当前位置: 仪器信息网 > 行业主题 > >

鼻喷药物粒度仪

仪器信息网鼻喷药物粒度仪专题为您提供2024年最新鼻喷药物粒度仪价格报价、厂家品牌的相关信息, 包括鼻喷药物粒度仪参数、型号等,不管是国产,还是进口品牌的鼻喷药物粒度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合鼻喷药物粒度仪相关的耗材配件、试剂标物,还有鼻喷药物粒度仪相关的最新资讯、资料,以及鼻喷药物粒度仪相关的解决方案。

鼻喷药物粒度仪相关的资讯

  • 新冠病毒预防药物新突破 鼻喷式中和抗体药实验证明可防奥密克戎感染
    喷一喷,有效预防新冠病毒感染。6日,重庆医科大学发布消息,由该校黄爱龙教授/金艾顺教授团队牵头的研究,发现了对新冠奥密克戎变异株具有强效中和活性的抗体58G6,并证明了滴鼻给药方式阻断奥密克戎变异株复制的有效性。相关论文近日发表于期刊《信号转导与靶向治疗》上。“新冠病毒每变异一次,全球众多科研机构研发的中和抗体就失效一批,特别是奥密克戎具有更多突变位点,原来有效的中和抗体幸存下来的也不多了。很幸运,我们筛选出的58G6中和抗体仍然保持有效中和活性。”金艾顺介绍,他们和武汉病毒研究所团队共同鉴定出的抗体58G6,单独使用就能对阿尔法、贝塔、伽马、德尔塔、奥密克戎等多种受关注的新冠病毒突变体的假病毒表现出强效中和能力,显示其具有广谱中和活性。研究人员通过滴鼻给药的方式,检验此抗体在仓鼠体内的中和效力。结果表明,很低浓度(2毫克/公斤)的58G6鼻腔给药,就可以有效预防仓鼠感染奥密克戎活病毒。目前在美国纽约发现的BA.2亚突变毒株BA.2.12.1以及在南非发现的BA.4和BA.5等变异株正快速蔓延。这3种变异株中,同样存在德尔塔的关键突变L452——正是该变异位点使德尔塔具有了传播优势。研究发现,58G6抗体对BA.1+L452R同样非常有效。黄爱龙介绍,目前由该校主导研发的新冠病毒中和抗体鼻喷药物(预防用)已经完成全部临床前研究资料的准备,近日已提交国家药监局新药评审中心。
  • 真理光学聚焦CPhI盛会 展现粒度分析技术方案
    2018年6月20日-22日,第十八届世界制药原料中国展——CPHI China 2018在上海新国际博览中心召开。本届展会共吸引近4000家来自国内外的专业展商参加,同期举办了几十场高峰论坛,盛况空前。作为颗粒表征仪器领域的知名供应商,真理光学仪器有限公司受邀并携Nanolink S900纳米粒度仪、LT3600超高速智能激光粒度仪、Spraylink 实时喷雾粒度仪参加本次盛会。展台吸引了众多客户和展商,观众踊跃咨询并洽谈,现场气氛活跃。展会上,真理光学技术人员向用户详细介绍了公司最新产品与技术,同期展示真理光学粒度仪测得的生物蛋白质、铝碳酸镁颗粒及鼻喷药剂的粒度分布,获得客户的一致认可。许多客户也表达了与真理光学进行深度合作的意向。 真理光学仪器有限公司是全球为数不多的既有能力从事颗粒表征基础理论研究又能开展应用技术开发的仪器公司,可为制药行业用户提供原料药,固体口服制剂,干粉吸入制剂,鼻喷气雾剂,生物制药,病毒,抗体,蛋白质等多种药物的粒度分布。
  • 吸入式疫苗紧急申请中,粒度在药物设计中是何种角色?
    在昨日浦江创新论坛全体大会上,军事科学院研究员、中国科协副主席、中国工程院院士陈薇表示,正在申请雾化吸入式新冠疫苗紧急使用。吸入式新冠疫苗的研发初衷是什么?对于吸入药物的设计,粒度扮演了什么样的角色?一、吸入式新冠疫苗 vs 注射式新冠疫苗据陈院士介绍,吸入式新冠疫苗可以:强化免疫状态注射式新冠疫苗形成的体液免疫、细胞免疫,吸入式新冠疫苗还可形成黏膜免疫,这三重免疫是最理想的状态。减少药物剂量雾化吸入式疫苗只需针剂疫苗的五分之一的剂量。解决包装问题注射式新冠疫苗需要一瓶一瓶装,而雾化吸入式疫苗就可以解决目前疫苗瓶子的瓶颈问题。 二、吸入式新冠疫苗是如何作用的呢?雾化吸入治疗,是应用特制的吸入装置将药物以及溶剂,雾化成液体的微滴,吸入并沉积于各级气管、支气管、肺泡中,从而激发黏膜免疫。这种免疫是通过肌肉注射所不能带来的。通常,通过肌肉注射的新冠疫苗只能诱导体液免疫和细胞免疫。此外,使用雾化吸入方式免疫是无痛的,且拥有更高的可及性。该治疗方法是一种方便的局部给药的方式,与其他全身给药方式相比,药物以微滴的形式输送至呼吸道,具有副作用小,起效迅速等优势。 三、雾化吸入药物的粒度设计要求雾化吸入治疗,药物在肺部沉积的区域主要取决于吸入气雾剂中颗粒(液滴)的空气动力学粒径分布。颗粒的粒径分布须能达到设计要求,从而使药物能有效地沉积在肺部的目标靶位。一般认为粒径 0.5 -7μm的药物微粒才能到达肺部发挥药效,其中大多数应在 5μm 以下,以确保药物能有效沉积到肺部起效。如下图:目前吸入制剂粒径分布测量方法主要有多级撞击器和激光衍射法两种。因激光衍射法具有测量速度快、粒级分级多,且实验操作简便等优势,是雾化吸入制剂研发和生产过程中进行快速的装置筛选、处方研究和质量控制的理想方法。四、雾化颗粒的粒度表征技术 德国新帕泰克 HELOS & INHALER 激光衍射粒度仪,专门针对干粉吸入剂DPI、定量吸入气雾剂MDI、雾化吸入溶液Nebulizer、柔雾剂Soft mist和喷雾器分析开发的粒径分析仪。能够实现在 0.25 - 1750μm 范围内的粒度测量。 采用新帕泰克专业的人工喉管以及泵系统完美连接,确保吸入测试条件符合要求,并且通过适配器可与各种不同的吸入装置适配,广泛应用于气雾剂装置的开发与评估、处方研究的粒度分析等。HELOS & INHALER 气雾激光粒度仪
  • 激光粒度分析技术在药物制剂研究、产业化中的应用
    激光粒度分析技术在药物制剂研究、产业化中的应用 源自:中国粒度仪网         日期:2012-8-14         浏览量:7 这项技术的研究和应用在医疗卫生实践和工业实践中占据着极其重要的地位,起着推动医、药科学向前发展的作用。近年来,由于药物新制剂已经成为了医药产业的增长点,全世界新释药系统销售额稳步增长,约占整个医药市场的10%以上。治疗新观念促进了新释药系统的开发,新技术推动了新制剂产品上市。激光粒度分析仪在药物制剂研究和生产中所发挥的作用越来越大,受到药物制剂研究和生产工艺中质量鉴控的工程技术人员、药品检验人员的重视。以下是微粒激光检测技术在新制剂科研和生产上应用的讨论。      一、微囊方面:      微型包囊技术是当今世界发展迅速、用途广泛而又比较成熟的一种技术。制备微胶囊的过程称为微胶囊化(microencapsulation),它是将固体、液体或气体包裹在一个微小的胶囊中。微囊的粒子大小,因制备工艺及用途不同而不同,理论上可以制成0.1~1000nm的微囊,从而有微米微囊和纳米级纳米囊之分。微囊的制备有物理化学法、物理机械法和化学法三类。其中物理化学法中相分离工艺现已成为药物微囊化的主要工艺之一,该工艺仍涉及一些质量问题未能作定量的研究并难于准确评价,如普遍存在的微囊粘连、聚集问题。相似的工艺得到的产品在粒径范围及释放数据方面有着很大的差异。用LS激光微粒测定方法,可以比较直观地观察到样品的微粒大小及其分布,分布得越集中,表示越均匀(图)。通过这一检测可发现工艺过程是否合理,并且控制得是否严谨。微囊化反应敏感程度是否合适,条件的微小变化会引起明显效果差异的情况下达到可控。例如,以明胶为囊材的工艺流程。      囊心物囊材      \/      &darr      混悬液(或乳状液)      &darr      凝聚囊      激光微粒检测点&rarr &darr 稀释液      &darr 沉降囊      └--&rarr &darr      固化囊      &darr      微囊&rarr 制剂      所用稀释液浓度过高或过低,可使凝聚囊粘连成团或溶解。      二、微球      微球(microspheres)是指药物分散或被吸附在高分子聚合物基质中而形成的微粒分散体系。药物可溶解或分散在高分子材料基层中,形成基层型微小球状实体的固体骨架物。其微粒大小一般在1~300&mu m,甚至更大。另外,将固体药物或液体药物作囊心物包裹而成药库型微小胶囊,称微囊。两者没有严格区分。微球粒径大小不一(0.01~700&mu m),检测方法除显微镜法、电子显微镜法之外,就是激光粒度测定法和库尔特计数仪法。激光粒度分析是比前两种方法所反映的面更广泛。显微镜局限于视野之内,电镜所观察到的范围更小,只能较为精细地观察到粒子的形态。从制剂研究和生产的角度出发,激光粒度分析和库尔特计算法更能指导工艺,反映质量。      三、粉雾剂(powderinhalation)      粉雾剂是一种或一种以上的药物,经特殊的给药装置给药后以干粉形式进入呼吸道,发挥全身或局部作用的一种给药系统,具有靶向、高效、速效、毒副作用小等特点。根据给用药部位的不同,可分为经鼻用粉雾剂和经口腔用(肺吸入)粉雾剂。粉雾剂的特点有:①无胃肠道降解作用;②无肝脏首过效应;③药物吸收迅速,给药后起效快;④大分子药物的生物利用度可以通过吸收促进剂或其他方法的应用来提高;⑤小分子药物尤其适用于呼吸道直接吸入或喷入给药;⑥药物吸收后直接进入循环,达到全身治疗的目的;⑦可用于胃肠道难以吸收的水溶性大的药物;⑧患者顺应性好,特别适用于原需进行长期注射治疗的病人;⑨起局部作用的药物,给药剂量明显降低,毒副作用少。不同的给药部位对微粒大小的要求不同,如肺吸入粉雾剂要求主药粒径应小于5&mu m,而鼻用粉雾剂粒径则应为30~150&mu m。粉雾剂的质量研究是粒子质量检查。主要检查粒径分布,粒子的形态,测定这些项目,用LS激光粒度分析仪是比较适合。      四、脂质体的粒径和分布      脂质体粒径大小和分布均匀程度与其包封率和稳定性有关,直接影响脂质体在机体组织的行为和处置。脂质体的粒径小于100nm,在血循环的时间较长,若脂质体的粒径大于200nm,则脂质体很容易被巨嗜细胞作为外来异物而吞噬,脂质体在体内的循环时间很短。影响脂质体粒径和分布的因素很多,可以这样认为,凡影响脂质体聚结稳定的因素,都关系到脂质体的粒径和分布。脂质体的检验,用激光粒度分析法能快速简单地显示出脂质体的粒径,可测出平均粒径、中位粒径,分布图可以判断出粒子是否均匀和稳定。      五、脂质体眼科用药系统      脂质体作为眼部给药系统,其组成材料为磷脂双分子层膜,类似于生物膜,易与生物融合,促进药物对生物膜的穿透性,故药物外用滴眼的跨角膜转运效率较高;通过选择不同的制备方法,制成脂质体粒径为0.02~5&mu m之间,滴入眼部无异物感,不影响眼睛的正常生理功能。      脂质体眼科用给药系统的制备与一般的脂质体相似。质量控制&mdash 运用激光粒度分析仪应在均质之后取样分析。      六、新型乳剂稳定性      乳剂是两种互不相混溶的液体借助表面活性剂的乳化作用,使一种液体分散在另一种液体中形成不均匀的微米或纳米分散系统。在这一范围内对乳剂作微观检查,应用激光粒度分析仪是可以测定乳剂微粒子的大小及其分布。可以通过116个分析通道分析出每一个粒子直径区间中粒子的大小及个数;可以通过粒子分布图观察粒子总体分布和均匀度;也可以通过对分布图统计表收集常用的技术参数。      七、纳米粒      一般认为纳米粒的粒径大小界定在1~1000nm范围内。已研究的纳米粒包括聚合物纳米与纳米球、药质体、脂质纳米粒、纳米乳和聚合物胶囊。      例如:油相用液状石蜡可制得纳米球平均粒径820nm      棉子油制得纳米球平均粒径560nm.等。      小结:随着药物制剂技术的迅速发展,新制剂逐步从实验室向医药生产企业进行产业化转移。激光粒度分析在工艺控制和药品质量控制中的应用也显得越来越重要。了解和掌握激光粒度分析方法迎接医药制剂新时代,将会使我们从中受益。
  • 为降血糖新药把关 激光粒度检测与鼻用粉雾剂的完美关系
    p style=" text-align: justify text-indent: 2em " 鼻用制剂系指直接用于鼻腔,发挥局部或全身治疗作用的制剂。在2020 中国药典四部中提到,鼻用制剂可分为鼻用液体制剂(滴鼻剂、洗鼻剂、喷雾剂等)、鼻用半固体制剂(鼻用软膏剂、鼻用乳膏剂、鼻用凝胶剂等)、鼻用固体制剂(鼻用散剂、鼻用粉雾剂和鼻用棒剂等)。美国食品和药物管理局(FDA)批准上市的鼻用制剂大多为Nasal spray, aerosol和solution。 /p p style=" text-align: justify text-indent: 2em " 2019年7月24日,FDA于批准了一种胰高血糖素的新剂型--鼻用粉雾剂(Baqsimi),用于治疗4岁以上糖尿病患者的严重低血糖。这是第一个无需混合、无需注射的胰高血糖素产品,可以更方便、及时地抢救低血糖患者带来了诸多便利。这种剂型解决了胰高血糖素注射剂应用的局限性,在低血糖发作特别是在患者出现意识障碍或癫痫发作的时候显得至关重要。这也是继舒马普坦鼻用粉雾剂后,FDA批准的第二个鼻用粉雾剂,使得鼻用粉雾剂再次进入国内外药剂研发人员的视野。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 鼻用制剂的药典指南 /strong /span /p p style=" text-align: justify text-indent: 2em " 在2020中国药典四部0106鼻用制剂中明确指出,鼻用粉雾剂中原料药物与适宜辅料的粉末粒径一般应为30~150μm;鼻用气雾剂和鼻用喷雾剂喷出后的雾滴粒子绝大多数应大于10μm。美国HHS、FDA、CDER共同发布的Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action中,指出用于局部作用的鼻用气雾剂和鼻用喷雾剂的体外生物利用度和生物等效性应进行以下七项检查测试: /p p style=" text-align: justify text-indent: 2em " 1. 装置寿命内的单驱动递送含量一致性 /p p style=" text-align: justify text-indent: 2em " 2. 激光衍射法检测喷雾的粒径分布 /p p style=" text-align: justify text-indent: 2em " 3. 级联撞击器检测药物粒度分布 /p p style=" text-align: justify text-indent: 2em " 4. 显微镜检测药物粒度分布 /p p style=" text-align: justify text-indent: 2em " 5. 喷雾形态 /p p style=" text-align: justify text-indent: 2em " 6. 羽状几何形态 /p p style=" text-align: justify text-indent: 2em " 7. 装置启动和重新启动 /p p style=" text-align: justify text-indent: 2em " 以上检测项目在FDA 发布的Guidance for Industry Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action指南中也被提及,这些应被用于鼻用粉雾剂的检测。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 激光粒度检测在鼻用制剂上的应用 /strong /span /p p style=" text-align: justify text-indent: 2em " 激光衍射法可以快速检测在单次喷雾过程中的整个粒径分布,可得到D10,D50,D90,并可计算得到分布跨度(D90 - D10)/D50。FDA推荐采用全自动喷雾施压驱动装置,为区别产品之间的潜在差异性,并且建议在距离雾状气流喷口2-7cm的两个位置进行测试,两个位置的距离间隔在3cm或以上。FDA建议采用时间切片功能区分喷雾形态的三个区间段,喷雾形成期,稳定期和消散期。无论是鼻用喷雾剂还是鼻用粉雾剂,最终都需要得到稳定期的以体积(质量)累积的粒度分布结果;以及距离喷口两个不同位置的粒径分布结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/109cfd30-b84f-4c9b-b75f-ad75af883202.jpg" title=" 03996ee8-1353-4042-9935-29059a75d0a2.jpg!w300x300.jpg" alt=" 03996ee8-1353-4042-9935-29059a75d0a2.jpg!w300x300.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/sh100645/C222360.htm" target=" _self" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong 德国新帕泰克HELOS& amp SPRAYER /strong strong /strong /span /a /p p style=" text-align: justify text-indent: 2em " 德国新帕泰克在医药行业专门用于喷雾粒径测试的SPRAYER分散模块完全满足FDA 对雾滴及药物颗粒粒度分布测试的要求。对于类似这款新型的胰高血糖素的鼻用粉雾剂的粒度分析,HELOS-SPARYER堪称良选。 /p p style=" text-align: justify text-indent: 2em " 仪器具有全自动施压方式的推力型推进器,给出固定牛顿力的压力,通过软件Q(t)区分喷雾过程中的形成期、稳定期和消散期,计算得出稳定期段的粒度大小和分布结果。有效进行原研药物和仿制药的体外一致性评价的粒度等效性分析和研究。在鼻用粉雾剂的处方和装置快速筛选中,HELOS-SPARYER是非常可靠的分析检测设备。 /p p style=" text-align: justify text-indent: 2em " strong 参考文献: /strong /p p style=" text-align: justify text-indent: 2em " 2020中华人民共和国药典(四部),中国医药科技出版社,pp.9-10. /p p style=" text-align: justify text-indent: 2em " Advisory Committee for Pharmaceutical Science Meeting, “Report from the Orally Inhaled and Nasal Drug Products Subcommittee,” Rockville, MD, Transcript, July 19, 2001, pp. 24-91. /p p style=" text-align: justify text-indent: 2em " strong 作者简介: /strong /p p style=" text-align: justify text-indent: 2em " strong img style=" max-width: 100% max-height: 100% width: 100px height: 100px float: left " src=" https://img1.17img.cn/17img/images/202007/uepic/d04226e6-a584-4029-9c9a-34a9a2578c70.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" width=" 100" height=" 100" border=" 0" vspace=" 0" / /strong /p p strong 姓名: /strong 耿建芳 /p p strong 公司: /strong 德国新帕泰克有限公司苏州代表处 /p p strong 职务: /strong 首席代表 /p p strong 联系方式: /strong 18662608012 Jgeng@sympatec.com.cn br/ /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 100px height: 100px float: left " src=" https://img1.17img.cn/17img/images/202007/uepic/43e52f0b-1609-47f8-a95a-a6366cec585f.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" width=" 100" height=" 100" border=" 0" vspace=" 0" / /p p strong 姓名: /strong 赵春霞 /p p strong 公司: /strong 德国新帕泰克有限公司苏州代表处 /p p strong 职务: /strong 华东华北区销售经理 /p p strong 联系方式: /strong 13915558056 Czhao@sympatec.com.cn /p
  • Winner311XP喷雾粒度仪助力雾化吸入式疫苗研发
    Winner311XP喷雾粒度仪助力雾化吸入式新冠疫苗研发截至6月16日,全球新冠确诊达到176303596例;死亡病例达到3820026例。现在成百上千万的确诊病例,数十上百万的死亡病例,在一条条的新闻报道前面,都成了冷冰冰的数字。看着它一天天的上涨,就仿佛急救室里,任你如何电击,也没有任何波澜的绿色线条,配着哔哔哔的仪器声,让人近乎窒息。幸运的是,我们生在中国。对于战胜新冠病毒疫情,除了治疗以外就是预防,研制有效的疫苗就是预防形式。6月3日中国工程院院士-陈薇院士提到,其团队正在研究双非疫苗,即非注射、非冷链疫苗。我们都知道现在疫苗都是通过注射,但其实还可以通过别的方式接种的,比如雾化吸入,其实雾化吸入疫苗早已经有过应用,比如流感疫苗就有注射、雾化吸入、鼻喷入等应用。吸入式疫苗是通过口腔、鼻腔等黏膜部位给药,刺激鼻腔黏膜和呼吸道黏膜产生免疫反应的疫苗类型,这种疫苗并非是新冠疫苗,在去年,流感疫苗就已经研发出鼻喷的疫苗剂型,通过鼻腔给药的方式让人体产生对流感病毒的免疫力。 鼻喷器也可以应用新冠疫苗方面 鼻喷疫苗使用的是“黏膜接种”技术。其中鼻喷流感疫苗早在2003年和2012年批准美国和欧盟这些发达国家就以批准使用,在全球范围内,鼻喷疫苗已经使用了数亿剂次,安全性已经得到了验证。下图装置为一种雾化给药装置,该装置由推杆,储液管,阻断器,伞状喷雾器,限位剂量器等零件组装而成。预期用途是将液体药剂转化为雾状粒子,并喷洒在人体表面组织(或器官)表面,使之充分接触,从而使给药效果大化。 鼻喷疫苗的优点 鼻腔给药雾化装置是一体化设计无污染风险;透气阻菌包装,微粒化喷头,药物快速吸收,无针无痛:伞状喷雾,不会对人体造成任何损伤、或刺激。准确给药,病人可自行用药;不需要无菌技术、静脉导管或其他侵入式装置;提高患者的依从性;简单易用、安全和方便;。 鼻喷疫苗产生效果的关键点 鼻喷式疫苗接种或者治疗给药最核心点是要让喷入鼻腔的雾化效果要好,而雾化效果的好坏关键点是:雾滴粒径、喷雾角、喷雾缕等指标。 有效雾化颗粒直径与其沉积部位的关系: 疫苗雾滴粒径大小和分布的重要性 雾化吸入治疗是呼吸系统疾病治疗方法中一种十分有效的治疗方法。雾化治疗一般采用雾化器将药液雾化成微小颗粒,使药物通过呼吸吸入的方式进入呼吸道和肺部,从而达到无痛和迅速有效治疗的目的。雾化的药物液滴的大小直接影响药物的吸收效果。如果液滴大,雾化快,导致患者吸入过多的水蒸气,使呼吸道湿化,呼吸道内原先部分堵塞支气管的干稠分泌物吸收水分后膨胀,加大呼吸道阻力,可能会产生缺氧现象,且会使药液结成水珠挂在内腔壁上,对药物需求量大,造成浪费的现象,并且对于疾病雾化治疗的效果不佳。所以,雾化出来的粒度决定了雾化器的治疗效果和质量。 Winner311XP喷雾粒度仪的作用 济南微纳颗粒仪器股份有限公司研究开发的Winner311XP喷雾激光粒度分析仪能够对雾化液滴、烟雾、油雾等雾滴颗粒的粒度分布进行快速准确的测试分析并给出测试报告。Win311XP喷雾激光粒度仪是以Mie散射为原理,针对国家药典中对吸入型气雾剂、喷雾剂、粉雾剂等粒度要求而研发的台式喷雾激光粒度仪,可以对各种小型喷雾装置进行测试,融和了济南微纳多种研发技术,外观小巧,能很好地对小型喷雾粒度进行测试,并实现数据的快速采集,能够可靠地在喷雾过程中实时连续测量雾化液滴的粒度分布,1分钟内即可完成测量,并提供详细的数据报告。能够有效指导生产厂家进行成品检验和科技研发。 Winner311XP喷雾粒度仪采用了单光束平行光路和双镜头双阵列探测器技术,保证了不同角度散射光的采集。激光器发出的细窄光束,通过扩束镜进行会聚后发散,然后再通过一个准直透镜将出射光变成平行光,当平行光束通过测试区域时,由于雾滴的遮挡,光束向四周散射,由于不同粒度的颗粒的散射角度不同,我们在光路的前方以及上方设计了多个探测器来收集不同角度的散射光,之后探测器将接收到的光信号传输转换为电信号并通过计算机进行计算,得出颗粒的粒度分布。Winner311XP喷雾粒度分析仪使用平行平晶来对平行光进行校准,并使用国家标样来对测试数据进行标定,能够很好地保证测试数据的准确性和重复性。 Winner311XP喷雾粒度仪测试步骤: 1 开启Winner311XP,首次使用时需要验证光路是否为平行光,在测试区域放置一块平晶,观察通过平晶前后面反射后的两个光斑重叠区域是否存在明暗相间条纹,如果是,就证明是光束平行性较好,满足测试要求,否则就需调节光路。 2 联机测试,观察背景是否为稳定、均匀的能谱图,否则需要调节探测器,使其中心小孔位于主光汇聚位置,并保证透过小孔的出射光斑为圆形光斑。光路正常后测试背景,背景测试完毕后进入能谱测试界面。 3 组装某医疗器械公司生产的雾化器,雾化杯里加入药液至刻度线,打开开关,预先雾化1-2分钟,使雾化气流稳定。 4 然后将雾化杯口对准winner311XP的测试区域,握住雾化杯,保持平稳,且保持每次测量时位置不变。当雾滴通过主光束时即开始数据采集,电脑开始显示采集到的能谱图,并在能谱图稳定后保存数据。 测试结果分析 由测试报告得出,该样品(雾化装置)的雾化粒径基本控制在10μm以内:D10值:小于2.587μm的粒径颗粒体积含量占全部颗粒的10%;D50值(中值粒径):该样品的所有粒径的颗粒中,大于4.135μm的颗粒占50%,小于4.135μm的颗粒也占50%;D90值:小于6.334μm的粒径颗粒体积含量占全部颗粒的90%;平均粒径:该样品雾化后雾滴颗粒的平均粒径是4.320μm; 结论: 雾化液滴的粒度、雾化夹角、雾化缕直接关系到雾化治疗的效果好坏,通过激光粒度测试技术(Winner311XP激光粒度分析仪)能够快速准确测试分析雾滴粒径分布,重现性1%,并详细给出特殊尺寸的雾滴的累积百分数;通过喷雾图像采集分析系统(Winner311- Imaging)能够快速准确的测量雾化夹角,是测试雾化器雾滴粒径分布的一项新技术;能够为雾化器厂商提供准确的数据来检验雾化器的性能。
  • 美国PSS粒度仪受邀参加“2017年中国药物制剂大会”
    2017年10月27日至29日,2017年第十一届中国药物制剂大会在上海举办--中国药学会药剂专业委员会学术年会、亚洲阿登制药技术研讨会暨国际控释协会中国分会年会以及纳米药物及纳米生物技术学术大会。本次大会的成功举办,对于把握药物制剂领域发展的国内外最新动态,获取全球最前沿的药物制剂研发技术信息,提供了全方位产品成果展示平台,促进药物制剂行业交流与合作,推动我国药物新型制剂发展。本次会议的主题为:能级提升——药物制剂创新与产业化。 此次大会云集了国内外药剂学领域专家与同行,就药物制剂新技术发展现状、新研究成果以及未来发展趋势和挑战等进行深入分析与解读。会期共三天,采用主论坛和分论坛报告、壁报、专题讨论会等形式进行交流,参会人数达到近1500人。美国pss粒度仪中国卓越中心受邀参加了本次会议,其书写设计的在医药行业应用的宣传册,受到了大家的广泛关注。 美国 pss 粒度仪公司始终致力于开发功能卓越、技术先进的粒度仪,给研发、质控和生产提供强有力的生产工具。美国 pss 粒度仪公司拥有单颗粒光学传感技术和自动稀释等,其设计研发的粒度仪可广泛应用于医药、半导体、水制品、生物技术、墨水、颜料、过滤和化工行业等领域。
  • 雾化疗法对肺部治疗优势明显!如何做好雾化药物的粒度表征
    疫情下的2020 2020年的春天,是个不同寻常的春天。在这场突发的新型冠状病毒肺炎的疫情战役中,我们每个人都成为了其中的参与者。 新冠肺炎(COVID-19)属于呼吸道疾病,是由病毒感染引起的一种肺内炎症。目前没有针对COVID-19的特效药,所有的治疗都是针对病人的症状和临床表现对症治疗,治疗方法主要是以抗病毒药物为主,包括抗病毒的中药或者西药,以提高病人的免疫力,达到治愈的目的。常用的给药方式是采用药物口服、肌肉注射或静脉给药。国内外治疗引入吸入疗法 国家卫健委最新发布的《新型冠状病毒感肺炎诊疗方案(第六版)》,抗病毒治疗法中,推荐引入雾化吸入α-干扰素作为治疗手段之一,通过刺激人体免疫细胞来增强自身免疫功能。日本感染症学会3月2日在网站发布报告称,在事先得到患者同意的情况下,对“钻石公主”号邮轮上确诊感染新冠肺炎的3位乘客使用治疗哮喘的吸入剂环索奈德。3位患者年龄均在65岁以上,在用药2天后症状得到改善,其中一名73岁的女性患者已经出院。日本感染症学会表示,患者通过吸入环索奈德药物直接到达肺部,有望抑制新冠病毒增殖引发的肺部炎症。对于肺部治疗,吸入药物优势明显,粒度控制是疗效关键 从理论和实践的结合中,我们可以发现,雾化吸入疗法,未来可能成为肺部治疗的一种趋势。雾化吸入治疗,是应用特制的吸入装置将药物以及溶剂,雾化成液体的微滴,吸入并沉积于各级气管、支气管、肺泡中,从而达到治疗疾病,改善患者的临床症状,湿化气道,稀释气道分泌物作用的一种治疗方法。该治疗方法是一种方便的局部给药的方式,与其他全身给药方式相比,药物以微滴的形式输送至呼吸道,具有副作用小,起效迅速等优势。肺部作为活性药物成分的沉积位置,往往使用更低的药物剂量即能迅速达到良好的疗效。雾化吸入治疗,药物在肺部沉积的区域主要取决于吸入气雾剂中颗粒(液滴)的空气动力学粒径分布。颗粒的粒径分布须能达到设计要求,从而使药物能有效地沉积在肺部的目标靶位。一般认为粒径0.5~7μm的药物微粒才能到达肺部发挥药效,其中大多数应在5μm以下,以确保药物能有效沉积到肺部起效。如下图: 目前吸入制剂粒径分布测量方法主要有多级撞击器和激光衍射法两种,因激光衍射法具有测量速度快、粒级分级多,且实验操作简便等优势,是雾化吸入制剂研发和生产过程中进行快速的装置筛选、处方研究和质量控制的理想方法。德国新帕泰克HELOS&INHALER激光粒度仪在吸入领域的应用 德国新帕泰克HELOS-INHALER激光衍射粒度仪,专门针对干粉吸入剂DPI、定量吸入气雾剂MDI、雾化吸入溶液Nebulizer、柔雾剂Soft mist和喷雾器分析开发的粒径分析仪,能够实现在0.25-1750微米范围内的粒度测量。采用新帕泰克专业的人工喉管以及泵系统完美连接,确保吸入测试条件符合要求,并且通过适配器可与各种不同的吸入装置适配,广泛应用于气雾剂装置的开发与评估、处方研究的粒度分析等。HELOS-INHALER气雾激光粒度仪示例1:输出特性分析 | DPI吸入过程中粒径的动态变化,0.4秒后,活性成分API不再释放(红色曲线)示例2:局部作用吸入剂的粒度分析 | 支气管粒径分布结构清楚地将吸入剂的API与载体乳糖区分开。 API约占药物体积的25%,平均粒径为4 μm。示例3:全身作用吸入剂的粒度分析 | 细支气管API成分约占吸入药物体积含量的15%, API的平均粒径约为2.5 μm, 这样可以使药物更深地渗透到呼吸道,直至细支气管。德国新帕泰克HELOS-INHALER,是气雾剂装置的开发与评估、处方研究,医药DPI、MDI以及Nebulizer的粒度分析等好帮手!
  • 如何在药物开发中制定有效的粒度标准?
    本文摘要本文将介绍马尔文帕纳科全新升级的激光粒度仪Mastersizer 3000+在药物开发中的部分应用,以及我们是帮助客户如何制定有效的粒度标准?如何在药物开发中制定有效的粒度标准? 制药行业中,原料药的粒度分布可能会对产品的性能 ,如溶解度、生物利用度、含量均匀度、稳定性等,产生显著影响。ICH Q6A指导原则中给出了何时需要制定粒度标准的决策树,建议对固体制剂或含不溶原料药的液体制剂,当粒度大小是以下几方面的关键因素时,需要建立粒度标准。溶出度、溶解度或生物利用度;制剂生产;制剂稳定性;制剂含量均匀度制药行业内最广泛使用的粒度分析技术之一是激光衍射技术,具有广泛适用性,适用于粒径在0.1微米到3500微米范围内的湿法或干法系统。下文将以激光衍射法为例,讨论如何进行粒度标准制订。标准制订-选择合适的粒度指标测量不同粒度指标对样品配方变化的敏感性是作为参数选择的重要依据之一。图1中使用激光衍射法(马尔文帕纳科的Mastersizer)测量混合了不同比例细颗粒的样品,显示了随着细颗粒含量增加不同粒径指标的变化。图1. 不同粒度指标对细颗粒含量的敏感性这个例子中,显然Dv10和D[3,2]只在细颗粒含量占比低于10%时对粒径有相应的敏感性,而Dv90在细颗粒含量高于40%时能反映出粒径的变化。相比之下,Dv50和D[4,3]始终表现出对粒径变化好的表征效果,因此建议采用Dv50和D[4,3]制定粒径控制标准较为合适。标准制订-设定偏差范围激光衍射等技术具有出色的重复性、重现性和稳定性,能够提供高质量的数据。高重复性意味着在相同系统上运行的同一样品获得的结果一致,因此测量结果的好坏更多的取决于样品分散的重现性。重现性是一个更严格的参数,用于量化由操作员、样品、时间和仪器变化引入的误差;采样方法也至关重要。测量误差直接影响标准制定中偏差的设定。图2粒度分布曲线,红色实线是典型读数,黄色和橙色虚线表示偏差范围。如果该产品的标准规定是Dv50 =10 μm,那么图中对应的测量误差是+/- 5%。但是,不能因此就错误的以为小于10 μm的偏差也是该数值。如果标准规定样品中小于或等于10 μm的颗粒累积体积分布百分比为50%,测量误差就是+/-14%。图2 测量精度受指标规定的影响。随着测量误差的增加,测量结果更不可靠。这很容易理解,但在标准制订中并没有充分考虑这一点。以下是一个片剂混合物的标准要求(Evolutions in Direct Compression, Douglas McCormick, Pharmaceutical Technology, April 2005. Pg 52-62):Dv10 30 μm D[4,3] 80 μm Dv90 1000 μm上述标准设定没有考虑到任何由测量引入的误差,只是描述了最理想的结果。参照USP 的要求,中位值Dv50 RSD≤10%,两侧值Dv10和Dv90 RSD≤15%。那么 30 μm样品允许的Dv10最大测量值是34.5 μm(误差15%)。如果想确保样品的实际Dv10大于30 μm,需要调整相应的指标要求。调整后如下:Dv10 34.5 μm D[4,3] 88 μm Dv90 850 μm精度较低的方法则需要制定更严格的粒度标准。因此建议使用重现性更高的仪器和开发更稳定的方法。结论粒度和粒度分布是原辅料及药物颗粒的关键质量属性,直接影响药效,需要严格控制。激光衍射法是一种适用于多种行业的粒度分析技术。经典的马尔文帕纳科Mastersizer 3000激光粒度仪可提供高重现性的结果(+/-1%),避免因测量方法不准确而需要缩小偏差范围。今年马尔文帕纳科推出全新的Mastersizer3000+系列产品,提供更智能、准确的粒度解决方案。感兴趣的老师可观看新品发布回放,了解更多内容。 关注马尔文帕纳科微信公众号,观看回放视频:Mastersizer3000+新品发布(医药行业专场)参考资料https://www.malvernpanalytical.com/en/learn/knowledge-center/whitepapers/wp110325pharmamanufacspecs
  • 光散射法在难溶性药物粒度检测中的应用
    p style=" text-indent: 2em " 编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。 /p p style=" text-indent: 2em " 作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。 /p p style=" text-indent: 2em " 光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。 /p p style=" text-indent: 2em " 在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。 /p p style=" text-indent: 2em " 对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。 /p p style=" text-indent: 2em " 常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。 /p p style=" text-indent: 2em " 样品的粒度需要满足以下几个方面的因素: /p p style=" text-indent: 2em " (1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。 /p p style=" text-indent: 2em " (2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。 /p p style=" text-indent: 2em " (5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。 /p p style=" text-indent: 2em " 对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。 /p p style=" text-indent: 2em " 在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。 /p p style=" text-indent: 2em " 讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。 /p
  • 【瑞士步琦】通过喷雾干燥配制可吸入药物,就像呼吸新鲜空气一样简单
    通过喷雾干燥配制可吸入药物没有什么比在山上徒步旅行和呼吸新鲜空气更让我喜欢的了。事实上,我们呼吸的空气会超过一整个肺,因为普通人每分钟吸入 7 到 8 升空气,相当于每天吸入大约 11000 升。这种无意识的吸入和呼出过程对我们的健康至关重要,并确保身体细胞获得所需的氧气来发挥作用。肺通过气体交换过程吸收氧气,气体交换发生在肺中数以百万计的小气囊(称为肺泡)中。肺泡如此之多,如果你把它们平摊开来,它们会覆盖一个网球场那么大的区域。当我们吸气时,空气沿着我们的气管进入我们的肺部,通过两条被称为支气管的管道,这些管道分支成更小的细支气管,并在微小的肺泡群中结束。每个肺泡都被称为毛细血管的小血管网络所包围。肺泡壁的厚度约为人类头发的 1/50,允许气体通过肺泡壁进入毛细血管中的血液。进入血液的氧气与血红蛋白结合,通过心脏输送到身体的所有细胞。药物制造商利用这种高效的运输系统,制造出可吸入的干粉药物(通常直径小于 5 微米),小到足以通过上呼吸道和支气管。当颗粒沉积在肺部后,它们需要溶解在肺泡内衬的薄层中,然后它们才能被吸收到血液中。一旦进入血液,它就可以被运送到目标部位,最终,药物被代谢并从体内排出,通常是通过肝脏和肾脏。可吸入的干粉药物(通常直径小于 5μm)足够小,可以通过上呼吸道,然后溶解在肺泡内壁的薄层中,在那里它们可以被吸收到血液中。我相信你可以想象,制造足够小的粒子来穿过这个管道网络不是一件简单的任务;然而,这种传输系统的几个优点使这些工作都是值得的。对于需要立即治疗的问题,如哮喘发作,肺部是理想的递送系统。口服的药物必须经过消化系统才能生效;在这个过程中也有活性成分的损失。有些递送系统更容易设计和制造,但它们也有缺点。病毒传递系统简单,最大的优点是在人体组织中转染效率高;然而,病毒的毒性可以引发免疫反应,并且预先存在的抗体可以中和传递系统及其携带的分子,从而降低治疗效率。非病毒输送系统已被用于规避这些问题。脂质、聚合物和肽基系统可以被修改,用以提高生物相容性,增加内化,并定制药物输送的确切要求。这些类型的材料用于药物颗粒的配方,并用于包封或携带药物,保护其免受降解,并增强其在肺部的吸收,在病毒传递系统中发挥病毒的作用。干粉肺输送最常见的辅料之一是乳糖。基于脂质、聚合物和肽的系统可以被修改,用以提高生物相容性,增加内化,并定制药物传递的确切要求。乳糖具有几种有利的材料特性,使其成为可吸入药物的理想材料。它是美国食品药品监督管理局(FDA)批准的载体,因为它在给药后具有的无毒和易于降解的性质。其他美国食品药品监督管理局(FDA)批准的载体包括亮氨酸、甘露醇、葡萄糖、海藻糖和蔗糖。乳糖是理想的,因为它粘性比其他糖更低,并且具有更高的玻璃态化转变温度,在喷雾干燥时易于流动成粉末。雾化用于制造一系列可吸入粉末,包括多肽、抗生素、疫苗和生物可降解的载体颗粒。这些药物可以针对全身的疾病,但它们对治疗囊性纤维化、哮喘、慢性肺部感染、肺癌和结核病的肺部特异性应用尤其有益。使用喷雾干燥技术制造可吸入药物涉及到通过在不同固体浓度的水中溶解活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)来制备水溶液。偶尔在溶液中加入乙醇来促进蒸发。所得的喷雾干燥粉末由旋风分离器分离并收集在容器中。有几种常用的分析方法用于表征喷雾干粉,例如:扫描电镜分析粒子形态与大小激光衍射颗粒大小安德森撞击器细颗粒部分X射线衍射非晶/结晶状态差示扫描量热仪玻璃态转变温度气体吸附水分含量卡尔费休水分仪水分含量使用喷雾干燥技术制造可吸入药物涉及到通过将活性成分(药物、纳米颗粒)和赋形剂(乳糖或其他)溶解在不同固体浓度的水中来制备水溶液还有其他方法可以制造用于肺部的可吸入药物,例如冷冻干燥和气流粉碎;然而,喷雾干燥与这些方法相比有许多优点。喷雾干燥能产生高度分散的粉末,而不需要冷冻干燥时所需的载体颗粒。射流铣削过程产生流动性能差的扁平颗粒。气流粉碎的乳糖具有结晶结构,而喷雾干燥的乳糖则是无定形的。无定形态复合物形成的原因是干燥过程迅速,蒸发和形成固相的时间很少。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。喷雾干燥也是一种成本效益高的一步工艺,直接从液体到干燥配方,具有较高的工艺放大能力。喷雾干燥制成的球形颗粒具有较低的接触面积和均匀的粒度分布,从而增加了可吸入的颗粒组分。有四种策略可用于制造干粉配方。第一种是小的无载体药物颗粒,它是 1 到 5μm 的气溶胶粉末,是在日益狭窄的气道之外沉积的最佳尺寸。然而,这种小颗粒经常粘在一起,并且具有很强的凝聚力,流动性差。这可以通过使用小药物和更大的载体颗粒,从而改善药物经吸入器的流动。如前所述,乳糖是最常用的载体,通常设计为 50μm 至 80μm 的尺寸。在吸入过程中,较小的颗粒与载体颗粒分离并沉积在肺泡中。第三个策略是在吸入干粉气溶胶研究方面取得突破,涉及低质量密度(5μm)。作为第一种策略的替代方案,这些较大的颗粒更容易聚集和分解,具有更好的流动性,并且可以逃避肺部的吞噬清除机制。最后一种策略是在药物的载体颗粒中使用胶囊化的纳米颗粒,并已成为大量研究的课题。纳米医学是生物医学领域的一个新兴领域,由于上述肺给药的好处,已经提出了诸多肺给药的建议。然而,细小的颗粒大小限制了肺沉积,使它们在吸入后从肺部呼出。通过喷雾干燥将纳米颗粒结合到载体颗粒中,使其用于肺部药物递送成为可能。喷雾干燥的多功能性和对方法的高度控制使每种策略都成为可能,并且考虑到可吸入药物相对于其他更具侵入性的输送方式的优势,我期待着未来。▲小型喷雾干燥仪 S-300▲纳米喷雾干燥仪高性能款 B-90 HP
  • 美国PSS粒度仪受邀参加2017年中科院上海药物所烟台药物分所纳米注射剂产业化论坛
    近日,美国PSS粒度仪公司受邀参加了在山东烟台举办的“2017年纳米注射剂产业化技术论坛暨中国科学院上海药物研究所烟台市成果发布会” 此次活动由烟台市科技局举办,烟台市医药与健康产业创新联盟和烟台药物研究所承办,烟台大学药学院、中国医学科学院药物研究所、齐鲁制药、威高药业、绿叶制药、荣昌制药、北京蓝贝望生物等20余家高校、科研院所和企业120名代表参加,烟台药物研究所常务副所长李亚平研究员主持。我公司受邀在会议上了做了“粒度检测在纳米制剂研发中的应用”报告受到了参会代表热烈的关注,并就参会在纳米制剂粒度检测中的问题进行了深入的讨论。此次活动的成功举办,是对我公司在粒度检测技术的一种肯定,我公司将继续在纳米制剂产业化的进程中贡献自己的力量。
  • 雾化吸入式新冠疫苗来了!这些激光粒度仪厂商快人一步
    近日,在2021浦江创新论坛全体大会上,中国工程院院士、军事科学院研究员陈薇透露,其团队与康希诺合作研发的吸入式重组新冠病毒疫苗(腺病毒载体),已经获得了国家药监局扩大临床的批件,目前正在申请紧急使用授权。吸入式新冠疫苗,有何不同?雾化吸入式疫苗只需针剂疫苗的五分之一的剂量,且不用一瓶一瓶装,可有效解决疫苗瓶子的瓶颈问题。同时,减少疫苗用量意味着,1个剂量未来可以变成5个剂量,相当于在疫苗产能不变的情况下,实际供应量变成了原来的5倍,有望降低疫苗接种的成本,提高疫苗的可及性。所谓雾化吸入免疫,即采用雾化器将疫苗雾化成微小颗粒,通过呼吸吸入的方式进入呼吸道和肺部,从而激发黏膜免疫。吸入式疫苗就是通过口腔、鼻腔等黏膜部位给药,刺激鼻腔黏膜和呼吸道黏膜产生免疫反应的疫苗类型。相较注射式疫苗形成的体液免疫、细胞免疫,吸入式疫苗还可形成黏膜免疫,这三重免疫是最理想的状态。新冠病毒的感染部位是人体的呼吸道黏膜系统,如果能够建立起呼吸道黏膜的免疫屏障,对于预防病毒传播感染,将是一种非常有效的防控措施。粒度控制对吸入式疫苗免疫效果至关重要雾化吸入剂要发挥治疗作用,必须有效沉积到鼻腔或者呼吸道和肺部。雾化颗粒粒径是影响肺部沉积性能的主要因素,粒径的大小直接影响吸入颗粒在肺部沉积的位置和分布情况。对于吸入式新冠疫苗,需要控制其雾化形成的雾滴粒径大小,粒度测试是吸入式新冠疫苗研发和质量控制中不可缺少的重要环节。中国药典规定,吸入制剂中原料药物粒度大小通常应控制在10μm以下,其中大多数应在5μm以下;吸入制剂的雾滴(粒)大小,在生产过程中可以采用合适的显微镜法或光阻、光散射及光衍射法进行测定。其中,激光衍射法具有测量速度快、粒级分级多,准确度和重复性好,且操作简便等优点,是目前应用最广泛的粒度测试方法,是雾化吸入制剂研发和生产过程中进行快速的处方筛选、装置评价和质量控制的理想方法。吸入式新冠疫苗仍采用腺病毒载体的疫苗的生产路线,吸入式腺病毒载体疫苗与年初获得附条件批准上市的注射式腺病毒载体疫苗,在毒种、细胞库、原液生产工艺、制剂生产工艺、制剂配方等均相同。因此,吸入式新冠疫苗一旦获得使用授权,可立即进行大规模生产,助力全球疫情防控。而吸入式疫苗的大规模生产,也将为激光粒度仪生产厂商带来商机,激光粒度仪仪器厂商应抢占先机,乘势而为。吸入式雾化颗粒粒度表征解决方案近日,针对吸入式疫苗雾化颗粒粒度表征,多家激光粒度仪厂商纷纷推出详细解决方案,助力吸入式新冠疫苗研发。欢迎其他相关厂商补充完善。1、马尔文帕纳科马尔文帕纳科 Spraytec 实时高速喷雾粒度仪是专为鼻喷和吸入制剂设计的粒径分析仪。0.1-2000μm的超宽动态测量范围和最高10 kHz 超高采样频率,能够产生 100 微秒时间间隔的粒径大小分布,通过实时记录喷雾粒径随时间变化的过程对雾化和分散的动态过程进行精确分析。Spraytec实时高速喷雾粒度仪2、德国新帕泰克 德国新帕泰克 HELOS & INHALER 激光衍射粒度仪,专门针对干粉吸入剂DPI、定量吸入气雾剂MDI、雾化吸入溶液Nebulizer、柔雾剂Soft mist和喷雾器分析开发的粒径分析仪。能够实现在 0.25 - 1750μm 范围内的粒度测量。采用新帕泰克专业的人工喉管以及泵系统完美连接,确保吸入测试条件符合要求,并且通过适配器可与各种不同的吸入装置适配,广泛应用于气雾剂装置的开发与评估、处方研究的粒度分析等。HELOS & INHALER 气雾激光粒度仪3、麦奇克AEROTRAC II 能应用于不同的领域,包括来自喷嘴的液滴、雾化器、杀虫剂、护肤液、加湿器、喷雾分离器、粉体涂料和不同的粉体。AEROTRAC II 光学系统的优势是具有非常宽的测量空间,并且提供多种类型的测量,提供不同的附件以适合不同客户的应用。Microtrac 喷雾粒度分析仪AEROTRAC II4、济南微纳颗粒济南微纳颗粒仪器股份有限公司研究开发的Winner311XP喷雾激光粒度分析仪能够对雾化液滴、烟雾、油雾等雾滴颗粒的粒度分布进行快速准确的测试分析并给出测试报告。Win311XP喷雾激光粒度仪是以Mie散射为原理,可以对各种小型喷雾装置进行测试,融和了济南微纳多种研发技术,外观小巧,能很好地对小型喷雾粒度进行测试,并实现数据的快速采集,能够可靠地在喷雾过程中实时连续测量雾化液滴的粒度分布,1分钟内即可完成测量,并提供详细的数据报告。能够有效指导生产厂家进行成品检验和科技研发。Winner311XP喷雾激光粒度分析仪更多请查看激光粒度仪专场:https://www.instrument.com.cn/zc/470.html
  • 这一仪器技术突破生物等效性难题,可豁免鼻喷雾剂临床终点研究!
    p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 鼻腔给药是一种高效、方便的给药途径,可用于局部治疗或全身治疗。鼻喷雾剂通常由喷雾溶液或混悬液和鼻喷装置两部分组成,通过鼻喷泵装置将包含药物的液滴递送到鼻腔发挥药效。因药物在鼻腔内吸收迅速、起效快,所以局部作用鼻喷雾剂是治疗过敏性鼻炎等鼻部相关疾病的首选药物。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 由于鼻喷雾剂涉及到制剂处方、鼻喷装置以及药物与装置的复杂相互作用等因素,所以其质量评价对相应的分析方法有很高的要求。在2020中国药典中,鼻喷雾剂所要求的分析指标包括外观性状、酸碱度pH、有关物质、递送剂量均一性、每瓶总喷次和微生物限度等[1],通过对这些指标进行全面完整的分析和建立相应的验收标准,以确保与原研药的药学等同。 span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " strong 但对鼻喷仿制药开发而言,更为棘手的课题是如何评价生物等效性(BE) /strong /span 。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 80) " strong span style=" font-size: 18px font-family: 宋体, SimSun " 获得FDA钦点——图像导向拉曼光谱技术 /span /strong /span /h1 p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 对于全身作用的药物,BE通常采用人体内药代动力学方法(PK),对比研究仿制药和参比制剂的血药浓度来评价其等效性。但对于局部作用鼻喷剂,鼻喷泵将药物递送至鼻腔后,直接在作用位点发挥药效,并不进入系统循环或者入血水平太低,因此难以通过传统的PK方法准确测定血药浓度来评价其生物等效性。国外药品监管部门也一直在积极寻求和评估针对此类局部给药的鼻喷雾剂的BE试验方法。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 美国FDA发布的针对局部作用鼻喷雾剂的指南《Bioavailability (BA) and Bioequivalence (BE) Studies for Nasal Aerosols and Nasal Sprays for Local Action》中建议[2],仿制药与参比制剂处方组成(Q1)与用量(Q2)一致,给药装置等同的前提下,通过PK,体外BE(Q3)和临床终点试验相结合的“证据加权法”来进行生物等效性评价,PK试验证明仿制制剂在全身系统安全性上与参比制剂并无太大差别,体外Q3物理和化学特性指标可非常灵敏地评估产品性能的一致性,临床终点研究则用于判断药物在局部作用部位的递药一致性。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 2019年2月,FDA修订了糠酸莫米松、布地奈德等5个混悬型鼻喷雾剂的生物等效性个药指南,修订的指南中建议了一种可豁免临床终点研究的新技术—— strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 图像导向拉曼光谱技术 /span /strong (Morphologically- Directed Raman spectroscopy, MDRS)。根据建议,如果能用经过验证的MDRS分析方法测定仿制药与参比制剂中原料药颗粒的粒度分布一致,则接受用该数据代替临床终点研究[3]。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " strong span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun " 突破区分原料药颗粒和辅料颗粒的粒度分布难题 /span /strong /span /h1 p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 这一建议的科学依据在于:在Q1/Q2/Q3一致的前提下,药物经鼻喷泵递送至作用位点,如果沉积于作用位点的主药颗粒粒度分布与参比制剂一致,则它应具有与参比制剂等同的局部递药等效性和生物利用度,可作为支持生物等效性的重要依据[4]。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 对于局部作用混悬型鼻喷剂,因制剂中原料药颗粒与辅料颗粒共存,传统的颗粒分析技术如激光粒度仪和显微镜等,虽然可以对制剂整体的粒度分布进行测量,但不能区分其中的原料药颗粒和辅料颗粒,直到MDRS技术突破了这一难题, strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 可以对混合组分中的原料药颗粒和辅料颗粒进行识别和分类,然后计算得到原料药的体外粒径分布结果 /span /strong 。2016年Apotex将MDRS技术应用于糠酸莫米松鼻喷仿制药项目中,并最终获得FDA批准豁免临床终点[5]。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " MDRS技术又称为全自动颗粒粒度、粒形和化学成分分析仪,是马尔文帕纳科公司的专利技术。MDRS将基于显微镜的全自动颗粒图像分析仪和拉曼光谱仪集成到一个分析平台上,先对颗粒样品进行扫描成像和图像分析,再进一步通过拉曼光谱对颗粒进行化学成分鉴定,从而计算出混合物中组分特异性的粒度或形貌分布结果。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) " MDRS测量鼻喷混悬剂中原料药粒度分布方法详解 /span /strong /span /h1 p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " Qing Liu等人对采用MDRS测量鼻喷混悬剂中原料药粒度分布的方法进行了详细介绍,操作步骤如图1所示[4]:a,将鼻喷混悬剂样品制备到载玻片上;b,制备好的样品在光学平台上进行扫描、成像和图像处理;c,通过实积度等形貌因子对样品中团聚和相互接触的颗粒图像加以识别和剔除;d,颗粒分类,先根据原料药颗粒与辅料颗粒的形貌差异,采用延伸度等形貌因子筛选和过滤绝大多数辅料颗粒,然后通过拉曼光谱对残留的少数辅料颗粒加以识别和剔除;e,计算保留下来的原料药颗粒的粒径,并获得具有统计意义的分布结果。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6f8c46b1-4c16-47bd-ae7c-b1f087d80214.jpg" title=" 图片13.jpg" alt=" 图片13.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 宋体, SimSun " strong 图1. MDRS测量鼻喷剂药物粒度分布示意图[4] /strong /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 作为一种创新的分析技术平台,MDRS在Apotex糠酸莫米松鼻喷仿制药项目中的突破性应用引起了药品监管部门和仿制药公司的广泛兴趣。MDRS的图像分析系统采用Nikon高端光学系统,可对0.5 ~ 1300μm粒径范围的颗粒进行自动扫描和成像,以高分辨率图像为基础分析颗粒的粒径大小和形貌特征,一次扫描可分析数千至数十万个数目的颗粒以确保分布结果具有统计学意义;其拉曼光谱功能可对混合物中的颗粒进行化学鉴定和成分区分,从而获得不同成分颗粒的粒度和粒形分布信息。除鼻喷混悬剂以外,MDRS还适用于外用制剂、吸入剂、注射剂等复杂仿制药和某些固体制剂的反向工程和体外等效性研究,是突破仿制药制剂开发瓶颈,加快仿制药开发进程的利器。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " strong 参考资料: /strong /span /p p style=" text-indent: 2em text-align: left " span style=" font-family: 宋体, SimSun " [1]. 2020版中国药典通则0106鼻用制剂,0112 喷雾剂 /span /p p style=" text-indent: 2em text-align: left " span style=" font-family: 宋体, SimSun " [2]. FDA. FDA Guidance for industry: bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for local action. April 2003. /span /p p style=" text-indent: 2em text-align: left " span style=" font-family: 宋体, SimSun " [3]. FDA. Draft Guidance on Mometasone Furoate Monohydrate, Revised Feb 2019. /span /p p style=" text-indent: 2em text-align: left " span style=" font-family: 宋体, SimSun " [4.Qing Liu, et al. Scientific Considerations for the Review and Approval of First Generic Mometasone Furoate Nasal Suspension Spray in the United States from the Bioequivalence Perspective. AAPS J. (2019) 21:14. /span /p p style=" text-indent: 2em text-align: left " span style=" font-family: 宋体, SimSun " [5].& nbsp FDA Embraces Emerging Technology for Bioequivalence Evaluation of & nbsp Locally Acting Nasal Sprays. a href=" https://ww.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/UCM502012.pdf" _src=" https://ww.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/UCM502012.pdf" https://ww.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/SmallBusinessAssistance/UCM502012.pdf /a /span /p p style=" text-align: right text-indent: 0em " strong 作者:文胜 /strong /p p style=" text-align: right text-indent: 0em " strong 马尔文帕纳科产品专家 /strong /p
  • 成都精新:激光粒度仪测试原料药样品经验谈
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在制药行业中,粉体的颗粒特性已成为胶囊、药片、口服制剂等产品开发和质量控制中至关重要的因素之一。原料药的粒度分布会对产品的性能产生显著的影响,如:溶解度、生物利用度、含量均匀度、稳定性等。此外,原料药和辅料的粒度分布也会影响药物的可生产性,如:颗粒流动性、总混均匀度、可压性等,最终可能影响药物的安全性、有效性和质量。所以无论是制粉还是制粒都对药物的粒度分布有一个很严格的要求。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/872d1979-fedc-4a32-883a-a72710391b9c.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 宋体, SimSun " strong 图1& nbsp & nbsp 显微镜下采集的原料药颗粒形貌 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) font-size: 18px " strong 粒度测试方法选择依据大揭秘 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 原料药和辅料的粒度测试,要根据它的特性选择合适的粒度测试方法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首次测量样品的第一步就是决定在湿状态下还是在干状态下分析样品。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如一些样品易和湿分散介质起反应,比如可能溶解或和液体接触时膨胀,就应选择干法测试。干法测试的方法是:采用空压机气体为分散介质,利用紊流分散原理,配合高精度进料装置和粉料喷射枪(专利),无油静音气源,保证样品被充分分散,得到准确的粒度数据。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如样品能在水中均匀分散,且不溶解或膨胀,应选择湿法测试,尤其是液体或乳液类原料。湿法测试的方法是:将样粉放入样品池,进行超声波分散、机械搅拌循环测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 取样、分散小技巧分享 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 粒度测试还应有完善的粒度分析标准,包括取样、分散方法、仪器参数设置、管理员进入密码、数据分析和说明等。其中取样和分散至关重要,关系到样品最终测试的准确性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 1、取样 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物的粒度测量是通过对少量的样品,进行粒度分布测试来表征大量粉体粒度分布的,因此要求所测的样品必须具有充分的代表性。取样应注意以下几点: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ①从生产线中取样时要从料流中截断料流取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ②从大堆物料中取样时要从不同深度、不同部位多点取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ③从实验室样品中取样首先要混合均匀,多点(至少四个点)取样。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " ④从悬浮液中取样时应充分搅拌均匀,从液面到器皿底之间摇匀抽取。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 2、样品分散方法 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对于粒径小或有粘性的颗粒,这些颗粒有聚集的趋势,选择合适的样品分散方法至关重要,样品分散的目的是尽可能地减弱样品分析中颗粒的聚集,同时避免过度使用分散力而造成颗粒损耗。以湿法测试为例,常见的分散方式有: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1、介质湿润:粒度测量通常是将样品置于某种液体介质中,形成一定颗粒浓度的均匀悬浮液,这种均匀悬浮液通过测量窗口时就可以进行粒度测量。这里所用的液体是起媒介作用的物质,称为介质(可以是自来水、蒸馏水、纯净水等)。粒度测量的介质要求:①.纯净②不与被测样品发生化学反应。③使样品具有适当的沉降状态。④与样品具有良好亲和性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 2、搅拌:通过搅拌叶片产生的剪切力使颗粒与介质分散。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 3、超声波分散:通过超声波产生的高频率机械振动信号传输到介质中,将聚集颗粒分散。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 4、分散剂:分散剂是指加入到粒度测量介质中能提高颗粒表面与介质间亲和性,使颗粒 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在介质中达到易浸润又保持分散状态的物质。常用的分散剂有六偏磷酸钠、焦磷酸钠、表面活性剂(包括洗涤剂)等。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 240) " 仪器推荐 /span /strong /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e3b5c3d3-4b77-441d-9e41-070036056ae7.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" font-family: 宋体, SimSun " strong 图2& nbsp & nbsp JL-6000 激光粒度仪主机、辅机组合说明 /strong /span /p p style=" text-indent: 0em " script src=" https://p.bokecc.com/player?vid=389F5AC676FAE8E19C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script span style=" font-family: 宋体, SimSun " strong br/ /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 成都精新自主研发的JL-6000集干法测试和湿法测试于一体,满足了新药研发对于药物粒度的测试需求。软件按照SOP标准化流程操作,提供D10、D50、D90、D97等典型粒径值,并有体积平均粒径、面积平均粒径、比表面积,累计粒度分布曲线、粒度分布数据等,设置管理员权限和审计追踪。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/4065fc9c-5b28-466b-badd-befbe3fac3a8.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " & nbsp /span span style=" font-family: 宋体, SimSun text-indent: 2em " 图3& nbsp & nbsp 粒度报告典型粒径值 /span /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/344eb23c-0cec-44bb-8458-3f6eb2e0045b.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 图4& nbsp & nbsp 曲线区间粒度分布数据与直方图 /span /strong /p p style=" text-indent: 0em " strong span style=" font-family: 宋体, SimSun " br/ /span /strong /p p style=" text-indent: 0em text-align: right " strong span style=" font-family: 宋体, SimSun " 作者:李梅 /span /strong /p p style=" text-indent: 0em text-align: right " strong span style=" font-family: 宋体, SimSun " 成都精新粉体有限公司测试中心工程师 /span /strong /p p style=" text-indent: 0em text-align: center " span style=" font-size: 18px color: rgb(0, 0, 0) " strong span style=" font-size: 18px font-family: 宋体, SimSun " 更多相关仪器欢迎点击进入仪器信息网 a href=" https://www.instrument.com.cn/zc/470.html" target=" _self" span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 240) " 激光粒度仪专场 /span /a 了解 /span /strong /span /p p style=" text-align: left text-indent: 2em " strong span style=" font-family: 宋体, SimSun " (注:本文由成都精新供稿,不代表仪器信息网本网观点) /span /strong /p
  • 【瑞士步琦】固体分散体技术和喷雾干燥在难溶性药物中的应用
    固体分散体技术和喷雾干燥在难溶性药物中的应用近年报道的新药种类近 90% 都是属于水难溶性药物;由于其溶解度偏低,需要的给药剂量比其他药物大得多,这就使得难溶性药物的临床治疗效果低于预期。水溶性较差的药物化合物,由于其固有的低水溶性和在相关吸收窗口期内无法溶解于胃肠道介质,因此口服制剂的制备极具挑战性。业界研究者认为活性药物溶出限制其速率,为了获得足够的生物利用率,了解如何提高溶解速率非常重要。常用提高溶出度或溶解速率的方法有:固体分散体,药物颗粒微纳米化和优化脂质剂型配方等。固体分散体作为近些年的研究热点一直被广泛关注,它的优势也非常明显:改善难溶于水的药物化合物的性质,提高药物溶出速率,并且生物利用率也有明显改善。通过搭配水溶性聚合物,固体分散体主要应用于速释型药物系统,同时近期有研究发现其在缓释系统的表现也同样优异。固体分散剂的制备方法有很多种,包括基于溶剂的雾化蒸发技术产生微粒和对所得固体分散体进行微粒化的熔融技术。其中溶剂蒸发法包括喷雾干燥,冷冻干燥,超临界流体技术,静电喷雾和静电纺丝等方法。喷雾干燥是最常用于制备固体分散剂的技术,由于喷雾干燥可以生成细小的液滴,具有高比表面积,所以是一类非常快速的干燥过程。市面中喷雾干燥有不同类型的装置,尽管雾化装置和雾化能力各不相同,但其中大多数元配件都有一定相通性。近年来,研究者对喷雾干燥颗粒形成机理的探索也逐年增加;已经提出相关模型用于解释喷雾干燥颗粒形成的过程,特别是溶媒蒸发阶段,这也是液滴固化形成干燥颗粒的关键阶段。自从 1872 年首台喷雾干燥设备发明制造以来,在工艺及硬件方面已取得很大进步,同时也完全扩展到工业应用场景中。喷雾干燥可以通过简单的一步制造法产生小颗粒,并可以一定程度控制颗粒的特性以达到改善其药物传递性能的目的,这就非常适合肠道部位短的吸收窗口期,保证药物在相对短的距离内扩散。此外,喷雾干燥固体分散体微粒溶解速度快,可以获得良好的溶解曲线,还可以用于控制固体分散体的质量属性,防止药物与载体相分离,以提高药物稳定性和生物利用度。利用喷雾干燥制得的固体分散体具有粗糙表面和多空内部结构,有效增加颗粒总表面积;对研究微观结构及微观结构对配方性能的影响来讲,是当前研究优化所用配方的一种有效方法。在喷雾干燥过程中,可以调整一系列参数用以控制干燥过程和最终的颗粒特性。喷干过程中重要参数包括入口温度和出口温度,雾化气体流速,料液流速,料液粘度和液体中物料的性质。入口温度和出口温度是物料功能性过程监控解决方案的重要参数,有相关研究表明入口和出口温度之间的比率会影响形成颗粒的特性以及回收率;干燥气流对颗粒特性似乎没有任何直接影响,但在操作过程中还是建议使用最大流速,因为它会影响入口温度和出口温度。
  • 济南微纳亮相CPhi2020 助力医药原料粒度分析
    2020年12月16日—18日,世界生化分析仪器与实验室装备中国展在上海新国际博览中心举行,济南微纳颗粒仪器股份有限公司(股票代码430410)受邀参展,现场展示了Winner802动态光散射纳米粒度分析仪。 世界生化分析仪器中国展经过二十年的精心培育,已经成为囊括制药原料、中间体及精细化工、药用辅料、制剂、生物制药及实验室仪器等十几大细分领域。我国制药也在从仿制大国向创新药大国演变,作为这一历史的参与者和见证者,和颗粒粒度控制领域的研发专家,济南微纳颗粒仪器股份有限公司更有责任和义务为医药原料粒度的控制和分析贡献自己的一份力量。 以药物的溶出度为例,溶出度是指在规定介质中,一定条件下,药物从片剂或胶囊剂等固体剂型溶出的速度和程度。而溶出度试验是一种控制药物制剂质量的体外检测方法。体外溶出度试验主要有两个作用:一是作为药品质量控制手段,二是制定药品标准。对于控制药品质量来说,溶出度试验起着不容忽视的作用。大量的实验表明,对药物溶出度影响的因素就是药物原料的粒径。由于颗粒体积越小,其比表面积越大,水化速率越大,这意味着颗粒与水将会有更好的接触,因而更容易溶解。因此粒度控制与分析对药品的质量控制有着很重要的影响。 一般情况下,与水发生化学反应以及在液体中发生形态变化的原料药或者中药粉末等颗粒粒度,适用于微纳干法激光粒度仪来测试,干法粒度仪是以空气作为分散介质。如Winner3003干法激光粒度仪。 不溶于水或液体分散介质的原料颗粒或制剂可用微纳湿法激光粒度仪来测试其粒径分布情况。如Winner2000ZD智能湿法激光粒度仪。 像超声波雾化器、压缩式雾化器、网式雾化器等用于治疗呼吸道疾病的医用雾化装置,测试它们所喷出的药液的雾滴粒径大小的话,可用微纳喷雾粒度仪,如Winner311XP医用喷雾粒度仪。 激光粒度仪在生命科学和生物制药领域应用也很广泛,像纳米药物和纳米药物载体的粒径控制,对给药过程和药物吸收都有影响。如果测量纳米级别药物、中药乳液、蛋白球体、外泌体、细胞等的粒径大小和分布情况,就需要用到Winner802动态光散射纳米激光粒度分析仪。Winner802是国家科技型中小企业技术创新基金项目成果产品,它是采用动态光散射原理和光子相关光谱技术,灵敏度高,抗干扰强。 欢迎广大高校、科研院所和企业等客户来企考察和寄样检测。
  • “花非花,雾非雾”仿制药一致性看清楚-LS激光粒度仪
    p    span style=" color: rgb(75, 172, 198) " strong 一见知真身 粒度一致性 /strong /span /p p   仿制药作为原研药的“替代品”,其质量和疗效需与原研药一致,即“等效”。 /p p   而我们知道,我国很多仿制药不能“等效”原研药,很大一部分原因是我们对细微流程的不重视:比如未重视原料药的粒度分布,未严格把控制粒后的粒度分布范围,从而造成批内溶出不均一。 /p p   所以,在制备工艺中,需要严格检测原料药、辅料的粒度及粒度分布,并设定内控标准。 /p p   贝克曼库尔特公司旗下的 span style=" color: rgb(255, 0, 0) " 纳微米LS 激光粒度仪 /span 开发有专利的PIDS技术(专利号:4953978及5104221), span style=" color: rgb(255, 0, 0) " 更符合ISO 13320 /span 中对于微纳米粉体的高分辨率检测。 /p p   在提供最高分辨率的同时,也拥有多达132个“X”型检测器,可以自动分析样品是单峰还是多峰。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/a1683950-f91c-4ead-bb53-a26748391cdd.jpg" title=" 1.jpg" / /p p   span style=" color: rgb(255, 0, 0) "  在上图案例中,原料药中的细粉(& lt 1μm)如超过10%即会引起片剂的粉碎。我们使用配有通用液体样品台ULM的纳微米LS 激光粒度仪,可以准确检测细粉的占比,以确保原料药符合标准。 /span /p p    strong span style=" color: rgb(75, 172, 198) " 再见“我”是“你” 生物等效性 /span /strong /p p   而我们知道原料药并不是药,只有最终的制剂才是药,所以,疗效才是硬道理,而反映仿制药“等效”原研药的重要指标主要体现在药物的体外溶出度和体内生物等效性上。 /p p   以五大高难度仿制药之一的难溶性药物为例,其药物的粒度分布是影响药品溶出的最重要因素。 /p p   因此, span style=" color: rgb(255, 0, 0) " 需要考察何种粒度下,仿制药在体外的溶出与原研药拟合度最高?何种粒度下,仿制药在体内与原研药有着类似的体内性能?是D90在30μm以下,还是在20或35 μm以下? /span /p p   此时,也需要使用 span style=" color: rgb(255, 0, 0) " LS激光粒度仪 /span 定时考察不同粒径制备的制剂与原研药间的相关性,并对未知的大颗粒进行有效的监控,确保准确检测和分析仿制药的粒径,即使其和原研药间的粒径差异很小也能准确识别出,如此更能保证药物的体外溶出度和生物等效性。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/53d53ad8-a41d-4b1c-9f22-d34563f4e96f.jpg" title=" 2.jpg" width=" 400" height=" 265" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 265px " /   /p p style=" text-align: right " *该产品仅用于科研与工业,不用于临床诊断。 /p p style=" text-align: right " span style=" color: rgb(255, 0, 0) " 欲知详情,点击下方。 /span /p
  • 安东帕药典之旅——粒度仪
    药典标准是指药品生产、使用和检测的法定标准。药典收载的药品标准,是国家药品标准,具有法律效力。中国药典主要收载了中药、化学药、生物制品的制剂通则、检验方法、指导原则、标准物质和试液试药相关通则、药用辅料等。中国药典是所有医药公司在药物有效成分的研究,开发和生成过程中都必须遵循的质量标准。在药典中,对原料药和药物制剂的粒子大小和粒度分布的测试方法及测试结果提出了要求。安东帕LitesizerTM 和PSA系列粒度仪对制药行业,可提供全面的数据完整性解决方案。 LitesizerTM PSA1、 安东帕是高性能分析仪器的领先开发商和制造商,它将其物理和工程专业技术与当代的软件创意相结合,研发出直观又轻松易用的颗粒分析仪。2、 LitesizerTM纳米粒度分析仪和PSA激光粒度分析仪使用同一款软件Kalliope进行操作。3、 LitesizerTM粒度分析仪测量范围可达0.3 nm-10 μm,Kalliope软件可以一个页面总览所有信息,提供的自定义报告在几秒钟内即可生成,随后便可电子或手动签名。在制药应用中,准确、可重复和可追溯至关重要,它的制药选项、数据安全功能、用户管理和审计追踪,完全符合US FDA的21CFR Part 11要求,可以为制药用户提供完整的认证解决方案。4、 PSA仪器是唯一可以在一台仪器中全面集成湿法和干法分散模式的激光粒度分析仪。无论是在干法还是湿法分散模式中操作样品,均使用认证的参考物质进行认证。所有PSA颗粒粒度分析仪均根据ISO 13320和USP标准进行校准,以确保最高的准确度和重复性。PSA 1190的0.04 μm至2500 μm扩展测量范围允许分析从原材料到最终制剂等各种样品。
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • 畅览制药天地热点 深析形貌分析前沿 ——粒度粒形检测在制药领域的研究及应用主题网络研讨会成功召开
    p style=" text-indent: 2em text-align: justify " 5月15日,仪器信息网“粒度粒形检测在制药领域的研究及应用”主题研讨会圆满召开。9位浸润药物分析、药物质量控制等领域的专家用精彩的报告,为广大参会网友带来了精彩的学术盛飨。会议聚焦制药领域中粒度粒形检测的重要性分析、前沿研究、行业应用等话题,进行了深入的交流与研讨,对整个行业的学术发展和产业应用起到了良好的促进作用。 /p p style=" text-align:center" span img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/0708c7ba-1041-4326-b6eb-ba0866a6fd20.jpg" title=" 微信图片_20190516135517.png" alt=" 微信图片_20190516135517.png" / /span /p p style=" text-align: justify text-indent: 2em " 参与报告的嘉宾有沈阳药科大学教授崔福德、中国食品药品检定研究院研究员杨腊虎、上海理工大学颗粒与两相流测量研究所教授蔡小舒、复旦大学药学院教授戚建平、天津中医药大学副教授李文龙、天津大学讲师吴送姑、北京海晶生物医药科技有限公司CEO及教授级高工曹相林、欧奇奥仪器(北京)有限公司总经理及中国颗粒学会第七届理事会高级理事杨正红、马尔文帕纳科有限公司激光衍射及图像分析产品专家文胜等。 span style=" font-family:宋体" strong span style=" color:#00B0F0" 【 /span /strong /span a href=" https://m.instrument.com.cn/webinar/meetings/LDLX/?from=timeline" target=" _self" strong span style=" color:#00B0F0" span style=" font-family:宋体 color:#00B0F0" span 报告专家介绍链接 /span /span /span /strong /a strong span style=" font-family:宋体 color:#00B0F0" 】 /span /strong /p p style=" text-align:center" span img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/36d9cb54-4ba1-4077-92e5-acddc828fa84.jpg" title=" 2.jpg" alt=" 2.jpg" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 国家教学名师崔福德 /span /strong 领衔开场,她的报告题目为《粉体技术在固体口服制剂中的应用》。粒子的大小,形状等对粉体的流动性等性质有显著影响,进而对固体制剂的质量有重要影响。报告中,崔老师结合粉体的基本性质及特点,详细讲解了固体制剂的制备和质控工艺,及全流程中的各项注意事项。她用生动的案例详细剖析了粉碎-过筛、粉体混合对固体制剂的影响。她特别强调粉体在粉碎后,粒径越小,越容易产生粘附性。要防止粘附,需要改善流动性和混合均匀度。把易团聚的粘附性药物粉末先和处方中部分稀释剂进行预混;加入防静电的离子型表面活性剂;控制环境的相对湿度或含水量等方法是改善药粉粘附性行之有效的好方法。另外粉体的混合也是影响CQA的关键步骤,这其中在线NIR由于可以判断混合终点,在混合均匀度测定中应用广泛。 /p p style=" text-align: justify text-indent: 0em " script src=" https://p.bokecc.com/player?vid=3E140736D473CE9B9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=700& height=550& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: center text-indent: 0em " strong 崔福德《粉体技术在固体口服制剂中的应用》报告视频全集 /strong /p p style=" text-align: justify text-indent: 2em " 崔福德还在报告中讲解了制粒技术和压片技术。制粒技术是指物料粉末在粘合剂的作用下,聚结成具有一定形状和大小的相对均匀颗粒的技术。其作用在于调节粉体颗粒大小、形状、粒密度、表面改质、各成分均匀聚结等粉体性质。压片技术是将药物粉末或颗粒压缩成具有一定形状和大小的坚固聚集体的技术,是片剂的制备过程。由于物料、工艺、设备等原因,片剂在压片过程中容易出现顶裂/腰裂、粘冲/粘壁、片剂特性异常等不良现象。解决这些问题变更处方是关键,在无法改变处方的情况下,则可以通过改变粒径大小、改变润滑性高低、改变压片速度、增加水分含量、进行表面处理等对策改善。 strong span style=" color: rgb(0, 176, 240) " 【 /span a href=" https://www.instrument.com.cn/webinar/Video/play/105125" target=" _self" span style=" color: rgb(0, 176, 240) " 崔福德报告视频回放 /span /a span style=" color: rgb(0, 176, 240) " 】 /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 文胜 /span /strong 带来了《基于图像分析的复杂仿制药体外生物等效性研究技术》。他详细介绍了马尔文帕纳科于2018年推出的新产品Morphologi 4(下简称M4)全自动颗粒图像分析仪,该仪器采用显微镜成像技术,集成了自动干粉分散装置,可分析粉体、混悬液或滤膜上的颗粒,且具有sop全自动分散和测量功能,测量范围为0.5um-1300um。在M4的基础上,马尔文帕纳科还推出了进阶的M4-ID,仪器集成了MDRS图像导向拉曼光谱,具有化学成分分析功能。其技术在原料药、辅料、药物中间体或成品粒子的粒度和粒形分析,药物反向工程、药物制剂研究、复杂仿制药Q3表征(IVBE研究新技术)等研究中有广泛的应用。报告中文胜详细介绍了马尔文M4系列产品在复杂仿制药BE、局部作用鼻喷剂BE、Nasonex糠酸莫米松鼻喷剂IVBE等领域的研究。 a href=" https://www.instrument.com.cn/webinar/Video/play/105128" target=" _self" span style=" color: rgb(0, 176, 240) " strong 【文胜报告视频回放 /strong strong 】 /strong /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 杨腊虎 /strong /span 的报告则聚焦口服药物固体制剂,对药物溶出度的沿革及发展趋势进行了交流分享。固体制剂的药物溶出度是药物固体制剂质量标准重要内容,无论是一般制剂检测还是新药研发,都是不可少的。在药物制剂质量评价中,特别是口服制剂,药物固体制剂溶出度检测都是首选方法之一,是评价口服药物固体制剂的晴雨表,与药物制剂的原料、辅料、制剂工艺都和药物的疗效密切相关。报告中,杨腊虎阐述了药物溶出度释放度的现状与发展,对药物制剂的研发,质量标准制定、制剂质量评价以及GLP和GMP关系进行了阐述。 strong span style=" color: rgb(0, 176, 240) " 【 a href=" https://www.instrument.com.cn/webinar/Video/play/105132" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 杨腊虎报告视频回放 /span /a 】 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 纳米粒已被广泛的应用于递药系统中,可以显著改善药物在体内的吸收和循环行为。纳米粒的几何形状是除粒径和表明性质之外的重要物理性质,目前已有部分研究表明几何形状在很大程度上影响纳米粒与细胞的相互作用以及体内分布,甚至口服吸收。 /span strong span style=" text-indent: 2em color: rgb(0, 176, 240) " 戚建平 /span /strong span style=" text-indent: 2em " 的报告《微纳颗粒几何形状对体内行为的影响》的报告详细介绍了从口服到注射几何形状对纳米粒体内行为的影响。针对无机颗粒、有机颗粒等不同类型的颗粒,控制制备工艺有机械拉伸法、压印法等。颗粒的形状对注射体内循环、组织分布、细胞摄取、免疫系统等方面有显著影响,包括胃肠道内转运、肠道内吸收、体内吸收和排泄、淋巴转运、肠道粘膜内分布、穿透粘液能力、肠上皮细胞摄取及转运、细胞胞吐等。 strong span style=" text-indent: 2em color: rgb(0, 176, 240) " 【 a href=" https://www.instrument.com.cn/webinar/Video/play/105127" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 戚建平报告视频回放 /span /a 】 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 下午的报告由 span style=" color: rgb(0, 176, 240) " strong 蔡小舒 /strong /span 开场,他报告的题目为《基于图像光散射的颗粒在线测量技术》,他详细介绍了个人研发团队在图像测量方法以及与光散射方法相结合在颗粒的粒度和形貌等的在线测 span style=" font-family: 宋体" 量 /span 方面的研究进展,并介绍了应用所研究的方法在从纳米到数百微米大小颗粒的在线测量中的应用,尤其是纳米颗粒的原位实时在线测量,其时间分辨率达到 span style=" font-family: Arial, sans-serif" 250 /span span style=" font-family: 宋体" 微秒,可检测纳米颗粒快速反应合成过程。 /span 近年来基于数字图像处理的颗粒表征技术发展速度非常迅猛,将图像法和其他光学原理结合可以发展出多种在线测量仪器。图像传感器不仅可以用于微米级颗粒的粒度和形貌测量,还可以测量纳米颗粒。 a href=" https://www.instrument.com.cn/webinar/Video/play/105123" target=" _self" strong span style=" color: rgb(0, 176, 240) " 【蔡小舒报告视频回放】 /span /strong /a /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 李文龙 /span /strong 为网友们带来了& nbsp 《API粒径分布与关键工艺参数对片剂溶出行为的影响》。他以卡马西平和茶碱片剂为例,对API粒径大小、处方配比和混料、压片过程的关键工艺参数进行试验设计,并以上述参数作为自变量,以片剂溶出曲线的威布尔方程中的特征参数作为因变量,对片剂的溶出行为进行预测。结果表明,API粒径大小对片剂溶出行为具有显著影响。在研究粒径大小对溶出行为的影响方式时,不能简单作为一个独立因素进行考察,必须与其他处方、工艺参数相结合。 a href=" https://www.instrument.com.cn/webinar/Video/play/105126" target=" _self" span style=" color: rgb(0, 176, 240) " strong 【李文龙报告视频回放】 /strong /span /a /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 杨正红 /span /strong 报告的题目为《静态图像法粒度和形貌分析技术在药品质量控制中的应用》,他详细介绍了颗粒形貌分析的国内外标准、规则,在国际上,ISO13320-2009及USP429等都对激光衍射法测定粒度制定了通则,中国的药典在最新的编订中,也明确提出了增订晶型研究指导原则。在这样的背景下,随着数字化图像分辨和提取技术的不断提高,可以测量粒度粒形分布的静态图像法以及可以准确计数的图像法粒度粒形分析仪拥有了更广阔的空间。 span style=" text-indent: 2em " 报告中杨正红还讨论了如何利用欧奇奥静态粒度粒形分析技术判断晶癖,包括球形度分析及枝晶、孪晶和雪花晶的分布分析和判断。其500nanoXY能够在几分钟内完成数万颗粒的图像采集和统计处理,从而快速提供准确的粒径粒形信息。该仪器具有1000万像素的高分辨工业CMOS云眼相机,可分析60个以上粒径和形貌分析参数,干湿法分析范围低至200nm。并可以进行电镜照片等外源性定量分析、蛋白质聚集体跟踪分析、颗粒色彩分析等。 a href=" https://www.instrument.com.cn/webinar/Video/play/105133" target=" _self" strong span style=" text-indent: 2em color: rgb(0, 176, 240) " 【杨正红报告视频回放】 /span /strong /a /span /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 曹相林 /span /strong 从用户的实践出发,介绍了《原辅料粒度粒形对口服固体制剂体外溶出等质量属性的影响》。她介绍了ICH Q6A、《化学药品新注册分类申报资料要求(试行)》(80号文),讲解了原料药和辅料的粒度分布对药物性能(如:溶解度、生物利用度、含量均匀度、稳定性)以及药物可生产性(如流动性、可压性、混合均匀度)的影响,并重点分享了粒度粒型对药物质量属性影响的经典案例。包括:原料药粒度粒形对均匀性的影响、原料药粒度对稳定性的影响、原料药粒度对溶出的影响、辅料粒度对药物溶出度的影响、辅料粒度对混合和压片的影响等。 a href=" https://www.instrument.com.cn/webinar/Video/play/105124" target=" _self" strong span style=" color: rgb(0, 176, 240) " 【曹相林报告视频回放】 /span /strong /a /p p style=" text-align: justify text-indent: 2em " 最后登场的 strong span style=" color: rgb(0, 176, 240) " 吴送姑 /span /strong 做了《晶体形态学指标的分析与调控》的汇报,随着药物一致性评价工作的推进,社会对药物晶体的晶型、晶习、粒度大小以及分布的关注度越来越高,这些形态学指标对生产效率、成本、后处理性能等有重要影响,更会对药物的释放和生物利用度有影响。因此,晶体形态学指标的调控在结晶过程中非常关键的。常用的晶型分析工具有X射线衍射仪、DSC、TG、红外光谱、拉曼光谱、固体NMR、偏光显微镜、SEM、TEM等。常用的晶习分析工具除了偏光/倒置显微镜、SEM、TEM外,还有原子力显微镜和粒度粒形分析仪。报告中,吴送姑对粒度检测和分析的常用方法进行了总结和分析,并分享了晶体形态学指标的调控及案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105129" target=" _self" strong span style=" color: rgb(0, 176, 240) " 【吴送姑报告视频回放】 /span /strong /a /p p style=" text-align: justify text-indent: 2em " 本次网络研讨会报告专家不仅在行业富有盛望,更展现了严谨、真诚、有担当的学者风骨和谆谆不倦的园丁精神。每位老师的PPT都经过了反复修改和斟酌,务求深入浅出,兼具科学性与实用性,以便给广大网友带来真正的收获。为了保证课程质量,每一位老师都提早进入在线会场进行声音和PPT效果调试,其中杨腊虎老师更亲临仪器信息网现场进行在线报告,杨正红老师采用了网络会议少见的真人视频直播方式开诚讲解。而崔福德老师更让人感动,在开场报告时由于有三页PPT因网络原因没能让网友看到,特地在下午所有报告结束后,重新上线给大家细致讲解。专家们的辛勤付出也赢得了听课网友们的一致美誉和热烈响应,在会议全程与专家们积极互动,踊跃提问,报告专家们也都耐心讲解。而专家之间也在现场展开了积极讨论。为了响应大家的学术热情,会议时间累计约延长了1个小时。 /p p style=" text-align: justify text-indent: 2em " 精彩的探讨不仅说明了制药领域对粒度粒形检测的重视程度日益高涨,也佐证了会议对对相关学术发展的良性促进作用,在高涨的氛围中,会议圆满结束。目前,仪器信息网已将讲座上传到仪器信息网网络讲堂,想要重复学习或者没机会参与讲堂直播的网友,可以点击上文老师报告介绍段末的 span style=" color: rgb(0, 176, 240) " strong 报告视频回放 /strong /span 进行学习与分享。 /p p style=" text-indent: 2em " 查询更多海量制药领域检测解决方案、检测标准点击进入: strong span style=" color: rgb(0, 176, 240) " span style=" font-family: Arial, sans-serif " a href=" https://www.instrument.com.cn/application/industry-S22.html" span style=" font-family: 宋体 " 行业应用栏目——制药 /span / span style=" font-family: 宋体 " 化妆品专场 /span /a /span /span /strong span style=" font-family: 宋体" 。 /span /p
  • 德国新帕泰克5月15日连云港粒度测试技术交流会邀请
    尊敬的用户: 您好!感谢贵单位长期以来对德国新帕泰克公司的关心和大力支持。为了回报您的厚爱并使贵单位能够更好的了解和使用粒度分析仪器,同时为了满足连云港地区医药行业客户对于原料药、DPI、MDI、Nebuliser以及鼻喷制剂等不同产品的粒度分析的更高要求,我司决定将于2018年5月15日在连云港苏宁索菲特酒店举办德国新帕泰克有限公司连云港医药行业粒度测试技术交流会。我们在此诚挚地邀请贵单位的相关领导、技术人员及仪器操作人员亲临会议现场共同分享和交流粒度分析的技术、应用以及发展前景。届时德国新帕泰克有限公司的粒度分析专业人员将做现场技术交流和样品检测。 拟安排的会议内容为:1. 德国新帕泰克公司介绍及产品综述2. 激光粒度仪及干法分散系统介绍3. 激光粒度仪及湿法分散系统介绍4. 激光粒度仪测试方法开发(干法测试、湿法测试)5. 吸入剂、气雾剂、粉雾剂激光粒度仪介绍及应用6. 鼻喷制剂激光粒度仪介绍及应用7. 动态颗粒图像分析仪检测技术的介绍及应用8. 在线粒度分析仪检测技术的介绍及应用9. 仪器的现场样品检测、操作培训和经验分享等 为更好的举办本次医药会议,满足贵单位对仪器原理、操作及维护等的要求,我们诚挚的邀请贵单位相关人员在接收此邀请函的同时,能够以邮件或者电话的形式,反馈您的意见和建议,我们会根据反馈意见汇总,合理安排专题讨论、学习及培训以及就餐事宜,您的积极反馈将是我们的宝贵财富,谢谢!会议时间地点:时间:2018年5月15日地点:连云港苏宁苏菲特酒店 7层 孔望厅地址:连云港市海州区海连中路7号 会议费用:无需注册费,免费提供自助午餐,参会者交通、住宿自理。 如您预参加本次活动,请于4月20日前与我们取得联系:会议联系人:刘洁松 手机:138 1264 1163 邮箱:Jliu@sympatec.com.cn 感谢您在百忙之中对我们工作的支持和帮助,我们会精心安排和准备本次医药行业技术交流会议,并更好的为您服务。谢谢! 德国新帕泰克有限公司苏州代表处
  • 新的药物检测技术—涂布刀片式喷雾质谱法可以筛选出“每一位奥运选手”
    据加拿大滑铁卢大学于Sample Preparation / Base Peak,Feb 9, 2018报道,现在,发现服用兴奋剂的运动员会更容易、更快、更便宜。  加拿大滑铁卢大学研究人员开发的一种新的血液和尿液检测方法,将样品分析时间从30分钟缩短到仅55秒。研究人员正在努力通过使用全自动化工作流程将其进一步缩短至每个样品10秒。“足够快的速度可以每天筛选每一位奥运选手,”滑铁卢波利西恩(Pawliszyn)研究小组的博士后德国的Augusto Gómez-Ríos说。在涉及大规模药物筛查时,成本也是一个因素。该组织正在与业界合作,将每个样品的平均成本从20至100美元,降至仅为几美元。  该检测方法是一种新开发的称为“涂布刀片式喷雾质谱法”的快速现场筛选技术,可以在十亿分之一部分的血液样本条上检测超过100种药物,只需一滴血液或几微升尿液。这就像将一粒方糖溶于奥运会的游泳池后,对水中的的糖进行检测。  该技术利用固相微萃取(SPME)探针从血液或尿样中提取药物。经过简单的清洗步骤后,将该探头直接放在质谱仪前面进行分析。根据Gómez-Ríos的说法,涂层刀片式喷雾质谱法可以将繁琐的样品制备过程减少到一个步骤,并且在不久的将来,它将与简化的质谱仪接口,缩小到PC桌面的大小,可以放置在任何地方。  “涂层刀片式喷涂已被证明可以为世界反兴奋剂机构(WADA)所要求的浓度范围内的不同化合物提供可靠的结果,然后可以对显示阳性结果的样品进行全面的验证分析。”  符斌供稿
  • 杨正红:静态图像法粒度和形貌分析技术在药品质量控制中的应用
    p style=" text-align: justify text-indent: 2em " 药物生产中的关键工艺参数是影响药物和剂型理化性质和生物药剂学性质的重要因素。原料药粉末的大小和晶体形状影响其流动性和压实性能:粒径大且球形度好的颗粒通常比颗粒小但长宽比大的颗粒更容易流动;小颗粒溶解更迅速,并且比大颗粒的悬浮液粘度更高 span style=" text-indent: 2em " 。因此,各国药典中都对相关药物所涉及的粒度问题及测量方法做出了规定。 /span /p p style=" text-align: justify text-indent: 2em " 有关粒度测定的测定方法是随着科学的发展和计算机技术的飞速进步逐渐发展起来的,包括:筛分法、显微镜法、电阻法和光阻法、以及目前非常流行的激光衍射法(光散射法)等(1,2)。然而,随着计算机功能日益强大,数字化图像分辨和提取技术不断提高,可以同时具备上述各种方法能力,可以测量粒度分布、粒形分布,可以准确计数的图像法粒度粒形分析仪正在走向舞台中央(2)。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 一、& nbsp 中国药典中所涉及的药物粒度及测定方法 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 中国药典2020年版四部在通则0982 《粒度和粒度分布测定法》中规定了以下测定方法: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 第一法(显微镜法),用于测定药物制剂的粒子大小或限度。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 第二法(筛分法):用于测定药物制剂的粒子大小或限度,粒度下限在75μm左右的样品。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 第三法(光散射法):即激光衍射法。根据ISO13320-2009,该方法用于测定原料药或药物制剂的粒度分布,适用的粒度范围大约为0.1 μm~3 mm。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: center text-indent: 2em " strong 在中国药典中涉及粒度的药物包括中药、丸药、颗粒剂、外敷软膏、滴眼液、抗生素等, /strong /p p style=" text-indent: 2em text-align: center " strong 如下表 /strong /p table border=" 1" cellspacing=" 0" style=" margin-left: 28px border: none" tbody tr class=" firstRow" td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典一部 /span /p /td td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典二部 /span /p /td td width=" 198" valign=" top" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 中国药典三部 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:14px" 药品名 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 药品名 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 通则 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 所 /span span style=" font-family:等线 font-size:12px" 载 /span span style=" font-family:等线 font-size:12px" 页数 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:12px" 粒度 /span span style=" font-family:等线 font-size:12px" 测定方法 /span span style=" font-family:等线 font-size:12px" 要求 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 人参茎叶总皂苷 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 389 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 灰黄霉素 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 351 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0104颗粒剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 人参总皂苷 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 391 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 曲安奈德注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 362 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0105眼用制剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 心脑欣丸 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 722 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 阿莫西林克拉维酸钾颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 437 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0109软膏剂 /span span style=" font-family:等线 font-size:10px" 、 /span span style=" font-family:等线 font-size:10px" 乳膏剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 冰黄 /span span style=" font-family:等线 font-size:10px" K /span span style=" font-family:等线 font-size:10px" 乐软膏 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 865 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1452 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第三法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0114凝胶剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 妇乐颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 896 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石分散片 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1454 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 0115散剂 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 京万红软膏 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1106 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 蒙脱石散 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1455 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 逍遥颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1 /span span style=" font-family:等线 font-size:10px" 358 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 醋酸甲羟孕酮混悬注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1529 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 通心络胶囊 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1447 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 磷霉素钙颗粒 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1585 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第二法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 障翳散 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1672 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 注射用亚锡聚合白蛋白 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1599 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr tr td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:等线 font-size:10px" - /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 锝[ /span sup span style=" font-family:等线 font-size:10px vertical-align:super" 99m /span /sup span style=" font-family:等线 font-size:10px" Tc]聚合白蛋白注射液 /span /p /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 1607 /span /p /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:等线 font-size:10px" 第一法 /span /p /td td width=" 85" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 47" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 66" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr /tbody /table h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun " strong 二、& nbsp 美国药典中所涉及的药物粒度及测定方法 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 美国药典中涉及粒度分析内容是用于注射液和滴眼液的USP788/789通则,推荐的方法是光阻法和膜显微镜法,主要关注药液中粒度范围在10~24μm& nbsp 和25~50μm(可视范围)的颗粒计数和评价。这些颗粒存在的形式如下: /p p style=" text-align: justify text-indent: 2em " i.& nbsp 不溶的可移动的固体/半固体; /p p style=" text-align: justify text-indent: 2em " ii.& nbsp 单个实体或聚集体; /p p style=" text-align: justify text-indent: 2em " iii.& nbsp 一种或几个物种; /p p style=" text-align: justify text-indent: 2em " iv.& nbsp 化学反应产生的固体 /p p style=" text-align: justify text-indent: 2em " v.& nbsp 制剂变化产生的固体 /p p style=" text-align: justify text-indent: 2em " 这些颗粒物产生的原因包括: /p p style=" text-align: justify text-indent: 2em " i.& nbsp 外源性物质存在; /p p style=" text-align: justify text-indent: 2em " ii.& nbsp 内源性物质存在:包括生产工艺的功能故障和包装来源; /p p style=" text-align: justify text-indent: 2em " iii.& nbsp 制剂固有的颗粒,如生物制品中存在的颗粒。 /p p style=" text-align: justify text-indent: 2em " USP789基本等同于788,但主要针对滴眼液。USP788& nbsp 等同于欧洲药典& nbsp EP5.5& nbsp 和日本药典& nbsp JPXIV,XV。 /p p style=" text-align: justify text-indent: 2em " 关注医疗风险的USP& nbsp 729& nbsp 是以USP788为模板的,适用于所有脂质(10%,20%,30%)。其限定的粒度范围是在0.5~5μm,因为这些颗粒可以机械阻塞微血管。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e7b7b8bd-8869-4621-8e7b-7e23280b37f8.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: justify text-indent: 2em " 但是,USP788所主张的粒度测定方法存在以下问题: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 光阻法的问题:只适用于球形颗粒;气泡和油滴不能分辨,也被计数。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 显微镜的问题:对粒子的判断和解释存在主观意识。 /p p style=" text-align: justify text-indent: 2em " 另外,对于生物制剂中不可见粒子分析,特别是可以通过不同的机制聚集的蛋白质的应用,USP788面临着挑战。因为对于透明、非球形和高浓度的蛋白质聚集体,光阻法和显微镜法无能为力。 /p p style=" text-align: justify text-indent: 2em " 对于口服制剂和原料药(API),USP429规定了激光衍射方法测定粒度的通则。该方法根据ISO标准13320-1(1999) 和9276-1(1998)建立的,整个章节也已经和EP和JP的相应章节进行了协调。USP429指出,此技术并不能区分单个粒子的散射和一团基本粒子的散射,也就是不能区分结块和凝聚。绝大多数的样品都包含结块和凝聚,并且我们主要关注的是基本粒子的尺寸分布,所以在检测前这些结块通常需要分散成基本粒子。虽然ISO13320-2009修改了激光衍射法的应用限制,指出激光衍射法测量粒度只适用于球形颗粒,其测量的误差来源包括非球形、表面粗糙度和不正确的光学参数,USP429也已经指出,被测物质的光学性质和它的结构(如形状、表面粗糙度和多孔性)对于最终结果有影响。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px color: rgb(0, 176, 80) font-family: 宋体, SimSun " strong 三、& nbsp 图像法粒度和形貌分析技术 /strong /span /h1 p style=" text-align: justify text-indent: 2em " 阿扎胞苷为无菌冻干粉针剂,是一种新型表观遗传学抗肿瘤药,是目前唯一被临床证明可延长高风险骨髓增生异常综合征患者总生存期的抗肿瘤药。根据美国药典USP 章节& lt 788& gt 和& lt 729& gt ,必须关注注射类产品中颗粒物对生物学性质的影响。美国药典附录中规定了注射剂分析的主要方法: !--729-- !--788-- !--729-- !--788-- !--729-- !--788-- !--729-- !--788-- /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 可测量尺寸和颗粒计数 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 数据统计非常重要,特别是尺寸小于1 微米的颗粒和数目 /p p style=" text-align: justify text-indent: 2em " 但是,药典中给出的消光法粒子计数器(光阻法)粒度和计数功能只能覆盖2~400 微米,其消光效率无法解决低于2微米的问题。 /p p style=" text-align: justify text-indent: 2em " 自USP 788以来,药物产品已经发生了深刻变化:疫苗、 新癌症治疗药物、纳米颗粒(克服不溶性)、控释微球、聚合物、结晶纳米颗粒、脂质体制剂等新的剂型不断涌现,同时对粒度检测也提出了新的要求。 /p p style=" text-align: justify text-indent: 2em " 2010年12月 8日至10日, 美国药典委员会在马里兰州洛克维尔USP 总部召开了USP有关粒度的专题研讨会,对USP788通则面临的挑战开始寻找和调查替代方法。来自美国Stable Solutions LLC公司的& nbsp David F. Driscoll博士在研讨会上明确指出:要解决小于 1 微米颗粒的技术挑战,包括: /p p style=" text-align: justify text-indent: 2em " ■ 颗粒物理性质 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒筛分 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒计数 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒统计 /p p style=" text-align: justify text-indent: 2em " ■ 颗粒轮廓 /p p style=" text-align: justify text-indent: 2em " 在研讨会上,讨论和考察了一系列新的粒度分析仪器和技术,欧奇奥(Occhio)图像法粒度粒形分析仪也位列其中。而这些挑战对于先进的适用于医药行业的静态图像法粒度粒形分析仪已经迎刃而解。作为下一代粒度分析仪,Occhio& nbsp 粒度粒形分析仪可以进行: /p p style=" text-align: justify text-indent: 2em " ● 颗粒大小及其分布 img src=" https://img1.17img.cn/17img/images/202008/uepic/2a01f9bd-ef39-4e66-860f-aa9e8c443867.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" style=" text-align: justify text-indent: 32px max-width: 100% max-height: 100% float: right " / l& nbsp 颗粒计数 /p p style=" text-align: justify text-indent: 2em " ● 颗粒形状及其分布 /p p style=" text-align: justify text-indent: 2em " ● 干法或湿法,动态或静态 /p p style=" text-align: justify text-indent: 2em " ● 适用于悬浮液、乳浊液、泡沫、颗粒、粉末、纤维 /p p style=" text-align: justify text-indent: 2em " ● 同时具有激光粒度仪、库尔特法或光阻法计数器和显微镜的功能 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong 1.& nbsp 粒度粒形分析仪的组成 /strong /p p style=" text-align: justify text-indent: 2em " 粒度粒形分析仪有硬件和软件两个部分。硬件部分由分散系统、进样系统和成像系统组成。其中成像系统是核心部件(见表2)。成像系统检测的是颗粒群中每个颗粒的尺寸,因此必须使用分散系统以保证颗粒之间没有团聚。 /p p style=" text-align: justify text-indent: 2em " 根据被测物料的介质是气态还是液态,可分为干法分散系统和湿法分散系统:湿法分散系统是将颗粒分散在液体介质中, 干法分散系统是将颗粒在空气中直接分散。与激光粒度分析仪的干法系统不同,图像法的干法分散样品是可以回收并重复测定的,因此具有极大的优越性。所以,应该提倡“干样干测,湿样湿测”,最大程度地保持样品的初始状态。干法测定可以极大简化样品准备过程,避免粉体样品在液体介质中团聚的可能。 /p p style=" text-align: center text-indent: 0em " strong 表2& nbsp & nbsp 粒度粒形分析仪的成像系统组成及功能 /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent:0 text-align:center line-height:24px" strong span style=" font-family: 宋体 font-size: 14px" 成像系统部件 /span /strong strong /strong /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent:0 text-align:center line-height:24px" strong span style=" font-family: 宋体 font-size: 14px" 功能 /span /strong strong /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 光源 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family: 宋体, SimSun " span style=" font-family: 宋体 font-size: 14px " 单色 /span span style=" font-family: Arial font-size: 14px " ( span style=" font-family: 宋体 " 脉冲 /span span style=" font-family: Arial " ) /span /span span style=" font-family: 宋体 font-size: 14px " 光 /span span style=" font-family: Arial font-size: 14px " 可避免 /span span style=" font-family: 宋体 font-size: 14px " 颗粒对光的衍射 /span span style=" font-size: 14px font-family: 宋体, SimSun " 产生虚影 /span span style=" font-family: Arial font-size: 14px " span style=" font-family: Arial " , /span span style=" font-family: 宋体 " 得到边界清晰的颗粒图形,优于白光 /span /span /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 扩束单元 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 根据不同缩放倍率的镜头调节输出光束的直径 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 测试区 /span span style=" font-family:Arial font-size:14px" ( span style=" font-family:宋体" 样品池 /span span style=" font-family:Arial" ) /span /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-size: 14px font-family: 宋体, SimSun " 颗粒与脉冲光的作用区 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 光学系统 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 不同的放大倍率和相应的测试范围相适应;好的光学系统不存在像差 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 工业相机 /span /p /td td width=" 536" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-indent: 0 line-height: 24px" span style=" font-family:宋体 font-size:14px" 是远高于普通摄像机成像和存储速率的图像拍摄装置 /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " 进样装置:物料在进入成像系统或分散系统前,需要调节到一定的浓度,以得到最佳的分散/检测效果: /p p style=" text-align: justify text-indent: 2em " ● 湿法:通过加入不同体积的颗粒量进行调节,由注射泵(可相对计数)、蠕动泵(可相对计数)或离心泵(动态湿法,只能绝对计数)将样品带入位于光路中的样品池(见图1左)。 /p p style=" text-align: justify text-indent: 2em " ● 干法(动态):由振动进样单元控制, 调节单位时间的进样量,然后进行自由下落式分散或气流分散。气流分散包括喷射式分散和横向分散,其中横向分散对样品扰动最小,并能使样品处于势能最低的位置,准确采样(见图1右)。 /p p style=" text-align: justify text-indent: 2em " ● 干法(静态):将分散在载玻片上的颗粒样品通过机械传动装置,直接置于成像系统的测试区。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8bb76125-ecf2-4849-b334-73e54d8ef431.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center text-indent: 0em " strong 图 1& nbsp & nbsp & nbsp & nbsp & nbsp 湿法和动态干法粒度粒形分析仪示例 /strong /p p style=" text-align: justify text-indent: 2em " 左图:Occhio& nbsp FC200& nbsp 湿法粒度粒形分析仪原理图,包括光源、变倍率远心镜头、高分辨相机、样品池和内置注射泵,检测下限低于200nm。可外置湿法分散模块; /p p style=" text-align: justify text-indent: 2em " 右图:Occhio& nbsp Zephyr& nbsp LDA& nbsp 动态干法粒度粒形分析仪原理图,包括振动进样单元、横向气流分散装置、样品池自动吹扫系统、成像系统和真空样品回收系统。 /p p style=" text-align: justify text-indent: 2em " 静态法图像分析仪器对样品扰动少,安全性高,还可以对颗粒进行计数,统计量达上万个,既可以替代扫描电镜,也可以替代激光粒度仪,测量、描述和验证方法的执行标准包括GB/T 21649.1-2008和ISO 13322-1。应用3D软件和反射光分析技术,还可以对混合物样品进行颜色分析,估算各种单质的比例。一次实验可以得到多个结果,数据量极为丰富,是药品研发和质控表征技术升级改造必备的分析手段。 /p p style=" text-align: justify text-indent: 2em " 专用的图像法粒度和形貌分析仪还可用于蛋白质聚集体或结晶反应过程的跟踪分析。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/50270e2a-5150-451f-bc87-57bc4caf3935.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" / /p p style=" text-align: center " strong span style=" font-size: 14px font-family: 宋体, SimSun " span style=" font-size: 14px " 图 /span 2 a href=" https://www.instrument.com.cn/netshow/SH103908/C261986.htm" target=" _self" 下限低于200nm的Occhio 500nano XY& nbsp /a /span /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/SH103908/C261986.htm" target=" _self" strong span style=" font-size: 14px font-family: 宋体, SimSun " 静态干湿法粒度粒形分析仪及其各部分功能说明 /span /strong /a /p p style=" text-align: center " strong (点击了解仪器更多详情) /strong br/ /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp 原料药(API)或晶型药物的分散 /strong /p p style=" text-align: justify text-indent: 2em " 分散器是粒度分析仪器的主要组成部分。良好分散的要求是: /p p style=" text-align: justify text-indent: 2em " ● 颗粒必须被分开; /p p style=" text-align: justify text-indent: 2em " ● 在分散过程中,样品的尺寸和形状不应该被改变。 /p p style=" text-align: justify text-indent: 2em " ● 较小的颗粒和较大颗粒必须以相同方式分离。 /p p style=" text-align: justify text-indent: 2em " ● 分散过程可以重复几次,并在同一样品上再现相同的结果。 /p p style=" text-align: justify text-indent: 2em " 通常,药物制剂中最重要的产品是API,一般通过粉末的晶体形态对其进行表征,其尺寸分布从亚微米到几百微米不等。部分API可能由精细,脆弱的针状晶体组成,这些颗粒通常与小纤维相似。图3比较了三种分散样品的方法,数据表明:只有方法C提供了正确的粒度粒形值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0f3c1e27-a105-434c-9be2-605f52876da2.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图3. & nbsp 不同分散方法的比较 /strong /p p style=" text-align: justify text-indent: 2em " A 手动分散:有颗粒团聚体存在且分布不均匀; /p p style=" text-align: justify text-indent: 2em " B 脉冲空气分散:可以看到,由于进气压力的存在,导致晶体颗粒被破坏; /p p style=" text-align: justify text-indent: 2em " C & nbsp Occhio可控的真空分散:这种分散是均匀的,且脆弱的晶体颗粒没有被破坏; /p p style=" text-align: justify text-indent: 2em " 可控的真空分散方法(2)分散API颗粒(图2),不仅样品用量少,而且保证分散过程中样品的完整性,并可进行重复分析。与空气喷射式干法相比,不仅可以保证晶型不被气流破坏,而且可以减少与环境大气相关的污染,继而用统计软件来详细描述颗粒结构,并提供可对比的尺寸形貌研究。 /p p style=" text-align: justify text-indent: 2em " 图4对比了两种不同分散方式得到的样品粒度结果。由图4可见,曲线之间存在着非常重要的差异。在小于10μm(点2)的区域,可以看到存在大量的细粉。这些颗粒是因为分散期间的晶体断裂产生的(空气分散,图3B)。蓝色曲线中粗颗粒更多(点1),这些不是真正的晶体,而是由于颗粒的非均匀分布而引起的团聚。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2b0b6f57-5aa9-4668-b878-355e38048903.jpg" title=" 图片6.jpg" alt=" 图片6.jpg" / /p table border=" 1" cellspacing=" 0" style=" margin-left: 9px margin-right: 9px border: none" align=" center" tbody tr class=" firstRow" td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" 粒径 span style=" font-family:Times New Roman" (μm) /span /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P10 /span /strong strong /strong /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P25 /span /strong strong /strong /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P50 /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P75 /span /strong strong /strong /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 font-size: 12px" P90 /span /strong strong /strong /p /td /tr tr td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 color: rgb(0, 0, 255) font-size: 12px" 空气分散 /span /strong strong span style=" font-family: 等线 color: rgb(0, 0, 255) font-size: 12px" & nbsp (蓝线) /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 11.6525 /span /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 20.7521 /span /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 32.8848 /span /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 56.1393 /span /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 78.3827 /span /p /td /tr tr td width=" 140" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: & #39 Times New Roman& #39 color: rgb(255, 0, 0) font-size: 12px" Occhio span style=" font-family:等线" 真空分散 /span /span /strong strong span style=" font-family: 等线 color: rgb(255, 0, 0) font-size: 12px" (红线) /span /strong strong /strong /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 11.0459 /span /p /td td width=" 95" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 17.4914 /span /p /td td width=" 94" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 26.0854 /span /p /td td width=" 85" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 34.6795 /span /p /td td width=" 88" valign=" center" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 Times New Roman& #39 font-size:12px" 44.3478 /span /p /td /tr /tbody /table p style=" text-align: center text-indent: 0em " strong 图4& nbsp & nbsp 同一样品不同分散方法得到的累计粒度分布图(横坐标为筛分直径) /strong /p p style=" text-align: justify text-indent: 2em " 事实上,图像法粒度及粒形分析已经进入USP1787。由于ISO13322-1把显微镜归于静态图像法,美国药典将图像法粒度分析仪看作“流动的显微镜”。目前,欧奇奥图像分析技术为技术不仅能提供ISO9276-6定义的粒度和粒形参数,还另外发展了五十多个粒度分布和形貌分布参数以及色彩分布参数。这些先进的图像分析技术已经应用到世界各大著名药厂,包括Sanofi (France, Germany)、Unilever (UK)、GSK、Novartis、Janssens、Fresenius、Boehringer Ingelheim、Lilly、Therapeomic、Nycomed、Pfizer、Biomé rieux、Cytheris、Stryker、Ethypharm、Even Sante、Glatt等,并且在中国药企中也开始发挥作用。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 四、& nbsp 图像法粒度和形貌分析技术在药品质量控制中的应用 /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong 1. & nbsp 药物一致性研究: /strong /p p style=" text-align: justify text-indent: 2em " 一般认为造成仿制药物与原研药物、不同企业生产的同种药物、同一企业的不同生产批号药物临床疗效差异的原因大多数是来自于固体化学药物的晶习在状态的变化。同一种药物由于晶型不同,其不仅物理性质会有所不同,而且其生物活性也会有明显差异。有些药物的不同晶习,生物活性不仅差异显著,而且干扰了药物的临床应用。 /p p style=" text-align: center text-indent: 0em " strong 表3 仿制药晶型表征推荐参数 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8d43f5dd-489d-4724-a613-1d78202594bb.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp & nbsp API颗粒的球形度研究和修饰: /strong /p p style=" text-align: justify text-indent: 2em " 原料药粉末(API)的大小和形状影响其流动性和制剂时的压实性能。球形度好的大颗粒通常比较小的颗粒或长宽比大的颗粒更容易流动;更小的颗粒溶解更迅速,并导致比颗粒较大的悬浮液粘度更高。 /p p style=" text-align: center text-indent: 0em " strong 表4 & nbsp & nbsp API颗粒球形度推荐参数 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/11afd57d-6b1b-4746-9d92-d2ab60e13cc0.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 3.& nbsp 不溶性微粒检测和蛋白质聚集体监控: /strong /p p style=" text-align: justify text-indent: 2em " 药品包装材料对药物本身的污染和生物制品因不稳定产生的蛋白质聚集体是药品生产和安全贮存研究的重大课题。药物中的外源性颗粒包括纤维、昆虫部分、花粉和营养物质、纤维素、绒、矿物质、玻璃、塑料、橡胶、金属和油漆、上皮细胞、衣物碎片和毛发;内源性颗粒包括硅油。虽然硅油是大部分产品的必需添加剂,但它会产生人造颗粒或不想要的颗粒,或由于未控制或过量使用而影响治疗成分的稳定性。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f05b506a-f14c-4098-acc2-5d8940c4e175.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: center text-indent: 0em " strong 图5& nbsp & nbsp Occhio图像粒度分析仪检测不溶性大颗粒(左侧二维图可区分不同的颗粒形状分布) /strong /p p style=" text-align: justify text-indent: 2em " 生物制剂中的蛋白质聚集是我们不想看到的,但又无法避免,因此需要监控其聚集的程度;检测范围增加2-5μm和5-10μm的量,也是为了很好的监控其聚集程度。乳液也存在类似情况,因此,要对2μm以上的大乳粒进行分析和监控。 /p p style=" text-align: justify text-indent: 2em " 上述颗粒的种类无法通过传统的计数方法加以区分,而通过粒度粒形分析均可以分别计数和统计,还可以排除气泡的影响,这在传统方法的检测结果中是无法避免的。图5是不溶性大颗粒的应用举例。光阻法测试大颗粒只能给出粒径和数量,但很多纤维状或片状颗粒误认为小颗粒或者超大颗粒,造成假性结果,而对透明颗粒(如微塑料),只有高端的图像法粒度仪可以区分识别(图6)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0ca594e7-b0c5-4e72-b774-42badea3d214.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: center text-indent: 0em " strong 图6& nbsp & nbsp Occhio IPAC2图像粒度分析仪检测透明大颗粒(图左)和发现纤维及团聚体(图右) /strong /p p style=" text-align: justify text-indent: 2em " 4. 破壁中药粉体的破壁效能及破壁成分 /p p style=" text-align: justify text-indent: 2em " 固体药物制剂中,药物的颗粒大小影响药物从剂型中溶出及释放的速率,进而影响药物的疗效与生物及利用度。对难溶性固体药物而言,其粉末愈细,粒径愈小,比表面积愈大,溶解速度愈快,药物吸收速度也愈快,吸收量愈多,药效就愈好。因此减少制剂中固体颗粒的大小,有利于药物的溶出,也有利于难溶药被人体吸收,进而提高药物的疗效及生物利用度。但过细的粉末易因粉体团聚而导致流动性较差,影响药物制作过程。超细药物粉体在应用过程中因其溶解速度快,人体吸收快,易使人体中毒,因此需要更加精准的配方设计及临床测试。 /p p style=" text-align: justify text-indent: 2em " 采用不同的粉碎技术对天然药物或者合成药物进行粉碎所获得的药物粉体,具有不一样颗粒大小,形状,表面能,比表面积等,对医药粉体后续的制剂的工艺性能及产品质量影响甚大。 /p p style=" text-align: justify text-indent: 2em " 中药破壁饮片是将符合《中国药典》要求并具有细胞结构的中药饮片,经现代破壁粉碎技术加工至D90<45μm粉体,加水或不同浓度的乙醇粘合成型,制成30~100目的原饮片全成分的均匀干燥颗粒状饮片。 /p p style=" text-align: justify text-indent: 2em " 我们对丹参破壁饮片用500nano XY 静态粒度粒形分析仪(图2)进行了分析研究,发现小于1微米的颗粒数量占30%,最小粒径可接近0.2微米,说明破碎后有大量细胞器释放出来。通过3D粒形分析,利用Occhio颗粒形貌3D复合标度分析——“腋瓣(Calypter)”技术,并与相应的电镜照片比对,提示我们破壁中药微粉中释放出的各种细胞器(见图7),从而为进一步提高药效和生物利用度指明方向。 /p p style=" text-align: justify text-indent: 2em " 另外,表面处理技术对药物的生物利用度及疗效也存在极大影响。医学研究表明,人体接受药物之后,因药物存在的表面状态不同而产生不完全一致的效应,进而对生物利用度及疗效有着显著的影响。利用粉体表面改性技术修饰医药粉体表面,可以获得具有合适生物利用度及疗效的医药产品。如:利用表面包覆或为胶囊化控制药物的释放速率,进而改变或者控制药物的生物利用度及疗效。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/dd96ce20-fb88-4cd2-b6e0-6e8c01358639.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图7& nbsp & nbsp 用Occhio颗粒形貌3D复合标度分析技术鉴定 /strong /p p style=" text-indent: 0em text-align: center " strong 丹参破壁粉体中的氩细胞器(下)并与电镜照片对比(上) /strong /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px font-family: 宋体, SimSun color: rgb(0, 176, 80) " strong 五、总结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 创新性的粒度粒形分析仪器,适用于药物发现、化学和制剂开发以及药物生产领域的质量控制。静态图像法粒度分析技术也符合ISO13022和2020版中国药典0982规则,可针对一系列针剂、胶囊剂和口服制剂进行了药品质量分析表征的研究,并帮助使用者开发稳健的配方,由此获得具有生物利用度的稳定药品。 /span /p p style=" text-align: justify text-indent: 2em " 适当的分散方式是确保API稳定性以及正确的粒度粒形结果的基础。采取可控的真空分散程序,才能保证符合大多数药物法规中要求的测量稳定性和可重复性。 /p p style=" text-align: justify text-indent: 2em " 随着生物药物市场关注度和资金投入的迅猛增长以及人们对具有特殊用途的新颖生物药物的需求不断增加,这一行业在确保提供起效快且安全可靠的治疗药物方面正面临越来越大的压力。着眼于单克隆抗体、重组蛋白、疫苗、寡核苷酸等生物分子的生物制药开发和生产过程漫长、十分复杂,同时面临非常特殊的分析挑战。不依靠显微镜的可变倍率显微成像扫描尖端技术可直接测量透明粒子大小和形态, 并对蛋白质聚集体进行跟踪分析,保证粒度和粒形的最终结果统计可信度。为降低生物大分子制剂的风险,将计数器、显微镜和激光粒度分析表征方法融于一身,不仅可以及时提供准确的数据,而且精简了流程,消除了瓶颈,提高了效率。最新一代的颗粒分析技术必将推动新药的开发和药品质量控制的提升。 /p p style=" text-align: justify text-indent: 2em " strong 参考文献: /strong /p p style=" text-align: justify text-indent: 2em " 1.& nbsp Vincent Chapeau, Christian Godino. & nbsp Method and device for dispersing dry powders. US 20110120368 A1, 2011 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 杨正红& nbsp , 欧阳亚非 . 静态图像粒度分析中真空分散器原理和分散效果解析 . 现代科学仪器 .2019,1:65-68. /p p style=" text-align: justify text-indent: 2em " 3.& nbsp Wadel, H. (1932), Volume, shape, and roundness of rock particles, Journal of Geology, vol.& nbsp 40, pp. 443-451. /p p style=" text-align: justify text-indent: 2em " 4.& nbsp Krumbein, W.C. (1941), Measurement and geological significance of shape and roundness of& nbsp sedimentary particles, Journal of Sedimentary Petrology, vol. 11, No. 2, pp. 64-72. /p p style=" text-align: justify text-indent: 2em " 5.& nbsp Krumbein, W.C. and Sloss, L.L. (1963), Stratigraphy and Sedimentation, Second Edition,& nbsp W.H. Freeman and Company, San Francisco, p. 660. /p p style=" text-align: justify text-indent: 2em " 6.& nbsp Powers, M.C. (1953), A new roundness scale for sedimentary particles, Journal of& nbsp & nbsp Sedimentary Petrology, vol. 23, No. 2, pp. 117-119. /p p style=" text-align: justify text-indent: 2em " 7.& nbsp Barrett, P.J. (1980), The shape of rock particles, a critical review, Sedimentology, vol. 27, pp.& nbsp 291-303. /p p style=" text-align: justify text-indent: 2em " 8.& nbsp ISO9276-6:2008 粒度分析结果的表述 第6部分:颗粒形状和形态的描述和定量表征 /p p style=" text-align: justify text-indent: 2em " 9.& nbsp Tudor& nbsp Arvinte ,& nbsp Emilie& nbsp Poirier, Caroline& nbsp Palais. Prediction of Aggregation In Vivo by Studies of Therapeutic Proteins in Human Plasma. Biobetters pp 91-104. Springer, New York, NY, 2015 /p p style=" text-align: right text-indent: 2em " strong 作者: /strong /p p style=" text-align: right text-indent: 2em " strong 杨正红 /strong /p p style=" text-align: right text-indent: 2em " strong 仪思奇(北京)科技发展有限公司总经理 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /p
  • 国内首个他达拉非新剂型获批,原料药粒度成决定因素
    一直以来,他达拉非的药物剂型只有口服片剂,由于他达拉非水溶性差,生物利用度低,为了达到同等效果,所需的原料药量较多,增加了成本。因此开发新型制剂也成为了国内药品企业追逐的热点。今年,国内首个他达拉非口溶膜新剂型获批,为患者提供了新选择。片剂药物需要到达胃部崩解后,经过胃肠粘膜吸收,而口溶膜则可以在口腔中迅速溶解分散,有效成分经口腔粘膜吸收进入血液循环,有效避免服用片剂对内脏器官造成的损害,达到起效速度更快的效果。据国家药监局网站信息,获批的他达拉非口溶膜剂量分别为2.5mg/5mg/10mg,相对于片剂规格剂量5mg/10mg/20mg,剂量减半,说明口溶膜剂型的生物利用度更高。不仅如此,低剂量用药还能降低鼻塞、头晕头痛、消化不良等不良反应。此药物生物利用度的提高,使用更小粒度的原料药,增加原料药的比表面积从而增加生物利用度是关键。通常来说,难溶性原料药颗粒越小,越能改善药物的吸收率和生物利用度。但与此同时,颗粒越小,比表面积增加,颗粒的流动性也越差,对于片剂的生产难度加越大,难以保证每个药片中载药量的一致性。而口溶膜是将原料药加入到介质中制成的,这样有利于药物的混合,有利于保证载药量的一致性。在原料药微粉化过程中,需要对原料药的粒径进行准确检测。本文采用Bettersize2600激光粒度分析仪检测三种不同微粉化的他达拉非原料药,其粒度分布形态和数据,如图1所示。图1. 三种不同微粉化他达拉非原料药的粒度分布形态及数据从图1看到,三种原料药的粒度分布形态和数据有明显的差异,A、B和C样品的D97分别为11.45μm、14.32μm和35.34μm。从粒度分布看,A样品小于1μm的细颗粒含量最多,B样品次之,C样品最少,说明A样品的微粉化效果最好,B和C样品微粉化效果逐渐变差。据研究,原料药在最大粒径(D97)小于15μm、中位粒径(D50)小于2.5μm时,效果较好。由于采用更细的原料药,他达拉非口溶膜剂型具有吸收快、起效快、服用简便等特点,成为一种获得药监局批准上市的新剂型。丹东百特研制的Bettersize2600激光粒度分析仪,具有准确性和重复性好、操作简便、速度快等特点,符合药企GMP要求,是药物微粉化粒度检测与控制的必备仪器。
  • 农药减量增效的关键在于“粒度分布及其控制”——访中农立华农药应用研发中心主任张小军
    农药是重要的农业生产资料,在有效防治病虫草害,保障粮食产量、安全方面发挥重要作用。但是农药利用率低下,大部分通过径流、渗漏、飘移等流失,对环境、生物及人体健康构成威胁。为降低农药使用量同时提高利用率,自2015年以来,农业农村部深入开展化肥农药使用量零增长行动,推进化肥农药减量增效。研究发现,农药制剂有效成分在喷施后形成的微粒粒度是影响药效的关键因素之一,合理控制粒度可充分发挥农药的药效潜能。为探究制剂粒度对农药施用效果的影响,近日,仪器信息网走进中农立华生物科技股份有限公司农药应用研发中心,与中心主任张小军博士进行了深入交流。中农立华农药应用研发中心主任 张小军博士10年间,中农立华生物科技股份有限公司从不足10亿元发展到66.4亿元,从原药、联销、分装,延伸到制剂研发、应用技术、农药出口、植保机械… … 2019年,公司十周年高峰论坛上,面对环保高压、新《农药管理条例》、供给侧结构改革等给农化行业发展带来巨大的影响,中农立华确立打造“科技立华、服务立华、绿色立华”以更好地服务三农。为落实科技创新战略,2020年10月,中农立华农药应用研发中心实验室落成,研发中心设有制剂研发、产品化学检测、残留化学检测实验室三个区域,致力于制剂技术、植物保护产品及分析检测技术的研究和应用,将进一步促进公司各业务板块协同发展,为公司和行业提供更多技术支持与服务。中农立华农药应用研发中心主任 张小军博士主要从事农药制剂研发、分析及应用技术工作,从业经历近20年,为国务院政府特殊津贴获得者。农药减量增效的关键在于“粒度分布及其控制”诺贝尔奖获得者、世界著名小麦科学家Noman K. Borlang曾说过:“没有农药,人类将面临饥饿的危险。”据美国农业部和世界粮农组织测算,停止使用农药将导致作物产量降低30%,农产品价格提高50%-70%;农药使用可挽回全世界农作物总产量30%~40%的损失。农药是国家稳定和经济发展的重要战略物质,在当下及未来很长一段时间内不可或缺。我国为农药原料药生产大国,但原料药并不能直接使用,消费者终端实际使用的是制剂,农药制剂行业的发展受到越来越多关注;近15~20年来,中国在环境友好的农药制剂方面的进步很大。中农立华自主研发30%二甲戊灵悬浮剂、46%氟啶∙啶虫脒水分散粒剂等产品深耕市场多年,获得良好口碑,先后获得国家发明专利授权,取得了良好的经济和社会效益,这些成绩的背后离不开产品性能的精细化控制;此外,2020年6月由中农立华农药应用研发中心与天津立华牵头起草的《30%二甲戊灵悬浮剂》团体标准正式通过“CCPIA标准”委员会专家组评审,标准编号为T/CCPIA 046-2020。回顾我国农药发展历程,张小军说到:“我国农药研发及产业化取得了明显进展,与发达国家的差距正在缩小,已成为继欧美、日本后,为数不多的具备农药创制能力的国家。聚焦农药制剂,研发水平进步则更快,我刚入行时,从业人员规模区区几百人,如今已超过5000人,为我国农药制剂发展奠定了良好基础;近年来,我国在水基化环境友好型农药制剂,如悬浮剂、悬乳剂、水乳剂以及水分散粒剂等都取得了显著的成绩,尤其在干悬浮剂、可分散油悬浮剂等新剂型方面积累了大量经验和应用案例。当然,行业快速发展的同时也存在一些短板,如研发体系不健全,精细化程度不够,系统研究人员欠缺,难以组建完整的研发团队等,这些都是我们今后需要完善的。”“我在全国制剂大会中提出,可控粒径对于制剂研发至关重要,也是衡量研发水平的重要体现。当前国家出台相关政策,提倡农药减量增效,大家开始关注制剂稀释后的界面性能,其实,液液、固液分散体系中有效成分的粒度对于制剂应用效果的影响也很大,粒度控制越小,比表面积越大,接触生物靶标越充分,防治效果越好。此外,针对一些低熔点化合物的制剂,粒度分布是判断其研发成功与否的关键。粒度控制可助力农药减量增效,也是未来农药制剂的发展方向之一。”张小军继续讲到。10多年的农药制剂研发检测和评价实践——静态光散射与图像颗粒分析技术粒径控制离不开粒度分析仪器的助力。张小军十余年间,先后使用过3台激光粒度仪和1台粒度粒形分析仪,均购自丹东百特仪器有限公司,目前实验室正在运行的是去年新购置的Bettersize2600激光粒度仪与BT-1600静态图像颗粒分析系统。据张小军介绍,他用过的这3台激光粒度仪体积逐渐减小,性能则不断提升;期间还到访过百特两次,见证了这家国产仪器厂商的成长,感触最深的是企业近十年的发展之快,近日,百特12台顶级激光粒度分布仪批量出口德国,性能得到国外用户的充分认可,更为其国际化进程增添了浓墨重彩的一笔。农药制剂行业以应用技术为主,当初选购激光粒度仪时,操作人员比较关注仪器的重现性、数据可靠性、操作便利性、性价比几个重要指标。“同行交流是我们调研的主渠道,实践是检验仪器水平的重要标准。”张小军告诉笔者,“同大多数行业一样,在农药制剂细分领域,实验室在采购仪器时都会优先考虑进口品牌,但粒度分析产品不然。国产激光粒度仪在此领域占有率很高,尤其是百特的产品性价比高、售后服务到位、口碑好,所以值得信赖。另外,激光粒度仪的测试范围与准确度,以及不同剂型的通用性或者共用性,一台设备能否同时测定水溶性和油溶性的制剂、微米和纳米级的制剂等,都是研发人员关注的信息。经测试,百特的仪器可以满足我们的需求,还可以提供专业的解决方案。在日常使用过程中,针对不同粒径的悬浮剂、可分散油悬浮剂,百特的激光粒度仪都能测定出科学可靠的数据,满足我们的评价要求;尤其结合图像分析仪,在评价低熔点、水溶性活性成分体系,以及颗粒长大、结晶等方面都能做出很好的判断,是农药制剂研发检测和评价中的利器。”实验人员正在操作Bettersize2600激光粒度仪(图左)与BT-1600静态图像颗粒分析系统(图右)好仪器是用户和仪器企业一起“用”出来的除激光粒度仪及部分实验室常用设备外,实验室鲜见国产品牌的影子,张小军对此感慨良多:“好仪器是用出来的。百特成立26年之久,但发展最快的阶段是近十年,因为其仪器使用者越来越多,反馈与建议随之增多,促使仪器性能反复改进并优化。同样,各行业要给予其他国产仪器试错的机会,帮助其成长。”采访最后,谈及对百特产品和服务的改进建议,张小军坚定地说:“几乎没有,他们已经做的很好了”,他沉思片刻又说:“既然有这样一个问题,我就提一点,希望百特能深入农药制剂研发和生产检测单位,实地调研交流,线上线下联动,加强与客户之间的互动,收集客户在仪器使用过程中遇到的问题或建议,及时了解并满足其最新需求,如此,百特的产品才能在农药制剂行业始终保持领先。”“百特是典型的‘专精特新’企业,小而精。专业的人做专业的事情,百特在董青云总经理的带领下取得了很多靓丽的成绩,他们有一支专业的队伍,其激光粒度仪在国内销量稳居第一。我相信国内其他检测仪器设备也会取得如此突破,解决一系列‘卡脖子’的问题。我从百特身上看到了希望,这就是民族制造业的希望和代表。”后记应用研发是整个农药研发中重要的一环,但技术研发枯燥、充满不确定性,张小军何以坚持如今?他告诉笔者,一是对这份工作的热爱,取得成绩的喜悦与满足感只是动力,内心的喜欢才是坚持的源泉;二是拥有优秀的平台和团队,团队的融洽相处与共同的荣誉感是研发成功的保障;三是要有视野,不断学习、借鉴、思考、总结才能持续提升与进步。这也是一位研发人员的基本素养。
  • Bettersize2600激光粒度分析仪测试托拉塞米原料药
    托拉塞米为难溶性药物,原料药颗粒的大小不仅影响药品制备过程中的可加工性,更主要的是影响药物颗粒的溶解性,影响其生物等效性,因此对于托拉塞米颗粒粒度检测是非常重要的。本文使用Bettersize2600激光粒度分析仪测试两款托拉塞米颗粒的粒度,考察两款托拉塞米的差异。湿法或干法对粒度结果的影响湿法是把托拉塞米分散在水或有机溶剂中,通过搅拌、超声以及添加分散剂的方式使粉体颗粒达到良好的分散。图1. 1#托拉塞米样品随分散时间变化曲线(上) 2#托拉塞米样品随分散时间变化曲线(下)由上图来看,1#托拉塞米样品,随着分散时间的增加颗粒粒度逐渐变小,当超声时间达到90s以后基本达到稳定状态。而2#托拉塞米样品,随着分散的进行D10、D50和D90反而增大。图2. 1#托拉塞米样品(A)与2#托拉塞米样品(B)的显微图像这主要是由于两款托拉塞米微粉的粒径差异较大。1#托拉塞米颗粒较大,2#托拉塞米颗粒较小,小颗粒比表面积大,溶解较快,导致粒径逐渐变大。从样品的遮光率变化来看(图3所示),1#托拉塞米遮光率稳定不变,2#托拉塞米遮光率逐渐降低,也进一步证实了2#托拉塞米有溶解现象。图3. 1#与2#托拉塞米遮光率随时间变化曲线从湿法测试结果来看,1#托拉塞米分散90s后结果基本稳定,而2#托拉塞米由于有溶解现象,导致颗粒粒径逐渐变大,因此对于粒径较小的托拉塞米原料药不建议采用湿法测试。干法测试是把托拉塞米干粉直接放到干法进样器中,通过压缩空气将样品“吹过”测试区,从而实现粒度测试。干法测试时,气压将影响结果,我们先用压力滴定的方式,看看能不能找到结果稳定的压力。图4. 1#托拉塞米压力滴定曲线(上) 2#托拉塞米压力滴定曲线(下)从上面两个压力滴定曲线来看,1#托拉塞米随着分散压力增大颗粒粒度逐渐降低,无稳定的平台,这是因为1#托拉塞米的颗粒为片状。空气压力不断将颗粒打碎,导致无稳定的分散平台,这种现象在ISO13320中也给出提示,对1#托拉塞米分散压力选择要慎重。2#托拉塞米当分散压力在0.2~0.4MPa之间,粒度结果都处于相对稳定的状态,说明颗粒达到相对稳定的分散状态,未被进一步破碎,因此2#托拉塞米样品适合用干法激光粒度仪测试粒度。湿法和干法测试的粒度结果由于两款托拉塞米样品差异较大,建议选择丹东百特干湿法两用激光粒度仪Bettersize 2600激光粒度分析仪,用配备的湿法进样器测试颗粒较大的1#托拉塞米,用干法进样器测试颗粒较小的2#托拉塞米,这样对于两款原料药都可以得到较为准确的且具有良好重复性和准确性的粒度结果。图5. 1#托拉塞米样品粒度分布图(上) 2#托拉塞米样品粒度分布图(下)结论1.1#托拉塞米颗粒为片状,易碎,因此建议采用湿法激光粒度仪进行粒度测试,避免干法对颗粒造成破碎,从而影响粒度测试结果的准确性。2.2#托拉塞米样品颗粒较小,比表面积大,在水中有溶解现象,因此建议采用干法激光粒度仪进行粒度测试,避免因小颗粒快速溶解而影响粒度测试结果的准确性。3.选用既有干法进样器、又有湿法进样器的干湿法两用激光粒度仪Bettersize2600,能准确测试两款物性差异较大的托拉塞米样品的粒度。
  • 德国新帕泰克粒度技术交流会邀请函
    尊敬的先生/女士:   您好!非常感谢您对德国新帕泰克的大力关心和支持。   德国新帕泰克是集研发、生产和销售为一体的世界顶级的专业粒度分析仪制造商,是首部激光粒度仪国际标准ISO 13320主要技术内容提供者。公司主要产品有:基于激光衍射原理的激光粒度仪,基于超声衰减原理的湿法粒度仪,基于光子交叉相关光谱原理的纳米粒度仪和基于成像原理的粒度粒形分析仪。新帕泰克凭借专业的粒度知识及先进的技术力量,给客户提供全面的实验室及在线粒度分析仪。   基于德国新帕泰克公司生产研发的粒度仪在中国的市场的应用越来越广泛,我公司将于2011年6月17日在成都香格里拉大酒店剑阁厅召开学术研讨会,以便贵单位/公司能更全面地加深对粒度测量技术及相应仪器的了解和使用。并特别邀请德国新帕泰克有限公司专家Dr.Ulrich Kesten和中国区首席代表耿建芳博士作现场演讲。届时我们也会现场演示仪器的具体操作,真诚期待您的光临与交流! 初步日程安排如下附件: Time Action 08:30 Registration and Seminar Information 签到、领取资料 09:00 Welcome speech by Dr. Kestenand Dr. Geng 凯斯腾博士, 耿建芳博士致欢迎词 09:10 Introduction of Sympatec GmbH 德国新帕泰克公司介绍 09:30 Particle Size Analysis from Sympatec: sampling, dispersion Laser Diffraction, Image Analysis, PCCS, Ultrasonic Extinction, Process Applications: a survey 新帕泰克各种不同粒度检测技术的介绍和应用综述 10:20 Coffee Break茶歇 10:40 Understanding of Particle Size Analysis -Calculation of particle size distribution 粒度测试结果的表征-粒度分布的计算 11:25 Explanation of technical issues about particle size analysis 关于粒度测试若干问题的澄清 12:00 午餐Lunch 13:30 Particle size and stability analysis in turbid suspensions and emulsions with Photon Cross Correlation Spectroscopy 光子交叉相关光谱法在纳米测量中的应用 14:30 International trends on particle size analysis of profucts from lab to process with state of the art technology 粒度检测技术发展趋势:从实验室到工业生产在线 15:00 Instrument Demonstrations, Q&A 仪器展示、现场测试 17:00 End of PM-Tour 结束   联系人:   如果需要就相关问题进行咨询,请联系   陈懿18615791580   Email: ychen@sympatec.com
  • 探析当前药物研发热点与仪器发展前景——CPSA上访13位国内外药物研发领域专家与厂商代表
    2011年4月14日,第二届化学和药物结构分析上海研讨会(CPSA Shanghai 2011)在上海隆重召开 据了解,此次会议主题为“改变药物研发模式:东西方的交遇”,来自北美、欧洲和亚太地区生物制药领域的著名学者、全球知名制药厂家和CRO企业共计200余人参会。   为了更加充分地了解东西方药物研发领域的发展现状及未来趋势,在会议举办期间,仪器信息网采访了13位东西方药物研发领域的专家学者、制药企业及仪器厂商相关人员,并就CPSA发展历史与本届会议亮点、当前药物研发热点、与药物研发相关的仪器技术与市场发展前景等问题进行了采访。 CPSA实现药物研发前沿与制药工业间的碰撞与衔接   据了解,CPSA会议在美国已有13年的历史,一直致力于为制药/生物技术学术界、制药企业、CRO企业及相关仪器厂商提供一个交流平台,在国际上声誉斐然。2010年CPSA会议首次来到中国上海召开,目前已成功举办了两届,并获得了业内人士的一致肯定。那么,CPSA的发展历史与选择来到中国的原因,以及CPSA上海2011的最大亮点是什么? CPSA会议发起人Mike S. Lee博士 GlaxoSmithKline公司程子强博士   CPSA会议发起人Mike S. Lee博士介绍到:“1998年,是由我联合制药产业界的科学家们共同在美国新泽西州创办了CPSA会议,迄今为止已成功举办了13届。创立之初CPSA主要集中在生物分析和化学分析领域,但随着时间的推移,CPSA会议涉足领域不断地拓宽,从最初的药物质谱分析技术,扩展到关注分析仪器技术的进展,尤其关注如何利用这些分析手段解决制药工业中的问题,如药物代谢、药物生产、生物标记等。”   “今天我很高兴地看到,科学家们通过这一平台可以分享各自的新发明、新应用以及实践经验,探讨对药物研发新技术、新方向、新政策的看法,以实现药物研发前沿与制药工业之间的碰撞与衔接。”   对于CPSA选择来到中国的原因,Mike S. Lee博士解释到,目前中国已渐渐成为全球药物及其相关研究产品的市场领导者,CPSA美国组委会的许多成员及赞助商都纷纷参与到中国的药物研发中 同时西方制药企业也认识到,中国药物研发技术交流与人才培训的需求很旺盛,因此,2010年CPSA选择来到了中国,希望为东西方药物研发领域的科学家们建立起一个交流、互动的平台,并最终使新技术如何更好地影响国内外科学研究的进展与政策法规的制定等。   在谈到本届CPSA亮点时,GlaxoSmithKline公司药物代谢动力学研究部副总监程子强博士则表示:“CPSA上海2011的最大亮点莫过于首次设立的‘青年科学家奖’。同时我很荣幸能够担任这个奖项的评委会主要负责人之一,除了要奖励和培养药物研发领域的青年人才外,CPSA还可以为他们提供一个可以与药物领域知名人士‘同台共议’的机会,了解学习当前国际药物前沿以及制药工业中的先进技术,培养更浓厚的药物研究兴趣。” 中科院大连化物所薛兴亚博士 Millennium Pharmaceuticals公司Pete Smith先生   在采访过程中,药物研发领域的国内外专家与厂商代表都对CPSA上海2011给予了高度的评价,例如,中科院大连化学物理研究所薛兴亚博士与Millennium Pharmaceuticals公司高级副总裁Pete Smith先生均表示“不虚此行”,收获颇丰! 生物标记物、药物转运体、药物靶点等已成为当前药物研发热点   CPSA上海会议短短2年时间内取得的成就,从另一个角度反映了当前全球药物研发产业的兴盛发展。可以说,医药产业是当今世界竞争最激烈的高新技术产业之一,其中创新药物的研发是决定其成败的关键因素之一。那么目前药物研发领域的热点以及中国在这一领域的优势与不足是什么? 罗氏中国研发中心李永国博士 MerckSerono公司黄倩娟女士 复旦大学张祥民教授   关于当前药物研发领域的热点,罗氏中国研发中心分析科学部主任李永国博士及MerckSerono公司非临床研发负责人黄倩娟女士提出,药物靶点的发现与研究是现代新药研发的关键任务,也是目前国内外众多药物研发人员非常热衷的一大热点。   同时,复旦大学化学系张祥民教授也表示:“我本人主要从事蛋白质组学新技术、新方法以及微流控应用方面的研究 看上去我和药物研发领域不是很相关,但正是因为药物靶点这个研究热点,才吸引我来参加了CPSA上海2011这个会议,而这对于我们今后研究蛋白质与药靶的研究有很大的帮助。” 中科院上海药物研究所钟大放研究员 Millennium Pharmaceuticals公司吴惊涛博士   中科院上海药物研究所钟大放研究员则说到,因为30%的药物会受到药物转运体的影响,目前世界上关于药物转运体的研究十分兴盛。我国在这方面的研究还比较落后,不过近年来上海药物研究所在这方面已取得了很重要的突破。另外,因LC-MS/MS对代谢物的选择性太强,漏掉了很多关键信息,这就对药物代谢物的安全性评价提出了很大挑战,因此放射性同位素标记技术也就应运而生了。目前这种技术已在美国得到了普遍使用,但在我国的使用范围还比较有限。   而对于中国目前在药物研发方面的优势与不足,Millennium Pharmaceuticals公司药物研发技术总监吴惊涛博士则谈到,不可否认,目前国内外的药物研发技术以及产业成熟度确实存在着一定的差距。但是美国在传统合成药物方面可以说是停滞状态,尤其是新药的开发也变得尤为困难。而在中国,中药、植物药、中西药方面很有很大的发展空间,并且近年来中国在药物研发方面的投入也在不断加大,希望国内专家或企业将国外的先进技术引进来,走出“中国特色”药物研发道路,研发出“中国特色”新药。   此外,李永国博士还补充到:“我认为生物药、bio-similar和bio-better等药物将是中国的下一个研究热点,并且伴随着这种趋势,大分子物质的分析/生物分析将会越来越多地吸引全球药物研发科学家们的注意。” 药物研发相关仪器性能亟待提升 未来市场潜力相当大   “十一五”期间,我国已基本形成药物创新体系,且“十二五”对于新药研发的支持与投资力度将更为可观 药物研发产业的蓬勃发展自然也将大大带动药物研发相关仪器的技术进步与广泛应用。那么,分析仪器在药物研发领域扮演着一个怎样的角色?目前药物研发科学家对于分析仪器又有哪些要求与期望?   对此,13位国内外药物研发领域专家与厂商代表纷纷表示,目前分析仪器已发展成为药物研发中一个不可缺少的必要工具,从药代动力学,生物标记物、生物分子学到蛋白质药物的研究,分析仪器都扮演着越来越重要重要的角色,可以说是药物发现过程中的“眼睛”。 药物研发的整个过程需要大量的数据支撑与佐证,而这些数据的来源就是分析仪器。随着药物研发产业的飞速发展以及分析仪器的广泛使用,科学家们对于仪器的“灵敏度”、“稳定性”、“快速性”以及“便携性”等方面都提出了越来越严峻的挑战。   其中,李永国博士举例到,如何去追踪生物母体中大分子物质的变化是困扰当今分析科学家的一个大难题,而这就就对仪器的灵敏度、分辨率提出了严格的要求。   张祥民教授则提到,虽然色谱、质谱近几年的更新速度很快,但对于一些微量蛋白质的测定,还需要它们在灵敏度方面能“更上一层楼”。   钟大放研究员补充到,除了灵敏度、稳定性的要求,还需要有更多能解决实际难题的新技术出现,如我之前提到的放射性同位素标记技术,正是为了弥补分析仪器技术方面的缺陷或不足。   “有需求便会有市场”。 近年来,与药物研发相关的分析技术与仪器产品的更新速度很快,尤其是在质谱产品方面,AB SCIEX公司、赛默飞世尔科技、华质泰科、New Objective公司等国内外仪器公司纷纷根据市场需求,先后推出各种用于药物研发流程中的先进技术与产品解决方案。 AB SCIEX公司杜蘋女士 赛默飞世尔科技王勇为博士   AB SCIEX公司制药业务开发经理杜蘋女士介绍到,目前液质联用仪中都有一个分离过程,而我们正在考虑可不可以不用分离,直接在质谱中实现分离检测。对此,AB SCIEX公司将会在今年6月份推出相关的新产品。   赛默飞世尔科技色谱质谱应用经理王勇为博士则表示,赛默飞世尔科技公司可提供药物研制流程中不同阶段的产品和解决方案,特别是用于生物标志物、活性成份、药物代谢、等高通量、定性、定量的各种质谱分析技术。 华质泰科公司刘春胜博士 New Objective公司Gary Valaskovic先生   华质泰科生物技术有限公司执行董事刘春胜博士推荐了DART实时直接分析质谱、ASAP大气压固体分析探针等质谱技术,尤其是DART,具有高通量、快速无损等特点,能够2-3秒内完成基质中化合物的定性和定量。   New Objective公司总裁Gary Valaskovic先生说到,公司在纳流喷雾离子化工具与超高灵敏度质谱开发方面已有14年的历史,其中纳流喷雾电离源在生物分子、特殊蛋白质及肽的分析方面得到了广泛应用。   最后在谈到全球以及中国的药物研发仪器市场的发展前景时,钟大放研究员表示,制药产业是一个带动性很强的行业,目前国家对于新药研发的投入力度逐年加大,而新药研发对于仪器的需求可是很旺盛的,因此药物研发方面的分析仪器市场前景无法估计。   同时,参会的仪器厂商代表对于仪器市场的发展前景也给予了很大的肯定,但关注点却不尽相同。例如,赛默飞世尔科技王勇为博士提到:“越来越多的药物外包服务迁入我国,中国将会出现越来越多从事新药研究的实验室,因此我相信中国药物研发领域对仪器设备的需求将会不断增加” AB SCIEX公司杜蘋女士则强调:“‘十二五’期间,中国的企业也将承担一部分新药研发任务,因此我认为,中国的药物研发仪器市场,尤其是在企业这一块的市场潜力将相当大”。  后记:   CPSA上海2011的成功召开,为促进了东西方的药物研发技术与制药工业生产的碰撞与融合,推动了整个药物研发领域与生产制药工业的发展。并且在采访13位药物研发领域的专家、厂商负责人的过程中,笔者了解到,中国制药产业的发展速度与市场潜力非常惊人,目前中国制药产值现已跃居全球主要市场前十。相对应地,与药物研发领域相关的分析仪器市场也面临面临不少挑战与机遇。   挑战主要指药物研发对仪器设备的灵敏度、自动化、重现性、高通量、全天候运行等需求这,给国内外仪器设备供应商提出了严格的制造要求;同时在药物研发领域,从高端质谱仪、常用色谱仪及实验室常用样品处理设备等,国际仪器厂商占据大部分的市场份额,因此国内相关仪器制造商面临的市场竞争压力严重;   机遇则意指制药产业的兴盛将带动相关分析仪器市场的壮大,如液质联用仪器市场,据钟大放研究员表示,美国某公司的药物代谢部门总共60人,却配有62台液质联用仪器,由此药物研发领域对于分析仪器的需求可“窥见一斑”。   希望在我国“十二五”新药研发过程中,国内外相关仪器厂商能够不断推出更为先进的分析技术与仪器产品,助推国内外药物研发科学家取得累累成果的同时,也能赚得盆满钵盈!   采访编辑:刘玉兰   更多详情请参见CPSA新闻专题:   http://www.instrument.com.cn/news/subject/201003/?SubjectID=118
  • 粒度与粒度分布如何影响粉末涂料的生产和应用
    近年来,粉末涂料以其固含量高、无挥发性有机物、生产过程能耗低、涂饰质量好等优点深受市场青睐。本文聚焦粉末涂料的生产和应用过程,探究粒度及粒度分布对产品性能的影响。粉末涂料生产过程的第一步是填料和树脂的熔融与混合,要求填料和树脂混和均匀又不发生局部固化反应。要实现这个要求,填料的粒径和粒度分布很重要。图1是两种不同粒度的二氧化钛填料。图1 二氧化钛A(x 50K)图1 二氧化钛B(x 200K)从图1看,填料A 的粒径明显大于B的粒径。理论上粒径小的填料B更容易混合均匀。然而,事实恰恰相反,是粒径大的填料A更容易混合均匀。为了探究出现这种反常现象的原因,本文利用丹东百特仪器公司的Bettersize2600 激光粒度分析仪来测试填料A和B的粒度分布。图2 Bettersize2600激光粒度分析仪图3 二氧化钛A和二氧化钛B的粒度分布如图3所示,填料B 的粒度分布很宽,既有少量微米甚至10微米级颗粒,又有大量亚微米甚至纳米级颗粒。这些亚微米和纳米颗粒导致填料B的比表面积很大,颗粒间相互作用力很强,导致内部团聚现象加剧。从图4的SEM图像可以看出,填料B的这些大颗粒是由小颗粒团聚而形成,树脂很难进到团聚的大颗粒中,这就是填料B反而更难混合均匀的原因。而填料A的粒径大部分在0.4-1微米之间,分布很窄且不团聚,树脂很容易分散在颗粒之间,所以更容易混合均匀。图4 二氧化钛A(x 5K)、二氧化钛B(x 50K)的SEM图像填料和树脂熔融混合之后,下一道工序是粉碎和分级。粉末涂料的粒径受到磨机、进料速度、气流条件和分级等影响。图5显示了不同的粉碎分级工艺(A和B)对产品粒度分布的影响。图5 工艺A(上)和工艺B(下)制得的样品的质量分数在图5中,工艺A为一次分级效果,粉末涂料主要由0 - 20 μm和20 - 80 μm的颗粒组成;工艺B为二次分级效果,粉末涂料几乎全部由20 – 80 μm的颗粒组成。说明二次分级能够有效降低粗端颗粒( 80 μm)和细端颗粒( 20 μm)的占比,得到粒度分布更窄的粉末涂料产品。为什么粉末涂料要求窄的粒度分布?因为在喷涂过程中,较大的颗粒速度快,率先落到工件表面,较小的颗粒运动速度慢,后落在涂层缝隙,两者恰到好处会形成优势互补,两者差距太大将影响喷涂质量,并且,粒径过细还容易吸湿成团,堵住喷枪,也容易漂浮在涂膜上产生气泡和针孔,影响成膜效果。结论高质量的粉末涂料与填料粒度分布密切相关,通过激光粒度分析仪能有效监测和控制填料的粒度分布,从而保证粉末涂料的性能和质量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制