当前位置: 仪器信息网 > 行业主题 > >

修改后质量手册

仪器信息网修改后质量手册专题为您提供2024年最新修改后质量手册价格报价、厂家品牌的相关信息, 包括修改后质量手册参数、型号等,不管是国产,还是进口品牌的修改后质量手册您都可以在这里找到。 除此之外,仪器信息网还免费为您整合修改后质量手册相关的耗材配件、试剂标物,还有修改后质量手册相关的最新资讯、资料,以及修改后质量手册相关的解决方案。

修改后质量手册相关的方案

  • X光无损检测及超声波无损检测应用手册
    X光无损检测及超声波无损检测应用手册 X光和超声波成像是两个非常有益的工具,用于无损检测电子组件产品的质量。这两种技术都提供了关于组件完整性的不同方面的信息。
  • 使用 Agilent 8890/5977C GC/MSD 提高半挥发性有机化合物的分析灵敏度
    本应用简报评估了 Agilent 8890/5977C 气相色谱/质量选择检测器 (GC/MSD) 在传统和高灵敏度水平下分析半挥发性有机化合物 (SVOCs) 的性能。GC/MSD 系统的初始校准范围为 0.2–150 μg/mL,在评估的 76 种分析物中,有97% 满足平均响应因子 (RF) 曲线拟合的要求。对方法进行修改以提高灵敏度,挑战更低浓度的校准范围0.01–10 μg/mL。在这些修改后的条件下,97% 的测试化合物仍符合或超过美国国家环境保护局 (US EPA) 方法 8270E 的平均 RF 拟合标准。这些结果表明分析物可能实现更低的检出限。
  • LC/MS/MS 检测大米中三环唑残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中戊唑醇残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中仲丁威残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中抑霉唑残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中三唑磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中噻嗪酮残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中苄草隆残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中丙环唑残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中马拉硫磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中甲胺磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中增效醚残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中氯虫酰肼残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中抑霉唑残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中氟吡菌酰胺残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中虫螨磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中稻瘟灵残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中丙溴磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中噻虫嗪残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中毒死蜱残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中苯丁锡残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中噻虫胺残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中肟菌酯残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中啶虫脒残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • LC/MS/MS 检测大米中多种农药残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • 尺寸排阻色谱手册
    塑料,聚合物,树脂等高分子材料,在我们的日常生活中随处可见,并且被广泛应用于各个领域。随着生产高分子材料的石油化工产业的不断发展,相继开发和生产出具有新的结构和特殊功能的高分子材料。作为评价和表征这些高分子分子量的方法,尺寸排阻色谱法(SEC)现在已经被广泛使用。由于分离机理简单,SEC法能够很容易得到分子量和分子量分布的结果,但是在实际测试中想获得正确的测定结果也是需要很多经验和技巧.尤其是采用SEC进行高分子的品质管理时,必须要精确考察每个参数,从而确定正确的洗脱条件。 本手册将系统介绍SEC的基本原理,测定方法,到如何优化洗脱条件,并配合实际的实验数据来进行介绍和说明。如果本手册能够给您的研究和工作带来帮助,我们将荣幸之至。-目录-1.前言2.高分子的物性和分子量,分子量分布3.平均分子量,分子量分布的测定方法4.SEC测定分子量5.色谱柱的选择方法6.洗脱溶剂7.样品浓度和进样量8.超高分子的SEC测定9.高温SEC-附录-附录1.有机相SEC典型样品和溶剂的对应关系附录2.水相SEC典型样品和溶剂的对应关系附录3.SEC使用的主要溶剂的物性表附录4.各类聚合物的色谱图
  • LC/MS/MS 检测大米中乙酰甲胺磷残留
    液相色谱- 串联质谱法(LC/MS/MS)的选择性与灵敏度较高,同时在多种样品基质中适用的化合物范围较广,现已成为农药残留分析的首选方法。包括大米在内的食品样品中,多残留分析物目前已广泛采用QuEChERS 提取方法进行分析。本研究结合修改后的QuEChERS 提取方法与LC/MS/MS 技术,提出分析速度更快、灵敏度与选择性更高的农药多残留分析方法,对大米样品中200 余种农药进行分析。通过QSight® 三重四级杆质谱仪的时间管理型MRM ™ ,可为目标分析物自动生成多反应监测(MRM)转换的最佳驻留时间。正如本研究中大米样品的农药多残留分析结果所示,这不仅可缩短方法制定的时间,还可改善数据质量与分析性能。
  • TSQ三重四极杆质谱简明应用手册--食品安全检测
    手册包括22个食品安全检测中常见检测方法,涉及农药残留分析包括400多种农药残留检测方法、苯并咪唑类抗菌剂、苯甲酰脲类农药检测方法、氨基甲酸酯类农药检测方法、有机磷类农药检测方法等;兽药残留分析包括β- 受体激动剂、常见抗生素类药物、激素类药物、抗球虫病类药物、抗蠕虫病类药物等;还包括生物毒素分析。每个检测方法均包含液相方法、质谱方法及详细的SRM条件,可作为参考资料辅助食品安全检测方法的开发。此外,这本手册还包括使用增强定量数据关联二级扫描(QED-MS/MS)的功能进行目标危险物筛查时的应用实例。
  • 气体检测管在食品级二氧化碳CO2质量检测中的应用
    2006年,美国ALI公司开发出食品级二氧化碳检测仪器GAS系列,并获得ISBT认可;该设备采用了检测管法,并优选GASTEC检测管;设备生产商ALI公司制定了使用手册,手册上规定了检测管的使用方法;2008年以后,GASTEC与ALI公司合作,陆续推出了苯、乙醛、总硫等专用检测管;国内碳酸饮料生产企业和食品级二氧化碳提供商相继采用该方法,对L-CO2进行质量检测,使其成为质量管理体系中不可或缺的一个环节。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制