股份有限公司副总经理余正东先生,作为天瑞仪器颁奖代表参加此次典礼。 颁奖典礼现场 化学学院院长吴凯代表化学学院致欢迎辞。各类奖学金、奖励项目的设立,对于化学学院的人才培养工作具有十分重要的意义,他希望获奖同学珍惜荣誉,心怀感恩,以优秀的成绩回馈社会的关心和支持。2011年是国际化学年,吴凯院长希望化学学院师生以此为契机,不断进取,锐意创新,为化学学科的发展和进步做出新的贡献。 化学与分子工程学院院长吴凯致辞 教育基金会副秘书长李榕致辞,对奖学金捐赠者表达了诚挚的谢意,在肯定和鼓励化学学院卓越成就的同时,也希望北京大学化学学科未来在科学研究、学术创新和人才培养等方面取得更大的成绩。 教育基金会副秘书长李榕致辞 天瑞仪器奖助学金捐赠代表余正东,希望通过奖学金的设立鼓励在化学学科方面取得优异成绩的同学,同时表达了对化院学子的殷切期望。天瑞仪器一直关注分析测试人才的成长,肩负着民族分析测试行业发展的重任。鼓励同学们开拓视野,不断创新,为化学学科的发展贡献力量。 天瑞仪器副总经理余正东先生致辞 随后,化学学院党委书记刘虎威发表了感言。他表示,化学学院各项院设奖学金的设立,与校级奖学金一起有力保证了学生的学习条件,促进学生以优异成绩完成学业。希望获奖同学继承和发扬北大化学的优良传统,为北大化学的美好明天而努力奋斗。 化学与分子工程学院党委书记刘虎威介绍本学年院级奖励奖学金评审情况 化学与分子工程学院党委副书记张莉主持典礼 在颁奖仪式上,参加典礼的各位学校领导以及化学学院领导为奖学金的捐赠者颁发了“北京大学化学学院教育贡献奖”纪念证书。各位奖学金捐赠人为获奖学生颁发奖学金奖励证书。 学院领导为余总经理颁发纪念证书 获奖学生领奖 天瑞仪器于2009年启动“天瑞仪器奖助学金计划”,首批合作高校25所。目的:培养更多品学兼优的分析测试领域专业人才。了解详情:http://www.skyray-instrument.com/cn/about/JiangXueJin.aspx 了解天瑞仪器:www.skyray-instrument.com
  • 2024年太原理工大学化学与化工学院-“岛津杯”优秀论文评审会成功举办
    8月30日上午,太原理工大学化学与化工学院- “岛津杯”优秀论文颁奖仪式在太原理工大学迎西校区博学馆C座五层会议室举行。岛津企业管理(中国)有限公司(以下简称:岛津)分析计测事业部市场部部长胡家祥、营业部华北大区经理魏雅馨以及太原理工大学化学与化工学院党委书记张琤、副院长赵强出席仪式,全体获奖学生、辅导员及学生代表参加,仪式由太原理工大学化学与化工学院党委副书记李冬雪主持。会议现场岛津分析计测事业部市场部 胡家祥部长胡家祥部长代表岛津致辞,在致辞中介绍了岛津与化学与化工学院深厚的渊源与情谊,特别是2019年开始建立合作实验室,双方的合作迈入新的台阶。近年来,许多老师在岛津的XPS、二维气质等产品上取得了丰硕的研究成果,本次获奖的论文,正是双方合作双赢的重要见证。他表示,期望通过优秀论文奖学金的形式,鼓励学生勇于探索,助力科研开发,未来希望与学院加强合作,愿双方的友谊地久天长。太原理工大学化学与化工学院 李冬雪副书记李冬雪副书记代表化学与化工学院致辞,向岛津表示热烈欢迎和衷心感谢。他表示,本次优秀论文奖学金的设立为化学与化工学院培育创新优秀人才提供了强大助力,也彰显了企业对教育事业和人才培养的高度关注和大力支持,体现了一家百年跨国名企的社会责任、社会担当和社会情怀。后续也期待与岛津持续保持合作,共同培育高质量人才。会上,魏雅馨经理宣读本次优秀论文奖学金表彰决定,参会领导和嘉宾为获奖学生颁奖。姚瑞、赵陶、官修帅、赵丽晨代表获奖学生作了精彩的学术报告。岛津分析计测事业部营业部华北大区经理魏雅馨太原理工大学化学与化工学院-“岛津杯”优秀论文奖学金的设立,是双方加强合作实验室建设,实现优势互补、资源共享、合作共赢、拓展合作广度深度的重要一步。岛津一直致力于不断研发高端科研设备,为高校科研人员的研究带来便利、提供支持。本文内容非商业广告,仅供专业人士参考。
  • XPS数据处理必备 | 原理、特征、分析
    01 XPS简介XPS(X-ray Photoelectron Spectroscopy),译为X射线光电子能谱,以X射线为激发光源的光电子能谱,是一种对固体表面进行定性、定量分析和结构鉴定的实用性很强的表面分析方法。XPS是一种高灵敏超微量表面分析技术,样品分析的深度约为20埃,可分析除H和He以外的所有元素,可做定性及半定量分析。定性:从峰位和峰形可以获知样品表面元素成分、化学态和分子结构等信息 半定量:从峰强可以获知表面元素的相对含量或浓度▲ XPS测试过程示意图 ▲02 功能和特点(1)定性分析--根据测得的光电子动能可以确定表面存在哪些元素,a. 能够分析除了氢,氦以外的所有元素,灵敏度约0.1at%,空间分辨率为 100um, X-RAY 的分析深度在 2 nm 左右,信号来自表面几个原子层,样品量可少至10的-8次方g,绝对灵敏度高达10的-18次方g。b. 相隔较远,相互干扰较少,元素定性的相邻元素的同种能级的谱线标识性强。 c.能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。(2)定量分析--根据具有某种能量的光电子的强度可知某种元素在表面的含量,误差约20%。既可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。(3)根据某元素光电子动能的位移可了解该元素所处的化学状态,有很强的化学状态分析功能。(4)结合离子溅射可以进行深度分析。(5)对材料无破坏性。03 基本原理当单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用: 1)光致电离产生光电子;2)电子从产生之处迁移到表面;3)电子克服逸出功而发射。用能量分析器分析光电子的动能,得到的就是X射线光电子能谱。▲ 基本原理 ▲这方面很多书上都介绍了,归根结底就是一个公式:E(b)= hv-E(k)-WE(b): 结合能(binding energy)hv: 光子能量 (photo energy)E(k): 电子的动能 (kinetic energy of the electron)W: 仪器的功函数(spectrometer work function)通过测量接收到的电子动能,就可以计算出元素的结合能。铝靶:hv=1486.6 eV镁靶:hv=1253.6 eV04 具体定性分析步骤A:对化学成分未知的样品——全谱扫描(0-1200eV)图谱分析步骤:1、在XPS谱图中首先鉴别出C1s、O1s、C(KLL)和O(KLL)的谱峰(一定存在且通常比较明显)。 2、鉴别各种伴线所引起的伴峰 3、确定主要元素的最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。 4、辨认p、d、f自旋双重线,核对所得结论。鉴别通常采用与XPS数据库和标准谱图手册的结合能进行对比的方法:XPS数据库一般采用NIST XPS database:https://srdata.nist.gov/xps/selEnergyType.aspx通过这个网站你可以查到几乎xps所需的所有数据包括:对双峰还应考虑两个峰的合理间距、强度比等。▲ 网站截图 ▲XPS表征手册一般采用:Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1995.还可以对比XPS电子结合能对照表进行查找(文末资源包内含),有了这些表,你就可以指导每个元素分峰的位置。▲ 结合能对照表部分内容 ▲B:分析某元素的化学态和分子结构——高分辨谱测化学位移扫描宽度通常为10-30eV,以确保得到精确的峰位和良好的峰形。05 具体定量分析步骤经X射线辐照后,从样品表面出射的光电子的强度(I,指特征峰的峰面积)与样品中该原子的浓度(n)有线性关系,因此可以利用它进行元素的半定量分析。简单的可以表示为:I = n*SS称为灵敏度因子(有经验标准常数可查,但有时需校正)对于对某一固体试样中两个元素i和j, 如已知它们的灵敏度因子Si和Sj,并测出各自特定谱线强度Ii和Ij,则它们的原子浓度之比为:ni:nj=(Ii/Si):(Ij/Sj)06 数据处理这里小编向大家推荐三款软件Xpspeak、Avantage以及我们最常用的origin篇幅有限,作图过程在这里就不详细说了07 常见问题解答1、XPS样品制备:粉末制样• 压片• 粘到双面胶带上• 分散到挥发性有机溶剂中,形成悬浊液滴到硅片等固体基片、金属箔或滤膜、海绵等基底上纤维细丝(网)样品• 缠绕或压在架子或回形针上,或样品台的孔中 央,分析区域内纤维丝悬空,避免基底元素干 扰分析结果;• 包裹在有孔的铝箔中,用小束斑XPS分析孔内样品;液体、膏状样品• 滴到Si片、聚乙烯/聚丙烯、金属片、滤膜、树 脂、海绵等固体基片上晾干或冷冻干燥2、H和He为什么不能测XPS主要原因有三点:1) H和He的光电离界面小,信号太弱;2) H1s电子很容易转移,在大多数情况下会转移到其他原子附近,检测起来非常困难 3) H和He没有内层电子,其外层电子用于成键,H以原子核形式存在。所以用X射线去激发时,没有光电子可以被激发出来。3、什么是荷电校正,如何进行荷电校正XPS分析中,样品表面导电差 样品表面导电差,或虽导电但未有效接地。此时,当X射线不断照射样品时,样品表面发射光电子,表面亏电子, 出现正电荷积累(XPS中荷正电),从而影响XPS谱峰,影响XPS分析。在用XPS测量绝缘体或者半导体时,需要对荷电效应所引起的偏差进行校正,称之为“荷电校正”。最常用的,人们一般采用外来污染碳的C1s作为基准峰来进行校准。以测量值和参考值(284.8 eV)之差作为荷电校正值(Δ)来矫正谱中其他元素的结合能。具体操作:1) 求取荷电校正值:C单质的标准峰位(一般采用284.8 eV)-实际测得的C单质峰位=荷电校正值Δ;2)采用荷电校正值对其他谱图进行校正:将要分析元素的XPS图谱的结合能加上Δ,即得到校正后的峰位(整个过程中XPS谱图强度不变)。将校正后的峰位和强度作图得到的就是校正后的XPS谱图。4、磁性元素对XPS有没有影响有,磁性样品最好进行退磁、消磁处理也可在测试中采用磁透镜模式或静电透镜模式
  • 质子传递反应质谱电离技术重大突破—新型1,4-二氟苯前驱体研发与应用
    质谱法是利用带电粒子在磁场或电场中的运动规律,然后按照质量或荷质比实现分离分析的技术。早在1898年,W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素。阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用以测定同位素的相对丰度,成功鉴定了多种同位素。质谱计的发展也从只用于气体分析和测定化学元素的稳定同位素到后来用于对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。 图1. 图左为英国物理学家J.J.汤姆孙,图右为诺贝尔化学奖获得者F.W.阿斯顿 质子传递反应质谱(Proton Transfer Reaction- Mass Spectrometry)是分析挥发性有机物(VOCs)的一种新的先进分析手段。该技术具有检测速度快、灵敏度高、无需内标定量测量等优点,特别适合挥发性有机物的实时在线监测与预警。基于多年挥发性有机物在线分析质谱研究经验,法国AlyXan公司研发的质子传递反应-傅里叶变换离子回旋共振质谱(BTrap)通过运用先进的傅里叶变换离子回旋共振质谱技术,使仪器的质量分辨率高达10000,成为质量分辨率高的质子传递反应质谱。BTrap具有高质量分辨率,高度与稳定性、低离子碎片、高灵敏度高、低检测限等诸多优势,可用于材料,环境,汽车工业,化工等多领域的气体组分在线监测分析,适应各种复杂实验气候与环境。 质子传递反应质谱一般采用质子(H3O+ )作为电离源,该技术的原理是大多数VOCs的质子亲和能高于水而低于高聚水,可以跟质子反应而被电离。但对醇,醛与长链烷烃类化合物,该方法的应用会受到很大限制。如正丁醇在正常测试条件下,不能测到分子离子峰,只能测到脱去羟基的丁烯的峰,为正丁醇的测试带来的很大困难。针对此类问题,法国AlyXan公司研发了一种全新的前驱体——1,4-二氟苯(C6H4F2)[1]。1,4-二氟苯的质子亲合能为718.7 kJ/mol,介于691到750 kJ/mol。因此C6H5F2+可以与大多数VOCs反应,同时产生更少的碎片,可以作为更加温和的质子转移试剂。同时1,4-二氟苯分子非常稳定,生成离子只会发生质子转移反应,不会参与其他反应。分子量比质子大,具有更小的质量歧视效应。 如图2所示,以正丙醇分子为例。在1.26×10-5 mbar的压力下,(a)采用C6H5F2+作为电离源,分子离子(C3H7OH2+)强度非常高,而脱羟基产物(C3H7+)的峰浓度一直维持再非常低的浓度;(b)采用H3O+作为电离源,脱羟基产物将为主要离子,分子离子峰为次要离子。说明有大量分子离子峰发生脱羟基反应,生成C3H7+离子。(c) 在更高的压力7.34×10-5 mbar下, 采用C6H5F2+作为电离源,分子离子峰(C3H7OH2+)依然为主要离子,脱羟基产物,水合离子及高聚水离子的含量非常少;(d) 采用H3O+作为电离源, 脱羟基产物为主要离子,分子离子峰为次要离子,同时有大量水合离子及高聚水离子生成。 图2. 以正丙醇为样品,离子相对强度图 1.26×10-5 mbar压力下, (a)C6H5F2+作为电离源,(b)H3O+作为电离源 7.34×10-5mbar压力下 (c)C6H5F2+作为电离源,(d)H3O+作为电离源。 从下表数据中可以发现,在其他有机物中可以有效重复试验结果,新型前躯体产生的C6H5F2+可以与大多数VOCs反应,并产生少的碎片信号。 除此之外,很多测试实例也证实了质子传递反应-傅里叶变换离子回旋共振质谱技术的先进性和可靠性,1,4-二氟苯作为一种新型的前驱体,有效解决了醇、醛及长链脂肪烃的测定难题,为质子传递反应质谱分析提供了突破性的解决方案。参考文献:[1] Latappy, H. Lemaire, J. Heninger, M. Louarn, E. Bauchard, E. Mestdagh, H. International Journal of Mass Spectrometry 2016, 405, 13.质子传递反应质谱;1,4-二氟苯;VOCs;高分辨率;少碎片相关产品:法国Alyxan公司高分辨质子传递反应质谱(BTrap):http://www.instrument.com.cn/netshow/C247308.htm
  • 解吸电喷雾电离(DESI)在临床研究中的应用
    解吸电喷雾电离(DESI)是沃特世的一项专利技术,是一种新型质谱成像技术,可以对样品表面化合物组成、空间分布情况及相对丰度进行快速分析,通过DESI原位质谱成像可获得标志物的位置信息,帮助深入理解疾病机制,广泛地应用于临床研究。与MALDI等传统质谱成像不同,DESI是一种大气压环境下的质谱成像技术。无需标记和基质辅助,只需要较少的前处理过程;而且其对组织的破坏性更小,同一组织切片可以反复多次成像或成像后进行组织病理学成像,因此DESI质谱成像操作更加方便快捷,在临床应用的转化方面也有着更为广阔的前景。DESI的原理在大气压环境下,将DESI喷雾溶剂连接于毛细管上,施加一定的高电压,在氮气的辅助下形成带电喷雾液滴,轰击样品表面,使得带电溶剂与待分析物同时发生解析和电离,离子沿着传输毛细管进入质谱,进而完成化合物的检测。DESI的优势与传统质谱成像相比,DESI原理设计更为简洁,是更类似于ESI的软电离技术。除了可获得化合物全谱母离子信息外,还可根据化合物的性质选择是使用正离子模式还是负离子模式采集,有助于发现更多类型的临床生物标志物。另外,作为软电离技术,DESI还有一个好处就是对样品的破坏性更小。同一片组织切片可进行多次成像,成像后依然能进行免疫组化等其他病理成像分析,并且可以将多种成像结果叠加分析,形成多维数据集,从而更加深入精确地揭示生理病理过程。DESI成像与HE染色结合HE染色作为临床病理学的金标准常被应用于临床组织分型。而由于DESI是一种无损技术,其成像分析后的样品可以直接做HE染色分析。Livia S. Eberlin,Xiaohui Liu,R.Graham Cooks等在《Analytical chemistry》发表的《Desorption Electrospray Ionization then MALDI Mass Spectrometry Imaging of Lipid and Protein Distributions in Single Tissue Sections》中提到:同一个组织切片,可以先用DESI做小分子成像,再用MALDI做蛋白成像,最后洗掉基质做HE染色(Anal.Chem.2011, 83,8366 8371)。与代谢组学相结合,从标志物的定性、定量、定位三个角度去阐述科学问题Koshi Nagai等通过UPLC-QTOF-HDMS淌度非靶向的Global metabolomics/metabolic profiling G-Met方法和DESI-MSI的组合对38个HCC患者的肝癌组织与72个非癌组织进行了分析,结果表明TGs种类与肿瘤分布有关。这说明DESI可用于表征肿瘤细胞的进展并发现前瞻性生物标志物 (Rapid Commun Mass Spectrom. 2020;PMID:31412144)。该分析首先用代谢组学的方法找到标志物TGs,然后用DESI对标志物TGs进行成像分析,并通过成像图找出癌组织、正常组织、癌旁组织等。该研究指出,DESI可进一步为标志物的功能分析提供定位信息,此外DESI还能更客观准确地提供组织病理分析。通过DESI对组织切片中的小分子代谢物和脂质进行空间组学研究,找出标志物Dehoog等采用DESI-MS技术对178例甲状腺组织标本进行分析(PNAS,2019, 116,43,p21401),获得了正常甲状腺、良性滤泡性腺瘤(FTA)、恶性滤泡性癌(FTC)和乳头状癌(PTC)组织的分子特征图谱(图B)。根据获得的正常和病变甲状腺组织的DESI-MS代谢谱图特征(图C)建立了检验统计分类模型,并用以预测甲状腺病变的疾病状态,包括良性甲状腺对PTC和良性甲状腺对FTC。预测模型随后被用来预测从临床FNA样本中提取的甲状腺细胞簇,并获得的DESI-MS成像数据(图D)。在一项前瞻性的临床研究中,证实了这种方法在术前诊断来自FNA活检的不确定甲状腺结节方面的高性能,以及这种方法的潜力,进而可能减少诊断性甲状腺手术的次数。结果表明DESI-MS成像极有希望应用于临床实践,成为有价值的甲状腺肿瘤诊断工具。DESI样品制备流程非常简单,生物组织样品做冰冻切片即可,其他的样品也可直接进行分析。并且在样品制备过程中无需喷涂基质,省去了基质选择、点靶、进靶等繁琐的操作;而且由于无基质干扰,DESI得到的数据也更为干净。因此,DESI可更方便地应用于各种复杂样品表面化学成分的原位成像分析,更有助于临床转化。综上,DESI作为新一代质谱成像技术,具有灵活、简便等诸多优势,这使得DESI技术在临床实践中具有非常广阔的前景。此外,该系统还可以开展非靶向代谢组学研究,与DESI成像结果相互验证、补充,多角度发现与疾病诊断、治疗、预后相关的生物标志物。
  • 光电离源离子迁移谱仪成功通过公安部检测
    6月4日,由中科院大连化学物理研究所快速分离与检测研究组李海洋研究员所带领研究团队,研制的国际首款可同时检测爆炸物和毒品的非放射性光电离源离子迁移谱仪一次性顺利通过公安部国家安全防范报警系统产品质量监督检验中心的31项检测。   按照中华人民共和国公安部发布的《GA/T 841&ndash 2009基于离子迁移谱技术的痕量毒品/炸药探测仪通用技术要求》标准,针对仪器的冷启动时间、误报率、探测限及过负荷恢复时间等性能要求 采样方式、打印功能、软件功能等功能要求 六项抗扰度试验的电磁兼容性要求 高温、低温和恒定湿热的工作环境以及振动、冲击、跌落等环境适应性要求 辐射和电气安全性能要求等31项指标,检验中心进行了全面严格的测试和评价。检测结果表明,该仪器对大部分爆炸物和毒品检测种类的检测能力优于标准的指标要求,其冷启动时间、过负荷恢复时间等远远小于标准的指标要求,仪器整体性能稳定、功能完备   据了解,李海洋研究团队在光电离源离子迁移谱仪方面已申请专利20余项,相关创新性研究已在Analytical Chemistry杂志上发表文章6篇。此次仪器成功通过公安部检测,表明其已获取光电离离子迁移谱仪器推向市场的资质,已具备为公共安全现场快速分析提供有力保障的能力。同时基于102组工程化团队的通力合作,该仪器已建立了模块化设计、加工、调试、评价等一系列标准生产流程,为规模化生产奠定了坚实的基础。
  • 非放射性电离源-爆炸物探测仪研究取得新进展
    基于离子迁移谱技术(IMS)研制的爆炸物探测仪是一种高灵敏的爆炸品的检测仪,可以在几秒内完成对邮件、包裹等物品内隐匿爆炸物品的检测,该技术为各级安全保卫机构提供了良好的检测手段,并被成功用于军队及机场安检的爆炸物检测。   目前,国内外离子迁移谱爆炸物探测仪多用放射性63Ni源作为电离源,但63Ni源的放射性限制了其在公共场所的推广应用。最近,中科院大连化学物理研究所李海洋研究员领导的研究组基于商用的真空紫外光灯(波长为123.6 nm)研制开发了一种新型的双极性电离源(UVRI),该电离源在正、负离子两种模式下均具有较好的电离效率。在负离子模式下,UVRI-IMS对PETN、ANFO、DINA、RDX等爆炸物的电离效率均高于传统63Ni离子迁移谱,对PETN的检测灵敏度可以达到45pg,高出63Ni离子迁移谱5倍左右;此外,该模式下UVRI-IMS对SO2、H2S、CO2等化合物也具有较高的电离效率。通过对电离机理的研究,发现这主要归因于紫外光引发的光化学反应产生了大量臭氧分子,最终形成了高浓度的新型试剂离子O3-(H2O)n。在正离子模式下,该电离源可以实现对挥发性有机污染物的软电离,便于谱图的解析。这些研究结果对于提高爆炸物探测仪的灵敏度以及爆炸物探测仪的推广应用具有重要意义。   该研究成果以研究性论文形式被刊登在近期发表的《美国分析化学》(Anal. Chem., 2010, 82 (10), pp 4151–4157, DOI: 10.1021/ac100342y)杂志上。
  • 青岛市原位电离质谱交流会圆满举办
    2018年4月3日,由青岛市分析测试学会和华质泰科联合主办的青岛市原位质谱技术交流会在海滨花园大酒店举办,旨在开阔食品农产品、药物临床、商品材料、法医物证、环境等分析领域的应用视野,推动实时科学与先进分析检测技术的快速发展。来自青岛市分析检测各机构的60余位技术专家参与了此次会议,并进行了热烈讨论。会议邀请华质泰科总裁兼首席技术官刘春胜博士和南京师范大学副教授李红丽老师为大家带来精彩的报告。题目:原位质谱(DART、LESA、DESI、AP/MALDI 等)的最新进展及应用演讲人:刘春胜,总裁兼首席技术官,华质泰科生物技术(北京)有限公司题目:高效样品处理与 DART-MS 联用的快速分析方法的研究及应用演讲人:李红丽,副教授,南京师范大学现场提问实验室演示感谢青岛市分析测试学会的对本次会议的大力协助,相信此次报告能给与会者带来有用的质谱技术信息和实验室灵感! 关于原位质谱:原位质谱(AIMS)技术如实时直接分析(DART)、液滴萃取表面分析(LESA)、解析电喷雾电离(DESI)、AP MALDI 大气压基质辅助激光解吸电离等等是继当今主打的有机及生物分析黄金标准技术 – 液质联用(LC-MS)电喷雾离子化(ESI)及大气压化学电离(APCI)成功解决了生物及有机分子的分析之后又一波革 命性的最新质谱技术,满足快速、现场、直接、无损、高通量、高灵敏度和高特异性分析的需求。 该类技术具有独特的样品脱附/离子化/分离的进样机制,无需或仅需要极简单的样品前处理,在食品、药品、材料、物证、环境等领域的安全检测与品质控制,在组学分析、新药研发、中药及天然产物分析、成像、精准医疗与健康等领域得到了广泛的关注和急剧上升的应用。近五年来,世界著名大学(如斯坦福,MIT,哈佛,剑桥、北大、台大、中大、复旦、南大、浙大、药大、矿大等等)、研究院(如美国 NIH、EPA、NIST、中科院、农科院、检科院、计量院等等)、 跨国制药及食品公司(如罗氏、默克、辉瑞、雀巢)、国家执法部门(如 FDA、FBI、公安部、质检局、出入境、药检所等等)陆续采用该类技术和设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制