当前位置: 仪器信息网 > 行业主题 > >

全波段食品检测

仪器信息网全波段食品检测专题为您提供2024年最新全波段食品检测价格报价、厂家品牌的相关信息, 包括全波段食品检测参数、型号等,不管是国产,还是进口品牌的全波段食品检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全波段食品检测相关的耗材配件、试剂标物,还有全波段食品检测相关的最新资讯、资料,以及全波段食品检测相关的解决方案。

全波段食品检测相关的资讯

  • 176种食品检测仪器汇总(基本全了)
    p span style=" font-size: 14px " 随着国家对食品安全的重视,食品需要检测的项目越来越繁多,而且对仪器的要求也越来越精密。 /span /p p span style=" font-size: 14px " 食品检测的项目包括:农残、兽药/抗生素、添加剂、重金属及有害物质、毒素微生物、常规理化、接触材料等。。 /span /p p span style=" font-size: 14px " 检测不同的项目需要不同的仪器。 br/ /span /p p span style=" font-size: 14px " 如下为食品检测实验室常用的176种仪器汇总,希望对您有所帮助哦。 /span /p p br/ /p p span style=" font-size: 14px " 1.电子天平:食品检验用试剂、样品和标准品的称量; br/ 2.酸度计:食品检验过程中pH值的测定; br/ 3.冷冻离心机:食品检验过程中营养成分或者污染物等的提取分离; br/ 4.离心机:食品检验过程中营养成分或者污染物等的提取分离; br/ 5.超净工作台:食品检验过程中提供局部超净工作环境; br/ 6.生物安全柜:食品检验过程中提供洁净安全的操作环境; br/ 7.索氏提取器:食品检验过程中营养成分或者污染物的提取; br/ 8.超临界萃取仪:食品检验过程中营养成分或者污染物的提取; br/ 9.磁力搅拌器:食品检验过程中目的物质提取或反应过程中的搅拌混匀; br/ 10.微波消解仪(高压):食品检验过程中样品的消解; br/ 11.冷冻干燥机:食品检验过程中样品的冷冻干燥; br/ 12.碎花制冰机:食品检验用冰的制备; br/ 13.高压灭菌器:食品检验中灭菌试剂的制备; br/ 14& nbsp .冰箱:食品样品和试剂的存放; br/ 15.冷藏柜:食品样品和试剂的存放; br/ 16.立式超低温冰箱:食品样品和试剂的超低温保存; br/ 17.超声波清洗器:食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等; br/ 18.超声波提取器:提取食品营养成分或者污染物; br/ 19.超声波细胞破碎仪:食品检验过程中细胞的破碎; br/ 20.马弗炉:食品检验过程中食品的灰分测定及干法消解; br/ 21.电热恒温干燥箱:食品检验过程中样品的干燥; br/ 22.电热恒温培养箱:食品检验过程中微生物的培养; br/ 23.真空干燥箱:食品检验中对照品及样品干燥; br/ 24.恒温恒湿箱:为食品检验提供稳定的恒温恒湿环境; br/ 25.可控温振荡箱:食品检验中微生物的培养; br/ 26.恒温恒湿培养箱:食品检验中微生物的培养; br/ 27.霉菌培养箱:食品检验中霉菌的培养; br/ 28.厌氧培养箱:食品检验中微生物的厌氧培养; br/ 29.细胞培养箱:食品检验中细胞优化与培养; br/ 30.三气细胞培养箱:食品检验中微需氧菌的培养; br/ 31.超纯水系统:食品检验用超纯水的制备; br/ 32.匀浆器:食品检验过程中样品的粉碎、均质和乳化; br/ 33.组织匀浆器:食品检验过程中组织匀浆,以提取包括蛋白质、RNA和DNA在内的细胞内容物; br/ 34.恒温混匀器:食品检验过程中样品的均匀化处理; br/ 35.均质器:食品检验过程中样品的均一化处理; br/ 36.漩涡混合器:食品检验过程中试样的漩涡混匀; br/ 37.固相萃取装置:食品样品中目标物质的自动化提取; br/ 38.快速溶剂萃取仪:食品样品中目标物质的自动化提取; br/ 39.真空离心浓缩仪:食品检验过程中目标物质的浓缩; br/ 40.全自动核酸提取系统:食品检验过程中核酸的提取和纯化; br/ 41.氮吹仪:食品检验过程中目标物质的浓缩; br/ 42.除湿器:食品检验环境的湿度控制; br/ 43.超声粉碎机:食品样品的粉碎处理; br/ 44.旋转蒸发仪:食品检验过程中有机溶剂去除; br/ 45.鞋套机:保护无菌室的清洁环境; br/ 46.自动微生物快速检测分析系统:食品中微生物的快速鉴定分析; br/ 47.恒温摇床:食品检验过程中微生物的控温振荡培养; br/ 48.低温摇床:食品检验过程中微生物的低温振荡培养; br/ 49.恒温水浴:食品检验过程中样品前处理; br/ 50.恒温振荡水浴:食品检验过程中样品前处理; br/ 51.智能循环水浴:食品检验过程中样品前处理; br/ 52.显微镜(带成像系统):食品检验过程中细胞和微生物样本的观察; br/ 53.全自动微生物平板螺旋加样系统:食品中微生物污染程度的测定; br/ 54.液氮罐:食品样品、菌株和细胞株的低温保存; br/ 55.体视显微镜:食品样品的显微观察; br/ 56.实时荧光定量PCR检测系统:食品样品中致病微生物相关基因的快速、定量分析; br/ 57.定性PCR仪:食品中致病微生物相关基因的扩增分析; br/ 58.多点接种仪:食品检验过程中微生物的快速接种; br/ 59.红外接种环灭菌器:食品微生物检验过程中对接种环的快速灭菌; br/ 60.扫描电镜:食品中微生物与细胞的显微结构观察与分析; br/ 61.全自动微生物免疫荧光分析系统:食品中致病微生物的快速筛选; br/ 62.全自动食品微生物定量分析系统:食品中微生物污染水平的快速定量分析; br/ 63.全自动病原微生物检测系统:食品中致病微生物的快速检测; br/ 64.微生物鉴定系统—全细胞脂肪酸分析系统:食品中微生物的快速鉴定; br/ 65.微生物表型芯片分析系统:食品中微生物的快速分型分析; br/ 66.飞行时间质谱微生物鉴定系统:食品中微生物的快速鉴定; br/ 67.全自动微生物指纹图谱分析系统:食品中微生物的快速分型分析; br/ 68.全自动基因指纹分析仪:食品中微生物的快速分型分析; br/ 69.基因定量分析系统-焦磷酸测序:食品中微生物的快速鉴定与分型; br/ 70.全自动样本储存管理系统:食品检验过程中核酸、蛋白、抗体、微生物等样本的保存; br/ 71.基因芯片分析系统:食品检验过程中多种致病基因的快速分析; br/ 72.悬浮芯片分析系统:食品中微生物的快速检测分析; br/ 73.自动化革兰氏染色系统:食品微生物检测过程中快速革兰氏染色分析; br/ 74.快速致病菌免疫磁珠基因筛选系统:食品中致病微生物的快速检测分析; br/ 75.全自动致病菌酶标检测系统:食品中致病微生物的快速检测分析; br/ 76.全自动平板划线系统:食品中微生物的快速划线、分离; br/ 77.培养基自动制备分装仪:食品微生物检测过程中培养基的快速分装; br/ 78.商业无菌自动化检测系统:食品检验过程中商业化无菌检测; br/ 79.凝胶成像仪:食品检验过程中DNA样品的成像分析; br/ 80.倒置显微镜:食品检验过程中细胞和微生物样本的观察; br/ 81.抑菌圈测量仪:食品中抗菌成分的测定; br/ 82.核酸蛋白分析仪:食品中核酸和蛋白质的定量分析; br/ 83.二维电泳系统:食品中过敏原如蛋白质的差异分析; br/ 84.通用电泳仪:食品中核酸和蛋白质的分离检测; br/ 85.水平电泳槽:食品中核酸的分离检测; br/ 86.垂直电泳槽:食品中蛋白质的分离检测; br/ 87.核酸高压测序胶系统:食品中核酸序列分析、蛋白质等电点分析; br/ 88.脉冲场电泳系统:食品中致病微生物遗传物质差异分析; br/ 89.全自动毛细管电泳系统:食品中蛋白质、游离脂肪酸、食品添加剂、农药残留、生物毒素和抗生素检测;糖类、维生素分析; br/ 90.真空转印仪:食品检测过程中DNA与蛋白质的凝胶转膜实验; br/ 91.全凝胶洗脱仪:食品检测过程中DNA与蛋白质的纯化; br/ 92.微量过滤装置:食品检测过程中DNA与蛋白质的纯化; br/ 93.电穿孔仪:食品检测过程中基因的转化; br/ 94.遗传分析系统:食品中转基因成分及致病菌的鉴定; br/ 95.紫外交联仪:食品检测过程中DNA膜杂交分析; br/ 96.分子杂交炉:食品检测过程中核酸的杂交分析; br/ 97.射线计数仪:食品中同位素的定量分析; br/ 98.水分活度测定仪:食品中水分含量的测定; br/ 99.温湿度数据跟踪系统:食品采样与检测过程中温度、湿度数据的跟踪监测; br/ 100.全自动基因测序仪:食品中DNA序列的高通量分析; br/ 101.紫外可见分光光度计:食品检测过程中紫外可见分光光度法的测定; br/ 102.紫外透射率分析仪:食品检测过程中光谱透射率的测定; br/ 103.紫外分析仪:食品检测过程中蛋白质和核酸的紫外定性分析; br/ 104.多功能酶标仪:食品检测过程中酶联免疫法的分析; br/ 105.薄层色谱系统:食品检测过程中样品的薄层点样、展开及成像; br/ 106.激光共聚焦显微镜:食品样本中微生物观察及切片样本观察;组织结构的精确描绘、定位(二维和三维)和上述结构的动态变化; br/ 107.水分测定仪:食品中水分含量测定; br/ 108.酒精计:& nbsp 食品样品中乙醇含量的测定; br/ 109.纤维测定仪:食品中纤维含量的测定; br/ 110.示波极谱仪:食品检验中元素的分析; br/ 111.测汞仪:食品中汞元素的分析; br/ 112.荧光分光光度计:食品中有害物质,如,3,4-苯并芘测定; br/ 113.氨基酸分析仪:食品中氨基酸含量的测定; br/ 114.基质辅助激光解吸电离-飞行时间质谱:食品中农兽药残留、违禁添加的化学药物及其他有机污染物的快速筛查检测;食品中真菌毒素的快速筛查检测;未知物的鉴定分析; br/ 115.自动电位滴定仪:食品中酸度、维生素C等的含量测定; br/ 116.阿贝折射仪:食品样品的折射率和相关物质的浓度测定; br/ 117.数显电导仪:食品样品电导率的测定; br/ 118.X射线荧光光谱仪:食品中有害元素的测定; br/ 119.凝胶渗透色谱:食品中农药残留、蛋白质和多糖多肽分子量测定以及样品前处理和净化; br/ 120.液相色谱:食品中营养成分或污染物等的分离测定; br/ 121.气相色谱:食品中挥发性营养成分或污染物等的分离测定; br/ 122.气相顶空进样器:食品中挥发性营养成分或污染物等的分离测定; br/ 123.拉曼光谱仪:食品中氨基酸、多肽、蛋白质、DNA、RNA和糖类分子的鉴定分析; br/ 124.全自动定氮仪:食品中蛋白质的定量分析; br/ 125.原子吸收光谱仪:食品中微量元素的测定; br/ 126.脂肪酸分析仪:食品中脂肪酸的测定; br/ 127.电感耦合等离子体质谱:食品中微量元素的测定; br/ 128.气相色谱-质谱联用仪:食品中挥发性成分或者污染物等的分离测定; br/ 129.三重串联四极杆气质联用仪:食品中挥发性成分或污染物等的分离测定; br/ 130.串联四级杆液质联用仪:食品中营养成分或污染物等的分离、测定; br/ 131.液相色谱-离子肼质谱仪:食品中营养成分或污染物等的分离、测定; br/ 132.全波段显微化学图像系统:食品中混合物、粒度、组分粒子的结块、多晶体、水合物及其他痕量污染物的分析; br/ 133.离子色谱:食品样品中阴离子与阳离子的测定; br/ 134.原子荧光光谱仪:食品样品中可形成氢化物微量元素的测定(重金属元素); br/ 135.电感耦合等离子体发射光谱仪:食品中微量元素的测定; br/ 136.锥入度测定仪:食品样品中黏稠度的测定; br/ 137.穿刺力测定仪:食品包装瓶塞穿刺力值的测定; br/ 138.热急变试验仪:食品包装玻璃制品冷热急变的合格性实验、递增性、破坏性实验分析; br/ 139.内压力试验仪:食品包装瓶内压力值的测定; br/ 140.内应力试验仪:食品包装玻璃瓶内应力值的测定; br/ 141.垂直轴偏差测试仪:食品包装轴偏差的测定; br/ 142.瓶底、壁厚测定仪:食品包装瓶底、壁厚度的测定; br/ 143.弧度测定仪:食品包装瓶弧度的测定; br/ 144.自动振筛仪:食品包装玻璃瓶中特定元素含量的分析; br/ 145.水平圆周转动振荡器:食品包装瓶与盖的密封性分析; br/ 146.落镖冲击试验机:用于厚度小于1mm的食品包装用塑料薄膜或薄片50%破损时的冲击质量和能量分析; br/ 147.耐破度仪:食品包装材料耐破度分析; br/ 148.涂层柔性和粘附力测试装置:食品包装材料涂层柔性和粘附力分析; br/ 149.内涂层连续性测试装置:食品包装材料的内涂层连续性分析; br/ 150.韧性实验装置:食品包装材料的韧性分析; br/ 151.氧化膜厚度测定仪:食品包装材料的氧化膜厚度分析; br/ 152.密度天平:食品包装材料的密度值分析; br/ 153.线热膨胀系数测定仪:食品包装材料平均线热膨胀系数分析; br/ 154.轧盖机:食品包装瓶与盖的密封性分析; br/ 155.折断力仪:食品包装瓶的折断力分析; br/ 156.扭矩仪:瓶装食品瓶盖锁紧、开启扭矩值大小的分析; br/ 157.平氏粘度计:液态食品样品的粘度分析; br/ 158.硬度计:食品包装材料的硬度值分析; br/ 159.落球冲击试验机:食品包装材料聚乙烯、聚氯乙烯等固体复合硬片耐冲击实验分析; br/ 160.陶瓷纤维马弗炉:食品包装材料的炽灼残渣分析; br/ 161.数字式紫外辐射照度计:食品检测无菌环境紫外辐射强度分析; br/ 162.万能材料试验机:食品包装材料的剥离强度、撕拉强度分析; br/ 163.湿透仪:食品包装材料的水蒸气透过率分析; br/ 164.气体透过仪:食品包装材料氧气透过率分析; br/ 165.热封仪:食品包装材料封口性能分析,与撕拉力测试仪合用; br/ 166.病理组织检查设备(包括:全自动脱水机、全自动组织包埋机、病理组织切片机、自动封片机、全自动冷冻切片机、输出仪、全自动显微图像分析系统):食品毒理实验中组织病理学检查; br/ 167.激光扫描共聚焦倒置显微镜:食品毒理实验中细胞结构改变的观察; br/ 168.全自动生化分析仪:食品毒理实验过程中动物生化指标的检测分析; br/ 169.实验动物生理检测系统:食品毒理实验过程中动物心电、脑电、体温和血压等生理参数分析; br/ 170.激光扫描细胞仪:食品毒理实验过程中细胞内物质的定量分析及组织扫描; br/ 171.流式细胞仪:食品毒理实验过程中细胞快速分类分析; br/ 172.全自动血细胞分析仪:食品毒理实验过程中动物血相的快速分析; br/ 173.活体生物成像系统:食品毒理实验过程中活体生物体内成像分析; br/ 174.小动物活体分子成像系统:食品毒理实验过程中活体生物体内监控基因的表达分析; br/ 175.活细胞工作站系统:食品毒理实验过程中细胞和组织的全方位观察和记录; br/ 176.血气分析仪:食品毒理实验过程中动物的血气分析; /span /p p span style=" font-size: 14px " (文章来源:网络) /span br/ /p p img src=" http://img1.17img.cn/17img/images/201710/insimg/69f503f0-97ed-4119-80e6-5407d7e140f7.jpg" title=" 二维码.webp.jpg" width=" 558" height=" 256" style=" width: 558px height: 256px " / /p
  • 新疆理化所创制全波段相位匹配晶体
    短波紫外全固态相干光源具有光子能量强、可实用化与精密化、光谱分辨率高等特点,在激光精密加工、信息通讯、前沿科学和航空航天领域颇具应用价值。获得全固态短波紫外激光的核心部件是非线性光学晶体。在非线性光学过程中,若使基频光的能量源源不断地转换到倍频光,需要保持基频光激发的二次极化谐波和倍频光在晶体中位置时刻相同,但由于晶体的本征色散导致基频光和倍频光的折射率不同,进而导致两束光在晶体中群速度不同,无法实现倍频光的持续增长,此为相位失配。因此,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,如晶体各向异性的双折射相位匹配技术、晶体内部自发畴结构的随机准相位匹配技术和人工微结构准相位匹配技术等。其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该技术利用各向异性晶体的双折射特性,使一定偏振的基频光沿晶体的特定方向入射,或者改变晶体的温度,实现角度或者温度相位匹配,即使基频光和倍频光在晶体中特定方向传播时的折射率相同。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相片匹配波长的差值表征(λcutoff-λPM)。中国科学院新疆理化技术研究所晶体材料研究中心致力于新型紫外、深紫外非线性光学晶体的设计与合成。该团队前期基于领域前沿进展的研究和对非线性光学晶体双折射相位匹配现状的剖析,在特邀综述中首次提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?若该假设在晶体中得以实现,将为晶体在整个透过范围内均实现双折射相位匹配提供新途径和新思路。近期,该团队创制一类新非线性光学晶体即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,从折射率的微观表达及双折射色散曲线、折射率色散曲线和相位匹配等光学条件等角度出发,给出两种独立的全波段相位匹配晶体的评价参数,并将此评价参数应用于一些经典的非线性光学晶体材料,讨论以此参数评估晶体相位匹配波长损失的可行性和普适性。基于此,研究获得一例非线性光学晶体(GFB)。实验通过多级变频的方案或光参量技术方案,研究晶体在整个透过范围内的直接倍频输出能力,并基于相位匹配器件已经实现193.2-266 nm紫外/深紫外可调谐激光输出,验证其该晶体全波段相位匹配能力,使该晶体成为目前首例且唯一一例实现了全波段双折射相位匹配的紫外/深紫外倍频晶体材料。该材料193.2 nm处晶体透过率deff = 1.42 pm/V)、短相位匹配波长(~194 nm)和高抗激光损伤阈值(BBO@ 266/532 nm, 8 ns, 10 Hz)等,是颇具应用前景的266 nm激光用非线性光学晶体材料。相关研究成果以全文形式发表在《自然光子学》(Nature Photonics)上。研究工作得到科技部,国家自然科学基金委员会和中国科学院等的支持。GFB晶体结构、微观性能分析及晶体照片
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率
  • 阜阳市食品药品检验检测中心进口设备公示
    p style=" text-align: center " strong 阜阳市食品药品检验检测中心进口设备公示 /strong /p p   一、采购人:阜阳市食品药品检验检测中心 /p p   strong   /strong 二、项目名称:安徽省阜阳市食品药品检测能力建设项目 /p p   三、采购内容及预算:进口全自动电位滴定仪1套、紫外可见光分光光度计2台,预算43万元。 /p p   四、专家论证意见: /p p   经专家组讨论,认为阜阳市食品药品检验检测中心进口仪器申请理由充分、合理,经查证国内同类产品在技术上达不到检测需求,暂无同类仪器可替代,建议采购该批进口仪器设备。 /p p   span style=" color: rgb(0, 112, 192) " strong   span style=" color: rgb(0, 0, 0) " 1、进口全自动电位滴定仪 /span /strong /span /p p   拟采购全自动电位滴定仪主要用于检测游离脂肪酸值、酸价和过氧化值等重要指标。操作简单、分析高效和安全。可同时连接多个滴定管和传感器,进行自动多步滴定、返滴定等各种复杂滴定应用。选用不同电极还可进行各种类型的滴定,例如:酸碱滴定、络合滴定、非水滴定、氧化还原滴定,沉淀滴定等。进口全自动电位滴定仪一键滴定,具有20000 步滴定管驱动器,± 2000mv 测量范围, 0.1mv 电位分辨率。方法中可以设置不同样品数量的内部循环功能,同时可扩展具有电导率测量的功能。国内高档产品的可靠性与国外产品相比,大约要相差 1 ~ 2 个数量级。国产全自动电位滴定仪测量范围较窄,为 -1200 ~ 1200mv ,滴定管驱动器分辨率为滴定管体积的 1/5000 在参数设置、滴定终点判断、扩展功能等软件功能上显得较薄弱,整体检测结果重复性差,分辨率大而无法满足检测需求。此类设备不属于《中国禁止进口、限制进口产品目录》中国禁止进口和限制进口产品,建议同意采购进口产品。 /p p   span style=" color: rgb(0, 0, 0) "   strong 2、紫外可见光分光光度计 /strong /span /p p   主要普遍采用性能更稳定,寿命更长的脉冲氙灯,而国内产品目前使用的是传统的钨灯及氘灯,寿命较短,需要经常性更换,使用成本高,同时在全波长波谱范围内能量不均匀,在全光谱扫描时更波段检测结果间存在误差,另外极为重要指标之一的噪音水平进口产品均低于国内产品,噪音越低检测结果准确性越高,同时进口产品还可升级测定数微升级别样品,极适合于生命科学实验中样品量极少极珍贵的情况。此类设备不属于《中国禁止进口、限制进口产品目录》中国禁止进口和限制进口产品,建议同意采购进口产品。 /p p   五、专家姓名、单位、职称: /p p   六、此公示时间为5个工作日。2019年11月18日至2019年11月22日(备注:双休日除外)。任何供应商、单位或者个人对此项目有异议的,均可在公示期内以书面方式向阜阳市食品药品检验检测中心(地址:安徽省阜阳市颍州区颍西街道颖西镇文兴路2号食品药品检验检测中心,联系电话:0558-2569179),同时抄送阜阳市财政局政府采购科(联系电话:0558-2261464),逾期不再受理。 /p p style=" text-align: right "   阜阳市食品药品检验检测中心 /p p style=" text-align: right "   2019年11月15日 /p
  • 375万!中国科学院武汉植物园高通量全波段光合成像仪等采购项目
    项目编号:OITC-G220321516、OITC-G220321517、OITC-G220321518项目名称:中国科学院武汉植物园高通量水分含量图谱检测仪等采购项目采购方式:竞争性磋商预算金额:375.0000000 万元(人民币)最高限价(如有):375.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1高通量水分含量图谱检测仪1套是852高通量全波段光合成像仪1套是1603可见光高光谱分析检测仪2套是130供应商须以包为单位对该包中的全部内容进行响应,不得拆分,不完整的报价将被拒绝。竞争性磋商及评审、推荐成交供应商以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求。本项目( 不接受 )联合体投标。
  • SPECIM高光谱相机在食品检测方面的应用 ——陈皮异物监测
    SPECIM高光谱相机在食品检测方面的应用——陈皮异物监测1. 描述 陈皮是一种良好的药材,也是一种常见的食材,对人们的健康与生活有非常大的帮助。但是陈皮在收集过程中,常常会混有其他物质,例如树叶、烟头等与陈皮颜色相近的杂质。本实验通过使用Specim高光谱相机来做陈皮混合物的检测。2. 原理 高光谱成像技术是一种图像及光谱融合的技术,可同时获取研究对象的空间及光谱信息。图像数据反映物体的外部特征、表面缺陷及污斑情况,光谱数据用于分析物体内部结构及成分。 Specim高光谱相机采用线阵推扫的成像方式,通过相机和被拍摄物体之间有相对运动,获取目标区域的所有样本的图像数据和光谱信息数据。在地面端,大多是采用相机固定而让被测物体移动,如图1;也可以采用被测物处于静止固定状态,而相机通过电机控制运动,如图2;若是结合无人机上的应用,则把相机挂载在无人机上移动而物体本身不动。这里我们采用固定相机,而把物体放在位移台上进行拍摄(可以是传送带或者其他移动装置)。 ---图1--- ---图2---3. 实验过程3.1 准备样品,未检测的样品如下。蒂头、树叶、陈皮、创可贴、烟头等。 3.2 设备及软件准备a)准备光源:宽谱卤素灯,光谱比较全。b)位移台: LabScanner 40 x 20位移台,如上图1所示。c)所用设备: Specim Fx10e 高光谱相机(400-1000nm)。d)Specim Insight分析软件INSIGHT是高光谱图像数据的离线处理软件,用户可在其中实现浏览查看样本数据、训练分类模型、验证分类效果等操作,以建立应用程序供实时检测使用。软件支持查看光谱曲线和散点图及时空序列信息,还包含有偏最小二乘法判别分析(PLS-DA),主成分分析(PCA)和光谱角制图(SAM)多种算法,便于用户快速得到准确的运算结果3.3 测试①规整摆放待测物体从上到下,分别为 蒂头、树叶、陈皮、创可贴、烟头。使用LabScanner进行扫描成像。 ②打乱放置,杂乱无章排放,重新采样一次。 3.4 分析本次测试样品中共有5种物质类型,每种物质会有生成特有的光谱曲线,通过原厂软件分析所有物体的光谱特征和内嵌的光谱算法,可以正确的区分不同样品类型并能赋予对应的不同颜色。 ---五条光谱曲线--- ---整齐摆放---棕色 :蒂头绿色 :树叶橙色 :陈皮粉色 :创可贴蓝色 :烟头 ---杂乱摆放---棕色 :蒂头绿色 :树叶橙色 :陈皮粉色 :创可贴蓝色 :烟头 另外,可以将某次分析好的结果做成Mode模型,下次直接使用就能得到检测果。 4. 实验总结 通过光谱识别的方法,用Specim Fx10e(400-1000nm)高光谱相机可以很好的做出陈皮等混合物的识别,并且准确率高,速度快。质量控制和异物检测在食品工业中至关重要。在各种工业、农业的应用中,通过高光谱分辨率的光谱信息与成像相结合的无损检测方法,及时提供各种成分、异物检测和质量损伤情况等,形成“征兆图”,供诊断、决策和风险评估等使用。 另外,通过广泛实验和实际应用,发现大部分物质成分,在近红外900-1700nm,和短波红外1000-2500nm有较好的吸收反射,在此波段范围光谱特征明显。建议同种应用,不同物质检测需采用合适的波长范围产品。关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 176种食品检测仪器汇总
    p   1.电子天平:食品检验用试剂、样品和标准品的称量 /p p   2.酸度计:食品检验过程中pH值的测定 /p p   3.冷冻离心机:食品检验过程中营养成分或者污染物等的提取分离 /p p   4.离心机:食品检验过程中营养成分或者污染物等的提取分离 /p p   5.超净工作台:食品检验过程中提供局部超净工作环境 /p p   6.生物安全柜:食品检验过程中提供洁净安全的操作环境 /p p   7.索氏提取器:食品检验过程中营养成分或者污染物的提取 /p p   8.超临界萃取仪:食品检验过程中营养成分或者污染物的提取 /p p   9.磁力搅拌器:食品检验过程中目的物质提取或反应过程中的搅拌混匀 /p p   10.微波消解仪(高压):食品检验过程中样品的消解 /p p   11.冷冻干燥机:食品检验过程中样品的冷冻干燥 /p p   12.碎花制冰机:食品检验用冰的制备 /p p   13.高压灭菌器:食品检验中灭菌试剂的制备 /p p   14 .冰箱:食品样品和试剂的存放 /p p   15.冷藏柜:食品样品和试剂的存放 /p p   16.立式超低温冰箱:食品样品和试剂的超低温保存 /p p   17.超声波清洗器:食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等 /p p   18.超声波提取器:提取食品营养成分或者污染物 /p p   19.超声波细胞破碎仪:食品检验过程中细胞的破碎 /p p   20.马弗炉:食品检验过程中食品的灰分测定及干法消解 /p p   21.电热恒温干燥箱:食品检验过程中样品的干燥 /p p   22.电热恒温培养箱:食品检验过程中微生物的培养 /p p   23.真空干燥箱:食品检验中对照品及样品干燥 /p p   24.恒温恒湿箱:为食品检验提供稳定的恒温恒湿环境 /p p   25.可控温振荡箱:食品检验中微生物的培养 /p p   26.恒温恒湿培养箱:食品检验中微生物的培养 /p p   27.霉菌培养箱:食品检验中霉菌的培养 /p p   28.厌氧培养箱:食品检验中微生物的厌氧培养 /p p   29.细胞培养箱:食品检验中细胞优化与培养 /p p   30.三气细胞培养箱:食品检验中微需氧菌的培养 /p p   31.超纯水系统:食品检验用超纯水的制备 /p p   32.匀浆器:食品检验过程中样品的粉碎、均质和乳化 /p p   33.组织匀浆器:食品检验过程中组织匀浆,以提取包括蛋白质、RNA和DNA在内的细胞内容物 /p p   34.恒温混匀器:食品检验过程中样品的均匀化处理 /p p   35.均质器:食品检验过程中样品的均一化处理 /p p   36.漩涡混合器:食品检验过程中试样的漩涡混匀 /p p   37.固相萃取装置:食品样品中目标物质的自动化提取 /p p   38.快速溶剂萃取仪:食品样品中目标物质的自动化提取 /p p   39.真空离心浓缩仪:食品检验过程中目标物质的浓缩 /p p   40.全自动核酸提取系统:食品检验过程中核酸的提取和纯化 /p p   41.氮吹仪:食品检验过程中目标物质的浓缩 /p p   42.除湿器:食品检验环境的湿度控制 /p p   43.超声粉碎机:食品样品的粉碎处理 /p p   44.旋转蒸发仪:食品检验过程中有机溶剂去除 /p p   45.鞋套机:保护无菌室的清洁环境 /p p   46.自动微生物快速检测分析系统:食品中微生物的快速鉴定分析 /p p   47.恒温摇床:食品检验过程中微生物的控温振荡培养 /p p   48.低温摇床:食品检验过程中微生物的低温振荡培养 /p p   49.恒温水浴:食品检验过程中样品前处理 /p p   50.恒温振荡水浴:食品检验过程中样品前处理 /p p   51.智能循环水浴:食品检验过程中样品前处理 /p p   52.显微镜(带成像系统):食品检验过程中细胞和微生物样本的观察 /p p   53.全自动微生物平板螺旋加样系统:食品中微生物污染程度的测定 /p p   54.液氮罐:食品样品、菌株和细胞株的低温保存 /p p   55.体视显微镜:食品样品的显微观察 /p p   56.实时荧光定量PCR检测系统:食品样品中致病微生物相关基因的快速、定量分析 /p p   57.定性PCR仪:食品中致病微生物相关基因的扩增分析 /p p   58.多点接种仪:食品检验过程中微生物的快速接种 /p p   59.红外接种环灭菌器:食品微生物检验过程中对接种环的快速灭菌 /p p   60.扫描电镜:食品中微生物与细胞的显微结构观察与分析 /p p   61.全自动微生物免疫荧光分析系统:食品中致病微生物的快速筛选 /p p   62.全自动食品微生物定量分析系统:食品中微生物污染水平的快速定量分析 /p p   63.全自动病原微生物检测系统:食品中致病微生物的快速检测 /p p   64.微生物鉴定系统—全细胞脂肪酸分析系统:食品中微生物的快速鉴定 /p p   65.微生物表型芯片分析系统:食品中微生物的快速分型分析 /p p   66.飞行时间质谱微生物鉴定系统:食品中微生物的快速鉴定 /p p   67.全自动微生物指纹图谱分析系统:食品中微生物的快速分型分析 /p p   68.全自动基因指纹分析仪:食品中微生物的快速分型分析 /p p   69.基因定量分析系统-焦磷酸测序:食品中微生物的快速鉴定与分型 /p p   70.全自动样本储存管理系统:食品检验过程中核酸、蛋白、抗体、微生物等样本的保存 /p p   71.基因芯片分析系统:食品检验过程中多种致病基因的快速分析 /p p   72.悬浮芯片分析系统:食品中微生物的快速检测分析 /p p   73.自动化革兰氏染色系统:食品微生物检测过程中快速革兰氏染色分析 /p p   74.快速致病菌免疫磁珠基因筛选系统:食品中致病微生物的快速检测分析 /p p   75.全自动致病菌酶标检测系统:食品中致病微生物的快速检测分析 /p p   76.全自动平板划线系统:食品中微生物的快速划线、分离 /p p   77.培养基自动制备分装仪:食品微生物检测过程中培养基的快速分装 /p p   78.商业无菌自动化检测系统:食品检验过程中商业化无菌检测 /p p   79.凝胶成像仪:食品检验过程中DNA样品的成像分析 /p p   80.倒置显微镜:食品检验过程中细胞和微生物样本的观察 /p p   81.抑菌圈测量仪:食品中抗菌成分的测定 /p p   82.核酸蛋白分析仪:食品中核酸和蛋白质的定量分析 /p p   83.二维电泳系统:食品中过敏原如蛋白质的差异分析 /p p   84.通用电泳仪:食品中核酸和蛋白质的分离检测 /p p   85.水平电泳槽:食品中核酸的分离检测 /p p   86.垂直电泳槽:食品中蛋白质的分离检测 /p p   87.核酸高压测序胶系统:食品中核酸序列分析、蛋白质等电点分析 /p p   88.脉冲场电泳系统:食品中致病微生物遗传物质差异分析 /p p   89.全自动毛细管电泳系统:食品中蛋白质、游离脂肪酸、食品添加剂、农药残留、生物毒素和抗生素检测 糖类、维生素分析 /p p   90.真空转印仪:食品检测过程中DNA与蛋白质的凝胶转膜实验 /p p   91.全凝胶洗脱仪:食品检测过程中DNA与蛋白质的纯化 /p p   92.微量过滤装置:食品检测过程中DNA与蛋白质的纯化 /p p   93.电穿孔仪:食品检测过程中基因的转化 /p p   94.遗传分析系统:食品中转基因成分及致病菌的鉴定 /p p   95.紫外交联仪:食品检测过程中DNA膜杂交分析 /p p   96.分子杂交炉:食品检测过程中核酸的杂交分析 /p p   97.射线计数仪:食品中同位素的定量分析 /p p   98.水分活度测定仪:食品中水分含量的测定 /p p   99.温湿度数据跟踪系统:食品采样与检测过程中温度、湿度数据的跟踪监测 /p p   100.全自动基因测序仪:食品中DNA序列的高通量分析 /p p   101.紫外可见分光光度计:食品检测过程中紫外可见分光光度法的测定 /p p   102.紫外透射率分析仪:食品检测过程中光谱透射率的测定 /p p   103.紫外分析仪:食品检测过程中蛋白质和核酸的紫外定性分析 /p p   104.多功能酶标仪:食品检测过程中酶联免疫法的分析 /p p   105.薄层色谱系统:食品检测过程中样品的薄层点样、展开及成像 /p p   106.激光共聚焦显微镜:食品样本中微生物观察及切片样本观察 组织结构的精确描绘、定位(二维和三维)和上述结构的动态变化 /p p   107.水分测定仪:食品中水分含量测定 /p p   108.酒精计: 食品样品中乙醇含量的测定 /p p   109.纤维测定仪:食品中纤维含量的测定 /p p   110.示波极谱仪:食品检验中元素的分析 /p p   111.测汞仪:食品中汞元素的分析 /p p   112.荧光分光光度计:食品中有害物质,如,3,4-苯并芘测定 /p p   113.氨基酸分析仪:食品中氨基酸含量的测定 /p p   114.基质辅助激光解吸电离-飞行时间质谱:食品中农兽药残留、违禁添加的化学药物及其他有机污染物的快速筛查检测 食品中真菌毒素的快速筛查检测 未知物的鉴定分析 /p p   115.自动电位滴定仪:食品中酸度、维生素C等的含量测定 /p p   116.阿贝折射仪:食品样品的折射率和相关物质的浓度测定 /p p   117.数显电导仪:食品样品电导率的测定 /p p   118.X射线荧光光谱仪:食品中有害元素的测定 /p p   119.凝胶渗透色谱:食品中农药残留、蛋白质和多糖多肽分子量测定以及样品前处理和净化 /p p   120.液相色谱:食品中营养成分或污染物等的分离测定 /p p   121.气相色谱:食品中挥发性营养成分或污染物等的分离测定 /p p   122.气相顶空进样器:食品中挥发性营养成分或污染物等的分离测定 /p p   123.拉曼光谱仪:食品中氨基酸、多肽、蛋白质、DNA、RNA和糖类分子的鉴定分析 /p p   124.全自动定氮仪:食品中蛋白质的定量分析 /p p   125.原子吸收光谱仪:食品中微量元素的测定 /p p   126.脂肪酸分析仪:食品中脂肪酸的测定 /p p   127.电感耦合等离子体质谱:食品中微量元素的测定 /p p   128.气相色谱-质谱联用仪:食品中挥发性成分或者污染物等的分离测定 /p p   129.三重串联四极杆气质联用仪:食品中挥发性成分或污染物等的分离测定 /p p   130.串联四级杆液质联用仪:食品中营养成分或污染物等的分离、测定 /p p   131.液相色谱-离子肼质谱仪:食品中营养成分或污染物等的分离、测定 /p p   132.全波段显微化学图像系统:食品中混合物、粒度、组分粒子的结块、多晶体、水合物及其他痕量污染物的分析 /p p   133.离子色谱:食品样品中阴离子与阳离子的测定 /p p   134.原子荧光光谱仪:食品样品中可形成氢化物微量元素的测定(重金属元素) /p p   135.电感耦合等离子体发射光谱仪:食品中微量元素的测定 /p p   136.锥入度测定仪:食品样品中黏稠度的测定 /p p   137.穿刺力测定仪:食品包装瓶塞穿刺力值的测定 /p p   138.热急变试验仪:食品包装玻璃制品冷热急变的合格性实验、递增性、破坏性实验分析 /p p   139.内压力试验仪:食品包装瓶内压力值的测定 /p p   140.内应力试验仪:食品包装玻璃瓶内应力值的测定 /p p   141.垂直轴偏差测试仪:食品包装轴偏差的测定 /p p   142.瓶底、壁厚测定仪:食品包装瓶底、壁厚度的测定 /p p   143.弧度测定仪:食品包装瓶弧度的测定 /p p   144.自动振筛仪:食品包装玻璃瓶中特定元素含量的分析 /p p   145.水平圆周转动振荡器:食品包装瓶与盖的密封性分析 /p p   146.落镖冲击试验机:用于厚度小于1mm的食品包装用塑料薄膜或薄片50%破损时的冲击质量和能量分析 /p p   147.耐破度仪:食品包装材料耐破度分析 /p p   148.涂层柔性和粘附力测试装置:食品包装材料涂层柔性和粘附力分析 /p p   149.内涂层连续性测试装置:食品包装材料的内涂层连续性分析 /p p   150.韧性实验装置:食品包装材料的韧性分析 /p p   151.氧化膜厚度测定仪:食品包装材料的氧化膜厚度分析 /p p   152.密度天平:食品包装材料的密度值分析 /p p   153.线热膨胀系数测定仪:食品包装材料平均线热膨胀系数分析 /p p   154.轧盖机:食品包装瓶与盖的密封性分析 /p p   155.折断力仪:食品包装瓶的折断力分析 /p p   156.扭矩仪:瓶装食品瓶盖锁紧、开启扭矩值大小的分析 /p p   157.平氏粘度计:液态食品样品的粘度分析 /p p   158.硬度计:食品包装材料的硬度值分析 /p p   159.落球冲击试验机:食品包装材料聚乙烯、聚氯乙烯等固体复合硬片耐冲击实验分析 /p p   160.陶瓷纤维马弗炉:食品包装材料的炽灼残渣分析 /p p   161.数字式紫外辐射照度计:食品检测无菌环境紫外辐射强度分析 /p p   162.万能材料试验机:食品包装材料的剥离强度、撕拉强度分析 /p p   163.湿透仪:食品包装材料的水蒸气透过率分析 /p p   164.气体透过仪:食品包装材料氧气透过率分析 /p p   165.热封仪:食品包装材料封口性能分析,与撕拉力测试仪合用 /p p   166.病理组织检查设备(包括:全自动脱水机、全自动组织包埋机、病理组织切片机、自动封片机、全自动冷冻切片机、输出仪、全自动显微图像分析系统):食品毒理实验中组织病理学检查 /p p   167.激光扫描共聚焦倒置显微镜:食品毒理实验中细胞结构改变的观察 /p p   168.全自动生化分析仪:食品毒理实验过程中动物生化指标的检测分析 /p p   169.实验动物生理检测系统:食品毒理实验过程中动物心电、脑电、体温和血压等生理参数分析 /p p   170.激光扫描细胞仪:食品毒理实验过程中细胞内物质的定量分析及组织扫描 /p p   171.流式细胞仪:食品毒理实验过程中细胞快速分类分析 /p p   172.全自动血细胞分析仪:食品毒理实验过程中动物血相的快速分析 /p p   173.活体生物成像系统:食品毒理实验过程中活体生物体内成像分析 /p p   174.小动物活体分子成像系统:食品毒理实验过程中活体生物体内监控基因的表达分析 /p p   175.活细胞工作站系统:食品毒理实验过程中细胞和组织的全方位观察和记录 /p p   176.血气分析仪:食品毒理实验过程中动物的血气分析 /p p br/ /p
  • 红外竟成为关键数据?接连登上Nature子刊!德国科学家和你聊聊如何利用新型全波段纳米红外
    【报告简介】傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长最小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源( 550-7000 cm-1),它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm级成像和光谱测量。这种独特技术的特点:• 超宽的可调谐波长范围550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 。且对薄膜样品的破坏性极小,因此可用于单层分子自组装材料的研究。图2. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。案例2:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有极高的对应度,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图3. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图4. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电极电解液的原位界面表征的常用方法。然而该技术的探测深度在微米级别,而电极电解液的界面,如双电层,一般在纳米级别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面独有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电极的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm -1),C=O(1740cm -1)及C-O(1155cm -1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率最高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。纳米傅里叶红外光谱仪nano-FTIR的技术优势:☛ 极大地突破了传统红外光谱的空间分辨率极限,可达10 nm;☛ 得到的谱图与传统红外谱图有极高的一致性;☛ 探测光学信号而非机械信号,灵敏度极高,适用于热膨胀系数低的系统;☛ 可同时得到光谱及成像结果;☛ 测样时间短;☛ 操作和样品准备简单——仅需要常规的AFM样品准备过程。参考文献:1.Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.
  • 626万!东北师范大学地理科学学院全波段高光谱成像仪(进口)设备采购
    项目编号:ZZ23551HW04310120项目名称:东北师范大学地理科学学院全波段高光谱成像仪(进口)设备采购预算金额:626.5000000 万元(人民币)采购需求:项目概况东北师范大学地理科学学院全波段高光谱成像仪(进口)设备采购的潜在投标人应在网上以邮件形式获取招标文件,并于2022年12月1日9时00分(北京时间)前递交投标文件。 一、项目基本情况1.项目编号:ZZ23551HW04310120。2.项目名称:东北师范大学地理科学学院全波段高光谱成像仪(进口)设备采购。3. 采购方式:公开招标。4.预算金额:87万美元(人民币限额626.5万元)。5.采购需求:全波段高光谱成像仪(进口)设备采购;数量:1套(详见招标文件“第五章 项目需求”)。6.合同履行期限(供货期):合同签订之日起270日内完成交付、安装及调试。7.本项目不接受联合体投标。公开招标(进口货物)-东北师范大学地理科学学院全波段高光谱成像仪(进口)设备采购定稿(2).pdf
  • 食品检测仪器设备-食品检测仪器设备-食品检测仪器设备
    食品检测仪器设备-食品检测仪器设备-食品检测仪器设备【霍尔德】多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。 一、食品检测仪器设备应用范围: 多功能食品安全检测仪可现场快速检测非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等200多项目的快速定性定量检测。如甲醛、二氧化硫、吊白块、过氧化氢、亚硝酸盐、蛋白质、蜂蜜果糖和葡萄糖、蜂蜜中蔗糖、过氧化值、酸价、白酒中的杂醇油、铅、汞砷、锡、镉、硼砂、食盐中亚铁氰化钾、食盐中碘、过氧化苯甲酰、红色色素(胭脂红、苋菜红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)、食醋的总酸、酱油的总酸、苯甲酸钠、甜蜜素、木耳中硫酸镁、芝麻油纯度、油脂丙二醛、溴酸钾、余氯、谷氨酸钠、挥发性盐基氮、山梨酸、糖精钠、饮料中维C、酱油氨基酸态氮、肉制品酸价、水中氰化物、水发产品中组胺、蜂蜜定粉酶、蜂蜜酸度、罗丹明B、三聚氰胺、盐酸克伦特罗、沙丁胺醇、莱克多巴胺、四环素类、硝基呋喃类、磺胺类、沙星类、氯霉素、孔雀石绿磺胺类、猪蓝耳病毒、猪瘟病毒、黄曲霉毒素B1、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感等快速检测。 二、食品检测仪器设备产品性能: 1、安卓智能操作系统,采用更加效率高和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速上传数据。 2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复功能。 3、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。 4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。 6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 8、食品安全检测仪CT线自动识别,无需手动调整。 9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。 10、样品处理简单省力,整体操作快速、安全、便捷。 11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。 12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。 14、仪器具有重新校准、锁定、恢复出厂设置功能。 15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。 16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。 三、食品检测仪器设备主要参数: 1、主控芯片采用ARMCortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。 4、四波长冷光源,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专业光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。 5、光源亮度自动调节与校准 6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、不间断进样,连续检测 9、样本编号自动累加。 10、检测项目可扩充。 11、检测结果可批量打印,批量上传。 12、检测结果为Excel表格,连接电脑即可拷贝。 13、检测结果存储容量20万条 14、支持U盘存储,标准USB接口,免驱动安装。 15、固件可升级 16、仪器尺寸:43×35×20cm,主机净重:5.1kg
  • 浙江三门食品检验中心实现检测“全覆盖”
    “三服务”行动,是浙江省三门县食品检验检测中心成立后开展的“特色”行动之一。“行动不仅实现检测服务优质化,而且实现检测‘全覆盖’。”   为老百姓服务。通过省级认证后,该中心安排食品检测车下乡,开展“食品检测百村行”活动,每星期安排两次到乡镇所在地集市、大村集市日为群众提供免费检测服务。通过群众送检和市场抽检,当场完成农药残留、防腐剂含量等20种常规检测,把定性检测结果直接告知送检群众 对检测信息进行汇总,张贴在当地农贸市场食品安全信息公示栏,同时告知当地乡镇政府,加强日常市场监管。目前,该中心已在50多个村开展了“食品检测百村行”活动,接受免费服务的群众达1200多人次。   为政府部门服务。检测资源的共用带来了检测结果的共享,中心出具的检测结果为卫生、工商、质监、农业、海洋与渔业等职能部门的科学有效监管提供了统一权威的科学依据。目前,在食品安全评价性检测、食品小作坊整治、月饼专项整治、餐具专项整治、百姓饮用水专项检测中,该中心已出具了750批次的定量检测报告。   为食品企业服务。引导农业企业和食品加工企业利用中心的检测资源,来提高企业的质量管理水平和产品竞争力 引导农产品基地、种养和购销大户依托中心,来加强对农产品生产过程的质量监控,确保农产品的优质安全。目前,三门已有10多家食品生产企业与中心达成了服务意向。
  • ASD | 利用短波红外波段通过干燥过程分割来估计土壤含水量
    利用短波红外波段通过干燥过程分割来估计土壤含水量 土壤水分是直接影响蒸发、入渗和径流等多种环境过程的重要因素。而且,土壤水分在农业蒸散与粮食安全、湿地退化、干旱、陆气界面的能量交换等相关研究领域发挥着重要的作用。地面测量能够提供易于校准和长时间连续获取的数据,但该种方法仅针对单个小区域,难以支持空间变化研究或实地研究。基于水和土壤介电特性的巨大差异,微波遥感被广泛应用于大空间尺度的土壤水分监测,但不适用于精准农业等多种研究。热遥感可以根据地表温度来估算土壤水分,但热遥感信号不单受到土壤含水量(SMC)的影响,湿度、风速、大气条件等其他参数也会影响估计结果。而光学遥感由于其精细的空间分辨率和利用诸如MODIS、Landsat系列和Sentinel任务等卫星数据进行大尺度监测潜力之间的平衡而引起了诸多关注。目前已经提出了许多指标和模型来阐明反射率特征随SMC的变化,并利用实验室、实地、机载和卫星数据从窄带和宽带的反射率来估计SMC。这些方法/指标主要针对从饱和到风干的各级SMC;然而,作者发现饱和到风干的单一关系映射会导致准确估计的错误印象。在整个干燥过程中,光谱反射率特征和SMCs之间的回归关系不一致导致对相对较低的SMCs估计的精度较低。基于此,在本研究中, 来自南京大学、康奈尔大学和河南农业大学的研究团队提出了一种分割方法以更准确的估计SWC。作者监测了代表不同土壤特性的三种土壤样品的整个干燥过程,并通过蒸发速率变化确定其过渡点(如高SWC的阶段1干燥和低SWC的阶段2干燥)。建立了SMC估计指数,即短波归一化指数(SNI),基于辐射传输模型支持干燥过程中的SNI指数趋势。图1 实验装置示意图。利用ASD Fieldspec® Pro光谱仪进行光谱辐射亮度采集。【结果】 图2 a) 三种土壤样品蒸发速率变化与干燥时间的关系,b) 干燥过程中三种土壤在2150 nm处的反射率变化。 c) 三种样品蒸发速率导数的最大值确定干燥阶段分割点。 图3 三种样品砂/土壤含水量与光谱反射率之间的线性和对数回归的R2,a) 石英砂,b) 圬工砂,c) 伊萨卡土壤,d) 模拟大气透射率。在 a)、b) 和 c) 中,黑色虚线标记为1680 nm和2150 nm。图4 a) 显示了SMC估计的验证结果。 b)、c) 和 d) 显示了三种样品的 建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。图5 a)SMC估计值和测量值关系图,其中SMC估计值使用SNI2在线性回归中计算,Bwater 在1980 nm处评估。 图 b)、c) 和 d) 显示了三种样品的建模曲线(实线)、回归曲线(虚线)和验证数据集(空心圆圈)。【结论】利用单一回归关系和单一指数估计整个干燥过程的SMC对所有土壤类型并不是有效的。该研究证明了利用现有方法估计SMC结果不准确,以及在分割干燥过程中估计SMC的基本原理。监测整个干燥过程中3种不同土壤样品的光谱反射率和重量,将其分为两个阶段用于训练和验证。此外,基于辐射传输模型研究不同干燥阶段所提出指数和光通过水的路径长度之间的关系,并支持了经验方法建立的回归关系,尤其是对路径长度相对较短的土壤。结果表明,在分割思想下,SMC估计值和测量值之间的相关性明显提高,尤其是在SMC较低的情况下(阶段2干燥过程)。蒸发速率变化决定了干燥过程的分割过渡点,所有的土壤类型并不是一个特定的SMC值;因此,理解蒸发和SMC变化导致的光谱反射率变化之间的关系是极其重要的。例如,在实际使用中,石英砂阶段2干燥可以忽略,但它却是伊萨卡土壤干燥的重要组成部分。SN1/SN2指数结合可以有效估计三种样品的SMC。对于阶段1干燥,利用SNI1指数在1680 nm和2150 nm处的反射率预测SMC是有效的。在阶段2干燥中,尽管使用1930-2150 nm组合的SNI2指数实现了最佳相关性,但作者认为1980 nm比1930 nm更适合实地应用。这种波段选择是为了避免强烈的大气水汽吸收,以确保足够的地面反射辐射到达飞机或卫星传感器。相对于将阶段2干燥视为阶段1干燥延续的指标,相关关系显著改善。作者得到了如下结论:1.干燥过程分割对从光谱反射率数据准确估计SMC是很有必要的,尤其是对于具有较长阶段2干燥过程的土壤。例如本研究中的伊萨卡土壤。对于与伊萨卡土壤相似的土壤,基于整个干燥过程的SMC估计可能会导致阶段1或阶段2干燥的偏差,这取决于哪个阶段有更多的训练集。2. 由于石英砂中光通过水的路径长度相对较长,因此当SMC较高时,SNI具有独特的特征。在圬工砂或伊萨卡土壤中,half-logistic型的SNI曲线不同于线性关系。当光程较长时,拟合关系应由线性回归变为对数回归。3. 在阶段2干燥过程中,利用现有卫星系统常用的光谱波段组合难以准确估计SMC;使用高光谱数据可以获得更高的精度,可以提供近强水吸收波段的数据,如1930 nm。虽然由于大气水汽的吸收,1930 nm不能在实验室外有效地使用,但稍微偏离中心的波长(如1980 nm)仍然比水吸收波段范围外的波长表现更好。
  • 光学波段信号可当探测热木星大气逃逸探针
    记者从中国科学院云南天文台了解到,该台与美国亚利桑那大学研究人员合作,发现光学波段的信号可以作为探测热木星大气逃逸的探针。国际著名期刊《天体物理杂志快报》发表了这一成果。  早在2003年,人们通过观测远紫外波段的信号,发现离主星很近的热木星大气中处在低能态的较冷氢原子以一种剧烈的形式向外逃逸。这种逃逸可对行星演化造成严重影响。  “近几年,人们在光学波段成功探测到行星大气中较热氢原子对主星遮挡时产生的微弱吸收信号,如氢的光学波段透射光谱。”云南天文台郭建恒研究员说,然而研究者一直缺乏有力的模型,来论证这些较热的氢原子产生的吸收信号与大气逃逸之间的关系。  郭建恒与博士研究生闫冬冬以及亚利桑那大学黄辰亮博士等人合作,基于自主开发的流体动力学逃逸大气模型和辐射转移模型,在细致地计算了冷热氢原子的分布后,模拟了热木星WASP-121b在不同观测时刻光学波段透射光谱的数据。研究表明,这颗行星周围存在数量巨大的逃逸中性氢气体,每年损失物质以10万亿吨计。这些被行星抛射的物质中,热氢原子的速度比声速更快,并造成了光学波段的吸收。这也说明,光学波段的信号可以用作探测大气逃逸探针。  进一步研究发现,行星大气在不同时刻的吸收水平变化,反映了主星不同的活动特性,恒星更强的活动水平可导致行星大气更深的吸收。这一发现有助于更好地理解主星活动性对行星大气逃逸的影响。
  • 国仪量子:成功研制可商用W波段脉冲式电子顺磁共振波谱仪
    4月2日,国仪量子研发人员正在操作W波段脉冲式电子顺磁共振波谱仪“W波段脉冲式电子顺磁共振波谱仪的研制成功,使国仪量子成为目前国内能研制生产该类高端科学仪器的厂商。也标志着中国成为继德国之后,第二个有能力研发该型电子顺磁共振波谱仪的国家。”4月2日,国仪量子技术(合肥)股份有限公司传感事业部副总经理石致富站在最新研发的仪器前向记者介绍。根据揭榜项目任务书的项目目标和考核指标,国仪量子最终任务全部完成,部分指标超额完成。专家组召开验收会议,认为该产品达到了国际先进水平,此攻关任务已经完成。近年来,安徽在量子信息领域“从0到1”的原始创新不断突破:目前,安徽集聚量子科技产业链企业60余家、数量居全国首位,全国首条量子芯片生产线建成运行,全国首个量子信息未来产业科技园挂牌运营,量子专利授权量全国领先,以国盾量子、国仪量子、本源量子、问天量子、中电信量子集团等为龙头的量子高新技术企业不断涌现。安徽发展量子信息等未来产业,具有强劲的科技创新策源能力。国仪量子在2021年承接了安徽省制造业重点领域产学研用补短板产品和关键共性技术攻关任务,项目针对“W波段电子顺磁共振波谱仪”进行工程化、产品化开发,解决产品化实现涉及到的核心技术难题,研制出用户友好、皮实可靠,可产品化出售的W波段电子顺磁共振波谱仪。W波段电子顺磁共振波谱仪具有高分辨率、高灵敏度的优势,是一种重要的高端科学分析装置,将给生物、化学、物理以及交叉学科等领域提供一项强有力的研究手段,可用于进行蛋白质、RNA、DNA 的结构解析,从而解决生物学、医学、制药学中的关键问题。得益于中国科学技术大学、合肥国家实验室等高校与科研机构,合肥在量子信息技术的科研领域具有先发优势,为量子科技发展提供了强有力的人才和智力支撑。“我们团队在量子精密测量领域有着十多年的研究积累,以长相干、多比特、高精度量子操控为核心目标,目前已掌握了世界领先的高保真量子态调控技术、高灵敏度磁探测技术、微波收发技术、高精度扫描钻石探针技术等核心技术。”石致富说。 “揭榜挂帅”是用市场竞争来激发创新活力的一种机制。国仪量子相关负责人表示,“揭榜挂帅”有助于选拔领头羊、先锋队,聚力突破关键共性技术瓶颈,提高制造业自主创新能力,带动产业链上下游的技术进步,强化供应链保障。未来,国仪量子将持续加强研发投入力度,在核心技术上不断追求更高标准。与用户协同创新,推动技术落地,赋能多个行业的升级发展,在全球量子领域逐渐发出中国声音,也让“安徽身影”更加活跃。
  • 宁波市食品检测中心通过实验室资质认定
    p style=" text-align: center " img width=" 400" height=" 268" title=" 635809273994345259204.jpg" style=" width: 400px height: 268px " src=" http://img1.17img.cn/17img/images/201510/insimg/51dfc333-69a3-4d96-8782-6443ee50ffb5.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   从市场监管局获悉,宁波市食品检测中心成功获得浙江省质量技术监督局颁发的《食品检验机构资质认定证书》。这标志着该中心将正式为我市食品安全监管提供技术支撑和技术服务。 /p p   今年6月底,宁波市食品检测中心正式挂牌成立,其主要职能为市级及海曙、江东、江北三区的食品安全检验检测(含监督检验、委托检验、发证检验、仲裁检验等)、食品安全风险评估、科学研究及技术指导等,目前,该中心已具备了对食品中质量指标、营养成分、农药残留、兽药残留、重金属、食品添加剂、生物毒素、致病微生物、非法添加物等1304个项目的检测能力。据悉,此次资质认定,不但使宁波市食品安全监管的技术保障能力得到了有力提升,也为宁波市构建食品检验检测、科学研究、风险预警、技术服务四位一体的覆盖生产、流通、消费等环节的食品安全技术服务平台奠定了坚实基础。 /p p br/ /p
  • 内蒙古首家全流程食品药品检测中心成立
    日前,一项关乎居民食品药品安全的制度变革在乌海市悄然进行。经过整合全市食品药品检验检测资源,该市食品药品检验检测中心正式挂牌,负责全市从农田到餐桌整个食品安全链的检测。这项改革,成为全区首创。   据了解,这项改革,旨在解决过去各自为政所造成的检验检测不统一、检验检测能力难以提升以及食品药品生产销售过程中存在安全漏洞等问题。该市将原疾病预防控制中心、农产品质量安全检验检测中心、食品药品检验所涉及的食品检验检测职能及草原工作站涉及的饲料检验检测职能等,全部纳入新成立的乌海市食品药品检验检测中心,整合和统一管理人财物资源。同时,该中心还承担保健食品、化妆品、农畜产品、饲料和药品不良反应及医疗器械不良事件监测职能。   该中心在乌海市食品药品检验所的基础上进行改造,实验室面积近2000方米,投入1500万元购置了新设备,检测范围覆盖全市农畜产品、食品生产加工、市场流通、餐饮等领域,具有68项食品检验、121项药品检验、14项化妆品卫生检测、22 项生活饮用水检验能力。
  • 多波段拉曼-荧光激光雷达系统可用于雾霾探测
    近日,兰州大学教授黄建平带领科研团队研制出我国首个多波段拉曼-荧光激光雷达系统。该系统不仅可用于大气雾霾探测的研究及预警,还可用于卫星数据校正、医疗气象观测等领域,处于国际先进水平。   &ldquo 多波段拉曼-荧光激光雷达系统用高功率激光器向天空同时发射三束激光,也就是三个波段。紫外激光与大气颗粒物作用之后,就会释放出荧光,我们利用大口径的望远镜接收被大气反射回来的信号,共有38个波段。大多国内研究中使用的少数波段,对于颗粒物的大小、形状、成分等认识还不够。&rdquo 黄建平介绍说,&ldquo 印度科学家拉曼发现了光和粒子的相互作用,在这种作用后,光的波长和频率会发生变化。对接收到的信号进行分光、提取和探测,根据其变化的多少,就可以知道这种物质的化学成分是什么,也就可以进一步分析大气污染物的重要性质,尤其是对人体有害的有机物。&rdquo   课题组成员黄忠伟解释说:&ldquo 大家现在都关心雾霾天气,但对于雾霾的成因、成分等问题的认识都还不够,多波段拉曼-荧光激光雷达系统能够连续工作并探测到不同高度的雾霾变化数据,而且精度很高。&rdquo   当前,我国在全球气候变化、空间环境监测等领域都急需大量激光雷达技术支撑,但一直依赖国外进口的高成本产品。多波段拉曼-荧光激光雷达系统的成功研制,将降低我国购置相关产品的成本。
  • 检测机构采购格丹纳微波消解仪提升食品检测质量
    食品检测一直是保障公共健康的重要环节,而现代的科学仪器在这一过程中扮演着关键角色。最近,一家第三方检测机构采购了一台格丹纳微波消解仪,用于食品检测前处理。这不仅将提高他们的实验室效率,还将为食品安全提供更加可靠的检测结果。格丹纳的微波消解仪到达检测机构,格丹纳的工程师迅速展开了安装和培训的过程,确保该仪器尽快融入实验室工作流程。在安装过程中,工程师详细解释了仪器的各个部分,以及如何进行正确的操作和维护。这是确保仪器正常运行和延长其使用寿命的重要步骤。格丹纳微波消解仪的一大优点是其快速的样品前处理能力。微波消解仪20分钟内可完成绝大部分样品。此外,微波消解仪的三维输出,有效提升微波功率密度和均匀性,能量利用率更高,确保样品消解的一致性,可确保每个样品在处理过程中受到相同的条件和温度。我们期待看到格丹纳微波消解仪在这家检测机构的工作中发挥作用,提高食品检测的标准和可靠性。
  • 大连化物所利用大连光源揭示星际硫化氢分子全波段光化学图像
    近日,大连化物所大连光源科学研究室分子光化学动力学研究组(2507组)袁开军研究员团队和英国布里斯托大学Mike Ashfold教授、南京大学胡茜茜教授合作,揭示了星际硫化氢分子高电子激发态光化学动力学,构建硫化氢全波段、全通道解离动力学图像。   硫化氢分子是太阳星云中最重要的分子之一,其光化学过程对硫单质、硫氢自由基(SH)和氢气(H2)等星际介质的起源和演化有重要意义。尽管硫化氢分子光解离研究受到越来越多的关注,但是迄今为止国内外尚未构建高分辨的、完整的动力学图像。   本工作中,袁开军团队利用大连相干光源结合里德堡氢原子飞行时间谱和时间切片离子成像技术,测量了硫化氢在极紫外波段所有产物通道的光化学。实验结果表明,硫化氢光解离产物的动力学和量子产率具有明显的波长依赖特性。理论计算通过构建高电子激发态势能面,阐明了硫化氢光解过程中复杂的非绝热解离特性。该工作不仅为星际硫化学模型的构建提供了科学依据,同时为量子动力学理论的发展提供了研究范例。   袁开军团队近年来依托大连相干光源系统研究了星际硫化氢分子极紫外光化学,测量了硫化氢光化学生成SH自由基的量子产率(Nature Communications,2020),揭示了硫化氢转动激发依赖的光化学反应机理(Nature Communications,2021),提出了硫化氢光化学过程是星际空间高振动激发H2的重要来源(The Journal of Physical Chemistry Letters,2022)。   相关成果以“The vibronic state dependent predissociation of H2S: determination of all fragmentation processes”为题,发表在《化学科学》(Chemical Science)上,并被选为封面文章。该工作第一作者是我所2507组联合培养博士研究生赵亚锐。该工作得到了国家自然科学基金、中科院关键技术团队、辽宁省兴辽英才计划等项目的资助。
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 【ISCO】波段收集技术在CombiFlash®系统中的应用
    一、摘要波段收集技术通过观测用户自订的吸光波段来净化化合物。数据以单一轨迹形式展示,以便于实现更有效的分析收集。此外,应用信号处理技术可消除由于溶剂吸收紫外线导致的基线漂移现象。二、概述CombiFlash系统中波段收集功能能够计算光电二极管阵列检测到的所有波长的平均吸光度。通过对信号进行处理,可以消除由溶剂吸收引起的基线漂移现象。这样便产生了一个单一的图谱或是色谱信号,使得多功能液相色谱或快速色谱系统中的分部收集程序能够精确地收集以纯化产物。在以下情况下,波段检测显得尤为重要: n化合物或是分析物光谱未知时,例如从自然产品中提取的化合物。n当 一混合物包含多种不同的吸光度的混合物,单一波长无法识别混合物中所有化合物时。n当洗脱溶剂的吸收光谱与所需化合物的吸收光谱重叠时。n当具有相似光谱的化合物使检测器过载,从而难以正确分离化合物时。 CombiFlash系统的波段检测技术显著提升了自动化提纯化合物的能力。以下是几个示例以说明这些技术改进的优势。示例1:(化合物)混合物图1:色谱图展示了使用二醇柱和波段收集技术提纯的叶绿素 (A)、咖口非因和儿茶素 (B) 以及单宁酸 (C)。这些化合物具有不同的光谱,但都能通过波段收集技术被检测到。 示例2:未知光谱图2:使用波段收集技术检测儿茶素 (A) 以及咖口非因 (B) 和其他儿茶素类化合物 (C)。 图3:图2中分离的化合物的紫外吸收图谱。在图2中,大部分儿茶素家族化合物不吸收254nm波长的紫外线,但波段收集技术却能够成功检测并分离该族化合物。这一技术手段在处理自然产物时显得特别有效,因为在进行最终纯化之前,我们通常无法了解目标化合物的吸光度情况。通常完成分子鉴定之前,我们尚未了解某特定分子的吸光度。波段收集技术特别适纯化吸收光谱未知的化合物,因此此技术在处理天然物显得特别有效。溶剂光谱与化合物光谱重叠乙酸乙酯和二氯甲烷是快速色谱中常用的两种溶剂。它们都能吸收250 nm以下的紫外光,这会干扰在此波长范围内同样具有吸收能力的化合物的检测,特别是在使用梯度洗脱时尤为明显。这种不断变化的基线也会妨碍分部收集器准确切割分部的能力。图4:使用二氯甲烷/甲醇梯度,通过波段收集技术纯化葡萄糖五乙酸酯。葡萄糖五乙酸酯在210nm波长的吸光能力较弱,在图谱上其吸收更进一步被二氯甲烷影响,因二氯甲烷也会吸收210波长(参见图4)。当二氯甲烷的浓度降低时,基线会向下漂移。这种漂移通常会干扰传统的分部收集程序,但在波段收集技术面前,这并不是问题。波段收集能够有效地滤除基线漂移,从而为CombiFlash系统中的分部收集器提供一个稳定的基线。样品过载检测器在快速色谱中,样品负载过高导致吸光度饱和检测器是常见情况。若化合物洗脱时间相近,这种饱和现象会使得分部收集器无法准确分离化合物,因为饱和峰会被误认为一个大的单一峰。图5:使用波段收集技术纯化紧密洗脱的饱和峰。 波段收集技术能够测量用户选定光谱范围内的平均吸光度,因得以观测到未饱和的光谱,我们进而得以精准切割分析物的吸收峰。在图5中,通过波段收集技术成功纯化了过载且重叠的儿茶酚和间苯二酚峰。 纯化具有相同特性吸收峰的多种化合物由于波段收集技术的检测范围可以调节, 使用者可以轻松分离出具有特殊吸收波段的那些化合物。这项技术允许仅仅收集我们感兴趣的特定化合物。虽然我们可以选择一个单一波长来完成这项任务,但波段收集技术可以设定一个特定的波长范围,以收集一系列结构相近的化合物。 图6: 单一波长技术可分辨三种吸收254紫外光的化合物。而图7则展示了利用波段收集技术进行选择性纯化的过程,其中化合物1和3在295 nm至325 nm的波长范围内有吸收而化合物2不吸收该波段波长。图6:在254 nm处纯化化合物。图7:运用波段收集,在295至325 nm区间内选择性提纯化合物。三、波段收集技术参数设置建议波段收集技术的参数设置位于CombiFlash系统的方法编辑器界面。启动波段收集功能后,便可配置检测器的各项参数(参见图8)。可配置的参数包括波长范围(用以滤除溶剂或非目标化合物)、峰宽度、斜率以及阈值。当波长范围包含无吸光度的区域虽然会降低波段收集的灵敏度,但依旧能够实现化合物的收集。此外,使用波段收集时,建议同时启用一个可以观测到大多数分析物(包含杂质)吸收光谱的单一检测器。图8:波段收集和单一波长收集的检测参数。四、波段收集技术参数示例案例1:溶剂在侦测波长范围内无吸收若选定波长范围内溶剂无吸收,可将峰宽设为最长八分钟。这一设置同样适用于等度洗脱,因基线稳定,即使溶剂吸光度落在波段收集选定范围内,仍适用此设置。图1展示了按此技术进行纯化的情形。案例2:溶剂在波长范围内有吸收如溶剂在选定检测器范围内吸收(参见图4),则需将波段收集的峰宽设置为单一波长检测器峰宽的两倍。参见图8示例。此参数有助于减少溶剂干扰(参见图9和图10)。图9:使用庚烷:丙酮梯度在280 nm收集儿茶酚和间苯二酚。基线随着丙酮比例的增加而漂移。图10:使用波段收集技术在庚烷:丙酮梯度中收集儿茶酚和间苯二酚。波段收集技术过滤掉了大部分基线漂移。五、结论波段收集技术对于纯化未知吸光度或被溶剂掩盖吸光度的化合物木及具价值。该技术能够有效分离那些吸光度超出检测器承载范围的峰,从而提升了CombiFlash系统的自动化和无人值守操作特性。
  • 质检总局休闲食品检测区域性中心实验室(泉州)获准筹建
    近日,国家质检总局下发通知,批准筹建国家质检总局休闲食品检测区域性中心实验室(泉州),成为继国家质检总局福建石油化工检测中心实验室、国家质检总局福建陶瓷及矿产品检测中心实验室之后,泉州检验检疫局获批建设的第3个区域性中心实验室,将为泉州及至福建休闲食品产业发展提供强有力的技术支撑。  泉州食品产业发展很快  近年来,泉州食品产业发展很快。2015年产值突破1000亿元,以休闲食品为主,糖果、果冻、饼干、膨化食品占全国市场份额较大,其中糖果产业占全国的20%。目前泉州食品企业中达利、蜡笔小新、中绿、安记9家食品企业分别在祖国大陆和香港上市,行业拥有中国驰名商标15件、福建省著名商标52件,金冠、雅客、蜡笔小新均为全国糖果企业销售收入前十强的企业。在膨化食品方面,成功打造“可比克”、“好吃点”、“达利园”、“盼盼”法式小面包等多个全国知名品牌。晋江和惠安分别被中国食品工业协会授予“全国食品工业强县”称号。  泉州已成为我国重要的休闲食品出口基地,2015年全市出口值达1.65亿美元,由44家糖果、调味紫菜、蜜饯、果冻、糕点饼干类等出口休闲食品生产企业组成的产业集群已初具规模,产品热销东盟、欧美、中东、非洲、南美洲等50多个国家和地区。  获认可的检测项目有217项  “在休闲食品产业快速发展的同时,检测实验室建设尚不能与之匹配,建设高水平、高层次的休闲食品检测中心实验室十分必要和紧迫。”泉州检验检疫局相关负责人表示,此次获准筹建国家质检总局休闲食品检测区域性中心实验室(泉州),由现泉州局综技中心食品实验室为基础建设。该实验室现检测范围覆盖干果、膨化食品、糖果、酒类、饮料、罐头、果脯蜜饯、粮油、乳及乳制品、肉及肉制品、水产品、调味品等,经中国合格评定国家认可委员会(CNAS)认可的检测项目有217项。新建休闲食品检测中心实验室,将缩短检测周期,为泉州及至福建休闲食品产业的行政执法、企业产品自控、应对国外技术性贸易壁垒促进扩大出口等提供强有力的技术支持和保障。
  • 食品检测认证:“进口”关何时不再虚设
    食品检测认证:“进口”关何时不再如虚设?——人大代表谈食品安全   “吃荤的怕激素,吃素的怕毒素,喝饮料怕色素,能吃什么心中没数。”网上流行的这句语,虽有些夸张,却也道出了当下食品安全领域内的一些问题。   今年两会期间,一些人大代表提出,我国在食品检测认证方面存在的一些顽疾和弊端,使得原本为人们把好“进口”关的这个重要关口形同虚设,已经成为影响食品安全的一个隐患。   食品检测认证“关口”大开   全国两会召开前,记者曾对海南“问题豇豆事件”进行过调查。据海南省陵水黎族自治县英州镇农技站站长吴朝明介绍,英州镇是整个陵水县的豇豆集散地,但目前全镇只有1个检测服务站、3名检测员,不可能做到定点定人检测,只能是抽样检测。   海南省农业厅农产品质量安全监管处处长邢诒铁说,更主要的是,在整个出岛环节中并没有要求对豇豆一一进行检测。豇豆平均两天一摘,又值购销旺季,个别收购商直接到田间收购,容易出现漏检情况。此外,由于检测部门没有处罚权,就算检测出不合格产品,也不能采取就地销毁措施。   一些人大代表认为,食品检测是进、出市场的重要环节,可是在一些地方或有或无,“关口”大开、形同虚设, “同样让百姓寄予厚望的有机食品,也时常让人大跌眼镜。”全国人大代表、承德市副市长丁万明说,“一些通过了认证的有机食品,有违规添加人工合成物质的现象。”   有机食品又是如何通过检测认证打上标签的?丁万明代表说,当前全国有27家有机食品检测认证机构,其在成立之初隶属于不同的部门和管理主体,尽管现在都应隶属于国家认监委管理,但实际上处于软约束状态。目前我国对有机食品的管理法规也不完善,缺乏及时修改补充,在贯彻落实中的监督检查也比较薄弱。   防堵食品安全监管漏洞刻不容缓   全国人大代表、中国工程院院士钟南山说,当前我国食品安全监管环节仍然存在“多头管理、多龙治水”弊端,是导致类似“毒豇豆”这样的食品安全事故屡屡发生的重要原因。应探索建立起具有我国特色的“大食品监管机制”,把主要的监管环节纳入一个部门体系内运行、实施,才能有效消除“多头监管”造成的疏漏和不足。   全国人大代表、国务院发展研究中心技术经济研究部部长吕薇说,目前我国虽然建立了由质检、工商、食药监、医疗卫生等部门组成的食品监督体系,但上述部门的工作制度在一定程度上已经程式化,检查之前事先通知,或者让商家主动送检,这种做法难以检出问题。为消除食品检测弱化问题,可以尝试让一些民间组织承担检测工作,由政府部门对这些民间组织设立门槛、制定规则、建立信誉评价机制和淘汰机制。比如像日本在食品和医药方面,就有很多民间组织和机构进行检测,由政府监管这些组织机构,政府主要是组织生产。   对于如何提高有机食品的“含金量”,丁万明代表说,应尽快修订《有机食品生产认证管理办法》,从法律上明确有机食品的生产标准、认证资质、认证程序、标志使用和法律责任等问题,完善对认证机构的监管措施和行业自律制度,依法取缔不负责任的认证机构。   不过,很多代表都指出,食品安全问题这一痼疾已初见解决的希望:前不久,由3位副总理和15位部长组成的国务院食品安全委员会正式设 立,食品安全的重要性得到空前显示。   “相信不久的将来,在进一步完善和强化责任制度与问责制度,健全食品安全检测检验体系,健全风险评估、事故预防和应急处置机制等一系列措施下,我们都会吃得放心。”吕薇说。
  • 食品检测新技术的应用
    食品安全问题一直是人们最关注最担心的问题,前些年我国食品安全问题随处可见,对人们的身心健康构成了巨大的威胁,近几年来,我国食品安全问题的形势得到根本性的好转。随着人们生活水平的不断提高,人们对食品的消费观念逐渐变化,消费方式也从过去的家庭烹饪转向与市场消费,食品安全隐患和风险也逐渐增加。只有从根本上解决食品安全隐患才能获得国际市场的准入,实现我国食品的对外贸易。在这种要求下,食品检测技术必须要满足快速,方便,准确和灵敏的要求,目前,我国食品快速检测方法发展十分迅速,笔者就目前我国最新的食品快速检测方法进行分析。  食品污染检测新技术的发展现状  食品安全问题一直是关系到国计民生的重大问题之一,是我国进出口贸易的主要障碍,随着国家在食品安全监测方面投入力度的不断加大,目前,一些新的检测技术和改进技术不断的被推入市场,主要为以下几个方面:  农药残留检测技术。农药残留一直是影响食品安全的主要因素,近年来,农药残留检测技术取得了很大的突破,出现了包括微博萃取法,超临界提取法,固相萃取法及加热溶剂萃取法等新得提取,净化,分离和检测技术,这些新的检测技术使得提取液中的杂质少,提取对象效率高,试剂耗费少,而且操作简单,检测质量好。萃取法的出现开始于上世纪80年代后期,最初是固相萃取微型柱检测法,由此引发了一场净化技术的革命,我国在传统的农药检测技术基础上一方面借鉴国外先进的检测方法,另一方面在引进,消化和吸收的过程中退出了一些更为先进的方法,取得了新的进展。  兽药残留检测技术。随着我国畜牧业的集约化和规模化的发展,兽药的使用范围越来越广,各种有利于促进畜禽生长的抗生素,磺胺药,激素等在畜牧养殖中广泛应用,这些兽药在促进畜禽生长,减少动物发病率的同时,也带来了兽药残留的问题,如今,兽药残留成为肉食品安全的最大隐患。一些发达国家在上世纪80年代就已经建立了兽药残留检测体系,而我国的兽药检测体系尚不健全,起步较晚,但是近些年来我国政府在兽药检测方面加大了重视程度,而且取得了明显的进展,如通过试剂盒检测饲料中的超标污染物,以及在生猪屠宰时检测瘦肉精的含量等这种方法不但成本低,操作简单,而且检测时间短,适用于大批样品的筛选,对于很多屠宰场来讲,一个普通的相关专业的本科毕业生便能担任检测工作。  重要有机污染物的检测技术。随着工业的不断发展,人们生存的环境污染程度越来越严重,很多有机污染物在工业生产的过程中被产生,这些污染物在我们的身边随处可见,尤其是垃圾焚烧过程更是产生了大量的诸如二噁英等严重危害人们身心健康的污染物,二噁英类物质大约有200多种,是一种高致癌性的物质,据科学检测得知,二噁英的毒性是砒霜的900倍,不仅毒性强,而且分析难度大,检测费用高昂。目前我国在二噁英检测方面已经建立了专门的检测机构和检测体系,在甲醛的检测方面也取得了突破,已经使用到了分光光度法,气相色谱法,液相色谱法等方法,这些检测方法设备操作简单,干扰度低,成本低,灵敏度高。  生物性污染的检测技术。食品里面由微生物引起的主要食源性疾病有沙门氏菌病,螺旋杆菌病,肠出血性大肠杆菌及李斯特菌引起的感染性疾病,以及黄曲霉素引起的致癌性病变等。这些食源性疾病和黄曲霉素有些是因为食品受污染所致,有些是因食物霉变所致,这些病菌对人们的身心健康构成的威胁十分严重,如黄曲霉素,在发霉的花生中十分常见,目前,以PCR为代表的分子生物学技术以及自动化仪器的迅速发展推动了微生物检测技术的进步,目前使用的酶联免疫试剂盒在食源性病毒的检测方面取得了明显的效果。  转基因食品检测技术。转基因食品因其安全性一直无法得知而无法得到市场的认可,美国作为转基因工程的研究大国,在国内禁止转基因作物的种植,而在我国,转基因食品大量存在于市场之中,2015年,湖北省层统计过全省有3/5的农产品为转基因食品,一度引起了人们的恐慌。转基因食品的检测方法常见的有聚合酶链式反应和免疫分析法,实时荧光PCR检测技术及测试试剂盒的出现意味着我国在转基因食品检测方面突破了最大的难关,转基因检测水平已经达到了国际先进水平。  加强我国食品安全管理的对策  从我国食品安全的来源可以看出,我国食品污染的来源来自于食品的生产,加工,运输和销售等所有环节,其中,农药污染是食品污染的主要来源,近些年来,激素污染和人为造假也成为食品的主要污染源,因此,要做好食品安全管理,保障人们的饮食健康成为当务之急。  完善食品安全管理体系。根据我国食品安全问题研究专家的建议,随着我国农业经营集约化程度的不断加深及现代农业的发展,要运用标准化管理手段引导农业生产的规范化操作,在农产品产前,产中和产后等各个环节严格遵守农业生产规范,防止过分使用农药和化肥,在食品加工过程中要剪辑健全食品安全管理制度,完善食品卫生法,如建立和完善肉制品,豆制品,面制品和水产品中添加剂的检测体系,加快建立和完善食品生产许可证和食品质量安全市场准入机制的建设 实施HACCP管理体系。HACCP体系是危害分析和关键控制点管理体系,是一个得到社会广泛认同的保证食品从种植到餐桌的全过程的管理措施,也是目前保障食品安全和质量的最完善的管理体系,该体系包括7个原理,分别是危害分析及危害程度评估,关键控制点的鉴定,各关键控制点临界值的确定,HACCP监控程序的建立,纠偏程序的建立HACCP验证程序的建立及记录保持程序的建立。目前,HACCP体系已经广泛应用于我国的水产品,冷冻食品,罐头食品,烘烤食品,发酵食品,饮料及其他各类食品的检测中,确保食品的安全 加强市场监督,打击制假售假行为。政府部门要加强食品市场的监管力度,加大对问题食品责任企业和责任人的查处和打击力度,加强市场的抽查,一旦发现问题食品,通过顺藤摸瓜的途径找到问题食品的源头,查处问题食品的来源,建立和健全食品生产的市场准入机制和问题食品的强制返回制度,确保食品生产和销售的安全性,对制假,售假等行为予以从重打击,防止不法商铤而走险 建立和完善食品安全预警系统。建立食品安全预警系统需要加强食品工业信息网络的基础建设,坚持重点监控与系统监控的结合,对不同地区,不同品种食品的生产和销售状况进行监控,利用食品安全预警系统,对不同地区不同品种的食品生产和销售进行动态监管,密切关注市场变化,确保食品安全。  民以食为天,食品安全问题是关乎到人们生存的最直接问题,因此,做好食品安全管理是保证人们身心健康的最重要工作,政府部门要建立和完善食品安全保障体系,包括制度的建设,法律法规的健全和管理人员和装备的完善,加强食品检测技术的研究工作,使食品安全能够真正的做到绝对安全。
  • 选择合适自己的双波段闪烁仪才能获得良好使用体验
    双波段闪烁仪是一种用于检测放射性物质的仪器,广泛应用于核能研究、医学诊断、环境监测等领域。选购双波段闪烁仪需要考虑多个因素,以确保选择适合需求的仪器。以下是一些建议和选购方法。   1、使用目的和应用领域。不同的研究和应用领域可能对仪器的性能和功能有不同的要求。例如,医学领域可能需要高灵敏度和分辨率的仪器,而环境监测领域可能更注重便携性和耐用性。因此,在选购之前,明确使用目的并了解使用领域的需求是非常重要的。  2、性能指标。仪器性能指标通常包括能量分辨率、计数效率、时间分辨率等。能量分辨率是指仪器能够区分不同能量的辐射源的能力,对于精确测量放射性物质的能量非常关键。计数效率是指测量到的信号与实际辐射源发出的信号之间的比率,通常希望选择具有高计数效率的仪器以提高测量的准确性。时间分辨率是指测量到的信号的时间分辨能力,对于快速或短暂的辐射事件的检测非常重要。  3、灵敏度和探测器类型。不同的仪器可能使用不同类型的探测器,如钠碘闪烁体探测器、硅探测器等。每种类型的探测器都有其特点和适用范围。例如,钠碘闪烁体探测器在中等能量范围内具有较高的灵敏度,适用于广泛的应用领域,而硅探测器在高能量范围内具有更好的性能。因此,根据具体需求选择适合的探测器类型非常重要。  4、可靠性和易用性。可靠性包括仪器的稳定性、耐用性和维护需求等方面。选择具有高可靠性的仪器可以减少故障和维修的频率,提高工作效率。易用性则包括仪器的操作界面、数据处理和报告功能等。选择界面友好、功能齐全的仪器可以简化操作流程,并提高数据处理的效率。  综上所述,选购双波段闪烁仪需要考虑使用目的、性能指标、灵敏度和探测器类型、可靠性和易用性以及预算限制等因素。建议在选购之前充分了解市场上的不同品牌和型号,并选择与应用需求相匹配的仪器,以确保获得良好性能和使用体验。
  • 第二届检博会食品检测仪器性能竞赛引发业内广泛关注
    2014年第二届国际检验检测技术与装备博览会(以下简称&ldquo 检博会&rdquo )将于7月31日在北京拉开帷幕。随着展期的临近,由中国出入境检验检疫协会主办的&ldquo 食品检测仪器性能竞赛活动&rdquo 也快速升温。此竞赛作为国内外仪器性能评价和参数比对的重要活动,成为2014年检测行业最受关注的热门话题之一。   本次竞赛活动是为了更好地促进检验检测技术与装备的推广应用,增强设备生产研发单位的自主创新能力和市场竞争力,提高检验检测技术水平。活动以原子荧光光谱仪的仪器性能测试、液相色谱仪的仪器性能测试两个项目进行竞赛,由国内外从事研发设计、加工生产、销售本次竞赛活动规定的仪器设备的单位自愿报名参加。为做好食品检测仪器竞赛活动,中国出入境检验检疫协会专门成立了专家工作组,负责竞赛活动方案的制定、组织和评分等工作。竞赛阶段地点设在中国出入境检验检疫协会检测技术培训基地,现场由评审专家工作组根据评测标准对竞赛结果进行评审并给出综合得分,并推荐获奖的设备和单位。   竞赛活动作为检博会亮点活动之一,设立金奖、银奖,比赛结果将会于第二届检博会举办期间公布,由相关领导、专家现场向获奖厂家颁奖,获奖产品信息将在总局网站政府采购栏目进行公布。
  • 国内首套光电输运选件在清华大学顺利验收,完美实现不同波段的电输运全自动测量
    随着新能源产业的不断发展,新型太阳能材料的研究正进入快速发展阶段,进而凸显高精度光电测量系统的重要性。Quantum Design秉承科研需求高于一切的精神,同时应广大用户的要求,于2016年的美国物理学年会APS上隆重推出了光电输运选件。日前,国内套光电输运选件在清华大学材料学院功能复合材料课题组完成安装调试并顺利验收。Quantum Design工程师讲解仪器的操作方法Quantum Design公司的综合物性测量系统PPMS可根据客户需求配置不同选件,实现磁学、电学、热学等性质的测量。光电选件是基于PPMS、Versalab平台全新推出的光照下电输运测量选件,该选件在原有的多功能样品杆选件的基础上集成了适应不同光波段的光纤,并标配了卤素灯和单色仪。用户能够根据测量的实际需求调节入射光线波段,并配合高电输运或直流电学选件实现进一步的电输运测量。 光电测量样品杆 在此次更新的光电输运测量选件中,选用100W长寿命卤素灯光源,输出的波谱范围可从350nm一直延伸到1850nm,通过光栅单色仪能够输出约为10nm线宽的单色光,并能够实现整个波谱范围的连续调控,结合系统的变温、变磁场样品腔环境,用户能够在不同温度以及不同磁场条件下,对样品进行不同波段光照下的电输运性质的全自动测量,更加便捷。 光源及连续可调光栅单色系统 不同温度下样品电阻对激发光波长的依赖关系此次更新的光电输运选件能够支持两个4线法样品同时进行测量,如此,用户在同样的物理环境下即可对多种不同组分样品的性质进行更为直观地对比,这就大大提升了实验室样品测试的效率。结合PPMS平台的电输运测量选件,该选件能够帮助用户实现光照下样品电输运性能测量,进一步拓展了PPMS综合物性测量系统在光、电、磁等方面的多场调控能力。期待该选件的顺利安装能够为老师获取更多的科研成果添砖加瓦,也期望有越来越多的用户能够充分利用PPMS系统以及新选件的多种功能,取得更的学术成果! 相关产品链接: PPMS 综合物性测量系统 http://www.instrument.com.cn/netshow/SH100980/C17086.htm 完全无液氦综合物性测量系统 DynaCool http://www.instrument.com.cn/netshow/SH100980/C18553.htm多功能振动样品磁强计 VersaLab 系统 http://www.instrument.com.cn/netshow/SH100980/C19330.htm MPMS3-新一代磁学测量系统 http://www.instrument.com.cn/netshow/SH100980/C17089.htm
  • 风途发布食品安全检测仪-食品检测设备新品
    食品安全检测仪-食品检测设备Food safety detector  检测项目:  食品添加剂:二氧化硫、双氧水、亚硝酸盐、硝酸盐、苯甲酸钠、山梨酸、糖精钠、甜蜜素、硫酸镁  有毒有害物质:甲醛、吊白块、硼砂、过氧化苯甲酰、溴酸钾、罗丹明B、三聚氰胺、苏丹红  果蔬中:农药残留,病害肉诊断:组胺、挥发性盐基氮、肉制品酸价、水发产品中组胺  重金属含量:铅、镉、铬、汞、砷、锡、镍、铝。食用油脂检测:过氧化值、酸价、油脂丙二醛。  瘦肉精激素类(兽药):盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚等  抗生素残留类(兽药):四环素类、硝基呋喃类、磺胺类、沙星类、磺胺类、喹诺酮类  水产品安全类:孔雀石绿、氯霉素、呋喃妥因代谢、呋喃西林代谢、呋喃它酮代谢、呋喃唑酮代谢  真菌毒素类:食用油、粮食及饲料中黄曲霉毒素B1、奶中黄曲霉毒素M1、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A等  水酒饮品分析:乳品及牛奶中蛋白质,酒中甲醇、乙醇、杂醇油,蜂蜜中果糖和葡萄糖、蔗糖、淀粉酶、酸度,水中氰化物、余氯,饮料中维C  调味品成分:食醋的总酸、酱油的总酸、芝麻油纯度、谷氨酸钠、酱油氨基酸态氮、食盐中亚铁氰化钾、食盐中碘  食用色素类:红色色素(胭脂红、苋菜红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)  动物疫病类:猪蓝耳病毒、猪瘟病毒、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感  多功能食品安全检测仪可快速检测200多项目,包含非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、病害肉、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等现场的定性定量检测。  该多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。  产品性能:  1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速批量上传数据。  2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。  3、新一代高速热敏打印机,检测完成可自动打印或批量打印检测报告和二维码。  4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警  5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。  6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。  7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。  8、CT线自动识别,无需手动调整。  9、仪器具有品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。  10、样品处理简单省力,整体操作快速、安全、便捷。  11、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。  12、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。  13、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。  14、仪器具有重新校准、锁定、恢复出厂设置功能。  15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。  16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。  主要参数:  1、主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。  2、显示方式:10英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。  3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。  4、四波长冷光源,24个检测通道,每个通道均配置410、520、590、630nm波长光源,标配先进的光路切换装置,专业光路切换功能可实现最多64波长,并且所有检测项目可实现所有通道同时检测。  5、光源亮度自动调节与校准  6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。  7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。  8、不间断进样,连续检测  9、样本编号自动累加。  10、检测结果为Excel表格,连接电脑即可拷贝。  11、检测结果存储容量20万条  12、支持U盘存储,标准USB接口,免驱动安装。  13、检测项目可扩充,固件可升级  14、仪器尺寸:43×35×20cm, 主机净重:5.1kg  技术参数:  1、农 残: 检出下限:抑制率 5% ,检测范围:抑制率(0~100)%  2、甲 醛: 检出下限:1mg/kg ,检测范围:(0~100) mg/kg  3、亚硝酸盐: 检出下限:1mg/kg ,检测范围:(0~100) mg/kg  4、二氧化硫: 检出下限:1mg/kg 5mg/kg ,检测范围:(0~100) mg/kg (0~500) mg/kg  5、吊 白 块: 检出下限:5 mg/kg ,检测范围:(0~500) mg/kg  6、蛋 白 质: 检出下限:0.5% ,检测范围:(0~50)%  7、硼 砂: 检出下限:5 mg/kg ,检测范围:(0~100) mg/kg  8、双 氧 水: 检出下限:5 mg/kg 10 mg/kg 100 mg/kg ,检测范围:(0~500) mg/kg (0~1000) mg/kg (0~10000) mg/kg  9、硝 酸 盐: 检出下限:10 mg/kg 40 mg/kg ,检测范围:(0~1000) mg/kg (0~4000) mg/kg  10、重金属铅: 检出下限:0.5 mg/kg 0.2 mg/L ,检测范围:(0~50) mg/kg (0~20) mg/L创新点:全新24个检测通道,可检测200多项 食品安全检测仪-食品检测设备
  • 技术线上论坛|12月02日《红外竟成为关键数据?接连登上Nature子刊!550-7000 cm-1全波段 10 nm红外光谱(nano-FTIR/AFM-IR)测量系统》
    报告简介: 傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。常规FTIR显微镜通常使用相对较弱、光谱范围较广的红外光源,但其分辨率受限于光波长小约为波长的一半,这严重限制了光学技术尤其是长波段的中远红外和太赫兹技术在微观领域的研究。相比之下,纳米傅里叶红外光谱仪-Nano-FTIR、超高分辨散射式近场光学显微镜-neaSNOM和 AFM-IR显微镜具有更强的激光源,可实现材料在纳米尺度下的组分分辨。然而,为实现较强的激光功率,其代价往往缩小了光谱覆盖的范围。在本次网络研讨会中,我们将介绍一种全新的全波段可调谐激光光源,它与 neaspec 显微镜结合可提供前所未有的光谱覆盖范围,并实现纳米红外显微镜的10 nm成像和光谱测量。 这种特技术的特点:• 超宽的可调谐波长范围 550-7000 cm-1,同时具有与 QCL 相当的调谐速度;• 线宽 在网络研讨会的问答时段,您可以直接与neaspec专家探讨科研工作中所面临的技术挑战和各种问题。欢迎您届时参加!报名注册:您可以通过点击此处或扫描下方二维码报名注册此次会议。扫描上方二维码,即可注册!报告时间:2021年12月02日 17:00(北京时间) 主讲人:主持人:Sergiu Amarie, neaspec高应用工程师演讲嘉宾:Magnus Johnson, KTH Stockholm技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 揭开食品检测的“神秘面纱”
    我们平常喝的饮用水是否符合安全标准?吃的蔬菜有没有农药残留?使用的餐具是否干净?海鲜干货有没有添加防腐剂?市民每天都要吃各种各样的食物,但很多市民心里存在疑惑,不知道这些食物有没有经过检测,工作人员如何进行检测,检测结果又是如何公布?为此,8月7日下午,记者来到县食品检验检测中心,对食品检测的工序进行采访,试图揭开食品检测的“神秘面纱”。 市民可免费检测   走进县食品检验检测中心,给人的第一感觉就是特别干净,而且有一种庄重、严谨氛围。记者在几个检测室看到,室内整齐地摆放着各种检测液剂和检测工具,检验员穿着白褂衣,正进行着细致的检测。   在液相色谱仪室,记者看到一名年轻的女检验员正对着电脑,查看色谱检测结果,并翻阅相关资料进行反复比较。在气相色谱室内,一位带着眼镜的检验员则拿着一个小试管仔细观察。   而在微生物实验室,记者却被检验员挡在了门外,只能在外远观。透过玻璃窗,记者发现,3名检测人员神情严肃,正小心翼翼地拿着仪器认真测量。据工作人员介绍,这几位检验员正在做大肠菌群的确诊试验,为防止试验室的环境受外界感染,也为保障整个操作流程的规范性,微生物室需全封闭。   接待记者的该中心实验室主任、技术负责人叶海云告诉记者,为让老百姓吃上“放心食物”,县委、县政府高度重视,拿出专项经费,于今年3月6日成立县食品检验检测中心,成为台州市最早的县级食品安全公共检验检测服务平台。检测覆盖流通领域重要食品、农(水)产品等各环节,可检测海鲜干货、食用油、餐具、饮用水、蔬菜农残等298个项目,基本满足我县食品检验检测需要。   “目前中心实验室面积625平方米,已建立专业实验室30个,包括样品收发、前处理、理化、仪器、微生物等功能区域,现有美国热电原子吸收、美国安捷伦气、液相色谱、美国CEM微波消解、梅特勒电子天平等大小仪器70多台(件),由于中心刚刚开始运作,检测的物品并不是很多,主要集中在饮用水和农药残留这两个项目。” 叶海云边带我们参观检测室边介绍。   叶海云还透露,该中心对流通领域的食品检测非常严格,根据检测食品的不同归属,从取样到确定检验方式、再到形成报告,其中的流程往往有几十道。完成时间也有长有短,短则一天,长则一个月,但一般情况下,检测结果在半个月之内都能出来。   “目前我们的工作主要有县里行政指令性检测任务和上级主管部门委托的检测业务,市民和一些食品加工企业也可以拿着样品到检测中心检测。”叶海云告诉记者,由于检测中心刚刚开始运作,目前,市民委托该中心进行检测是免费的。 饮用水检测:费时费力   水是人体每天必不可少的东西,叶海云介绍,对饮用水的检测,首先由市民或相关部门委托向中心提供样品,也可由中心自己取水,在业务室受理后,根据水质情况写好检验委托书,标明基本情况后寄放到样品室。之后,由业务室发样到实验室,由实验室负责人根据所属品种,再分发到微生物、仪器、理化这3个组的专职检验员手中,然后对照相关标准进行检测。   看似简单的饮用水,其实整个检测过程非常复杂,往往需要动用各种设备,检测人员则需要4至5人。根据国家标准,对水的检测项目包括饮用水中细菌学指标、感官性状、一般化学指标、毒理学指标等,其中,细菌学指标是代表饮用水微生物学安全的检测项目,包括细菌总数、总大肠菌群和游离余氯;感官性状、一般化学指标又有色、味、浑浊度、肉眼可见物、pH值、总硬度、铁、锰、铜、锌、挥发酚类、阴离子合成洗涤剂、硫酸盐、氯化物和溶解性总固体。而毒理学指标即我们经常所说的重金属,包括氟化物、氰化物、砷、硒、汞、镉、铬、铅、银、硝酸盐、四氯化碳、滴滴涕和六六六等。   每一个小项都需经过专门的设备检测,根据检测结果与标准饮用水相对照,然后登记原始数据,进行仔细分析,写成报告,确定被检的水是否达标,由负责人授权签字,最后公布检测结果。可以说整个检测过程相当费时,往往需要一至两个星期。 农残检测:省时省力   相比饮用水复杂的检测过程,农药残留的检测则简单得多。众所周知,人若长期食用有农药残留的蔬菜、瓜果等农产品,对身体极为有害:低剂量的有机磷农药可使人产生慢性中毒,急性中毒可引起肌肉痉挛、瞳孔收缩、呼吸困难,昏迷甚至死亡。因此,谈起农药残留,市民颇有“谈虎色变”的感觉,叶海云告诉记者,一般的农药残留检测几个小时就能得出结果,算是该中心工作量最小的检测项目。   “在取得蔬菜样品后,我们通过农药残留速测仪,利用酶抑制法来检测,对应相关指标,如果超标则表示含有农药残留物,该蔬菜就不能食用。从提取样品到最后确定结果,整个过程只需要一个小时左右。”叶海云透露,简单的农药残留检测只是定性检测,不需要大费周章,但中心还有一项重要工作就是对农药残留进行定量检测。就是通过专门的设备,对超标的样品进行定量分析,确定农药残留超标的具体指标,然后根据结果提醒农民尽量少用哪些农药。从目前我县农药残留检测结果来看,基本没有农药超标现象。   在听完叶海云的介绍后,记者体会到,原来食品检测有这么多门道。不过庆幸的是,有检测中心这样一个平台在,咱老百姓的食品安全就多了一道保障。 图为检验员正在封闭的微生物实验室进行检测 图为检验员正在液相色谱仪室进行检测 图为检验员正在液相色谱仪室内查看检测结果 图为检验员正在气相色谱仪室查看检测结果
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制