当前位置: 仪器信息网 > 行业主题 > >

分子互作仪原理

仪器信息网分子互作仪原理专题为您提供2024年最新分子互作仪原理价格报价、厂家品牌的相关信息, 包括分子互作仪原理参数、型号等,不管是国产,还是进口品牌的分子互作仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分子互作仪原理相关的耗材配件、试剂标物,还有分子互作仪原理相关的最新资讯、资料,以及分子互作仪原理相关的解决方案。

分子互作仪原理相关的论坛

  • 分子光谱原理

    分子光谱原理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=29551]分子光谱原理[/url]

  • 分子振动光谱学原理

    [font=&]【题名】: 分子振动光谱学原理[/font][font=&]【全文链接】: http://www.tup.tsinghua.edu.cn/booksCenter/book_07745401.html[/font]

  • 【我们不一YOUNG】涡轮分子泵的结构和工作原理是什么?分子涡轮泵使用有什么注意事项

    [align=center][font=DengXian]涡轮分子泵的结构和工作原理是什么?分子涡轮泵使用有什么注意事项?[/font][/align][font=DengXian]涡轮分子泵的结构和工作原理是什么:分子泵是利用高速旋转的转子把动量传输给气体分子,使之获得定向速度,从而被压缩、被驱向排气口后为前级抽走的一种真空泵。分子涡轮泵靠高速旋转的动叶片和静止的定叶片相互配合来实现抽气的。这种泵通常在分子流状态下工作。利用高速旋转的动叶轮将动量传给气体分子,使气体产生定向流动而抽气的真空泵。[/font][font=DengXian]分子涡轮泵使用时候,确保前级真空泵运转正常得到足够的初级真空,不漏气。按照开机和关机程序来开关[/font][font='Aptos',sans-serif][url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url][/font][font=DengXian]。不频繁启动。柱子穿过石墨密封垫后切割后进入离子源。应避免颗粒或其它杂物进入,叶片的间隙很长小,会高速运转生物损坏叶片。遇到突然停电,及时关闭电源,以防止突然来电,分子涡轮泵突然开启。尽量安装后备[/font][font='Aptos',sans-serif]UPS[/font][font=DengXian]电源或断电保护装置。注意观察分子涡轮泵的风扇是否运转正常。平时开关机多注意分子涡轮泵的速度变化和声音变化[/font]

  • 涡轮分子泵的工作原理

    涡轮分子泵是高或者超高真空泵,可以提供无油的超高真空度,因此是质谱仪的重要组成部分,想要更好的使用质谱仪,就不得不了解涡轮分子泵工作原理的基础及合适的(前级)泵的择。第一台涡轮分子泵是在1955年发明的。当时,Willi Becker博士在Arthur Pfeiffer Vakuumtechnik GmbH(现在的Pfeiffer Vacuum)已经任职13年,担任技术实验室负责人。他关注的问题是如何防止扩散泵中的油回流到泵壳中。为此,他将一个旋转风扇轮作为挡板。通过这种方式,气体粒子沿压力梯度方向流动,没有明显的传导损失。在这相反方向,倒流的油分子被旋转的风扇轮反射。这阻止了分子到达高真空一侧。在进一步的研究中,贝克尔博士注意到,这种设计不仅减少了扩散泵油回流的问题,同时还产生了较低的总压力。然后,他应用了一个转子-定子组合和多个串联的泵级。在这种设计中,他使用了左右两侧对称流模式--一个由皮带驱动的转子,速度达到16,000转/分钟。该泵重62公斤,抽速为900立方米/小时,在1956年获得专利,是今天所有涡轮分子泵的先驱。1958年,在比利时纳穆尔举行的国际真空大会上,该泵首次被展示。如果没有这项发明,我们的现代生活将是不可想象的--因为没有涡轮分子泵,半导体生产的许多制造步骤以及无数的真空镀膜工艺将不可能实现。[img]https://file.jgvogel.cn/134/upload/resources/image/323927.jpeg?x-oss-process=image/resize,w_700,h_700[/img]* 威利-贝克尔博士,1958年在阿瑟-普发真空技术有限公司(今天的普发真空)的实验室里[color=#222222]工作原理和压缩比[/color]涡轮分子泵是如何工作的?从快速旋转的叶片到被抽气的气体分子的动量转移是转子和定子叶片排列的泵送作用的基本原理,如图1。[img]https://file.jgvogel.cn/134/upload/resources/image/323928.jpeg?x-oss-process=image/resize,w_700,h_700[/img] 图1 涡轮分子泵的工作原理[color=#222222]撞击到叶片上的分子被吸附在那里,并在短时间内再次离开叶片。叶片速度v被叠加到分子热运动速度c。分子热运动速度c是分子离开泵的速度。分子流动必须在泵中占主导地位。否则,叶片传递的速度分量将通过与其他分子的碰撞而丢失。因此,平均自由路径T必须大于通道高度h。在泵送气体的过程中,动能泵中会出现背压,导致倒流。S[/color] [font=&][color=#222222]0 [/color][/font] [color=#222222]表示没有前级压力的抽速。它随着前级压力的增加而减少,在最大压缩比K时达到0值。[/color]压缩比K0,可以根据Gaede来估计。对于视觉密集型叶片结构,Gaede的公式适用。[img]https://file.jgvogel.cn/134/upload/resources/image/323929.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图2 转子和定子叶片的排列方式Gaede的公式[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323930.png?x-oss-process=image/resize,w_700,h_700[/img][/align]其中: p[size=11px]V[/size] = 前级真空压力 p[size=11px]A[/size] = 吸气压力 v = 叶片速度[font=微软雅黑, &][size=14px] = 平均分子热运动速度[/size][/font] L = 通道长度 h = 通道高度 g = 用于指定平均冲击距离的系数,是通道高度的倍数(1g3)在图中用v-cos α替换公式v,用b替换L,用t-sin α替换h,我们可以得到[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]根据Gaede的估计,假设叶片是视觉密集的,因此满足cos α = t/b的条件(见图1)。对于较大的叶片间距,这意味着压缩量减少。[font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font][font=微软雅黑, &][size=14px]几何比率取自图1。因子g在1到3之间[2]。K[size=11px]0 [/size]因此,随着叶片速度v和 [/size][/font][font=微软雅黑, &][size=14px] aaan的增加呈指数增长。[/size][/font][font=微软雅黑, &][size=14px][size=18px] [/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px][/size][size=18px] [/size][/size][/font]R 是通用气体常数。T 是热力学温度和。M 是分子质量。因此,氮气的压缩比要比氢气的压缩比高得多。抽气速度的计算抽气速度S [size=11px]0 [/size]与吸气面积A和叶片的平均圆周速度v,即旋转速度成正比。如果考虑到叶片角度α,就可以得到这个结果。[img]https://file.jgvogel.cn/134/upload/resources/image/323931.png?x-oss-process=image/resize,w_700,h_700[/img][font=微软雅黑, &][size=14px][color=#222222]图3 的Y轴上画出了以[/color][i]l[/i][color=#222222]s[/color][font=&]-1[/font][color=#222222] cm-2为单位的比抽速,X轴上画出了循环频率f和叶片的外半径(Ra)和内半径(Ri)的平均叶片速度v=π-f-(Ra+Ri) 。从X轴上的一个选定点垂直向上移动,与曲线的交点显示了该速度下泵SA的最大特征泵送速度。乘以输入盘的叶片面积:[i]A[/i]=(Ra2-Ri2)π ,就可以得到抽气速度。[/color][/size][/font][img]https://file.jgvogel.cn/134/upload/resources/image/323932.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图3 涡轮泵的具体泵送速度[img]https://file.jgvogel.cn/134/upload/resources/image/323933.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图4|泵送速度是相对分子量的函数[color=#222222]图3中输入的点是根据所示的Pfeiffer Vacuum泵的测量值确定的。远高于曲线的点在实际上是不可能的。以这种方式确定的泵送速度还不能说明轻质气体的数值,例如氢气(图4)。如果涡轮分子泵是为低极限压力而设计的,就会使用不同叶片角度的泵级,并对氢气的最大泵速进行分级优化。这样就能同时为氢气(约1000)和氮气提供足够的压缩比的泵。由于空气中的氮气分压很高,压缩比应该在10的9次方左右。对于由转子和定子盘组成的纯涡轮分子泵,由于其分子流的要求,前级真空压力需要达到约10[/color][font=&][color=#222222]-2[/color][/font][color=#222222] hPa(图5)。[/color][img]https://file.jgvogel.cn/134/upload/resources/image/323934.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图5|抽速与抽气压力的关系[img]https://file.jgvogel.cn/134/upload/resources/image/323935.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图6|霍尔韦克级的工作原理[color=#222222]霍尔韦克级的特殊功能[/color]Holweck级(图6)是一个多级Gaede分子泵,有一个螺旋形的泵通道。由于转子的旋转,进入泵通道的气体分子在泵通道的牵引方向上得到一个速度。由于转子和分离分隔Holweck级的挡板之间存在间隙,因此会出现回流损失。为了尽量减少回流,间隙的宽度必须保持较小。圆柱形套筒(1)被用作霍尔韦克平台的转子,它在定子(2)的螺旋通道中旋转。如果定子被安排在转子的外部和内部,两个霍尔韦克级可以很容易地被整合到一个泵中。这样,被泵送的气体颗粒首先通过转子外侧的定子通道,然后再通过转子内侧的定子通道向上输送。从那里,它们通过一个收集通道,到达前级泵。现代涡轮分子泵有时有几个这样的"折叠式"霍尔韦克级,其泵送速度S [size=11px]0[/size]是相同的。[font=微软雅黑, &][size=14px] [/size][/font]这里,b - h是通道的横截面,v - cos α是通道方向的速度分量。随着通道长度L和速度v - cos α[align=center][img]https://file.jgvogel.cn/134/upload/resources/image/323936.png?x-oss-process=image/resize,w_700,h_700[/img][/align]压缩比就会增加。[img]https://file.jgvogel.cn/134/upload/resources/image/323937.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图7|纯涡轮分子泵和涡轮拖动泵的压缩比今天,涡轮泵配备了Holweck级,是为了使极限压力在0.5-5hpa之间,以隔膜泵为前级建立起涡轮分子泵系统,这些被称为涡轮拖动泵。由于涡轮泵的高压缩比,只需要很小的泵送速度就可以为Holweck级产生低的本底压力。因此,排气通道--特别是通道高度和到转子的间隙--可以保持得非常小,分子流可以保持在1 hPa范围内。氮气的压缩比同时增加了所需的10的3次方数量级。在图9中,我们可以看到压缩比曲线向更高压力的方向移动了大约10的2次方。在为高气体吞吐量而设计的涡轮分子泵中,在气体吞吐量、前真空兼容性和颗粒容忍度之间做出了妥协。在这种情况下,Holweck级的间隙距离尺寸要大一些。[img]https://file.jgvogel.cn/134/upload/resources/image/323938.jpeg?x-oss-process=image/resize,w_700,h_700[/img]图9|纯涡轮分子泵和涡轮拖动泵对氢气的压缩比[font=&]选择正确的前级泵[/font]涡轮分子泵和前级泵的压缩在获得最低的压力范围方面起着重要作用。这对于氢气等轻质气体来说尤其如此。在以前的超高真空应用中,前级泵已经能够提供10-2hPa左右的低压。涡轮分子泵的压缩比可以在此基础上确定。旋片泵、多级罗茨泵或泵站等前级泵可以提供这样的低前级压力。尽管旋片泵是比较经济的选择,但当涡轮泵关闭时,有油倒流的风险,特别是在错误操作的情况下。干式前级泵甚至泵站,能产生很低的前级真空,其价格要高得多,而且需要相对较大的空间,这在许多应用中是一个不利因素。这里最理想的解决方案是使用一个小型的、低成本的干式前级泵。大多数涡轮分子泵是全能型的。除了良好的压缩性能,它们还提供大的泵送速度和高的气体吞吐量。然而,在极少数超高真空应用中,高气体吞吐量根本没有发挥任何作用。相反,泵送速度和对轻质气体的出色压缩比才是最重要的。涡轮分子泵的霍尔韦克级为最大压缩值进行了优化,这不可避免地减少了泵的气体吞吐量。然而,这对上述应用来说是次要的。然而,备用泵和涡轮分子泵的总压缩比的很大一部分可以转移到涡轮泵上的事实是非常有利的。因此,带有压缩优化的霍尔韦克级的涡轮分子泵可以在明显高于前级压力的情况下排气,以达到相同的极限压力。因此,在使用带有压缩优化的霍尔韦克级的涡轮分子泵时,一个小型隔膜泵就足以产生超高真空(见图9,表1)。[font=微软雅黑, &][size=14px][font=&][img]https://file.jgvogel.cn/134/upload/resources/image/323939.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/font][/size][/font][font=&][/font][font=微软雅黑, &][size=14px][font=&]表1|使用Hipace300H和不同的前级泵所能达到的极限压力[/font][/size][/font] [img]https://file.jgvogel.cn/134/upload/resources/image/323940.gif?x-oss-process=image/resize,w_700,h_700[/img][align=left]这种优化的涡轮分子泵具有很高的真空兼容性,因此隔膜泵毫无疑问仍然可以在间歇模式下运行。只有当前级的真空压力达到一个不允许的高值时,才需要开启它。众多的应用表明,隔膜泵的运行时间不到总时间的10%。除了由此带来的能源节约外,前级泵较低的热辐射和最终在实验室中几乎无噪音的运行也不应被低估。[/align][align=left]此外,为了保持极低的压力(见图9和表1),通常连接在涡轮分子泵下游的离子捕集泵就不再需要了。[/align][align=left]因此,通过现代涡轮分子泵中Holweck级的智能互连,可以大大增加压缩比,特别是对轻质气体。简单、小型的前级泵可用于在低UHV范围内产生非常低的压力。与过去使用的选择相比,这是一个非常大的优势。然而,同样重要的是指出这些解决方案的局限性。高压缩比的涡轮泵不太适合大气体负荷。[/align]激光平衡技术[img]https://file.jgvogel.cn/134/upload/resources/image/323941.jpeg?x-oss-process=image/resize,w_700,h_700[/img]2021年,Pfeiffer真空公司已经推出了激光平衡技术。最后,小析姐分享给大家几个涡轮分子泵在使用小tips:1、为防止涡轮分子泵返油,开机前先将前级泵抽至2托,然后再启动涡轮分子泵。2、在涡轮分子泵与前级泵之间可串入一只挡油阱以防止机械泵油蒸汽的返油。3、不能在前级泵工作时(前级管路接通)和真空室处于真空状态时将涡轮分子泵停掉,否则将会使油蒸汽迅速从前级管路返流到泵的清洁端。4、选择系统前级泵大小时,应使涡轮分子泵的前级泵保持在分子流状态下。5、不能让涡轮分子泵在低于额定工作转速下运行。6、分子泵入口应装设防护网,以免异物进入泵内损坏转子和定子叶片。7、规范使用涡轮分子泵,可有效提升真空泵的使用效率,延长使用寿命

  • 基于Biacore 8K的分子间相互作用测试原理及应用

    Biacore是基于表面等离子体共振(SPR)技术来实时跟踪生物分子间相互作用的技术,广泛应用于蛋白-蛋白、蛋白-小分子、蛋白-核酸、抗原-抗体等各种生物分子之间的相互作用测试,是被公认的检测分子互作的有效方法。本

  • [求助]有哪位高手知道分子转膜仪

    有谁知道分子转膜仪的具体操作原理,都有什么参数?哪些厂家有提供?它是做分子杂交用的,转移蛋白质和膜,但是具体我就不知道了,谢谢各位大侠!!

  • 干粉搅拌机的工作原理

    沈阳干粉搅拌机的工作原理沈阳干粉搅拌机的工作原理 干粉搅拌机也称为干粉混合机工作混合时,机内物料受两个相反方向的转子作用,进行着复合运动,浆叶带动物料方面沿着机槽内壁作逆时针旋转,一方面带动物料左右翻动,在两转子交叉重叠外形失重区,在此区域内,不论物料的形状,大小,和密度如何,都能使物料上浮处于瞬间失重状态,这使物料在机槽内形成全方位连续循环翻动,相互交错剪切,从而达到快速柔和混合均匀的效果.   干粉搅拌机是由立式搅拌机即可单独工作,与输送机、储存罐、电子计量自动包装机(适用于阀口袋,节省3-4个工人,显著提高生产效率)可实现加料--搅拌—包装一条龙生产,是传统生产工艺的更新换代产品.   干粉搅拌机是由适应于多种干粉、细颗粒状物料的混合(如:腻子粉、粉刷石膏、干粉砂浆、彩色水泥、各种矿粉、化工材料、有机肥料等).广告贴,楼主请注意

  • 【FAQ】关于分子泵的维护

    我的扫描电镜经常在开机抽真空或使用过程中分子泵的高压保险丝断丝,原因可能是电源不稳定(供应商说,我们还有UPS)或分子泵中有外物掉入,我用电镜也有4、5年头了,第二种可能性居多,但我自己从未拆过分子泵,也从未见过供应商拆过分子泵,请问谁有拆过分子泵的经验,能否将具体的细节告之,我知道各仪器不同会有所区别,我只要参考下,以及特别需要注意的环节。 希望有人能给予帮助! 谢谢! cz_sem@sohu.com

  • 紫外分光光谱UV的原理

    [b]紫外分光光谱UV分析原理:[/b]吸收紫外光能量,引起分子中电子能级的跃迁[b]谱图的表示方法:[/b]相对吸收光能量随吸收光波长的变化[b]提供的信息:[/b]吸收峰的位置、强度和形状,提供分子中不同电子结构的信息物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。

  • 凝胶渗透色谱的分离原理和校正原理

    1分离原理  让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径有粒子间的间隙(较大)和粒子内的通孔(较小)。当聚合物溶液流经色谱柱时,较大的分子被排除在粒子的小孔之外,只能从粒子间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通过的速率要慢得多。经过一定长度的色谱柱,分子根据相对分子质量被分开,相对分子质量大的在前面(即淋洗时间短),相对分子质量小的在后面(即淋洗时间长)。自试样进柱到被淋洗出来,所接受到的淋出液总体积称为该试样的淋出体积。 当仪器和实验条件确定后,溶质的淋出体积与其分子量有关,分子量愈大,其淋出体积愈小。  (1) 体积排除   (2)限性扩散   (3) 流动分离 校正原理  用已知相对分子质量的单分散标准聚合物预先做一条淋洗体积或淋洗时间和相对分子质量对应关系曲线,该线称为“校正曲线”。聚合物中几乎找不到单分散的标准样,一般用窄分布的试样代替。在相同的测试条件下,做一系列的GPC标准谱图,对应不同相对分子质量样品的保留时间,以lgM对t作图,所得曲线即为“校正曲线”。通过校正曲线,就能从GPC谱图上计算各种所需相对分子质量与相对分子质量分布的信息。聚合物中能够制得标准样的聚合物种类并不多,没有标准样的聚合物就不可能有校正曲线,使用GPC方法也不可能得到聚合物的相对分子质量和相对分子质量分布。对于这种可以使用普适校正原理。

  • 分子蒸馏的原理及应用

    分子蒸馏利用液体混合物中各组分挥发度的差别,使液体混合物部分汽化并随后使蒸汽部分冷凝,从而实现其所含组分的分离,是一种属于传质分离过程的单元操作。蒸馏在炼油、化工、轻工、食品工业等部门广泛应用,例如将原油分离为汽油、煤油、柴油、润滑油,将液化空气分离为氧、氮和各惰性气体等。方法 工业蒸馏的方法有:①闪急蒸馏。将液体混合物加热后经受一次部分汽化的分离操作。②简单蒸馏。使混合液逐渐汽化并使蒸气及时冷凝以分段收集的分离操作。③精馏。借助回流来实现高纯度和高回收率的分离操作,这是应用广泛的蒸馏方法。对于各组分挥发度相等或相近的混合液,为了增加各组分间的相对挥发度,可以在精馏分离时添加溶剂或盐类,这类分离操作称为特殊精馏,其中包括恒沸精馏、萃取精馏和加盐精馏;还有在精馏时混合液各组分之间发生化学反应的,这称为反应精馏

  • 白酒专业柱LZP-930分离醇和酯的原理

    [color=#444444]我想问一下LZP-930白酒柱的涂层物质是什么,分离白酒中醇和酯的原理是什么?我只知道它是极性柱,醇和酯是极性分子,但是具体的分离原理不知道,我知道[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的原理,不知道为什么选择LZP-930这个柱子,求指导万分感谢!!![/color]

  • 【转帖】分子涡轮泵的维护

    一般来讲,如果说前级泵没有问题,而真空在规定的时间内没有达到规定的真空值或者有漏气(排除其它的漏气)、或着解吸附作用降低,说明真空泵有点脏了,需要进行清洗,这时不用进行拆卸就可以直接进行清洗,如果太脏的话,就必须进行拆卸清理了。直接清洗的方法如下: 关掉分子泵,进行排气。从机器上拆下分子泵,注意不要碰到接口的边缘部分。拆掉冷却器、加热器(如果有的话)等拆掉润滑的油包将分子泵的高真空接口朝下垂直地放入一个适合的容器中。往容器中用人无水酒精,高度以前级真空接口略低为宜,如下图。上下活动分子泵几次,便于分子泵的定子和转子的叶片清洗,在无水酒精中浸泡大概5~10分钟。换掉无水酒精,加入新的无水酒精,重复前面的工作,最少要重复一次。拿出分子泵。将高真空接口朝上,从垂直慢慢放倒到180度,以便排除磁性轴承中的酒精。用一个网格放在高真空接口上,然后朝下放置,利用一个泵抽大概30分钟左右。注意接口的密封表面不要损坏。接上前级真空泵,不要开分子泵,利用前级泵抽真空,达到大概10E-1左右,以便完全清除分子泵中残留的无水酒精。更换真空泵中的真空油,接上分子泵开始工作。注意第一次抽真空时是比较慢,这是因为分子泵中有残留的酒精,属于正常情况。在分子泵中最容易损坏的就是轴承了,所以更换轴承是一个主要的工作。更换轴承需要爱一个干净的环境中更换,我们一般更换的是马达这边的轴承。更换轴承需要一些特殊的专用工具。值得注意的是,在每次更换轴承的时候,油包也一定要更换。[color=#DC143C][size=4]以上内容来自网络,质谱工程师不建议自己对分子涡轮泵进行维护,工程师说他们只负责拆装,也不做维护,都是发回厂家维护的。[/size][/color]

  • 【分享】一种新型荧光探针———分子信标的研究及应用进展

    [b] [size=4]分子信标是一种基于荧光能量转移原理而设计的发夹型寡聚核酸荧光探针。它通过与核酸等靶分子相互作用后发生构象的变化而产生荧光信号,对靶分子的检测具有灵敏度高、选择性强、适合于活体实时检测等优点。 目前已广泛应用于生物化学分析、生物医学研究和环境监测等各领域。本文对分子信标的设计原理及其研究和应用进展进行了综述。[/size][/b]

  • 大家平常对在线仪器的原理、维护都很了解吗?

    大家平常对待在线仪器是一种什么样的态度呢?是要会使用就可以,还是说对在线仪器的原理都非常了解?毕竟在线仪器平常使用、维护都很话费时间,大家还会积极的去学习仪器的原理,去学习如何去维护仪器吗?

  • 紫外荧光定硫仪原理

    紫外荧光定硫仪是目前国内zui先进的硫元素同步测定仪,广泛被应用到检测液体、固体、气体样品中的硫含量。  仪器采用紫外荧光法测定总硫的含量,系统关键部件采用进口元件,使得整机性能有了可靠的保证。  仪器适用于测定石腊油、柴油、汽油、润滑油、燃料油、液化气及天然气,以及其它油品、化工原料及成品的总硫含量。  工作原理:  仪器采用紫外荧光法测定原理,样品经高温氧化反应,其中的硫化物宣地转化为SO2.样品气经过膜式干燥器脱去其中的水份,进入反应室。SO2经紫外线照射,产生特定波长的光谱,由光电倍增管检测接收。发射的荧光强度和原样品中硫的含量成正比,再经微电流放大、计算机数据处理,即可转换为与光强度成正比的电信号,通过测量其大小即可计算出相应样品的含硫量。

  • 紫外荧光定硫仪的工作原理

    紫外荧光定硫仪是目前国内最先进的硫元素同步测定仪,广泛被应用到检测液体、固体、气体样品中的硫含量。  仪器采用紫外荧光法测定总硫的含量,系统关键部件采用进口元件,使得整机性能有了可靠的保证。  仪器适用于测定石腊油、柴油、汽油、润滑油、燃料油、液化气及天然气,以及其它油品、化工原料及成品的总硫含量。  工作原理:  仪器采用紫外荧光法测定原理,样品经高温氧化反应,其中的硫化物宣地转化为SO2.样品气经过膜式干燥器脱去其中的水份,进入反应室。SO2经紫外线照射,产生特定波长的光谱,由光电倍增管检测接收。发射的荧光强度和原样品中硫的含量成正比,再经微电流放大、计算机数据处理,即可转换为与光强度成正比的电信号,通过测量其大小即可计算出相应样品的含硫量。

  • 紫外荧光定硫仪的工作原理

    紫外荧光定硫仪是目前国内最先进的硫元素同步测定仪,广泛被应用到检测液体、固体、气体样品中的硫含量。  仪器采用紫外荧光法测定总硫的含量,系统关键部件采用进口元件,使得整机性能有了可靠的保证。  仪器适用于测定石腊油、柴油、汽油、润滑油、燃料油、液化气及天然气,以及其它油品、化工原料及成品的总硫含量。  工作原理:  仪器采用紫外荧光法测定原理,样品经高温氧化反应,其中的硫化物宣地转化为SO2.样品气经过膜式干燥器脱去其中的水份,进入反应室。SO2经紫外线照射,产生特定波长的光谱,由光电倍增管检测接收。发射的荧光强度和原样品中硫的含量成正比,再经微电流放大、计算机数据处理,即可转换为与光强度成正比的电信号,通过测量其大小即可计算出相应样品的含硫量

  • 【资料】-分子印迹技术在样品前处理中的应用(及其他分子印迹文献)

    [B]分子印迹技术在样品前处理中的应用[/B][I]作者:胡小刚 李攻科[/I]摘 要 分子印迹聚合物具有选择性高、稳定性好及制备简单的特点,可用于生物、医药、环境样品等复杂基体中痕量分析物的高选择性分离与富集,因此在样品前处理中的应用特别引人关注。本文介绍了分子印迹技术的基本原理,综述了分子印迹技术在样品前处理中应用的研究进展。关键词 分子印迹,样品前处理,固相萃取,固相微萃取,膜分离,评述1 引 言  复杂基体如生物、医药和环境样品中痕量、超痕量物质分析要依赖高效和高选择性的样品前处理技术。但相对于仪器分析技术的发展,样品前处理技术的进展一直较缓慢。  固相萃取(SPE)是70年代中期出现的技术。其萃取机制取决于分析物与固相(填充剂)表面的活性基团之间的分子间作用力。SPE填充剂主要为键合材料,如C8、C18离子交换树脂等,选择性不强,在富集分析物的同时,大量基体和干扰物质也被富集,导致洗脱液中仍含有基体和杂质,干扰最后的色谱分析。近来出现一种利用抗体自身选择性的免疫吸附剂[1],作为固相萃取材料具有选择性高的优点,但制备复杂、耗时且可供选择的抗体种类少,机械强度和稳定性均较差。  1989年Belardi等提出了固相微萃取(SPME)技术,SPME是基于分析物在流动相以及固定在熔融SiO2纤维表面的高分子固定相之间两相分配的原理,实现对样品中的有机分子进行萃取和富集。然后可直接在联用仪器中解吸、进样及分析,使样品预处理过程大为简化,提高了分析速度及灵敏度。与传统的样品前处理技术如液液萃取、索氏提取、SPE相比,克服了需使用大量溶剂和样品、处理时间长、操作繁琐、易产生二次污染及不易在线联用等缺点,在环境、食品、生物以及药物等领域得到了广泛应用。在SPME技术中,纤维涂层的材料是最关键的。但目前商品化的纤维涂层仅有少数几种,并且以非特异性吸附作用为主,选择性不够高,在样品前处理时仍有大量化学、物理性质相近的基体物质同时被富集,处理极性或碱性药物时会遇到较大的困难[2,3]。虽然一些文献报道了新的SPME涂层的研制工作[4~5],但主要是用于测定挥发或半挥发性的有机环境污染物,急需研制出选择性更高的纤维涂层。  分子印迹(MI)技术的发展,可望解决以上问题。分子印迹技术是将要分离的目标分子与功能单体通过共价或非共价作用进行预组装,与交联剂共聚制备得到聚合物。除去目标分子后,聚合物中形成与目标分子空间互补并具有预定的多重作用位点的“空穴”,对目标分子的空间结构具有“记忆”效应,能够高选择性识别复杂样品中的印迹分子。分子印迹聚合物(molecularly imprinted polymer, MIP)制备简单,能够反复使用,机械强度较高,稳定性好。因此它非常适合用作SPE的填充剂或SPME的涂层材料来分离富集复杂样品中的分析物,以达到分离净化和富集的目的。MIP作为膜分离的材料可将膜的筛分作用与MIP的高选择性结合在一起,用于样品的富集、回收或去除杂质等。  2 分子印迹技术的基本原理  MIP是以某种化合物分子为模板合成的聚合物,对模板分子具有较高的特异性识别能力,类似于酶底物的“钥匙锁”相互作用原理。目前,根据印迹分子与功能单体在聚合过程中相互作用的机理,将分子印迹技术分为共价法与非共价法两种类型。目前各类文献上报道的MIP制备方法基本上是非共价法。在此方法中,印迹分子与功能单体之间通过分子间的非共价作用预先自组装排列,以非共价键形成多重作用位点,这种分子间的相互作用通过交联聚合后保留下来。常用的非共价作用有:氢键、静电引力、金属螯合作用、电荷转移、疏水作用以及范德华力等,其中以氢键应用最为广泛[6]。   目前,文献报道中制备出的MIP一般均具有较好的物理和化学稳定性:机械强度较高;耐高温、高压;能抵抗酸、碱、高浓度离子及有机溶剂的作用;在很复杂的化学环境中能保持稳定[7]。研究表明,MIP反复使用300次之后印迹能力也未发生衰减[8];保存八个月之后其性能不发生改变[9]。  关于MIP的制备和性能研究,国内外已有较多综述文章详细介绍[10~12],本文不再详述。[color=#DC143C][B]注:其他的三篇相关文献在4-6楼。[/B][/color]

  • 绝缘子测试仪测试原理及使用方法

    绝缘子测试仪测试原理及使用方法

    绝缘子测试仪是一种理想的运行线路试验设备,主要用于交流线路10~500kV的带电测量过线塔的绝缘子串电压分布值。随着科学的发展,绝缘子测试仪走进了实验室,主要用于试验室内各种35kV以及交流电压绝缘子的电压分布测量。绝缘子测试仪是一种理想的保障线路运行安全的电力检测设备和带电作业辅助工具。http://ng1.17img.cn/bbsfiles/images/2014/01/201401071254_486962_2781177_3.jpg 随时科技的不断进步,绝缘子测试仪的样式与种类也越来越多,但其在原理上基本上是一样的:测量绝缘子两点之间电位差,将被测电压变成电场进行测量。因而阻抗高,对于被测量系统的影响最小。被测出的信号经内部放大处理,最后以电压值的形式,由LCD数字显示输出。 如果某一片绝缘子的电位差为 O 时 , 则该片绝缘于为零值绝缘子。如测试中某一节是标准值 50% 时说明其是劣化绝缘子。最后根据所测的数据还可以绘制绝缘于分布电压图,通过绝缘子电压分布图就可以很方便的绝缘子的优劣或者使用状态。从绝缘子测试仪的测试原理来看,整个测量过程是非常简单的。 下现以三新电力旗下产品SX-15绝缘子带电测试仪为例说明其使用方法 用M8螺丝将SX-15表装于绝缘操作杆上,杆的长度应符合带电作业的规定。调整接头,使接触杆与被测绝缘子的悬挂方式对应,能顺利地接触到被测绝缘子两端的金属部分。连接好插头,打开开关,有液晶显示便可工作,读数的单位为kV。 测量过程中有两需要注意:第一,本测试仪采用了独特的升压方式,即晶体震荡,再通过特殊的频率脉冲分配电路,产生脉动脉冲信号,整流滤波后得到高压。5000V直流电压容易受到外界环境的影响而改变,特别是环境湿度的影响,一般情况下,高压应在4000V至6000V之间;第二“电源开关”打开后,不要用手直接接触“测试杆”,以免高压静电伤人。

  • BV给我客户做的一份检测报告,请大家仔细探讨。

    BV给我客户做的一份检测报告,请大家仔细探讨。

    我给这个报告的国外第三方机构的联系EMAIL发了邮件没回复,现在把完整报告发上来,大家讨论。据客户反馈,说这个报告做的样品是透明部分。但是按常理,除了黑色尼龙塑料外,一般也就一些色粉色母中可能含有PAA,而透明PP料本身应该不会有PAA啊,何况在这么温和的条件下要检出0.08PPM更加可疑,而且虽然给出了测试温度和时间,但是用什么模拟物也没有说明,这报告我觉得很不认真。 你们有发现透明PP产品检出PAA的么?如果是有色的盖子超标,那么也应该指明是那种颜色吧。我觉得这个报告问题不少。你们看呢。特别说明:1。 PAA就是 Primary aromatic amines 初级芳香胺,欧盟法规限量要求是不得检出,也即0.01 ppm。2。这个报告是国外机构做的,不是国内的BV,如果有该公司的人看到,觉得不妥,可以跟我站内联系。3。请热心参与讨论的网友先仔细审读一下报告,样品是棒冰模,测试的是透明部分,PP材料。十分感谢http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_646106_1660790_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/02/201202212045_350348_1660790_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制