当前位置: 仪器信息网 > 行业主题 > >

光电测尘仪原理

仪器信息网光电测尘仪原理专题为您提供2024年最新光电测尘仪原理价格报价、厂家品牌的相关信息, 包括光电测尘仪原理参数、型号等,不管是国产,还是进口品牌的光电测尘仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光电测尘仪原理相关的耗材配件、试剂标物,还有光电测尘仪原理相关的最新资讯、资料,以及光电测尘仪原理相关的解决方案。

光电测尘仪原理相关的资讯

  • 四方光电激光扬尘传感器助力打赢蓝天保卫战
    p   根据“两会”期间公布的2020年政府工作报告,今年要实现单位国内生产总值能耗和主要污染物排放量继续下降 深化重点地区大气污染治理攻坚 要打好蓝天、碧水、净土保卫战,实现污染防治攻坚战阶段性目标。 br/ /p p   2020年是打赢蓝天保卫战、“十三五”规划的全面收官之年,我国大气污染治理进入攻坚“深水期”,剩下的都是难啃的“硬骨头”。作为一直以来的重点和难点,扬尘污染治理已然成为大气污染防治目标完成与否的关键点之一。 /p p   扬尘治理,需对症下药 而把脉问诊,监测为先。高性能的扬尘传感器对实现扬尘全面监测、精准治理、降低成本等多方面的重要性不言而喻。 /p p    span style=" color: rgb(0, 176, 240) " strong 扬尘传感器的需求及应用现状 /strong /span /p p   行业发展初期,扬尘监测设备多基于β射线吸收法,然而受仪器体积较大、成本高昂等因素掣肘,量大面广的需求无法得到真正满足。 /p p   基于光散射原理的粉尘传感器,在民用室内检测应用中,经历了从采用LED光源和扩散式采样,用于粉尘浓度变化的趋势检测,到升级为激光光源和风扇采样,可以精确检测PM2.5数值的创新发展过程。然而针对室外扬尘监测还需要PM10和TSP的精准监测要求,则无法得到满足。 /p p   因此,能够同时准确测量PM2.5/PM10/TSP、体积小、购买和维护成本低成为了扬尘监测设备配套传感器面临的主要挑战。 /p p    span style=" color: rgb(0, 176, 240) " strong 室外扬尘颗粒物监测的技术难点 /strong /span /p p   ① 与β射线原理的设备保持较高的线性相关性 /p p   国站监测设备采用的是β射线原理,其他的扬尘监测站的监测数据必须要与其保持高度一致性,但由于原理上的差异,要做到这一点,传感器需要采用更高性能的器件,有效提升颗粒物识别的能力。 /p p   ② 满足室外-30℃~70℃的工作温度要求 /p p   温度对传感器激光管的影响非常大,然而室外温度范围更宽,夏天在太阳下暴晒,温度可能会到达70℃ 冬天北方严寒地区最低温度可能达到零下30℃。这就要求传感器在此温度下不仅能够正常工作,还要确保检测的准确性。 /p p   ③检测精度不受水雾影响 /p p   由于室外环境经常会遇到凝霜与露水的情况,这些水汽进入到传感器后会严重影响到传感器的测量值,甚至会造成传感器永久损坏。 /p p   ④长期使用,精度不受积灰影响 /p p   扬尘传感器工作在室外,大颗粒的灰尘经过传感器采样风道内会受到重力影响附着在传感器内部,长期使用,会使得灰尘在传感器内部大量堆积,影响到测量准确性。 /p p    span style=" color: rgb(0, 176, 240) " strong 四方光电激光扬尘传感器的技术特点 /strong /span /p p   四方光电基于创新的光散射技术研究,陆续推出红外粉尘传感器、激光粉尘传感器等系列传感器产品,广泛应用于室内、室外及车内检测等领域。 /p p   在此基础上,四方光电针对扬尘传感器的应用场景,以及不同地方标准需求,推动技术革新升级,成功研发扬尘颗粒物传感器PM3003S及 PM3006。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/578caa97-49a6-4d7e-9c5f-e5fc398bc203.jpg" title=" 222_副本.jpg" alt=" 222_副本.jpg" / /p p style=" text-align: center " 图1:PM3006S(左)及 PM3006(右)激光扬尘传感器 /p p    strong 1、 扬尘颗粒物智能识别技术(API技术) /strong /p p   PM3003S,PM3006采用了独特的API(Auto Particle Identification,自动颗粒识别)技术,在多种尘源下进行标定,根据检测到的颗粒物分布进行自动判断,确保PM2.5、PM10和TSP的检测精度。 /p p style=" text-align: center" img style=" width: 580px height: 393px " src=" https://img1.17img.cn/17img/images/202006/uepic/bb9423a3-a58f-4a20-924e-5ae69424f42a.jpg" title=" 11.jpg" width=" 580" height=" 393" border=" 0" vspace=" 0" alt=" 11.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/8ddb10c0-114d-496b-bd0c-6b33eaad613f.jpg" title=" 22.jpg" / /p p    strong 2、 高温、恒功率、线型激光管 /strong /p p   PM3003S、 PM3006激光扬尘传感器采用了工作温度在-30~70℃的恒功率、线型光源,其光功率高达100mW,相比点光源高出20倍以上,原始信号更强,大大提升了颗粒物的识别效率。同时对光源采用了恒功率控制,保证原始信号的稳定输出,确保测量的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e6860d1a-bc80-4215-b684-13ef739fa43c.jpg" title=" 33_副本.jpg" alt=" 33_副本.jpg" / /p p style=" text-align: center " 图2:室外扬尘传感器与民用粉尘传感器光源差别,左:高功率线型光源,右:低功率点光源 /p p    strong 3、 自带除水雾装置,不受水汽影响。 /strong /p p   四方光电研制的PM3003S、 PM3006激光扬尘传感器前端配套了除湿装置,防止室外环境中细小的水珠进入检测气室,消除水汽对扬尘传感器的精度影响。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0c10a2cf-ddd2-450c-bf4b-330c21a12571.jpg" title=" 44_副本.jpg" alt=" 44_副本.jpg" / /p p    strong 4、 创新结构设计,长效防积灰。 /strong /p p   PM3003S、 PM3006激光扬尘传感器通过流体力学仿真对采样风道进行了长效防积灰结构设计,经过实际验证,可以减少室外环境对传感器检测精确度的影响,降低后期维护成本。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/efa66063-7146-489b-88b2-af426b89892a.jpg" title=" 66.jpg" alt=" 66.jpg" / /p p   我国室外扬尘网格化监测经历了早期的β射线吸收法,到采用民用净化器大量应用的激光粉尘传感器的过程。在使用过程中发现,民用的激光粉尘传感器不仅不能满足-30~70℃室外环境温度的全天候使用要求,同时还必须面对监测场所,特别是建设工地经常喷洒降霾的水雾影响,或者下雨潮湿的气候环境等。这种环境下,水雾经常被判断为严重雾霾造成爆表。同时网格化室外粉尘监控希望得到局部的可以与国家大气环境监测网数据具备的PM2.5/PM10/TSP的多项参数对比, 民用激光传感器由于激光功率小,采样流量小, PM10分辨率很低,无法提供准确的PM10, 通常采用根据PM2.5的数字进行比例计算,造成PM10监测数据失真。四方光电研制的PM3003S、 PM3006激光扬尘传感器通过采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样机构、高湿度环境的水雾去除装置等,低成本地实现了对室外扬尘粉尘与β射线吸收法达到0.9相关系数的高精度测量。 /p p br/ /p
  • 一文了解原子层沉积(ALD)技术的原理与特点
    什么是原子层沉积技术原子层沉积技术(ALD)是一种一层一层原子级生长的薄膜制备技术。理想的 ALD 生长过程,通过选择性交替,把不同的前驱体暴露于基片的表面,在表面化学吸附并反应形成沉积薄膜。 20 世纪 60 年代,前苏联的科学家对多层 ALD 涂层工艺之前的技术(与单原子层或双原子层的气相生长和分析相关)进行了研究。后来,芬兰科学家独立开发出一种多循环涂层技术(1974年,由 Tuomo Suntola 教授申请专利)。在俄罗斯,它过去和现在都被称为分子层沉积,而在芬兰,它被称为原子层外延。后来更名为更通用的术语“原子层沉积”,而术语“原子层外延”现在保留用于(高温)外延 ALD。 Part 01.原子层沉积技术基本原理 一个完整的 ALD 生长循环可以分为四个步骤: 1.脉冲第一种前驱体暴露于基片表面,同时在基片表面对第一种前驱体进行化学吸附2.惰性载气吹走剩余的没有反应的前驱体3.脉冲第二种前驱体在表面进行化学反应,得到需要的薄膜材料4.惰性载气吹走剩余的前驱体与反应副产物 原子层沉积( ALD )原理图示 涂层的层数(厚度)可以简单地通过设置连续脉冲的数量来确定。蒸气不会在表面上凝结,因为多余的蒸气在前驱体脉冲之间使用氮气吹扫被排出。这意味着每次脉冲后的涂层会自我限制为一个单层,并且允许其以原子精度涂覆复杂的形状。如果是多孔材料,内部的涂层厚度将与其表面相同!因此,ALD 有着越来越广泛的应用。 Part 02. 原子层沉积技术案例展示 原子层沉积通常涉及 4 个步骤的循环,根据需要重复多次以达到所需的涂层厚度。在生长过程中,表面交替暴露于两种互补的化学前驱体。在这种情况下,将每种前驱体单独送入反应器中。 下文以包覆 Al2O3 为例,使用第一前驱体 Al(CH3)3(三甲基铝,TMA)和第二前驱体 H2O 或氧等离子体进行原子层沉积,详细过程如下:反应过程图示 在每个周期中,执行以下步骤: 01 第一前驱体 TMA 的流动,其吸附在表面上的 OH 基团上并与其反应。通过正确选择前驱体和参数,该反应是自限性的。 Al(CH3)3 + OH = O-Al-(CH3)2 + CH4 02使用 N2 吹扫去除剩余的 Al(CH3)3 和 CH4 03第二前驱体(水或氧气)的流动。H2O(热 ALD)或氧等离子体自由基(等离子体 ALD)的反应会氧化表面并去除表面配体。这种反应也是自限性的。 O-Al-(CH3)2 + H2O = O-Al-OH(2) + (O)2-Al-CH3 + CH4 04使用 N2 吹扫去除剩余的 H2O 和 CH4,继续步骤 1。 由于每个曝光步骤,表面位点饱和为一个单层。一旦表面饱和,由于前驱体化学和工艺条件,就不会发生进一步的反应。 为了防止前驱体在表面以外的任何地方发生反应,从而导致化学气相沉积(CVD),必须通过氮气吹扫将各个步骤分开。 Part 03. 原子层沉积技术的优点 由于原子层沉积技术,与表面形成共价键,有时甚至渗透(聚合物),因此具有出色的附着力,具有低缺陷密度,增强了安全性,易于操作且可扩展,无需超高真空等特点,具有以下优点: 厚度可控且均匀通过控制沉积循环次数,可以实现亚纳米级精度的薄膜厚度控制,具有优异的重复性。大面积厚度均匀,甚至超过米尺寸。 涂层表面光滑完美的 3D共形性和 100% 阶梯覆盖:在平坦、内部多孔和颗粒周围样品上形成均匀光滑的涂层,涂层的粗糙度非常低,并且完全遵循基材的曲率。该涂层甚至可以生长在基材上的灰尘颗粒下方,从而防止出现针孔。 ALD 涂层的完美台阶覆盖性 适用多类型材料所有类型的物体都可以进行涂层:晶圆、3D 零件、薄膜卷、多孔材料,甚至是从纳米到米尺寸的粉末。且适用于敏感基材的温和沉积工艺,通常不需要等离子体。 可定制材料特性适用于氧化物、氮化物、金属、半导体等的标准且易于复制的配方,可以通过三明治、异质结构、纳米层压材料、混合氧化物、梯度层和掺杂的数字控制来定制材料特性。 宽工艺窗口,且可批量生产对温度或前驱体剂量变化不敏感,易于批量扩展,可以一次性堆叠和涂覆许多基材,并具有完美的涂层厚度均匀性。
  • 沙尘“侦察兵”:中科光电激光雷达网让沙尘传输有迹可循
    2021年以来沙尘天气频发,我国西北、华北地区遭遇了多次大范围沙尘天气过程,其中4月中旬的沙尘天气甚至跨越长江,影响到江南地区。沙尘天气的爆发致使传输路径上的多数城市AQI持续爆表,对人们的生活产生不利影响。如何实现对沙尘天气的提前感知和预警预报,每一次沙尘天气在国内的传输和扩散轨迹如何?作为区域沙尘天气立体观测“侦察兵”,中科光电激光雷达组网记录了每一次沙尘天气在全国的传输轨迹 。让我们跟随“侦察兵”的报告,对今年的主要沙尘天气进行回顾和盘点。1月10日-15日沙尘过程分析 西北区域(甘肃) 图1 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图1月10日-13日,河西地区多次出现短时沙尘传输过程。1月10日,沙尘气溶胶分布高度随传输过程逐渐扩大至2km,粒子形态偏不规则型,沙尘传输速度在45km/h左右。1月11日-13日,沙尘团为近地面传输,沙尘气溶胶多集聚1km内,河西西部地区主要为非球形粗粒子,河西东部地区球形细粒子占主导地位,沙尘团在阿克塞-玉门一带传输速度在20km/h左右,玉门-武威一带传输速度显著增大至49km/h左右。1月13日午后至14日,各地沙尘强度较高,沙尘团分布在2km高度内,粒子形态高度不规则,沙尘传输速度在45km/h左右。华东区域(江苏、浙江) 图2 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图1月12日0时起,江苏北部和南部、浙江中部和南部先后监测到2.0km高度有沙尘传输并逐渐下沉至地面,沙尘平均移动速度约为38km/h。江苏北部0.8km高度内以球形粒子为主,1.0km高度左右以非球形粗粒子为主;江苏南部、浙江中部、南部以非球形粗粒子为主。3月15日-19日沙尘过程分析 西北区域(甘肃) 图3 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图3月15日-18日,受蒙古强沙尘暴污染传输影响,甘肃省自西向东出现强沙尘天气,沙尘传输速率在玉门-武威一带达100km/h左右,武威-临夏一线传输速率明显减弱至20km/h左右,沙尘团主势力集聚1km内,各激光雷达500m内消光系数均突破阈值1km-1,多站点甚至高达4km-1,退偏振比接近阈值0.4,规则细粒子和不规则粒子占比较高,PM2.5和PM10均达到严重污染水平;期间仍有外源沙尘间歇性输送,致使各地沙尘污染反复。3月19日,各地出现短时雨雪天气,沙尘污染逐渐消散。4月12日-19日沙尘过程分析 西北区域(甘肃) 图4 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月12日和4月15日,甘肃全省监测到两次沙尘天气,沙尘主势力集中在1km内,气溶胶形态偏不规则粗粒子型,12日沙尘传输速率在12-15km/h左右,15日沙尘传输速率显著增强至100-120km/h。13日出现降水过程,污染快速消散;但16日扩散条件较差,导致浮尘天气持续。 华东区域(江苏、上海、浙江) 图5 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图4月16日4时起,江苏南部、上海中部、浙江中部和南部依次监测到污染气团并逐渐影响地面,沙尘平均移动速度约为42km/h。其中江苏南部、上海中部近地面先受到规则细粒子污染,随后转为不规则粗粒子污染。浙江中部及南部近地面以不规则的粗粒子为主,尤其浙江南部的粗粒子极不规则,退偏比达到0.4以上。4月25日-26日沙尘过程分析 西北区域(甘肃) 图6 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图4月25日-26日,受强冷空气活动影响,甘肃省自河西东部向南部地区相继监测到强沙尘输入,1km内规则细粒子含量骤增,同时粒子不规则度明显增大,沙尘传输速率为20km/h。26日各地细粒子污染逐渐降低,但粒子不规则程度依然较高。5月4日-8日沙尘过程分析 西北区域(甘肃) 图7 甘肃沙尘立体监测网部分雷达站点消光系数(左)和退偏振比(右)反演图5月5-7日,甘肃省监测到两次间歇性短时沙尘过程,其中5日沙尘范围较大,沙尘传输速率达80km/h左右,沙尘团高度在传输过程中逐渐降低至1.5km,主要为非球形粗粒子。7日沙尘范围集中在中部地区,沙尘传输速率达50km/h左右,沙尘团多分布在500m高度内,球形粒子含量较高,午后各地沙尘污染逐渐消散。 华东区域(江苏、上海、浙江) 图8 华东地区雷达组网各站点消光系数(左)和退偏振比(右)反演图5月5日0时起,江苏北部和南部、上海中部、浙江中部先后在1.5km高度监测到污染气团传输并于5时左右下沉至地面,沙尘平均移动速度约为171km/h。其中江苏北部和南部以球形粒子为主,上海中部、浙江中部以非球形粗粒子为主。7日3时起,江苏北部和南部、浙江中部在2.0-3.0km高度内监测到沙尘团,其中江苏北部球形粒子含量较高,但0.4km高度以下主要为非球形粗粒子。总 结激光雷达组网发挥其全面监控每次沙尘过程的空间分布、传输特征、气溶胶特性等的优势,实现对污染传输过程的精细立体监测,同时对污染传输情况进行提前预判,为研究区域污染物的累积与输送提供有力的技术手段,并对区域的大气污染联防联控提供有效支持。2021年以来,全国共经历6次大范围的强沙尘传输过程。甘肃省沙尘传输路径主要为北路和西北路,当出现沙尘暴天气时,影响范围较广,气溶胶粒子多集聚在500m高度内,主要为规则球形粒子(不规则粗粒子不利于远距离传输),传输速率与天气形势相关;当出现强沙尘天气时,气溶胶粒子多分布在1km高度内,沙源地周边城市主要为不规则粗粒子,其余城市球形粒子和不规则粗粒子占比相当,甚至球形粒子占主导;沙尘污染较强时,影响范围缩小,气溶胶粒子多分布在2km高度内,主要为不规则粗粒子。华东地区则均受到北部沙尘传输贡献,其中1月和4月沙尘平均移速相当,5月沙尘平均移速最快。沙尘传输高度基本在2km以内,且逐渐下沉,最终造成地面监测数据(主要是粗颗粒物数据)升高;污染气团多以不规则粗粒子为主,但在部分地区、部分时段以规则细粒子为主;沙尘影响时间均超过3天。
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • “中国创造”的典范:多光栅折叠光谱——访复旦大学陈良尧教授
    2006年,国际两家光电子杂志Laser Focus World和Photonics Spectra的编辑曾分别主动在世界技术新闻专栏中特别介绍了复旦大学陈良尧教授课题组研发的多光栅二维折叠光谱技术,认为该技术的创新原理和方法将能够被拓广并应用于更具挑战性的高效率光谱获取和分析领域,以及推广到中远红外光谱分析领域。   上海市计量测试技术研究院的资深光学科学家袁海林教授也曾评论到,&ldquo 采用多光栅结构对成像光谱进行高密度折叠,在很宽的光谱区内实现高分辨率、快速和长时间可靠测量,将会成为现代光谱仪设计中一个主流技术和发展趋势&rdquo 。   究竟是怎样的技术让国内外一片赞誉之声?为了寻求答案,近日仪器信息网编辑采访了多光栅折叠光谱仪技术的研究者&mdash &mdash 复旦大学陈良尧教授。 复旦大学 陈良尧教授   &ldquo 原理性创新&rdquo   光谱分析仪器在科学研究和工业领域有着广泛的应用,为满足应用需求,国际上已经发展了各种类型的光谱分析原理和方法,其中最主要的是采用棱镜和光栅等光学色散元件,结合高灵敏度探测器对各种光谱(如反射、透射、吸收、散射、椭圆、荧光、拉曼等光谱)进行测量和分析。但受到光电探测器光谱响应、光栅色散和机械扫描等因素的制约,只能被迫在光谱工作区宽度、分辨率和速度等参数之间做出妥协,从而严重影响和限制了其在许多重要领域的应用。这是国际学术和产业界长期未能解决的瓶颈和难题。   &ldquo 传统的光栅光谱仪需要使用机械装置对色散元件进行位移和旋转,这将限制测量速度的提高,而且机械转动部件的定位精度低,可靠性差,容易在操作过程中发生故障 另外,由于国内机械加工水平所限,使得国产光栅光谱仪的机械部件精度和可靠性不高,从而影响了光谱仪的整体性能水平,&rdquo 陈良尧说,&ldquo 另外,一块光栅难以覆盖全光谱范围,衍射效率为非均匀性分布,在其光谱衍射工作区的两端效率较低,影响了仪器的信噪比质量。&rdquo   在长期的光谱分析研究中,为克服传统仪器的这两方面局限性困难是陈良尧当初决定研发&ldquo 多光栅折叠光谱分析仪&rdquo 的原因,他希望能够研制出一种没有任何移动部件、光谱工作区宽、测量速度快的光谱仪。基于这一想法,陈良尧于90年代末开始&ldquo 多光栅折叠光谱分析仪&rdquo 的研制。&ldquo 这是原理和方法的创新,并非是&lsquo 阳春白雪&rsquo ,它的物理概念清楚,技术可靠,易于普及推广,只不过很多人没朝这方面去想。&rdquo   但是,当前光谱仪技术可以说是非常成熟了,再要尝试原理性创新,可能并不像陈良尧说的那么容易。在10多年时间的持续研究努力中,陈良尧教授经历了很多,如最初虽有设想,但缺少研究经费支持,在市场上也买不到现成的关键元器件,业内对这类极具应用前景的新原理和新技术的认识也不统一等等。不过,&ldquo 梅花香自苦寒来&rdquo ,2012年,最终实现的研究成果被选为国家自然科学基金&ldquo 十一五&rdquo 优秀成果。至今已经推出了多种可供实用的样机,集成组合的光栅数也由最初的3块增加到了10块。日前,陈良尧教授的&ldquo 极高密度二维折叠光谱成像装置&rdquo 课题入选了2014年高校自然基金国家重大科研仪器研制项目。 已研制完成的二维折叠光谱分析仪的整体外形图,250mm焦距,优于0.1nm光谱分辨率,全谱测量时间小于0.1s,重约8.9公斤。   多光栅折叠光谱仪采用了时间并联模式的快速光谱信号获取的新原理和方法,利用二维面阵探测器的优点,在一台光谱仪中,同时满足宽光谱区、高分辨率和快速测量的三项关键功能要求。在10光栅二维折叠光谱分析仪中,是将具有不同闪耀角和色散特性的10块子构成一个光栅阵列,克服了面阵CCD信号接受面的张角限制,在200-1000nm光谱区将一维约276mm光谱探测区的近2万个光谱数据点进行二维10重折叠,快速成像在二维面阵探测器的焦平面上。由于无任何机械位移部件,使得最小的光谱获取时间仅受限制于将光谱从CCD传输到数据存储器件所需要的时间,实现了全光谱高精度快速测量和分析。   &ldquo 所有用到光谱测量分析的地方都可以用&rdquo   &ldquo 多光栅光谱是通用型光谱仪,所有用到光谱测量分析的地方都可以用,如可以应用于食品环境等领域的科研与日常检测,而且未来完全可能替代常见的紫外、红外等光谱分析仪器。&rdquo 陈良尧对多光栅光谱仪的应用前景非常乐观,&ldquo 随着高性能低成本面阵光电探测器的普及,二维折叠光谱将成为主流光谱分析技术在更多领域实现推广应用。&rdquo   &ldquo 而且,由于改进了传统光谱仪的一些不足,使得该仪器可以用于一些极端条件检测。&rdquo 例如:由于无任何机械转动部件,多光栅光谱仪的全谱扫描速度最快能达几毫秒至数十毫秒,所以在清华大学等离子体实验室中,能利用它在真空条件下对等离子体原子谱线进行原位全谱检测分析,在相同的实验条件下,对各种原子态谱线进行比较分析,获得较为可靠的实验数据和结果。&ldquo 并且,等离子体实验室还希望通过合作,研究该技术在真空紫外条件下的应用。&rdquo   多光栅光谱仪既可以作为一种标准配置的光谱仪独立使用,也可以成为一个载体&mdash &mdash 作为光谱分析仪器的核心部件,可以极大简化分析仪器的结构。&ldquo 光谱仪是光谱分析仪器的&lsquo 心脏&rsquo ,目前很多国产光学分析仪器采用的还都是传统扫描型光谱仪,如果多光栅光谱仪能够得到普及,将会显著促进国产光谱仪器的更新换代。&rdquo   &ldquo 探测器技术与成本亟待突破&rdquo   &ldquo 目前在10光栅集成的仪器中,使用的是美国PI公司的CCD面阵探测器,单价在7万美元左右。高性能光电探测器依然是限制我国先进光谱分析技术发展的瓶颈,也是成本无法降下来、难于大规模普及的主要原因。&rdquo 不过,陈良尧也高兴地说到,已有国内企业正从海外引进新一代CMOS光电传感器技术,&ldquo 我们将会成为他们产品的第一批实验室用户。&rdquo   另一个关键元件&mdash &mdash 光栅则可以根据具体需求,既可以购买进口产品,也可以选择国内生产的。&ldquo 我们已经在国内找到一家企业,可以研制和生产出我们所需的光栅和其他光学器件。&rdquo   对于下一步研发方向,陈良尧介绍到,&ldquo 当前最重要的是把研究项目做好,并努力将这一技术应用到不同领域 另外,组合的多光栅模块本身也可以成为一个产品,现在的组合光栅的方位角还需要人工调试,未来希望能够采用自动化激光准直技术,研制出已被封装好、不需要调节的光栅组,用户拿到手里可以直接使用。组合的光栅数也有可能进一步增大,由现在的3-10光栅增至40-50块光栅的组合,满足更高精度的光谱分析需求。&rdquo   经过持续的研究努力,多光栅光谱仪已能够被实际应用。据介绍,除了面阵探测器国内目前还做不出来,其它重要部件都实现了在自己的实验室或在国内找到企业进行加工生产。说到这里,显现出了陈良尧教授比较独特的研究态度和模式,陈良尧将项目研究经费的很大一部分用于改造实验室环境,如在高性能光学仪器研究中,将购买高精度数控机床,用于仪器核心零部件的高品质研制和加工,保证质量,这在目前中国大学的实验室还比较少,对此,陈良尧说,&ldquo 这么做一方面是希望提高科学仪器的研究水平和效率,掌握核心技术,另一方面也十分需要培养研究生们的实际动手能力,不仅进行原理和方法创新,还需要采用先进制造技术,在学生时期就有能力亲手把这些仪器做出来,可靠实现创新科学仪器的各种新功能,在这方面与发达工业化国家相比,我国在培养学生具有硬科学技术研究能力方面的差距还比较大。&rdquo   &ldquo 由于高性能探测器价格一直居高不下,不利于大范围普及,目前仅根据一些用户需求进行定制,需要不断解决问题,让用户满意,建立良好的声誉,&rdquo 陈良尧说到。   后记   据了解,在陈良尧教授的研究成果2003年正式发表后,2007年在美国Light Smyth公司的广告中也出现了采用4种不同光栅结构参数组合的二维折叠光谱分析技术。而关于这一中国自主创新原理和技术的产业化途径,陈良尧无奈的说到,&ldquo 产业化的路还会比较长。&rdquo 究其原因,一是关键部件技术的局限,另外国家的支持政策等也是重要原因。就像采访最后陈良尧所说的,&ldquo 希望能够获得国家较高强度的产业化应用研究项目的支持,并与工业界的合作伙伴一起,使得这项技术被产业化,促进我国高性能光谱分析仪器的进步和发展,将会在国际上有自己的地位,产生出中国乃至世界上最好的光谱仪。&rdquo   编辑:刘丰秋
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 视频:四方光电展出具有国内独创技术的在线红外烟尘分析仪
    武汉四方光电科技有限公司总经理熊友辉博士介绍了其推出的在线红外烟尘分析仪,该仪器采用了国内独创的微流红外气体传感技术,其分辨率高达0.1ppm。此外,武汉四方光电科技有限公司最新推出的加热型氢火焰总烃分析仪和加热型化学发光氮氧化物分析仪采用自动流量控制技术,分辨率同样达到0.1ppm,该仪器针对车辆内燃机的燃气排放进行监测,为厂商生产内燃机提供过程控制,为国内首创。
  • 技术原理:浊度仪测浊度采用的原理
    浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强度复合雷莱公式:IS = ×I0其中:I0---------------入射光强度;IS----------散射光强度;N-------单位溶液微粒数;V-----------微粒体积;-------入射光波长 ;K-----------系数;在入射光很定条件下,在一定浊度范围内,散射光强度与溶液的浑浊度成正比。上式可 表示为 =K’N (K’为常数) 根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。浊度仪分为便携式,台式和在线浊度仪。台式一般用于实验室检测浊度;便携式和在线浊度仪一般用于现场检测。便携式用于不连续的检测,在线浊度仪用于连续,现场浊度监测。它可以实时,连续监测浊度,一般用于自来水厂,污水厂,渠道,水利设施,防洪监测,水池等处。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 多功能激光粉尘仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 113" p style=" line-height: 1.75em " 仪器名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 多功能激光粉尘仪 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 北京绿林创新数码科技有限公司 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 联系人 /p /td td width=" 187" p style=" line-height: 1.75em " 翟利明 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " 2851630081@qq.com /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp □技术入股 & nbsp & nbsp √合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/c834e053-482a-48d0-9e8d-a14b7828e2c2.jpg" title=" 多功能激光粉尘仪.jpg" width=" 350" height=" 327" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 327px " / span style=" line-height: 1.75em " & nbsp & nbsp & nbsp /span /p p style=" line-height: 1.75em " & nbsp & nbsp LD-7S多功能激光粉尘仪是“高稳定高可靠PM2.5微电脑激光粉尘仪产业化培育”项目研究成果,本成果主要解决仪器长期运行的温度和零点漂移、环境湿度对测量值的影响等关键技术问题,并在电源保护及自动校准方面进行了技术创新,提高了电源的稳定性和可靠性,延长了电池使用寿命,可方便实现远程校准。多功能可便携、可在线实时监测、良好的环境适应性以及良好兼容性是我们产品的亮点。产品主要功能及性能指标如下: br/ & nbsp & nbsp & nbsp strong 主要功能 /strong : /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 直读质量浓度mg/m3(设置浓度转换系数K值)。 /p /li li p style=" line-height: 1.75em " 内置φ40mm滤膜,可在监测颗粒物浓度的同时收集粉尘样品。 /p /li li p style=" line-height: 1.75em " PM10、PM5、PM2.5、PM1.0、TSP切割器可供选择。 /p /li li p style=" line-height: 1.75em " 独特的光路自清洗系统,避免粉尘对仪器核心部件的污染。 /p /li li p style=" line-height: 1.75em " 内设出厂前已标定的具有光学稳定性的自校装置,可有效消除仪器的系统误差。 /p /li li p style=" line-height: 1.75em " 大屏幕汉字提示,操作直观简便。 /p /li li p style=" line-height: 1.75em " 多种工作模式,可直读TWA和STEL,可根据设定时间定时启动采样,所得数据可存贮、回放或导入PC机进行数据处理、打印表格和曲线。 /p /li li p style=" line-height: 1.75em " 内置强力抽气泵,更适合于需配备较长采样管的采样场所(如集中空调排气口PM10可吸入颗粒物浓度的检测)。 /p /li li p style=" line-height: 1.75em " 可设定粉尘浓度超标报警阈值,超标时自动声音报警或将信号传输到控制中心进行监控。 /p /li /ul p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong 主要技术指标 /strong strong /strong /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 检测灵敏度(相对于校正粒子):0.001mg/m3(高灵敏度);0.01mg/m3(低灵敏度)。 /p /li li p style=" line-height: 1.75em " 测量范围(相对于校正粒子):(0.001 ~10 )mg/m3(高灵敏度);(0.01~100)mg/m3(低灵敏度)。 /p /li li p style=" line-height: 1.75em " 测定时间:0.1min,1min(标准测量时间),及(1~9999)min任意设定。 /p /li li p style=" line-height: 1.75em " 重复性误差:≤2%。 /p /li li p style=" line-height: 1.75em " 相对误差:± 10%。 /p /li li p style=" line-height: 1.75em " 显示屏:汉字提示屏。 /p /li li p style=" line-height: 1.75em " 连续监测:可设定测量时间(1~9999)s,待机时间(0~9999)s,采样次数(1~9999)次。 /p /li li p style=" line-height: 1.75em " 数据存贮: /p /li /ul p style=" line-height: 1.75em " 一般测量:循环存储99组数据(可由仪器回放,亦可PC机读取)。 br/ & nbsp & nbsp & nbsp & nbsp 劳动卫生:循环存储30组数据(可由仪器回放,亦可PC机读取),每组包括:采样日期,采样开始时间,使用K值,测量周期,TWA值,STEL值和记录序号。同时保留最新一次测量的每分钟所测浓度值(以CPM表示),最多1440个数值(24h),该组数据只能通过PC机读取。 br/ & nbsp & nbsp & nbsp & nbsp 连续监测:可存储两组测量连续监测数据,每组最多存储9999个浓度值,只能通过PC机读取。 /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 报警模式:可设定报警浓度阈值,超过该阈值时声音报警。 /p /li li p style=" line-height: 1.75em " 输出接口:PC机通讯串行接口(RS232/RS485)。 /p /li li p style=" line-height: 1.75em " 电源:可充电锂电池组3.5Vх2,电池充满可连续使用8h以上。在线仪器可使用专用 电源适配器供电。 /p /li /ul /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 本成果仪器与其他商品销售仪器与其他商品销售颗粒物测量仪器相比,最大的特点是,具有湿度修正功能,可有效降低湿度对测量值的影响,改善高湿度环境下的测量准确度;既可通过设定测量时间进行颗粒物的实时测量,又可通过内置滤膜采样装置同时收集滤膜样品,进行重量法测量校准和成分分析。因此该仪器可应用于公共卫生,环境保护及工矿企业职业场所三大领域对包括PM2.5在内的颗粒物浓度进行快速检测,也可用于科研单位进行环境分析、污染源分析及对人类健康影响分析等。 br/ & nbsp & nbsp & nbsp 近年来,PM2.5污染成为政府和民众关注的热点问题。为研究和了解可吸入颗粒物的来源、形成、污染过程,全国开始大范围建设在线监测网络,获取现场数据,为污染预警及控制以及政府决策提供依据。2015年全国环境监测工作现场会上环境保护部副部长吴晓青上谈“十三五”监测事业发展思路时提出了八项监控重点。其中之一是巩固和提升污染源监督性监测,企业自行监测及信息公开。这将涉及环境监测,卫生监察以及几十万企业,因此国 a href=" http://www.chinairn.com/report/20140303/084510754.html" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " 家政 /span /a 策将对产品应用产生巨大的推动作用。十二五期间我国的PM2.5监测覆盖了所有地级市,仅设备方面的前期投入就超过20亿元。“十三五”规划则对污染物排放总量的控制更加严格,要根据大气、水、土壤三大行动计划实施的需求,整合优化环境监测网络,不断强化污染源监测、环境应急与预警监测,这将带来可观的工业污染源、交通道路及筑建行业在线监测设备需求。除此之外颗粒物监测仪器在智能楼宇室内环境监测、净化器净化效果评价,控烟执法等市场需求也急剧增加,这些为PM2.5检测仪器撬动了一个巨大的市场。基于光散射原理制成的激光测尘仪具有成本低、体积小、重量轻、灵敏性高、操作简便、维护成本低廉以及快速直读的特性,非常适于上述应用,已成为很多系统集成商的唯一选择。但同所有原理的检测设备一样,所有光散射法检测仪器的测量值均受环境湿度影响,亟待解决,而本成果有效解决了湿度影响问题,有效提高了高湿度环境颗粒物浓度测量数据的可靠性,这对光散射法仪器大规模应用具有重要的意义。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 本成果已取得自主知识产权, 其中“一种高稳定可靠粉尘浓度检测仪”实用新型专利1项(专利号2015 2 0643938.5);“LD-7S激光粉尘仪软件” 软件著作权1项(证书号:软著登字第1179054)。 /p /td /tr /tbody /table p br/ /p
  • 国瑞力恒发布国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理新品
    GR-3012C型手持式VOCs检测仪产品概述 土壤VOCs检测仪 PID光离子化检测原理GR-3012C型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。适用范围土壤VOCs检测仪 PID光离子化检测原理适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。依据标准土壤VOCs检测仪 PID光离子化检测原理HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》GB 12358-2006 《作业场所环境气体检测报警仪通用技术要求》GB 37822-2019 《挥发性有机物无组织排放控制标准》GB 20950-2007 《储油库大气污染物排放标准》技术特点土壤VOCs检测仪 PID光离子化检测原理1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器10000PPM1ppb负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:传感器量程精度做了很大的变化,10000ppm分辨率可达到1ppb国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理
  • GRIMM发布11-D 便携式激光粉尘仪新品
    便携式激光粉尘仪11-D 是Grimm 激光粒径谱仪的新一代产品。独创性的设计,可靠的光学测量技术以及先进的数据通讯方式使11-D 成为便携粉尘测量仪市场的明星产品。采用专利的光散射信号收集和多通道脉冲分析技术,得到数量浓度/ 粒径谱分布。11-D 以单颗粒测量原理,检测空气中0.25 微米到35 微米,31 个通道的颗粒物粒径分布。主要特点●●小巧,便携,结实耐用,电池操作,蓝牙远程控制●●多样的通讯端口(SD 卡,USB, 蓝牙和网络)●●内置,可更换的47mm PTFE 滤膜,可用于后续的质量浓度称量和化学成分分析●●每次开机自检●●内置吹扫气可以避免光学检测室污染●●通过软件实时显示PM10,PM2.5,PM1 质量浓度●●输出31个通道的数量浓度和质量浓度/ 粒径分布数据测量参数粒径通道: 31 个通道,等间距[ 微米]数量浓度测量范围: 1 至 3,000,000 个 / 升质量浓度测量范围: 0.1 微克/ 立方米至 100 毫克/ 立方米职业健康数据: 实时显示可吸入颗粒物,基于EN481 标准的可进入肺部支气管和肺泡的颗粒物环境数据:TSP, PM10,PM4, PM2.5, PM1 ,PMcoarse 质量浓度创新点:本产品优化了粒径通道,使得检测粒径更容易对应标准粒子,通讯方式增加了以太网传输,存储介质可以使用U盘 11-D 便携式激光粉尘仪
  • 四方光电安全监测解决方案,全力守护城市生命线
    2022年3月5日,第十三届全国人民代表大会第五次会议的政府工作报告中提到:“围绕国家重大战略部署和“十四五”规划,适度超前开展基础设施投资。建设重点水利工程、综合立体交通网、重要能源基地和设施,加快城市燃气管道等管网更新改造,完善防洪排涝设施,继续推进地下综合管廊建设,中央预算内投资安排6400亿元。”  燃气安全与人们生产生活息息相关,已成为城市应急管理工作的头等大事。  四方光电掌握非分光红外(NDIR)、可调谐半导体激光吸收光谱(TDLAS)、电化学等多种核心技术平台及应用,可测量CH4、C3H8、CO等可燃气体和有毒有害气体,提供全套气体泄漏安全监测解决方案,广泛用于家用、商用、工业等领域,赋能城市燃气管网安全监测。  四方光电安全监测解决方案  防患于未“燃”  图为安全监测解决方案应用在不同场景下  四方光电基于18年气体传感器核心技术及应用,创新推出可检测各类可燃气体、有毒有害气体的传感器产品,全力护航城市燃气管网安全。    激光甲烷传感器Gaboard-2500、抗高湿微型红外甲烷SJH-5B1:分别利用激光、红外技术,具有高精度、响应快、高可靠性、长寿命等特点,主要应用于燃气阀井、电力管廊、市政地下空间、煤矿、燃气调压柜等。    甲烷传感器JW-05:利用非分光红外检测技术(NDIR),产品具有无氧气依赖性和中毒现象,灵敏性好,精度高,寿命长、稳定性好,主要应用于家用燃气安全监测、调压柜/调压箱等。    微型红外甲烷传感器SJH系列:采用非分光红外检测技术(NDIR),产品具有高精度、抗干扰、高稳定性、防爆等级为Ex ia IIC T4 Ga、防尘防水IP64等特点,主要应用于商用燃气安全监测、天然气制取、天然气/LPG运输、石化能源、调压柜/调压箱、矿山报警、酒精厂等。    微型红外丙烷传感器SBH系列:采用非分光红外检测技术(NDIR),产品具有宽温度工作范围、高精度、抗干扰、防爆等级为Ex ia IIC T4 Ga、防尘防水IP64,主要应用于商用燃气安全监测、天然气/LPG运输、石化能源等。    电化学一氧化碳传感器ECO-5011:利用电化学原理,产品具有低功耗、长寿命,一致性好、重复性高,对乙醇和乙酸低敏感性,抗有机硅中毒,满足UL2034、EN50291与ROHS的要求,应用于家用燃气安全监测、地下车库等。
  • 继昆山爆炸事件粉尘检测仪销售最佳
    本月销售最佳产品:粉尘检测仪,实实在在为广大群众检测空气中的粉尘浓度。可以与当地公布的粉尘浓度同步。M10/PM2.5大气粉尘检测仪概要目前国产手持式的粉尘检测仪,流量小,误差大,无法保证测量精度,我公司成功解决这系列难题,为大气粉尘检测,提供一款:大流量,在线式,有远程通讯功能的,同时测量粒子数和浓度的高精度仪器。国内空气在线检测主要通过:β射线,测量时间长,价格高达10万以上,金坛亿通公司最新研发一款:用激光原理。2分钟出一个检测结果,同时可以测量:PM10、PM2.5、粒子数和质量浓度的仪器。众所周知,大气雾霾、粉尘颗粒、扬尘,是造成空气质量的主要元凶,随着对大气扬尘的在线检测要求,我公司根据:使用符合劳动行业标准《空气中粉尘浓度的光散射测定法》、卫生部标准《公共场所空气中可吸入颗粒物(PM10)测定方法-光散射法》。设计了一种在线检测仪,为在线检测和安装提供了一款高性能的检测仪器。PM10/PM2.5大气粉尘检测仪结构检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。本仪器相对质量浓度单位使用CPM(Count Per Minute),意为“每分钟的脉冲计数”,质量浓度单位使用mg/m3。PM10/PM2.5大气粉尘检测仪使用场所◎劳动卫生呼吸性粉尘 ◎总粉尘浓度的测定◎工矿企业生产现场扬尘 ◎建设工地粉尘浓度连续在线监测◎公共场所可吸入颗料物(PM10、PM2.5)以及环境监测部门大气飘尘的快速和在线检测。PM10/PM2.5大气粉尘检测仪主要性能指标○测量范围:0.001~100 mg/M33;量程可以根据用户定做。○检测灵敏度: 0.001 mg/M33;(平均粒径0.3μm几何标准偏差1.25的硬脂酸粒子校正的值)。有定时测量和连续测量功能。○测定精度:±8%(相对校正粒子)、有湿度修正功能。○测量原理:激光光散射原理 气体采样流量3L/分 微电脑触摸屏○电脑显示屏:数字显示 ,K值任意设定。可以准确不同场所粒子质量浓度。○在线直读:PM10、PM2.5的粒子数,分别显示,同时显示粉尘的浓度值,○输 出:有485接口、可以和数据采集仪相连, 可以将检测数据远程传输到控制中心或者远程手机读取测量值。有报警功能○数据:可以存储256组数据,操作界面:微电脑 触摸屏,K值和校正系数,直读浓度。任意设置,○测定时间:标准时间为90秒,用户可以任意设定。自动计算时间内的标准浓度。○电 源:12V充电电池,可连续使用12小时,环境温度:-5~40℃目前国内最专业的粉尘检测仪,可以方便各地,针对污染排放,实施在线粉尘检测。我们还提供数据采集仪,欢迎用户选择和使用我们的产品。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 深圳市德辰光电科技有限公司购入爱佩科技工业烤箱壹台
    祝贺深圳市德辰光电科技有限公司购入爱佩科技生产的工业烤箱壹台,采购定单生成时间:2015年12月21日,型号:AP-KX-72B,使用单位地址位于:深圳市光明新区玉律村汉海达科技园第七工业园3栋6楼。深圳市德辰光电科技有限公司,成立于2009年,公司设立在深圳,是一家集研发、生产、销售一体的专业生产制造SMD、LED的私营合伙企业,工厂拥有先进的全自动生产设备及国际先进水平的测试仪器,月产量达到10kk以上,主要针内国内市场,德辰主要致力于各式照明系列贴片式发光二极管系列产品的设计及生产制造,德辰产品的类别齐全,产品包括3528,5050,大功率TOPLED系列,应用于照明设备、射灯、球泡灯等相关的LED应用产品。   深圳市德辰光电科技有限公司及工厂于2010年通过取得一般纳税人资格证,公司产品完全按照ISO9001质量管理体系生产,符合CE,ROHS认证标准。深圳市德辰光电科技有限公司在拥有优秀而积极的销售,研发及生产制造团队。不论与客户协调沟通、制作样品及生产交货,都凭着顾客为中心,品质为根本,争一流的服务的方针。“德辰”于发光二极管行业中,一直都不只满足于现状,其结集自主研发及生产于一体的现代化工厂,于发光二极管的行业中,不断推陈出新以配合市场上不断提高之要求,令新一代光源能于本世纪中,成为主要的光源的理想迈进。德辰公司购买的工业烤箱也叫高温恒湿试验箱或者工业烘箱,主要提供于LED企业、光电企业、光伏企业、电工电子企业、通讯企业等企业单位的试验室、品质部、生产部作干燥、烘焙、热处理等用途。高温可高达几百度的温度,只是此设备没有低温,如果需要购买高低温一体的设备或者带湿度的恒温恒湿试验等设备均可联系爱佩业务林小姐,电话:电话: 0769-88086616 手机: 18128586280.
  • 太原理工大学党委书记沈兴全一行莅临聚光科技参观交流
    近日,太原理工大学党委书记沈兴全、副校长任喜莹一行莅临聚光科技参观交流,聚光科技总经理韩双来、党委书记陈荧平、环科事业部副总经理倪勇陪同交流。在聚光科技展厅,陈荧平介绍了聚光科技党建的发展历程和“红色传感”党建品牌,包括双领制、双积分制、与业务深度结合等特色内容。讲解了“助力经营、营造氛围、服务员工、提升技能、彰显责任”五大途径、80项具体工作,特别介绍了通过设定“1+X”量化标尺,细化量化对支部和党员的考核标准,推动党建考核由“虚”做“实”,有效激发了党组织和党员积极性的双积分制得到了沈兴全的高度评价。随后,沈兴全一行在韩双来的陪同下详细了解了聚光科技发展历程、创新产品和应用方案,更直观地感受到了聚光科技的技术实力和创新精神。座谈会上,韩双来详细介绍了在聚光科技在智慧环境、智慧工业、智慧实验室、生命科学等核心领域的高端科学仪器自主创新情况和技术成果。沈兴全表示,聚光科技是高端科学仪器领军企业,此次来到聚光科技参观调研,感受到了聚光科技焕发出的蓬勃生机,深刻体会到科技创新对企业发展的引领带动作用。他希望能借助聚光科技这一创新平台,依托学校的学科优势和技术优势,加强高素质优秀人才的协作培养,携手推进科技成果转化,联合酝酿重大科技项目,在产品研发、技术升级、成果应用、人才培养等方面取得实实在在的成效。韩双来表示,聚光科技始终把科技创新放在企业发展的核心位置,秉持开放共赢的理念,期待与太原理工大学能有深化战略合作,促进产学研深度融合,以技术引领转型,以创新驱动未来。座谈中,双方与会人员还就进一步深化合作进行了广泛交流。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 四方光电扬尘传感器荣获中国传感器与物联网产业联盟应用创新奖
    p   中国传感器与物联网产业联盟组织的首届“SIA感知领航优秀项目征集”活动评选结果本周出炉,四方光电激光扬尘传感器PM3006,通过采用独特的激光散射测量技术,实现了室外扬尘在线监测、大气网格化监测、室外公共场所等户外极端工况下空气品质中PM2.5、PM10和TSP多参数的同时准确测量,并在国内外多个项目中得以成熟应用,经过专家组的评选,最终荣获“应用创新优秀项目奖”。 /p p   我国室外扬尘及网格化监测领域,早期多采用称重法和β射线吸收法的监测仪,该设备无法实现在线实时监测,投入费用昂贵且后期维护成本高,无法大批量得到应用。而民用净化器中大量应用的激光粉尘传感器,又因为存在无法满足室外-30~70℃全天候的温度环境,及无法满足建设工地等实际使用场景经常喷洒降霾的水雾影响或者下雨潮湿的高湿环境要求而难以得到使用。在户外环境下使用民用空气净化器上的传感器,室外的高温和低温都容易使传感器损坏,水雾也经常被误判为雾霾而造成爆表。同时与国家大气环境监测网提供的PM2.5/PM10/TSP的多项数据对比,民用激光粉尘传感器由于激光功率小、采样流量小,导致PM10计数率很少,因此PM10的分辨率很低,很多厂家只能根据PM2.5的数值按照比例计算出PM10和TSP,这样的监测数据存在严重失真。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/c279e9b9-a525-43ca-82b0-f5bb97aa49c7.jpg" title=" 图1.png" alt=" 图1.png" / /p p   通过对激光散射探测技术(LSD)近10年的技术积累和对应用市场客户真实需求的把握,四方光电研制出了扬尘传感器-PM3006,其采用宽温型大功率线型激光光源、API粉尘自动识别技术、先进的流道设计实现抗污染、大流量车规级采样装置、高湿度环境的水雾去除装置等,开创新的低成本实现了对室外扬尘的准确测量,PM2.5和PM10的实时监测数值与β射线吸收法监测设备,准确测量的相关性可以达到0.9以上。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e1766e01-f47b-4bc6-a759-1aa4ccc14219.jpg" title=" 图2..jpg" alt=" 图2..jpg" / /p p   扬尘传感器PM3006得以成功量产并批量应用积累的经验,为进一步满足用户差异化的使用需求,四方光电进一步开发出了可以搭配气泵使用的扬尘传感器PM3003S,及完全不受流量变化而影响测量精度的扬尘传感器PM3006S-P。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/4b7c34ab-586e-4207-bf4f-c1c59ad862b1.jpg" title=" 图4 (2).jpg" alt=" 图4 (2).jpg" / /p p   /p p   为了更好的满足客户设计及计量的需求,四方光电在核心传感器的基础上开发出了在线扬尘监测模组,方便客户更容易及更快速的实现监测系统的设计,大大缩短开发周期。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/3d17b26d-18cb-40e4-9c30-8e13cb82cb7b.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p   自2003年创立至今,四方光电始终坚持核心技术创新之路,除光散射探测(LSD)之外,公司还掌握了非分光红外(NDIR)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)等核心气体传感技术,形成了气体传感器、气体分析仪器两大类产业生态,产品广泛应用于国内外的空气质量监测(室内、室外、汽车)、固定和移动污染源监测、工业过程节能减排监测、健康医疗和智慧计量等领域。 /p
  • 【新书推荐】宽禁带半导体紫外光电探测器
    基于宽禁带半导体的固态紫外探测技术是继红外、可见光和激光探测技术之后发展起来的新型光电探测技术,是对传统紫外探测技术的创新发展,具有体积小、重量轻、耐高温、功耗低、量子效率高和易于集成等优点,对紫外信息资源的开发和利用起着重大推动作用,在国防技术、信息科技、能源技术、环境监测和公共卫生等领域具有极其广阔的应用前景,成为当前国际研发的热点和各主要国家之间竞争的焦点。我国迫切要求在宽禁带半导体紫外探测技术领域取得新的突破,以适应信息技术发展和国家安全的重大需要。本书是作者团队近几年来的最新研究成果的总结,是一本专门介绍宽禁带紫外光电探测器的科技专著。本书的出版可以对我国宽禁带半导体光电材料和紫外探测器的研发及相关高新技术的发展起到促进作用。本书从材料的基本物性和光电探测器工作原理入手,重点讨论宽禁带半导体紫外探测材料的制备、外延生长的缺陷抑制和掺杂技术、紫外探测器件与成像芯片的结构设计和制备工艺、紫外单光子探测与读出电路技术等;并深入探讨紫外探测器件的漏电机理、光生载流子的倍增和输运规律、能带调控方法、以及不同类型缺陷对器件性能的具体影响等,展望新型结构器件的发展和技术难点;同时,介绍紫外探测器产业化应用和发展,为工程领域提供参考,促进产业的发展。本书作者都是长年工作在宽禁带半导体材料与器件领域第一线、在国内外有影响的著名学者。本书主编南京大学陆海教授是国内紫外光电探测领域的代表性专家,曾研制出多种性能先进的紫外探测芯片;张荣教授多年来一直从事宽禁带半导体材料、器件和物理研究,成果卓著;参与本书编写的陈敦军、单崇新、叶建东教授和周幸叶研究员也均是在宽禁带半导体领域取得丰硕成果的年轻学者。本书所述内容多来自作者及其团队在该领域的长期系统性研究成果总结,并广泛地参照了国际主要相关研究成果和进展。作者团队:中国科学院郑有炓院士撰写推荐语时表示:“本书系统论述了宽禁带半导体紫外探测材料和器件的发展现状和趋势,对面临的关键科学技术问题进行了探讨,对未来发展进行了展望。目前国内尚没有一本专门针对宽禁带半导体紫外探测器的科研参考书,本书的出版填补了这一空白,将会对我国第三代半导体紫外探测技术的研发起到重要的推动作用。”目前市面上还没有专门讲述宽禁带半导体紫外探测器的科研参考书,该书的出版可以填补该领域的空白。本书可为从事宽禁带半导体紫外光电材料和器件研发、生产的科技工作者、企业工程技术人员和研究生提供一本有价值的科研参考书,也可供从事该领域科研和高技术产业管理的政府官员和企业家学习参考。详见本书目录:本书目录:第1章 半导体紫外光电探测器概述1.1 引言1.2 宽禁带半导体紫外光电探测器的技术优势1.3 紫外光电探测器产业发展现状1.4 本书的章节安排参考文献第2章 紫外光电探测器的基础知识2.1 半导体光电效应的基本原理2.2 紫外光电探测器的基本分类和工作原理2.2.1 P-N/P-I-N结型探测器2.2.2 肖特基势垒探测器2.2.3 光电导探测器2.2.4 雪崩光电二极管2.3 紫外光电探测器的主要性能指标2.3.1 光电探测器的性能参数2.3.2 雪崩光电二极管的性能参数参考文献第3章 氮化物半导体紫外光电探测器3.1 引言3.2 氮化物半导体材料的基本特性3.2.1 晶体结构3.2.2 能带结构3.2.3 极化效应3.3 高Al组分AlGaN材料的制备与P型掺杂3.3.1 高Al组分AlGaN材料的制备3.3.2 高Al组分AlGaN材料的P型掺杂3.4 GaN基光电探测器及焦平面阵列成像3.4.1 GaN基半导体的金属接触3.4.2 GaN基光电探测器3.4.3 焦平面阵列成像3.5 日盲紫外雪崩光电二极管的设计与制备3.5.1 P-I-N结GaN基APD3.5.2 SAM结构GaN基APD3.5.3 极化和能带工程在雪崩光电二极管中的应用3.6 InGaN光电探测器的制备及应用3.6.1 材料外延3.6.2 器件制备3.7 波长可调超窄带日盲紫外探测器参考文献第4章 SiC紫外光电探测器4.1 SiC材料的基本物理特性4.1.1 SiC晶型与能带结构4.1.2 SiC外延材料与缺陷4.1.3 SiC的电学特性4.1.4 SiC的光学特性4.2 SiC紫外光电探测器的常用制备工艺4.2.1 清洗工艺4.2.2 台面制备4.2.3 电极制备4.2.4 器件钝化4.2.5 其他工艺4.3 常规类型SiC紫外光电探测器4.3.1 肖特基型紫外光电探测器4.3.2 P-I-N型紫外光电探测器4.4 SiC紫外雪崩光电探测器4.4.1 新型结构SiC紫外雪崩光电探测器4.4.2 SiC APD的高温特性4.4.3 材料缺陷对SiC APD性能的影响4.4.4 SiC APD的雪崩均匀性研究4.4.5 SiC紫外雪崩光电探测器的焦平面成像阵列4.5 SiC紫外光电探测器的产业化应用4.6 SiC紫外光电探测器的发展前景参考文献第5章 氧化镓基紫外光电探测器5.1 引言5.2 超宽禁带氧化镓基半导体5.2.1 超宽禁带氧化镓基半导体材料的制备5.2.2 超宽禁带氧化镓基半导体光电探测器的基本器件工艺5.3 氧化镓基日盲探测器5.3.1 基于氧化镓单晶及外延薄膜的日盲探测器5.3.2 基于氧化镓纳米结构的日盲探测器5.3.3 基于非晶氧化镓的柔性日盲探测器5.3.4 基于氧化镓异质结构的日盲探测器5.3.5 氧化镓基光电导增益物理机制5.3.6 新型结构氧化镓基日盲探测器5.4 辐照效应对宽禁带氧化物半导体性能的影响5.5 氧化镓基紫外光电探测器的发展前景参考文献第6章 ZnO基紫外光电探测器6.1 ZnO材料的性质6.2 ZnO紫外光电探测器6.2.1 光电导型探测器6.2.2 肖特基光电二极管6.2.3 MSM结构探测器6.2.4 同质结探测器6.2.5 异质结探测器6.2.6 压电效应改善ZnO基紫外光电探测器6.3 MgZnO深紫外光电探测器6.3.1 光导型探测器6.3.2 肖特基探测器6.3.3 MSM结构探测器6.3.4 P-N结探测器6.4 ZnO基紫外光电探测器的发展前景参考文献第7章 金刚石紫外光电探测器7.1 引言7.2 金刚石的合成7.3 金刚石光电探测器的类型7.3.1 光电导型光电探测器7.3.2 MSM光电探测器7.3.3 肖特基势垒光电探测器7.3.4 P-I-N和P-N结光电探测器7.3.5 异质结光电探测器7.3.6 光电晶体管7.4 金刚石基光电探测器的应用参考文献第8章 真空紫外光电探测器8.1 真空紫外探测及其应用8.1.1 真空紫外探测的应用8.1.2 真空紫外光的特性8.2 真空紫外光电探测器的类型和工作原理8.2.1 极浅P-N结光电探测器8.2.2 肖特基结构光电探测器8.2.3 MSM结构光电探测器8.3 真空紫外光电探测器的研究进展8.3.1 极浅P-N结光电探测器的研究进展8.3.2 肖特基结构光电探测器的研究进展8.3.3 MSM结构光电探测器的研究进展
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 研究人员在二维材料光电探测器研究方面取得新进展
    光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。   为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。   具有宽带探测能力的光电探测器在我们日常生活的许多领域中发挥着重要作用,并已广泛应用于成像、光纤通信、夜视等领域。迄今为止,基于传统材料的光电探测器如:GaN 、Si 和 InGaAs占据着从紫外到近红外区域的光电探测器市场。   然而,相关材料复杂的生长过程和高昂的制造成本阻碍了这些探测器的进一步发展。为了应对这些挑战,人们一直在努力开发具有可调带隙、强光-物质相互作用且易于集成的二维材料光电探测器。   如今,许多二维材料如石墨烯、黑磷和碲等已经表现出优异的宽带光探测能力。尽管如此,目前基于二维材料的高性能宽带光电探测器数量仍然有限,特别是许多基于二维材料的光电探测器虽然表现出较高的光响应度和探测率,但响应速度较慢,这可能归因于其较长的载流子寿命,这种较低的响应速度限制了二维光电探测器的实际应用。   最近,石墨烯、黑磷和部分过渡金属二硫属化物(TMDs)范德华异质结器件已经展现出二维材料在高速宽带光电探测领域的潜力。然而,石墨烯是一种零带隙材料,黑磷在环境条件下并不稳定,TMDs异质结的制造工艺相对复杂,这些问题同样限制了这些材料在光电探测领域的应用。   鉴于此,中科院合肥研究院固体所纳米材料与器件技术研究部李广海研究员课题组李亮研究员与香港理工大学应用物理系严锋教授合作,开发了一种基于层状三元碲化物InSiTe3的光电探测器,合成出高质量的InSiTe3晶体,并通过拉曼光谱分析了其拉曼振动模式。InSiTe3的间接带隙可以从1.30 eV(单层)调节到0.78 eV(体块)。   此外,基于InSiTe3的光电探测器表现出从紫外到近红外光通信区域(365-1310 nm)的超快光响应(545-576 ns),最高探测率达到7.59×109 Jones。这些出色的性能价值凸显了基于层状InSiTe3的光电探测器在高速宽带光电探测中的潜力。   论文第一作者为纳米材料与器件技术研究部博士生陈家旺。该工作得到了国家自然科学基金、安徽省领军人才团队项目、安徽省自然科学基金、安徽省先进激光技术实验室开放基金和香港理工大学基金的支持。
  • 乘光电以驰骋 推陈貌而创新-2019年初亮点仪器盘点
    p style=" text-align: justify text-indent: 2em " 2019慕尼黑上海光博会已落下帷幕,会议吸引了26个国家,超过1177家展商,超过60000名激光、光电、光学行业的观众参与。展会吸引了众多仪器设备厂商参与,期间不少公司都携2019年新品或极具特色的亮点仪器亮相,涉及到的仪器设备包含波片检测仪、CO2探测仪、激光功率分析仪、激光干涉仪、闪测仪、光谱系统、光学轮廓仪等。仪器信息网对这些新品和亮点仪器进行了采访盘点,以飨读者。 br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " (注:受限于时间和精力,本盘点仅为不完全汇总,疏漏之处,欢迎读者踊跃补充) /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 波片检测仪 /strong /span /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/c4d1092c-30c7-451c-9885-caf8a9888335.jpg" title=" EW1000.JPG" alt=" EW1000.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 2em " strong EW1000波片检测仪 /strong /p p style=" text-align: justify text-indent: 2em " EW1000& nbsp 的生产商为北京量拓科技有限公司,仪器采用光学偏振调制的测量原理,专门用于波片的全面质量检测,适用于波片生产过程中的质量监控、质量终检、以及新型波片研发中的参数检测。包括波片相位延迟差检测、波片快慢轴方位角检测、波片快慢轴透过率检测等。EW1000利用光波进行非接触测量,对样品无任何破坏性,相位延迟差在0-360° ,测量速度为典型1.6s/波长。该仪器可明确区分快慢轴,避免混淆。仪器采用一键式操作,检测过程无需人工干预。据量拓科技相关负责人介绍,EW1000是全球首款波片检测仪,为公司2019年主打产品。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong CO2探测仪 /strong /span /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/f8f3ab0e-ab16-4ba9-b6fe-39683f8663fe.jpg" title=" CO2探测仪.JPG" alt=" CO2探测仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 2em " strong 碳卫星高光谱与高空间分辨率CO2探测仪模型 /strong /p p style=" text-align: justify text-indent: 2em " 该仪器由国家立项,由中科院长春光机所研发团队经6年研发而成,是我国首台航天高光谱温室气体探测仪器,解决了我国温室气体全球检测手段有无的问题。仪器采用超高分辨率光谱分光探测技术,光谱分辨率可以做到0.04nm;采用皮米量级精细光谱定标技术,光谱定标精度可达0.3pm,都处于国际先进水平。此外仪器还集成了复杂低温光学系统集成制造技术、空间双面铝基志向反射镜制备与应用技术和大面积全息衍射光栅制造等先进技术。该仪器还可应用于全球温室气体检测、碳循环研究、大气环境变化研究、气候变迁、全球植被光合生产力研究。据相关负责人介绍,相关技术也可移植到民用,用于大、小型无人机机载、手持拉曼等相关仪器设备的生产研发中。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 激光功率分析仪 /span /strong /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/519f899e-ee00-433e-85af-9a53a2f250cc.jpg" title=" 图右:激光功率分析仪.JPG" alt=" 图右:激光功率分析仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong 图右:PowerMonitor激光功率分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 激光功率分析仪分析的对象主要是激光器,在激光加工领域有广泛应用,如大功率的激光切割、激光焊接、3D打印、飞机的零部件加工、船厂的焊接、汽车车门链接处的焊接等。PowerMonitor激光功率分析仪是东隆科技有限公司的最新款仪器,该仪器最大的特点是通过光学镀膜减少了激光本身对材料的损害,无需衰减(衰减会引入很多不可控的误差),即可直接测量。该仪器相比前代产品提升了结构的适配性,改变测试位置无需夹具,此外仪器还丰富了软件的模块化和智能化设计。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 闪测仪 /span /strong /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/573f893f-1e80-440a-ab3b-9cca4b69ad21.jpg" title=" VX3000系列闪测仪.JPG" alt=" VX3000系列闪测仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong VX3000系列闪测仪 /strong /p p style=" text-align: justify text-indent: 2em " 闪测仪主要用于测量小型零部件外观尺寸,客户主要集中在工业领域,在3C周边零部件产品的测量中有广泛应用,在中国拥有上亿元的市场容量。VX3000系列闪测仪是深圳市中图仪器股份有限公司于2019年1月份仪推出的新品仪器。该仪器最多可以同时测量99个样品,样品可任意放置,无需夹具定位。仪器具备自动对焦功能,不会因调整焦点而造成偏差,该仪器在CNC模式下可快速精确地进行批量测量,自动识别测量部位,只需一键即可获得准确一致的测量结果。仪器售价大概在30万左右。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 激光干涉仪 /span /strong /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/4c57a604-eddc-40f7-bec4-74968dfd4f12.jpg" title=" IR5U 激光干涉仪.JPG" alt=" IR5U 激光干涉仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong IR5U激光干涉仪 /strong /p p style=" text-align: justify text-indent: 2em " 2018年苹果、华为等手机制造商都推出了3D结构光人脸识别系统,该系统里面有一个孔是红外小孔,在市面上缺少相关的检测仪器。上海乾曜光学科技有限公司IR5U激光干涉仪的诞生即是瞄准了这一新发市场的需求,专门用来检测3D结构光小孔的平面度,仪器售价在20-30万之间。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 微型光谱系统 /span /strong /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/a1bda451-7ee8-45d4-a684-286cf5a9e2ae.jpg" title=" 红雀.JPG" alt=" 红雀.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 0em " strong 红雀系列RS超微型近红外光谱系统 /strong /p p style=" text-align: justify text-indent: 2em " 红雀系列RS超微型近红外光谱系统采用台湾超微光学股份有限公司独家专利的MEMS半导体微机电技术,重量仅40g,尺寸仅有40× 40× 18m3,是一款掌上智能光谱系统,可用于装配手持式拉曼光谱仪。该设备具备高增益(480)、低增益(500)两种信噪比模式,该系统波长范围从950-1700nm,分辨率为8-12nm,售价在4万-5万人民币左右。 /p p style=" text-align: center text-indent: 0em " & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/2a837f41-a7dd-4b41-bb4c-e3a67fa09b2d.jpg" title=" SMD光谱仪.JPG" alt=" SMD光谱仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" text-align: center text-indent: 2em " strong SMD微型光谱系统 /strong /p p style=" text-align: justify text-indent: 2em " SMD微型光谱系统为滨松光子学商贸(中国)有限公司于2019年年初推出的新品微型光谱系统,相比于前代产品体积和成本控制进行了大幅度升级。Mini-spectromete采用MEMS方法,分析的波长范围是640nm-1050nm,频谱响应范围为256pixels。该仪器的尺寸为11.7× 4.0× 3.1mm3,重量仅为0.3g。据相关负责人透露,Mini-spectrometer微型光谱系统很有可能斩获号称“光电行业奥斯卡”的棱镜奖。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 3D光学轮廓仪 /span /strong /p p style=" text-align: center text-indent: 0em " strong & nbsp img src=" https://img1.17img.cn/17img/images/201903/uepic/88d5c3ea-0d00-466b-a031-b3482ecaa547.jpg" title=" 非接触式3D光学轮廓仪.JPG" alt=" 非接触式3D光学轮廓仪.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /strong /p p style=" text-align: center text-indent: 0em " strong Sneox& nbsp 非接触式3D光学轮廓仪 /strong /p p style=" text-align: justify text-indent: 2em " Sneox 非接触式3D光学轮廓仪是SENSOFAR METROLOGY于2019年推出的新品仪器,主要用于微观三维表面形貌的表征:如微观高度、表面粗糙度等。在高精密加工、手机机壳、表面粗糙度测量、印刷电路板、微小电子电路的测量等方面应用很多。市面上不乏共聚焦设备、干涉设备,而SENSOFAR METROLOGY的3D光学轮廓仪为共聚焦、干涉、多焦面叠加三合一的设备,在减少客户在生产线上抽检时间成本的同时,还具有极高的性价比。相比于前代产品lynx,Sneox在共聚焦速度方面提升了原来的6-7倍,干涉速度提升了5倍,多焦面叠加的分辨能力和适应性量测更加宽广。 /p
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 远方光电具备开发 “地沟油”检测仪器能力
    远方光电3月26日在深交所“互动易”平台上表示,公司已具备开发太赫兹光谱仪的能力。太赫兹光谱仪此前因被视为检测“地沟油”的有效仪器,受到市场高度关注。   远方光电的产品包括LED测试仪器、光度计、光谱辐射计等,主要应用于LED和照明的测试。公司方面表示,高精度快速光谱辐射计、光度计,原理上跟食品安全检测仪类似,由于公司在光谱仪方面拥有核心技术储备,若进行一定技术升级,应可研发出用于食品安全、水质、颜色等检测领域的产品 而最终是否投入研发进入这些领域,还将视经营情况而定。   分析人士表示,地沟油检测是我国食品安全领域亟待解决的重大问题之一,而太赫兹技术可以有效鉴别地沟油。据介绍,太赫兹光谱仪在食品安全检测领域的应用原理是,通过太赫兹的光源发生变化形成地沟油的光谱方式,然后将检测物的光谱做对比即可作出鉴别。   太赫兹光谱仪曾受到市场大力追捧。去年10月,有传言称大恒科技涉足太赫兹光谱仪研发,公司而后承认牵头“太赫兹时域光谱仪”的开发,导致股票连续两日一字涨停 12月,大恒科技再次公告太赫兹光谱仪项目申报国家重大科学仪器设备开发专项,并获科技部审批通过,其股价连续三日涨停。
  • 智易时代发布ZWIN-YC08型扬尘噪声在线监测系统新品
    ZWIN-YC08型扬尘噪声在线监测系统是天津智易时代科技发展有限公司根据新市场需求定制开发的一款应用于工地扬尘、道路扬尘、煤场等环境下的新型扬尘在线监测仪,本产品针对颗粒物监测采用的原理是激光散射法,气路采样方式为泵吸式原理,可更加精准的测量现场实时数据,结合噪声、风速、风向、温度、湿度、大气压等环境监测因子;数据采集传输;视频监控管理及信息化一体管控平台,可实现针对大气环境空气质量管理的监、管、治一体化综合平台。技术参数:采样原理:泵吸式 监测原理:激光散射法监测量程:TSP:0-30000ug/m3 PM10:0-1000ug/m3/0-10000ug/m(可选 ) PM2.5:0-1000ug/m3示值误差:≤±10%产品特点:1、采用泵吸式采样方式,气路流量更稳定,数值更稳定准确。2、内含7寸显示屏,可实现本地数据实时数据显示,设备功能操作,软件升级等功能。3、设备带有颗粒物采样头,内含水汽分离装置以及加热除湿功能,可去除水分子含量对颗粒物监测数据影响,增加数据的准确性。4、系统可实现本地雾炮联动以及视频联动等功能,可实现监管控一体化管理手段。5、具有零点自动校准功能。 采样头:加热除湿、水气分离,可定制化粒径切割 噪声头:原理:高精度电容式自由场麦克风创新点:本产品相比上一代产品实现了零点标定和动态切割技术,提高了监测数据精准度,更加适合未来市场需求,满足环保行业要求,为环保行业实现可持续化大气监测奠定基石,争取在扬尘监测行业市场占领更多份额,树立更高质量、更专业化的品牌形象。 ZWIN-YC08型扬尘噪声在线监测系统
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • “向光而生 翼往无前”2023瀚辰光翼年度盛典暨颁奖大会圆满结束
    韶光似箭,岁序更替,辞旧迎新,共赴山海。回首2023年,感激砥砺同心、并肩同行。这是一场盛会,也是一段镌刻在时光长廊上的画幅,书写了曾经的记忆,共谱着未来的蓝图!2024年2月2-3日,主题为“向光而生 翼往无前”的2023瀚辰光翼年度盛典在宜宾市长宁竹海世外桃源温泉酒店顺利召开。回顾2023瀚辰光翼创始人做汇报瀚辰光翼创始人对瀚辰光翼七年来的发展历程进行了总结回顾,着重梳理汇报了2023年度瀚辰光翼经历的重要事件、产品科研突破、公司治理成果等。同时对瀚辰光翼全体伙伴们2023年的工作成果表示肯定,并对2024年及未来的发展做出规划。最后表示2023年是瀚辰光翼取得重大突破的元年,未来我们也将继续充满信心与斗志,迎来新的挑战与收获!瀚辰光翼于2016年启动运营,以“赋能生命科技、不繁成就非凡”为企业使命,专注于生命科学领域自动化智能化设备和解决方案的研发与创新,助力下游客户实验开展的效率提升、成本降低以及过程的标准可控,将科研人员从繁琐的实验操作中释放出来,真正投入到具有创造性研究性的工作当中。相信新的一年,瀚辰光翼也将继续以“致力于成为全球生命科技客户最信赖的伙伴”的公司愿景为指引,用踏实钻研和长期奋斗,收获新的成果!颁奖典礼2023年所有收获和喜悦的背后,是全体瀚辰人的奋斗!这一年也涌现出一批优秀突出的贡献者,他们在工作中时刻牢记并践行瀚辰光翼企业价值观——客户为本、长期奋斗、共创共享、拥抱变化。本次盛典对这些拼搏者进行了隆重表彰,感谢他们为瀚辰光翼付出的全部,同时也激励所有获奖者和瀚辰人在今后的工作中继续拥抱变化,突破自我!战略突破奖攻坚克难奖质量提升奖精益运营奖风雨同舟奖 金牌销售奖、金牌个人奖 长期奋斗奖、创新创造奖 优秀员工、优秀新员工优秀管理者三年风雨同路,五年一路同行。奋斗者追风赶月,笃行不怠,攻坚克难,坚持不懈。回首过去的点滴却恍如昨日,特此设立年限服务荣誉,感谢你们将最好的年华奉献给瀚辰,让我们继续携手共进,共创未来。年会精彩时刻掌声不断,欢笑不停,互动环节将年会气氛烘托至顶峰,或许下一刻幸运儿就出现在你我之间!欢声笑语中,觥筹交错间,这是品尝一年成果的喜悦之时,这是属于我们盛大宴会的精彩之时!展望20242023年是瀚辰光翼成立的第七年,在这一年里遇到了新的挑战、新的困难,但我们收获了新的成长、新的硕果,用奋斗与汗水书写满意答卷!2024辰龙腾飞,瀚辰光翼也带着信心与实干,用拼搏与创新描绘未来篇章,一起“向光而生 翼往无前”!瀚辰光翼全家福
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制