当前位置: 仪器信息网 > 行业主题 > >

二次解析仪原理

仪器信息网二次解析仪原理专题为您提供2024年最新二次解析仪原理价格报价、厂家品牌的相关信息, 包括二次解析仪原理参数、型号等,不管是国产,还是进口品牌的二次解析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二次解析仪原理相关的耗材配件、试剂标物,还有二次解析仪原理相关的最新资讯、资料,以及二次解析仪原理相关的解决方案。

二次解析仪原理相关的资讯

  • *成果信息:用于空气中苯和TVOC分析的二次热解吸仪
    由上海科创色谱仪器有限公司**开发的该装置可以与*通用型气相色谱仪器相联,不仅可以解吸活性炭吸附管中苯系物,通过二次热解吸及直接进样方式,很方便地*分析空气中苯,还可以解吸Tenax吸附管中TVOC,通过一次热解吸或二次热解吸直接进样方式,很方便地*分析空气中TVOC,更完善更合理地**标准GB11737、GB50325、GB/T18883中需要解决的分析问题。不仅操作方便,被测组份分离度提高,而且方法检测灵敏度和定量分析*度也大大提高,价格大大低于目前市场上的*二次热解吸仪。填补了国内空白。(*号:2005200454443)本网站栏目中有该设备的图片或到上海科创公司网站查看www.shupkc.com *来电咨询:021-69982681,66529903,66529206,66529775,66529781
  • 北分三谱发布北分三谱二次(冷阱)热解吸仪新品
    ATDS-3430型二次(冷阱)热解吸仪新品上市一、仪器简介ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 二、仪器特点和主要功能1、 采用半导体制冷,节约使用成本,电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;2、样品传输管线全部采用进口高惰性脱活管路,无残留,无交叉污染,保证样品进样的重复性和准确性;3、 微机程序控制,主要功能有: ⑴ 方法参数设置、实时动画显示工作状态、运行时间; ⑵ 解吸区、进样阀、样品传输管和二次解吸区,四路均单独加热控温; ⑶ 设定好分析程序,按下运行键自动完成样品分析; ⑷ 可以根据用户需求配置为常温二次解吸仪或低温二次解吸仪; ⑸ 可同步启动GC、色谱数据处理工作站,也可用外来程序启动本装置;4、本机自带标样模拟采样的功能,可以更方便的通过热解吸仪制作工作曲线;5、采用高温六通阀,最高使用温度可达240℃;6、通过时间编程,自动实现解吸、吹扫吸附、再解吸、进样、反吹清洗等功能;7、采用电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;8、样品传输管和进样阀有自动反吹功能,避免了不同样品的交叉污染;9、为了配套进口气相色谱仪使用起来更方便精确,本仪器还配有针对各种进口仪器的专用接口,连接方便;10、六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性;11、进样针头更换方便,可连接国内外所有型号的GC进样口;12、一体化设计,整机结构紧凑;微电脑控制,全中文7寸液晶显示,操作简单、方便。13、二次解析升温速率>3000℃/min,峰宽<3s 三、仪器主要技术参数1、解吸1温度控制范围:室温—450℃,以增量1℃任设;2、阀进样系统温度控制范围:室温—2600℃,以增量1℃任设;3、样品传送管线温度控制范围:室温—260℃,以增量1℃任设,采用24V低压供电;4、解吸2温度控制范围:室温—450℃,以增量1℃任设;升温速率〉3000℃/min;5、冷阱温度控制范围:-35℃—室温,以增量1℃任设,采用最先进的电子制冷装置;6、温度控制精度:、RSD:≤2.5%(0.05μg甲醇中苯);11、富集时间:0~60min;12、进样时间:0~60min; 13、样品位:1位;14、采样管规格:直径≤6.5mm,长度≥150mm;15、进样方式:六通阀电机驱动;16、仪器尺寸:长×宽×高=380mm×220mm×410mm3;17、仪器重量:约15kg;18、功率:500W 四、仪器应用范围:1、《HJ/644-2013环境空气 挥发性有机物的测定 吸附管采样-热脱附气相色谱-质谱法》;2、《HJ/T400-2007车内挥发性有机物和醛酮类物质采样测定方法》;3、《GB/T18883-2002室内空气质量标准》;4、《HJ/583-2010环境空气苯系物的测定固体吸附/热脱附-气相色谱》;5、《GB/50325-2010民用建筑工程室内环境污染控制规范》等。6、《HJ734-2014固定污染源废弃 挥发性有机物的测定 固相吸附/热脱附-气相色谱》等。  北京北分三谱仪器有限责任公司是一家集研发、生产、销售和服务于一体的专业分析仪器生产厂家。主要生产:气相色谱仪、顶空进样器、热解析仪、解析管老化仪、电子皂膜流量计、氢气发生器、空气发生器、氮气发生器等产品。公司拥有一批长期从事色谱仪开发及分析应用、维修经验丰富的工程师,在色谱类仪器的维护、维修、和调试等方面的技术力量雄厚。近年来,我们已为国内著名高等院校、科研单位、生产企业及检验检测机构提供了大量先进的分析仪器和设备及完整的系统解决方案。正是因为高品质的产品、专业的应用及完善的售前售后服务,我们赢得了广大用户的支持与信赖,具有良好的声誉。 北京北分三谱仪器有限责任公司技术部 创新点:ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 北分三谱二次(冷阱)热解吸仪
  • 北京华仪三谱发布全自动二次热解吸仪ATDS-3440S新品
    ATDS-3440S 型二次全自动热解析进样仪 简 介 热解析进样是目前气相色谱(GC/MS)分 析中,优点最多、应用最广 的 样 品 前 处 理 进 样 方 法 之 一。 ATDS-3440S 型 二 次 全 自动热解析进样仪 是“北京华仪三谱仪器有 限责任公司”近 年来在样品热解析进样装置 研发、生产、 销售和服务的基础上创新、换代 的产品。 该新产品在研发时,充分考虑了新、旧 国标的实施,及现有客户的需求,在产品的功 能性和工作效率等方面有了很大的提 升。本 产品可与当前主流的进口及国产的 GC 及 GCMS 进行配套使用,有多种气路 及 电 路 的 接 入 方 案 供 用 户 选 择。 ATDS-3440S 型二次全自动热解析进样仪 含有多项自主研 发等技术。 ATDS-3440S 型二次全自动热解析进 样仪,不但适合科研院所高级实验室, 更 适 合那些专门领域(环境监测、食品饮料、 安全 和法医刑侦、化妆品、农业等)作为常规分析 或监测仪器的配套选用。同时也 获得高校有 相关分析的研究生、博士生完成论文实验 / 分析的青睐。 创新点: 1. 非旋转阀切换多维气路进样系统,彻底克服了国产六通阀、十通阀寿命短的不足。 2. 气路流程设计十分简洁、可靠、利于防漏,极大的提高工作效率。 3. 样品通过的气路以及样品阀均采用了惰性化处理技术。 4. 气路可选配(EPC 电子压力控制) ,数字化显示更直观。可实现自动气路系统检漏、故障报警。 5. 通过进样时间调节进样量,已针对不同浓度的样品分析。 6. 针对各种标准,最多可存储 10 个方法。 7. 全彩屏显示、界面友好、触摸操作,可快速轻松掌握,全程跟踪显示操作过程、设定的参数值和实时值等。 8. 扩展服务范围: ⑴ 可提供客户搭建色谱分析样品前处理相关项目实验装置方案、技术咨询或共建共享。 ⑵ 热解仪、功能模块 / 单元组合体以及相关零部件、配件等均可:买、租或以旧换新。 大致应用领域 1. 食品中的挥发性香味和风味化合物组成,而且可测定食品中的残留物和污染物。 2. 固体基质中可热降解的化合物组成,诸如聚合材料中的增塑剂,添加剂、单体等(这些样品降解产物经吸附热解吸 分析测定,有助于纵火案的侦破)。 3. 样品基质中不想要的组分,如:制药中的残存溶剂、聚合物中残存单体和其他的低聚物。 4. 有目的地收集样品基质中挥发性组分,如:污染的大气、盐和糖。目前典型应用是用吸附管采集空气中的挥发性有 机污染物(苯系物、VOCs)等用于监测环境。 5. 一次热解析,一般仅用于较低沸点温度组分(C2 ~ C13),无机和永久气体不易做。若用低温吸附阱(二次热解析) 可做到沸点<C36 挥发性样品。 6. 也可以用于特殊固体、液体(如用棉花浸后放入管内)。 7. 二次吸附热解吸进样与 GC / MS 联用,具有更广泛应用范围,可解决复杂类型样品的分析测定,包括环境、材料、 燃料资源、食品、制药、聚合物和其他各种商品等等。 1. 一次解吸温度调节范围: 2. 二次解吸温度调节范围: 3. 聚焦冷阱温度调节范围: 4. 样品相关管路温度调节范围: 5. 六通阀温度调节范围: 6. 样品传送中的部位处理: 7. 外事可控数量: 8. 外事时间控范围: 9. 样品采集管材料和规格: 10. 捕集管材料和规格: 11. 一次热解析流量: 12. 气缸驱动气压力: 13. 气路及相关部件耐压: 14. 一批样品处理数量: 15. 分析精度: 16. 性能参数: 17. 仪器功率: 18. 联动信号输出开关时间: 19. 仪器外形尺寸: 20. 重量: 室温~380℃,精度±0.5℃增量1℃任设 室温~380℃,精度±0.5℃增量1℃任设 升温速率3000℃ / 分 室温~ -40℃(与室内温度有关) 精度 ±1℃ 增量 1℃任设 室温~ 260℃, 精度 ±1℃ 增量 1℃任设 室温~ 260℃, 精度 ±1℃ 增量 1℃任设 可选、可编程流量、温度与时间可调 (如: 反吹样品传送、采集管的活化 / 老化等) 15 个 0.1 ~ 99 分钟 定时误差:0.1% 不锈钢 、石英玻璃、规格 (可选) 不锈钢、石英玻璃、弹性石英毛细管等(可选) 0 ~ 100 ML/min 连续可调 ( 有指示) < 0.4MPa(可调) 0.4MPa 30 个 RSD 2.5%(和 GC 性能和操作技术有关) 半峰宽 3S 解吸率 98%(甲苯 0.1ul 分流 10 :1) <1000VA 2 秒 高 × 宽 × 长 500mm×485mm×450mm 约 40 Kg创新点:1. 食品中的挥发性香味和风味化合物组成,而且可测定食品中的残留物和污染物。2. 固体基质中可热降解的化合物组成,诸如聚合材料中的增塑剂,添加剂、单体等(这些样品降解产物经吸附热解吸分析测定,有助于纵火案的侦破)。 3. 样品基质中不想要的组分,如:制药中的残存溶剂、聚合物中残存单体和其他的低聚物。 4. 有目的地收集样品基质中挥发性组分,如:污染的大气、盐和糖。目前典型应用是用吸附管采集空气中的挥发性有机污染物(苯系物、VOCs)等用于监测环境。 5. 一次热解析,一般仅用于较低沸点温度组分(C2 ~ C13),无机和永久气体不易做。若用低温吸附阱(二次热解析)可做到沸点<C36 挥发性样品。 6. 也可以用于特殊固体、液体(如用棉花浸后放入管内)。 7. 二次吸附热解吸进样与 GC / MS 联用,具有更广泛应用范围,可解决复杂类型样品的分析测定,包括环境、材料、燃料资源、食品、制药、聚合物和其他各种商品等等。全自动二次热解吸仪ATDS-3440S
  • 北分三谱发布北分三谱ATDS-3430二次(冷阱)热解吸仪新品上市新品
    ATDS-3430型二次(冷阱)热解吸仪一、仪器简介ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 二、仪器特点和主要功能1、 采用半导体制冷,节约使用成本,电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;2、样品传输管线全部采用进口高惰性脱活管路,无残留,无交叉污染,保证样品进样的重复性和准确性;3、 微机程序控制,主要功能有: ⑴ 方法参数设置、实时动画显示工作状态、运行时间; ⑵ 解吸区、进样阀、样品传输管和二次解吸区,四路均单独加热控温; ⑶ 设定好分析程序,按下运行键自动完成样品分析; ⑷ 可以根据用户需求配置为常温二次解吸仪或低温二次解吸仪; ⑸ 可同步启动GC、色谱数据处理工作站,也可用外来程序启动本装置;4、本机自带标样模拟采样的功能,可以更方便的通过热解吸仪制作工作曲线;5、采用高温六通阀,最高使用温度可达240℃;6、通过时间编程,自动实现解吸、吹扫吸附、再解吸、进样、反吹清洗等功能;7、采用电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;8、样品传输管和进样阀有自动反吹功能,避免了不同样品的交叉污染;9、为了配套进口气相色谱仪使用起来更方便精确,本仪器还配有针对各种进口仪器的专用接口,连接方便;10、六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性;11、进样针头更换方便,可连接国内外所有型号的GC进样口;12、一体化设计,整机结构紧凑;微电脑控制,全中文7寸液晶显示,操作简单、方便。13、二次解析升温速率>3000℃/min,峰宽<3s 三、仪器主要技术参数1、解吸1温度控制范围:室温—450℃,以增量1℃任设;2、阀进样系统温度控制范围:室温—2600℃,以增量1℃任设;3、样品传送管线温度控制范围:室温—260℃,以增量1℃任设,采用24V低压供电;4、解吸2温度控制范围:室温—450℃,以增量1℃任设;升温速率〉3000℃/min;5、冷阱温度控制范围:-35℃—室温,以增量1℃任设,采用最先进的电子制冷装置;6、温度控制精度:0ml/min(连续可调);10、RSD:≤2.5%(0.05μg甲醇中苯);11、富集时间:0~60min;12、进样时间:0~60min; 13、样品位:1位;14、采样管规格:直径≤6.5mm,长度≥150mm;15、进样方式:六通阀电机驱动;16、仪器尺寸:长×宽×高=380mm×220mm×410mm3;17、仪器重量:约15kg;18、功率:500W 四、仪器应用范围:1、《HJ/644-2013环境空气 挥发性有机物的测定 吸附管采样-热脱附气相色谱-质谱法》;2、《HJ/T400-2007车内挥发性有机物和醛酮类物质采样测定方法》;3、《GB/T18883-2002室内空气质量标准》;4、《HJ/583-2010环境空气苯系物的测定固体吸附/热脱附-气相色谱》;5、《GB/50325-2010民用建筑工程室内环境污染控制规范》等。6、《HJ734-2014固定污染源废弃 挥发性有机物的测定 固相吸附/热脱附-气相色谱》等。  北京北分三谱仪器有限责任公司是一家集研发、生产、销售和服务于一体的专业分析仪器生产厂家。主要生产:气相色谱仪、顶空进样器、热解析仪、解析管老化仪、电子皂膜流量计、氢气发生器、空气发生器、氮气发生器等产品。公司拥有一批长期从事色谱仪开发及分析应用、维修经验丰富的工程师,在色谱类仪器的维护、维修、和调试等方面的技术力量雄厚。近年来,我们已为国内著名高等院校、科研单位、生产企业及检验检测机构提供了大量先进的分析仪器和设备及完整的系统解决方案。正是因为高品质的产品、专业的应用及完善的售前售后服务,我们赢得了广大用户的支持与信赖,具有良好的声誉。 北京北分三谱仪器有限责任公司技术部 创新点:ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 北分三谱ATDS-3430二次(冷阱)热解吸仪新品上市
  • 药典蛋白质组学分析标准二次公示!增加QC评价标准
    随着质谱技术以及色谱与质谱联用技术的快速发展,蛋白质组学分析技术在未知蛋白质的鉴定、蛋白质结构的解析、靶向蛋白质定量、以及生物技术药物研发、质量控制和体内药代动力学研究方面应用越来越广泛。药典委拟制定《中国药典》蛋白质组学分析方法及应用指导原则,并于2024年2月20日发布第一版公示稿并征求意见。为确保标准的科学性、合理性和适用性,现将拟增订的蛋白质组学分析方法及应用指导原则(第二次)公示征求社会各界意见(详见附件)。公示期自发布之日起一个月。蛋白质组学分析方法及应用指导原则公示稿(第二次).pdf蛋白质组学分析基本流程主要包括:1. 蛋白样品的提取,变性还原,酶解与多肽分离富集;2. 多肽的分析与鉴定;3. 数据分析。在分离和富集中采用凝胶电泳和色谱技术,分析与鉴定中采用质谱、二维凝胶电泳、X射线分析、核磁共振波谱和透射电子显微镜技术。蛋白质组学分析方法及应用指导原则第二次公示稿修改说明 根据 2024 年 2 月蛋白质组学分析方法及应用指导原则第一次公示稿的反馈 意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基 础上修订了部分内容,主要为:一、适用范围1. 将文中“蛋白”修改为“蛋白质”。二、蛋白质组学的分析策略 1. 将“通过质谱分析技术检测到肽指纹图谱进行多肽的鉴定和定量分析” 修改为“通过质谱分析技术检测肽段一级与二级谱图进行多肽的鉴定和定量分 析”。2. 将文中“图谱”修改为“谱图”。三、蛋白质组学分析方法 1.“2.1 质谱技术”增加其他质谱碎裂技术,修订为:“蛋白质组样品经过提 取、分离富集或者进一步变性还原、酶切、多肽分离富集处理后,选择适宜的分 离系统导入离子源离子化,电离生成带电荷离子,离子通过碰撞诱导解离 (Collision induced dissociation, CID)、高能碰撞诱导解离 High energy collision dissociation, HCD)、电子活化解离(Electron activated dissociation,EAD)或其 它适宜的解离技术进行碎片化,后在加速电场的作用下形成离子束进入质量分析 器,通过质量分析器分离和过滤不同质核比的离子,过滤后的离子最终经检测系 统转换为可测量的信号,从而得到质谱图,以获得蛋白质的相关信息”。 2. 将文中“质核比”修改为“质荷比”。 3. 将“数据库检索对肽段碎裂质谱谱图和数据库中的理论序列谱图进行匹 配,实现肽段鉴定”修改为“质谱数据文件的数据库检索对肽段碎裂质谱谱图和 数据库中的蛋白质计算机模拟消化肽段碎裂模式进行匹配,以进行肽段鉴定”。4. 将“肽谱图匹配(peptide spectrum matching,PSM)”,“肽谱图匹配 (peptide-spectrum matches,PSM)”,统一为“肽段谱图匹配 (peptide-spectrum matches, PSMs)”。 5. 将“统计学分析(如 p 值)”修改为“统计学指标(如 p 值)”。 2024 年 6 月 与第一次公示稿比较,修改处加橙色标记 四、蛋白质组学分析的质量控制 1. 在表 1 中增加样品处理中酶解漏切率、酶解位点特异性等 QC 评价指标 及描述;增加色谱分析中峰宽和半峰宽等 QC 评价指标及描述;增加质谱分析中TIC 图等 QC 指标及描述。2. 调整仪器性能参数的描述顺序。将“建议结合仪器的性能进行设置,例 如可将两个参数均设置为 20ppm,也可以将母离子质量误差设置为 10ppm,子离 子质量误差设置为 0.02Da”修改为“建议结合仪器的性能设置质量误差,如将母 离子质量误差设置为 10 ppm,子离子质量误差设置为 0.02 Da,也可将两个参数 均设置为 20 ppm”。3. 将“鉴定的蛋白质应具有至少 70%的覆盖率,即被鉴定的多肽的氨基酸 序列覆盖蛋白质氨基酸序列的百分比,70%的蛋白覆盖率可提高鉴定结果的可信 度和全面性”修改为“蛋白质覆盖率是指被鉴定的多肽的氨基酸序列覆盖蛋白质 氨基酸序列的百分比,70%及以上的蛋白质覆盖率可提高鉴定结果的可信度和全 面性”。
  • 飞行时间二次离子质谱将在材料表面分析领域大有所为
    TOF-SIMS(飞行时间二次离子质谱)采用一次离子轰击固体材料表面,产生二次离子,并根据二次离子的质荷比探测材料的成分和结构。TOF-SIMS是一种非常灵敏的表面分析技术,可以精确确定样品表面元素的构成:通过对分子离子峰和官能团碎片的分析可以方便的确定表面化合物和有机样品的结构,配合样品表面的扫描和剥离,可以得到样品表面甚至三维的成分图。相对于XPS、AES等表面分析方法,TOF-SIMS可以分析包括氢在内的所有元素,可以分析包括有机大分子在内的化合物,具有更高的分辨率。   2013年,德国ION-TOF公司在中国成功安装了4台TOF-SIMS,据介绍该仪器目前在中国的保有量也不过10台左右。在2013 全国表面分析科学与技术应用学术会议召开期间,德国ION-TOF公司中国区总代理北京艾飞拓科技有限公司总经理高聚宁接受了仪器信息网编辑的采访,介绍了德国ION TOF公司的基本情况,以及TOF-SIMS技术目前的发展应用情况。 北京艾飞拓科技有限公司总经理高聚宁   Instrument:首先,请您介绍一下ION TOF公司,及其TOF-SIMS产品的技术发展历史?   高聚宁 :国际上对TOF-SIMS分析研究已经有近35年历史,代表性单位是德国ION-TOF公司所在的德国明斯特大学。可以说,ION-TOF的历史就是TOF-SIMS的发展史。下面的照片是1977年在德国明斯特召开的第一届国际SIMS会议的参加者。ION-TOF公司创建于1989年,是专门研究和生产飞行时间二次离子质谱仪器(TOF-SIMS)的高科技公司。其创始人贝宁豪文(Beninghoven)教授是静态二次离子质谱的奠基人,创建并长期担任国际二次离子质谱学会议主席。 1977年在德国明斯特召开的第一届国际SIMS会议的参加者 ION-TOF创始人贝宁豪文教授   ION-TOF公司创立前,在Beninghoven教授指导下,明斯特大学物理系已经开发了第一代到第三代的二次离子质谱仪器,公司创建后的产品是从第三代TOF-SIMS开始销售的。2003年10月,ION-TOF推出了第五代TOF.SIMS 5仪器。2005年,ION-TOF推出了具有独立专利的Bi源,可以完全取代原来的Ga源和金源。该分析源对无机物和有机大分子等的分析都可以胜任,并且在不损失系统的空间分辨率的前提下大大提高其质量分辨率。 第一代SIMS(1982年)  2010年,ION-TOF开发了第二代Bi源,使得空间分辨率和质量分辨率又上了一个新台阶。第二代Bi源还可以提供Mn离子,对国际最新的G-SIMS(Gentle-SIMS)分析提供支持。   2012年,ION-TOF公司对分析器新研制了EDR功能,对系统结果矫正和定量分析很有帮助。还推出了可以用于有机大分子和生物分析的Gas Cluster Source。新的研究成果将TOF-SIMS的分析从无机物拓展到有机大分子和生物分析领域,可以广泛应用在半导体,物理,化学,材料,生命科学,医药等领域。   Instrument:请您谈谈TOF-SIMS技术未来的发展趋势?   高聚宁:TOF-SIMS未来的发展趋势,我认为主要在以下三个方面:   一是应用领域的拓展,尤其是在生物和有机大分子应用方面的拓展。这包括多方面的内容,如对有机分析源的开发完善,有机分析源已经从Au,C60,发展到现在的Bi源和气体团簇离子源(GCIB)。对于生物和有机分子的分子离子峰获得已经取得突破性进展。而在另一方面,有机材料的结果非常复杂,需要有经验的专门分析人员。我们正在尝试一种简化谱图的方法,G-SIMS提供了一种思路,但仍有待完善。   其次是定量分析。由于Matrix效应,某种元素的离子产额是与当时所处的化学环境相关的。所以TOF-SIMS的定量分析比较复杂,需要对标准样品同时进行分析对比。另外,成份含量可以相差到十几个量级。如何保证在如此大的跨度下不损失,不丢失测试信号也是一个难点。ION-TOF已经有很好的尝试,如与XPS结合,EDR功能的开发等。   最后是与其他表面分析手段的结合,如形貌(AFM),SEM,XPS,LEIS(Low-Energy Ion Spectroscopy),激光共聚焦显微镜等。这些分析手段可以帮助用户获得全方位的表面和界面信息,并通过结果对比,解析出样品表面和界面的原始状态。但这些手段实现原位分析还需要一个过程。ION-TOF正在着手这方面的研究,并已经取得了部分成果。   Instrument:您认为TOF-SIMS的市场发展前景怎么样?   高聚宁:目前,国际上一致公认TOF-SIMS将是XPS之后的可以广泛应用的分析平台,所以对其前景非常看好。现在,国际上已经安装了约280套TOF-SIMS,每年约20-25台的增长量。相比之下,中国的TOF-SIMS研究刚刚起步,目前仅有约10套系统,这还包括ION-TOF今年安装的4套系统!按照我们的分析,中国TOF-SIMS的保有量和年销量都应该达到世界的1/4。这还需要很多的培训和推广工作。   Instrument:您如何看待TOF-SIMS在中国高校科研院所及企业单位的市场需求前景?   高聚宁:目前,世界上TOF-SIMS的用户群半导体工厂和科研院所用户各占半壁江山。如韩国Samsung集团就安装了超过10台的TOF-SIMS。然而,随着TOF-SIMS在生物分析领域的拓展,科研院所和高校的需求将会增加。对中国的用户,我们在生物领域的研究已经达到世界先进水平,尤其是中医中药的研究也非常需要TOF-SIMS这样的分析手段,所以我个人非常看好TOF-SIMS在中国科研单位的前景。而对于工厂企业的需求,一些半导体工厂已经在中国设立了研究基地。而配合生产线进行失效分析也会有大量的需求。其他分析领域,如钢材,汽车等领域,国外已经广泛应用TOF-SIMS,而国内仍然需要一定时间追赶国际步伐。
  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 843万!复旦大学高灵敏度药物代谢动力学分析系统和二次离子质谱仪采购项目
    一、项目基本情况1.项目编号:1069-234Z20234494(HW2023111501)项目名称:复旦大学高灵敏度药物代谢动力学分析系统预算金额:413.140000 万元(人民币)最高限价(如有):404.870000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高灵敏度药物代谢动力学分析系统1套本次采购高灵敏度药物代谢动力学分析系统一套,此系统由三重四级杆质谱仪及数据分析工作站和高效液相色谱仪和组成。★扫描速度≥18000amu/sec。预算金额:人民币413.14万元最高限价:人民币404.87万元合同履行期限:交货期:2024年3月31日前交付。合同履行期限:交货期:2024年3月31日前交付。本项目( 不接受 )联合体投标。2.项目编号:1069-234Z20234470(HW2023111401)项目名称:复旦大学二次离子质谱仪设备预算金额:430.000000 万元(人民币)最高限价(如有):421.000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1二次离子质谱仪设备1套应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。预算金额:人民币430万元最高限价:人民币421万元合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月18日 至 2023年11月24日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:中国上海邯郸路220号        联系方式:郭老师 ,021-65645530      2.采购代理机构信息名 称:上海中世建设咨询有限公司            地 址:中国上海市曹杨路528弄35号            联系方式:邢楠、黄梦如、陈豪,021-52555810            3.项目联系方式项目联系人:邢楠、黄梦如、陈豪电 话:  021-52555810
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 如何拓展二次离子质谱在生命科学研究中的应用——访中科院化学所汪福意研究员
    在2012年以前,汪福意研究员一直带领团队通过有机质谱,如电喷雾电离质谱(ESI-MS)、基质辅助激光解析电离质谱(MALDI-MS)等进行药物相互作用组学研究、抗肿瘤药物的研究和开发等工作。一次与生物学家偶然的讨论给汪福意带来了启发,他萌生了使用高空间分辨率的二次离子质谱成像进行化学生物学和分子生物学研究的念头。中科院化学所领导对于他的想法非常赞成,在中国科学院和国家自然科学基金委的大力支持下,该团队在2012年购置了一台飞行时间二次离子质谱(ToF-SIMS)仪,从此汪福意研究员和他的团队开始了生命科学领域SIMS成像新技术和新方法的研究工作。  SIMS与其它质谱相比有什么特点?SIMS在哪些领域的应用中具有显著优势?汪福意团队用SIMS这个“庞然大物”在生命科学领域进行了哪些研究?国际上的SIMS相关领域有哪些前沿的创新?日前,仪器信息网编辑围绕二次离子质谱的应用,在中国科学院化学研究所采访了汪福意研究员。汪福意研究员离子源的发展把SIMS带到了生命科学门口  二次离子质谱(Secondary ion mass spectroscopy,SIMS) 的原理是利用聚焦的一次离子束轰击样品表面,使样品中的化学物质溅射产生二次离子,通过质量分析器后进入检测器记录离子的荷/质比,获得样品表面化学成分的结构信息。配合对样品表面的扫描和溅射剥离,还可获得样品的二维/三维化学成像。SIMS能检测元素周期表中所有元素及其同位素,质量分辨率较高(对29Si的质量分辨率大于11000),检测限达到ppm到ppb级。SIMS成像的横向分辨率小于100 纳米 基于溅射源的性能,纵向分辨率可达1 纳米。  根据一次离子束运行方式和质量分析器的不同,SIMS又分为NanoSIMS和ToF-SIMS。NanoSIMS的质量分析器为单聚焦或双聚焦磁质量分析器,其一次离子束为单原子或双原子离子,如Cs+和O2+。聚焦的离子束以连续方式轰击样品表面,溅射产生低质量数的离子碎片。基于这些特点,NanoSIMS多用在天体化学、天体年代学、地质沉积学、地矿探测和材料科学,特别是半导体材料研究等领域。顾名思义,ToF-SIMS的质量分析器为飞行时间质量分析器,其一次离子束以脉冲方式轰击样品表面,电离能量较为温和,与NanoSIMS相比,产生的碎片离子具有较高的质量数。ToF-SIMS的一次离子束经历了长达半个世纪的发展,从早期的Ga+、Aun+ (n = 1 – 5), 到后来更易于聚焦的Bin+ (n = 1, 3), 再到现在的C60+、Arn+ (n 高达4000)等团簇离子。团簇离子源的诞生,使ToF-SIMS 离子化产生的离子的质荷比更高,甚至可获得大分子量物质的准分子离子。因而SIMS数据包含的结构信息更为丰富,这对复杂生物体系的研究具有非常重要意义。可以说,正是离子源的发展将SIMS带到了生命科学研究的门口。  由日本京都大学教授Jiro Matsuo (松尾次郎)发明的氩气团簇离子源是SIMS技术领域一个里程碑式的事件。氩离子团簇包含上千个氩原子,其离子半径可以通过增加或减少亚原子数目进行调控,最多可达4000个氩原子。氩团簇离子源既可作为溅射源用于生物样品如细胞和生物组织的溅射剥离,也可作为分析源进行生物样品的表面分析。因而,配备氩团簇离子源的ToF-SIMS在生命科学研究领域得到越来愈多的青睐。  随着一次离子源团簇离子的直径变大,SIMS成像的空间分辨率也会相应降低。对此,汪福意说:“应用SIMS成像进行生物研究的时候,找到离子碎片大小和空间分辨率的平衡非常重要,也就是说在获得质量数较大的、结构信息丰富的碎片离子的前提下尽量保证质谱成像的空间分辨率。”  在团簇离子源发明之前,SIMS在生命科学领域的应用受到限制,因为强调生物大分子结构解析的生物学研究无法从SIMS产生的小碎片离子中得到足够有用的信息。在上个世纪90年代,开始有人尝试基于SIMS在同位素质谱研究中的优势,从生物代谢的角度去了解生物合成过程。汪福意提到:“在这方面,哈佛大学医学院有一支有名的研究团队,他们自己搭建SIMS装置,研究的重点就是利用SIMS成像探索生物合成和生物代谢过程,如DNA的合成、复制与转录。这种研究不是关注高质量数的离子碎片,只需要获得N-15和C-13等同位素标记的碱基碎片在细胞核内的分布信息,就可以分析研究由化学刺激或抑制作用导致的生化过程。”该研究组利用SIMS在细胞生物学前沿领域的研究中取得了很多高影响力的研究成果,对SIMS在生命科学研究领域的应用起到了极大的促进作用。“强强联手”,SIMS与显微技术共缔超高分辨细胞成像  作为传统意义上的无机质谱,SIMS与有机质谱都可以应用于生物组织成像研究。“能够用于组织成像的质谱技术有不少,但并没有哪类技术能被取代。利用MALDI-MS、DESI-MS等有机质谱技术进行生物组织成像分析比SIMS更快捷和简单,而SIMS在空间分辨率上的优势是其它质谱成像技术无法超越的。”在介绍不同质谱技术在生物组织成像中的应用和区别时,汪福意说:“SIMS不擅长分析生物大分子,如果想进行多肽、蛋白质或大DNA片段分析,有机质谱是更好的选择。SIMS的空间分辨率很高,即使是用氩团簇离子源也能达到微米、甚至亚微米级的空间分辨率,能够进行单细胞或亚细胞器的成像分析。仪器厂商都在提高质谱成像空间分辨率方面下了功夫,但到目前为止还是SIMS成像的空间分辨能力更有优势。”  在研究金属抗肿瘤候选药物细胞摄入和分布时,SIMS成像可以通过特征生物碎片,如磷脂碎片和DNA脱氧核糖碎片指示亚细胞器的位置,进而确定金属药物在细胞中的定位和分布。但是,在这些特征生物碎片离子的信号较弱或其指代的生物信息并不唯一时,仅仅基于SIMS离子信号的药物亚细胞器定位可能出现误差。在这种情况下,结合亚细胞器荧光染色的光学显微镜成像可以弥补SIMS信号低,不能准确定位的劣势。常与SIMS结合使用的光学显微镜有激光共聚焦显微镜和超高分辨率的受激辐射耗尽(Stimulated Emission Depletion,STED)显微镜技术。二者的区别在于空间分辨率:激光共聚焦显微镜的空间分辨率在亚微米级,STED荧光显微镜分辨率可以达到30纳米。  通过这种光学显微镜成像与SIMS化学成像相结合的方法,汪福意团队发现他们自主研发的一种有机金属钌抗肿瘤化合物可同时定位在细胞膜和细胞核上,证实了他们在分子水平上的研究结果,即该化合物可以同时作用于细胞膜上的受体激酶和细胞核内的DNA,具有潜在的双靶向特性。  利用SIMS与光学显微镜成像的融合,在完成金属抗肿瘤化合物在细胞中的分布研究之后,团队又进行了金属药物损伤DNA在细胞内与蛋白质相互识别、相互作用的机理研究。  “我们用顺铂等金属抗肿瘤药物中的金属离子指示药物损伤的DNA,用光学显微镜来定位抗体染色或融合荧光蛋白定位DNA结合蛋白。如果光学成像信号与SIMS化学成像信号完全重叠的话,说明它们在细胞水平能相互识别和相互作用。”汪福意表示,这个研究工作能够证实从分子水平研究获得的药物分子作用机制的猜想,“很多人在体外生理模拟环境中做这类研究,但细胞水平上药物损伤DNA与蛋白质相互识别和相互作用的研究还没有文献报道。”目前该工作进展顺利,团队还将继续研究DNA结合蛋白与药物损伤DNA的相互识别可能导致的细胞凋亡等生物过程。  在用SIMS成像与光学显微镜成像联用,研究细胞内和细胞间生物分子相互识别时,必然需要先后使用两类仪器寻找、定位样品板上微小区域内的同一个或几个单细胞。而在1平方厘米甚至更大面积的样品板上准确定位同一个微米级的细胞,是个不小的技术难题。为了解决这一制约研究进展的技术问题,汪福意团队在硅片或玻璃样品板上以光刻方式刻写上200微米的方形网格,并给每个格子一个标号,制备了一种简单、实用的可寻址样品板。这样对于相同网格内单个细胞的成像数据进行叠加处理就变得简便易行。“通过光刻网格定位单细胞仅是一个很小的技术改造,但确实给我们的研究带来很多方便。”汪福意介绍到。(图)ToF-SIMS与共聚焦激光扫描显微镜(CLSM)成像联用时的可寻址细胞定位借力微流控技术实现液相反应体系的SIMS实时原位分析  SIMS是基于高真空的分析技术,分析室内真空度极高,无法分析液态样品,生物样品一般都是采取冷冻干燥或树脂包埋等方式处理后再进行SIMS分析。在2010年前,没有人尝试过用SIMS分析液体样品,直到美国太平洋西北国家实验室的两位华人科学家朱梓华(Zhu Zihua)和于晓英(Yu Xiaoying) 开始研究真空兼容的微流控技术和装置。  汪福意从2013年初开始与两位科学家合作,进行基于微流控技术的液相SIMS技术研究。其研发技术的核心是真空兼容微流控装置,在留有微通道的聚合物基底上嵌入100纳米厚度的氮化硅薄膜,两端连接上微流控管道,通过一次离子束的轰击可在薄膜上打出2微米的小孔。由于小孔直径很小,即使在高真空中,液体的表面张力也能将微流控池内的液体限制在小孔内。这时的小孔内液面即为分析表面,用一次离子束轰击液面溅射出带电离子,即可进行反应池内化学反应的原位实时分析。  由于液体表面可以实时更新,所以该装置可以测定瞬时反应中间体。在氮化硅薄膜上镀上一层金属电极,在反应池内嵌入对电极和参比电极,即可构成三电极电化学反应系统,加上电压之后,可进行电化学氧化还原反应过程的原位实时检测。对于液相SIMS分析技术,汪福意评价说:“这样的分析对研究化学和生物反应很有帮助,能让我们更深入地了解化学、生物反应过程。实时和原位分析的优势是能够捕捉到一些转瞬即逝的中间产物。” 据了解,国内外都有不少科学家致力于用电喷雾电离(ESI)和解析电喷雾电离(DESI)等质谱技术进行反应中间体研究,而用SIMS进行(电)化学反应过程和中间体研究的团队相对较少。汪福意团队还将利用此装置开展电池的充放电反应和均相或液相催化反应研究。  SIMS研究固体样品,无论是矿物质、材料还是生物质冻干切片都是分析其最终状态,而液相SIMS技术让研究活细胞的生物化学过程,如神经递质的释放等成为可能。增进交流与学科交叉,铺就SIMS发展之路  凭借超高的空间分辨率,发挥在药物及代谢物成像研究和生物反应中间产物分析中的优势,SIMS理应在生物研究领域大有作为。然而,国内用于研究的SIMS仪器数量仍然不多,包括地学和材料分析在内也仅有二十多台。据汪福意分析,目前ToF-SIMS的价格在800万左右,NanoSIMS的价格更高,价格昂贵是限制其广泛应用的主要因素。另外,SIMS仪器维护较为复杂,维护费用高,样品制备等过程对技术要求也比较高,也是制约SIMS广泛应用的因素。  汪福意对今后SIMS的应用发展并不担忧,他说:“国家在仪器研发和应用研究方面的投入越来越大,相信以后会有更多的实验室引进SIMS仪器。” 在十二五国家重大科研仪器研制项目中,有两个项目涉及二次离子质谱,分别为“高分辨多功能化学成像系统”和“同位素地质学专用TOFSIMS科学仪器”。汪福意参加了中科院化学所万立骏院士领衔的 “高分辨多功能化学成像系统”的研究,负责SIMS和高分辨光学显微镜技术联用成像子系统的研究工作 北京离子探针中心刘敦一研究员领导的 “同位素地质学专用TOFSIMS科学仪器”项目主要研制和开发用于高精度同位素丰度分析的TOFSIMS新技术。  我国在二次离子质谱在地球科学领域的应用研究与国际上同类研究的水平相当,在一些领域甚至处于国际领先水平。“但是在生命科学领域的应用研究与国际同行相比仍然有较大的差距,推进SIMS在生命科学研究领域的应用需要国内同行共同努力。”汪福意和其他二次离子质谱领域的专家们在不断加强与国际SIMS应用研究同行的联系与交流。他们把每两年一届的国际二次离子质谱大会看作一个让国内研究学者直接接触国际前沿SIMS技术的绝佳平台,在中国物理学会质谱分会等组织的支持下,中国二次离子质谱研究的专家学者们也一直致力于申请该会议的主办权。采访编辑:郭浩楠  后记:今年10月“第六届中国二次离子质谱会议”将在大连举办。汪福意研究员是此会议学术委员会的共同主席,他与其他SIMS领域的科学家们共同邀请到一些国际SIMS专家来介绍他们的前沿技术和最新研究成果,与国内研究者们共同探讨SIMS技术及应用。正在或有意应用SIMS技术进行科学研究的科学家们希望通过会议或其他各种形式与国内外同行交流、沟通,寻求与其它学科的交叉合作。  生命科学领域的科学家可能并不完全了解SIMS技术,也不太清楚SIMS技术能解决生命科学研究中的哪些具体问题 而SIMS分析的研究者也可能不太了解生命科学的研究焦点,彼此存在“背靠背”的窘境。希望更多的科学家能够了解SIMS技术,实现多领域跨学科合作以解决更多生命科学难题。附件:汪福意研究员简历  学习经历  1999年6月 武汉大学化学系毕业,获理学博士学位  1991年6月 华中师范大学化学系毕业,获理学硕士学位  1983年7月 华中师范大学化学系毕业,获理学学士学位  工作经历  2007 – 至今 中国科学院化学研究所“百人计划” 研究员、课题组长、博士生导师、北京质谱中心主任  2002 – 2007 英国爱丁堡大学化学系 英国研究基金会(RCUK) Research Fellow  2000 – 2002 英国爱丁堡大学化学系 英国皇家学会皇家奖学金Research Fellow  1997 – 1999 华中师范大学分析测试中心 副教授,副主任  1991 – 1997 华中师范大学分析测试中心 讲师,无机分析部主管  1983 – 1988 湖北咸宁师范高等专科学校 助教,讲师  学术任职  中国物理学会质谱分会常务理事、有机质谱专业委员会委员 (2008.9 – 2012.8),生物质谱专业委员会副主任委员(2012.8 –)  中国生物化学与分子生物学学会蛋白质组专业委员会委员 (2011.4 –)  美国化学会会员  中国化学会会员  国际生物无机化学学会会员
  • Acrichi发布Acrichi 全自动二次热脱附仪 ATD II-26新品
    全自动二次热脱附仪Acrichi Automatic Thermal Desorption 型号:Acrichi ATDⅡ-26 技术参数:Technical Parameters: 吸附管温度控制范围:室温-400℃,控温精度:±1℃六通阀进样系统温度及控制范围: 室温-220℃,控温精度:±1℃样品传输管温度及控制范围:室温-220℃,控温精度:±1℃聚焦管温度控制范围:室温-450℃,升温速率4000℃/min冷阱温度控制范围:-40℃-室温,采用电子制冷装置,控温精度:±1℃样品位:26位反吹流量:0~100ml/min(连续可调)制样流量:100ml/min样品解吸、吹扫、进样和反吹时间:0.0min~999.9min吸附管规格:直径:1/4英寸,长度:3.5英寸功率:800W电源:220V 50Hz仪器尺寸:605×350×520(mm)仪器重量:约30kg 仪器特点和主要功能:Features and functions: 全自动一键式启动,自动完成全部吸附管的脱附进样分析过程,无需人员值守。自动检漏和故障报警功能。稳定的伺服电机驱动可靠的硬件和软件控制系统。触摸屏控制,界面信息丰富、齐全,操作简单。方法参数设置、实时显示工作状态、运行时间。吸附管、进样阀、传输管、聚焦管(制冷、加热),五路均可单独控制温度。10种方法供编辑、存储和随时调用,按下运行键自动完成样品分析。同步启动气相色谱-质谱、数据处理工作站,也可用外来事件程序启动本装置。可以实现对吸附管的自动重复进样。六通阀进样方式,更少的死体积,保证了进样精度。六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性。本机自带标样制样的功能,可以更方便的通过热解析仪制作工作曲线。更低的制冷温度和更高的升温速率以保证得到窄的色谱峰形。电子流量显示功能。创新点:1、冷阱低温可达-40℃ 2、聚焦管升温速率大于4200℃/min 3、同步启动气相色谱仪、色谱数据处理工作站和气质联用仪,并接受反控信号,保证样品不会被浪费。 4、电子流量显示 5、分流/不分流,一次解吸可以在分流不分流之间切换。 Acrichi 全自动二次热脱附仪 ATD II-26
  • 汪福意团队:表界面分析的原位液相二次离子质谱技术新进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。  近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。  汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。  汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。  研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。  液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 二次离子质谱可以测什么?
    二次离子质谱(secondaryionmassspectroscopy,简称SIMS),是一种非常灵敏的表面成份精密分析仪器,原理利用质谱法分析初级离子入射靶面后,样品表面被高能聚焦的一次离子轰击时,一次离子注入被分析样品,把动能传递给固体原子,引起中性粒子和带止负电荷的二次离子发生溅射,然后根据溅射的二次离子的质量信号,对被轰击样品的表面和内部元素分布特征进行分析。通过不同的操作模式,测试可以得到表面质谱、表面成像、深度剖析和三维分析信息,用来完成工业生产和科研研究过程中所需的掺杂和杂质深度数据;浅注入和超薄膜的超高分辨率深度分析;芯片结构及杂质元素定性定量分析;薄膜的组成和杂质的测量等,这种技术本身具有“破坏性”的物质溅射,可以应用在包括但不仅限于金属及合金、半导体、绝缘体、有机物、生物膜分析对象上。质量分析器可采用单聚焦、双聚焦,飞行时间、四极杆、离子阱、离子回旋共振等,其中飞行时间离子质谱TOF-SIMS是通过将二次离子质谱分析技术(SIMS)与飞行时间质量分析器(TOF)结合起来,由于其一次脉冲就可得到一个全谱,离子利用率最高,能最好地实现对样品几乎无损的静态分析,分析速度快和样品的消耗极少,分析质量范围宽,对有机、无机材料都有很好的分析能力。
  • 复旦大学430.00万元采购二次离子质谱
    详细信息 复旦大学二次离子质谱仪设备国际招标公告(第二次) 上海市-杨浦区 状态:公告 更新时间: 2023-12-11 复旦大学二次离子质谱仪设备国际招标公告(第二次) 2023年12月11日 17:58 公告信息: 采购项目名称 复旦大学二次离子质谱仪设备 品目 货物/设备/仪器仪表/教学仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2023年12月11日 17:58 获取招标文件时间 2023年12月12日至2023年12月19日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 开标时间 2024年01月03日 09:30 开标地点 1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。 2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 预算金额 ¥430.000000万元(人民币) 联系人及联系方式: 项目联系人 邢楠、黄梦如、陈豪 项目联系电话 021-52555810 采购单位 复旦大学 采购单位地址 中国上海邯郸路220号 采购单位联系方式 何老师 ,021-65645530 代理机构名称 上海中世建设咨询有限公司 代理机构地址 中国上海市曹杨路528弄35号 代理机构联系方式 邢楠、黄梦如、陈豪,021-52555810 附件: 附件1 复旦大学二次离子质谱仪设备国际招标公告(2)-招标采购详情--____(第二次).pdf 项目概况 复旦大学二次离子质谱仪设备 招标项目的潜在投标人应在复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)获取招标文件,并于2024年01月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1069-234Z20234470(HW2023111401) 项目名称:复旦大学二次离子质谱仪设备 预算金额:430.000000 万元(人民币) 最高限价(如有):421.000000 万元(人民币) 采购需求: 包件号 名称 数量 简要技术规格 备注 1 二次离子质谱仪设备 1套 应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。 预算金额:人民币430万元 最高限价:人民币421万元 合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权;3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;4) 本项目不允许联合体投标;5) 本项目不接受分包和转包。 三、获取招标文件 时间:2023年12月12日 至 2023年12月19日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月03日 09点30分(北京时间) 开标时间:2024年01月03日 09点30分(北京时间) 地点:1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1)投标人在投标前应在____(https://____)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 2)本项目采用电子化采购线上方式进行。系统登录方法:进入https://czzx.fudan.edu.cn网站,点击校外用户登录。 3)投标文件需使用到CA加密和解密,操作步骤需严格按照复旦大学采购与招标管理系统的要求进行。 4)有兴趣的潜在投标人可从招标人得到进一步的信息和查阅招标文件。 复旦大学采购与招标管理系统使用技术咨询:400-808-5975转2 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:中国上海邯郸路220号 联系方式:何老师 ,021-65645530 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:中国上海市曹杨路528弄35号 联系方式:邢楠、黄梦如、陈豪,021-52555810 3.项目联系方式 项目联系人:邢楠、黄梦如、陈豪 电 话: 021-52555810 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:二次离子质谱 开标时间:2024-01-03 09:30 预算金额:430.00万元 采购单位:复旦大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海中世建设咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 复旦大学二次离子质谱仪设备国际招标公告(第二次) 上海市-杨浦区 状态:公告 更新时间: 2023-12-11 复旦大学二次离子质谱仪设备国际招标公告(第二次) 2023年12月11日 17:58 公告信息: 采购项目名称 复旦大学二次离子质谱仪设备 品目 货物/设备/仪器仪表/教学仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2023年12月11日 17:58 获取招标文件时间 2023年12月12日至2023年12月19日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 开标时间 2024年01月03日 09:30 开标地点 1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。 2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 预算金额 ¥430.000000万元(人民币) 联系人及联系方式: 项目联系人 邢楠、黄梦如、陈豪 项目联系电话 021-52555810 采购单位 复旦大学 采购单位地址 中国上海邯郸路220号 采购单位联系方式 何老师 ,021-65645530 代理机构名称 上海中世建设咨询有限公司 代理机构地址 中国上海市曹杨路528弄35号 代理机构联系方式 邢楠、黄梦如、陈豪,021-52555810 附件: 附件1 复旦大学二次离子质谱仪设备国际招标公告(2)-招标采购详情--____(第二次).pdf 项目概况 复旦大学二次离子质谱仪设备 招标项目的潜在投标人应在复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)获取招标文件,并于2024年01月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1069-234Z20234470(HW2023111401) 项目名称:复旦大学二次离子质谱仪设备 预算金额:430.000000 万元(人民币) 最高限价(如有):421.000000 万元(人民币) 采购需求: 包件号 名称 数量 简要技术规格 备注 1 二次离子质谱仪设备 1套 应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。 预算金额:人民币430万元 最高限价:人民币421万元 合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权;3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;4) 本项目不允许联合体投标;5) 本项目不接受分包和转包。 三、获取招标文件 时间:2023年12月12日 至 2023年12月19日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月03日 09点30分(北京时间) 开标时间:2024年01月03日 09点30分(北京时间) 地点:1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1)投标人在投标前应在____(https://____)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 2)本项目采用电子化采购线上方式进行。系统登录方法:进入https://czzx.fudan.edu.cn网站,点击校外用户登录。 3)投标文件需使用到CA加密和解密,操作步骤需严格按照复旦大学采购与招标管理系统的要求进行。 4)有兴趣的潜在投标人可从招标人得到进一步的信息和查阅招标文件。 复旦大学采购与招标管理系统使用技术咨询:400-808-5975转2 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:中国上海邯郸路220号 联系方式:何老师 ,021-65645530 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:中国上海市曹杨路528弄35号 联系方式:邢楠、黄梦如、陈豪,021-52555810 3.项目联系方式 项目联系人:邢楠、黄梦如、陈豪 电 话: 021-52555810
  • 细谈二次电子和背散射电子(一)
    二次电子(SE)和背散射电子(BSE)是扫描电镜(SEM)中最基本、最常用的两种信号,对于很多扫描电镜使用者而言,二次电子可以用来表征形貌,背散射电子可以进行原子序数表征已经是基本的常识。然而,二次电子、背散射电子与衬度的关系并非如此简单。今天,我们就来深入的了解一下SE、BSE的细分类型,各自的特点,以及它们和衬度之间的关系。二次电子 二次电子是入射电子与试样中弱束缚价电子产生非弹性散射而发射的电子,一般能量小于50eV,产生深度在试样表面10nm以内。二次电子的产额在很大程度上取决于试样的表面形貌,因此这也是为什么在很多情况下大家把SE图像等同于形貌像。然而,这种说法并不严谨。二次电子(SE)和其它衬度的关系 二次电子的产额其实和成分也有很大的关系,尤其是在低原子序数(Z图2 碳银混合材料的SE、BSE图像以及碳、银电子产额 所以,如果对于低原子序数试样,或者原子序数差异非常大时,若要反映成分衬度,并不一定非要用BSE像,SE像有时也可获得上佳的效果。 除了成分衬度外,SE还具有较好的电位衬度,在正电位区域SE因为收到吸引而使得产额降低,图像偏暗,反之负电位区域SE像就会偏亮。而BSE因为本身能量高,所以产额受电位影响小,因此BSE像的电位衬度要比SE小的多。图3 另外,如果遇上试样的导电性不好,出现荷电效应或者是局部荷电,这也可以看成是一种电位衬度。这也是当出现荷电现象的情况下,相对SE图像受到的影响大,BSE图像受影响则比较小。这也是为什么在发生荷电现象的情况下,有时可以用BSE像代替SE像来进行观察。 至于通道衬度,一般来说因为需要将样品进行抛光,表面非常平整,这类样品基本上没有太多的形貌衬度。SE虽然也能看出不同的取向,但是相比BSE来说则要弱很多,所以一般我们都是用BSE图像来进行通道衬度的观察。图4 SE和衬度的关系,总结来说就是SE的产额以形貌为主,成分为辅,容易受到电位的影响,取向带来的差异远不及BSE。在考虑具体使用哪种信号观察样品的时候,可以参考表1,SE和BSE特点刚好互补,并没有孰优孰劣之分,需要根据实际关注点来选择正确的信号进行成像。 表1SEBSE能量低高空间分辨率高低表面灵敏度高低形貌衬度为主兼有成分衬度稍有为主阴影衬度弱强电位衬度强弱抗荷电弱强 二次电子的分类 刚才简单介绍了SE和衬度的一些基本关系,接下来我们细谈一下SE的分类。因为不同类型的二次电子在衬度、作用深度上的表现完全不同,使得不同SE探测器采集的SE像会有非常大的差异。因此,为了能在电镜拍摄中获得最佳的效果,我们有必要对SE的类别进行详细的了解。 如果按照国家标准来进行分类的话,SE主要分为四类,分别是:SE1:由入射电子在试样中激发的二次电子;SE2:由试样中背散射电子激发的二次电子;SE3:由试样的背散射电子在远离电子束入射点产生的二次电子;SE4:由入射束的电子在电子光学镜筒内激发的二次电子。 国标这样定义完全正确,然而这样的分类对于在实际电镜操作中并没有太多指导意义。为什么呢?因为不管是什么类别的SE都是属于低能电子,探测器在采集的时候往往也不能对其加以区分。那么,我们现在可以换个思路来理解一下这几种二次电子。由于SE4对成像不起作用,我们在此不进行讨论。A. SE1: 由原始电子束激发,因此其作用深度最浅,对表面最为敏感,我们知道SE本身也有成分衬度,所以SE1也非常能体现出极表层的成分差异。 其次,正因为SE1信号来自于样品的极表面,作用体积小,所以其出射角度应该相对比较高。因此,SE1的分辨率应该是所有类型中最好的。 再者,正是因为SE1的出射高度都是高角,所以其产额不易受到试样表面凹凸不平的影响,因而其分辨率虽好,但是立体感则相对比较弱。B. SE2和SE3: 由BSE激发产生的SE。因为BSE本身作用区域较大,所以在回到试样表面再次产生的SE的作用范围要比SE1大的多,正因如此, SE2和SE3的分辨率也弱于SE1。 其次,SE2和SE3是被位于试样深处的BSE激发,它们的产额在很大程度上取决于试样深处的BSE,而且它们作用区域较深,也更能体现出试样深处的成分信息。 再者,SE2和SE3由不同方向的BSE产生,因此其出射角度相对也较为广泛,从高角到低角均有分布。C. 另外,我们需要再考虑到荷电因素,荷电本身的负电位会将产生的SE尽量推向高出射角方向出射,所以受到荷电影响的电子也一般分布于较高的出射角。 SE1分布在高角、SE2和SE3分布在各个角度,荷电SE分布在高角。这样一来,我们把SE1、SE2、SE3原来按产生的类型分类转化为更加实用的按照出射角度进行分类。即:高角电子以“SE1+荷电SE”为主,低角电子以“SE2+SE3”为主。不同出射角度的SE有着截然不同的特点,我们分别来看一下。A. 轴向SE: 轴向SE是以接近90° 出射的二次电子,其中以SE1所占比例最高。由于作用体积最小,分辨率相应也是最高,且具有最高的表面敏感度,因此可以分辨极表面的成分差异,但是同时对一些并不希望看见的表面沉积污染或者氧化等,也会一览无遗。同时,因为轴向SE中所含的荷电SE也相应最多,所以,一方面对电位衬度最为敏感,另一方面受到荷电的影响也最为严重。B. 高角SE 高角SE是以较高角度出射的二次电子,也是以SE1为主,不过相对轴向SE中所含SE1而言数量稍低。高角SE的分辨率、表面灵敏度、电位衬度相对轴向SE而言也有所降低,不过由于荷电SE占比减少,所以和轴向SE相比,高角SE受到的荷电现象影响较小。高角SE和轴向SE都是向上出射,所以图像的立体感都比较差。C. 低角SE 低角SE是以较低角度出射的二次电子,其中SE2、SE3占有较高比例。所以低角SE反映的是试样较为深层的信息,表面灵敏度低,作用体积大,分辨率也不及高角SE和轴向SE。不过低角SE的图像立体感很好,抗荷电能力也比前两者强。 不同类型二次电子的特点 这样,我们就将原来只能从定义的角度进行区分的SE1、SE2、SE3,转变成出射角度不同的轴向SE、高角SE和低角SE。而按照角度进行分类之后,在实际探测信号时是完全可以对其进行区分的,我们会在之后的篇幅中对其进行详细的介绍。这样,我们现在可以总结一下几种类型SE的特点,如表2。表2轴向高角低角出射角度接近90°大角度小角度凹坑处的观察有信号有信号信号弱分辨率最好很好一般表面灵敏度最好很好较弱立体感差差很好成分衬度极表面成分表面成分较为深处电位衬度强强弱抗荷电能力弱较弱强 很多人都用过场发射扫描电镜,对样品室内SE探测器得到的低角SE2信号,与镜筒内SE探测器得到的高位SE1信号的图像对比会深有感触,很明显两者的立体感相差很大,见图5。图5 低角SE图像(左)和高角SE图像(右) 但是对镜筒内的SE信号再次拆解为高角SE和轴向SE可能会觉得很陌生,虽然前面我们已经对二者进行了介绍,但是毕竟不够直观。我们不妨看看图6,两张图都是使用镜筒内探测器获得,分辨率和立体感都很类似,总体效果非常接近,但是轴向SE(左图)受到小窗口聚焦碳沉积的影响,而同时获得的高角SE(右图)的碳沉积影响则轻微很多。 图6 轴向SE图像(左)和高角SE图像(右) 图7的样品为硅片上的二维材料,左图为高角SE图像,右图为轴向SE图像,轴向SE的灵敏度明显高于高角SE。图7 硅片上的二维材料,高角SE图像(左)和轴向SE图像(右)图8的样品为绝缘基底上的二维材料,左图为高角SE图像,右图为轴向SE图像,可以看到轴向SE受到荷电的影响也要高于高角SE。图8 绝缘基底上的二维材料,高角SE图像(左)和轴向SE图像(右) 总结一下,我们将二次电子拆解成轴向、高角和低角三个不同的类型,它们没有优劣之分,均有自己的特点,有优点也有缺点。我们只有在实际操作时发挥出每种信号的优势,才能获得最适合的图像。 好了,关于SE的分类相对比较简单,相信您已经完全理解,我们将在下一篇中详细说一下BSE。 为了更好的理解这篇的内容,让我们通过几张SE图像来实际感受一下不同类型SE之间的差异吧! 您能分得清以下图片分别是哪一类型的SE信号,并且在什么衬度特点上产生的差异吗?我们将会在下一期文章中公布答案哦!0102030405
  • 和晟仪器助力东华大学热分析仪二次改造升级
    随着科技的发展,热分析仪在材料科学、化学、物理等领域的应用日益广泛,其对于物质性能的准确测量以及工艺优化的重要性愈发凸显。东华大学作为国内知名的高等学府,一直致力于热分析仪的研发与升级,近期,和晟仪器有幸参与了东华大学的热分析仪二次改造升级项目。东华大学东华大学近年采购我司的热分析仪和差示扫描量热仪在性能和精度上已不能满足现阶段科研的需求。为此,和晟仪器凭借其在热分析领域的深厚技术积累和丰富经验,为东华大学提供了全面的二次改造升级方案。该方案不仅提高了热分析仪的性能和精度,还优化了其操作流程,使得科研人员能够更便捷、准确地获得实验数据。在改造升级过程中,和晟仪器团队首先对原设备进行了深入的检测和分析,找出了存在的问题和需要改进的地方。接着,根据东华大学的实际需求,团队制定了详细的改造计划,并严格按照计划进行实施。改造升级后的热分析仪在测量范围、精度、稳定性等方面都有了显著的提升。此次改造升级的成功,不仅提高了东华大学科研工作的效率和质量,也进一步巩固了和晟仪器在热分析领域的领先地位。我们期待未来能有更多的机会与东华大学等高等学府合作,共同推动科研事业的发展。文章到此结束,感谢阅读。如果您对热分析仪的改造升级有更多的关注或疑问,欢迎随时联系我们。和晟仪器将始终致力于为您提供优质的服务。
  • 《中国药典》红外光谱法草案二次公示 修订仪器性能确认等内容
    近日,药典委发布关于0402 红外分光光度法标准草案的公示(第二次),对此前公示过的《红外光谱法草案公示稿(第一次)》进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿起草单位包括中国食品药品检定研究院、天津大学、江苏省食品药品监督检验研究院、宁夏回 族自治区药品检验研究院、广州市药品检验所、清华大学等,云南省食品药品监督检验研究院、哈尔滨市药品和医疗器械检验检测中心、湖南省药品评审与不良反应监测中心、上海市食品药品检验研究院、安徽省食品药品检验研究院、 山西省检验检测中心等也参与其中, 赵瑜、尹利辉、李晨曦、黄朝瑜、朱会琴、张立雯、李睿、孙素琴等担任主要起草人。此前第一次公示的草案在《中国药典》0402 红外分光光度法的基础上修订了如下内容:1. 对通则结构做了调整;2. 增订了红外光谱法的应用范围、谱图表示单位;3. 测量模式部分补充了原理,并增加了漫反射和红外显微镜的内容; 而本次草案,根据 2024 年 2 月 0402 红外光谱法首次公示稿的反馈意见和建议,在第一次公示稿的基础上修订了部分内容,包括概述、测量模式、仪器性能确认、鉴别、 定量分析、测定法部分,更多内容详见附件。附件:0402 红外光谱法草案公示稿(第二次) (2).pdf
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 细谈二次电子和背散射电子(四)---总结篇
    前三章我们详细介绍和分析了在各种模式下,二次电子和背散射电子以及各种衬度之间的特点,本章节内我们会对这些内容行回顾和总结。前三个章节请参看:细谈二次电子和背散射电子(一)细谈二次电子和背散射电子(二)细谈二次电子和背散射电子(三) 信 号 类 型 二次电子(SE)按照其产生的原理可以分成 SE1、SE2、SE3 和 SE4,但是在实际使用的时候会发现难以对 SE1~SE4 进行严格的区分,因此我们把 SE 分成更加实用、更容易从操作上掌握的低角 SE、高角 SE 和轴向 SE 这三种 SE 信号。 背散射电子(BSE)根据角度不同将其区分为低角 BSE、中角 BSE、高角 BSE;又从对称性的角度分离出非对称的 Topo-BSE;以及从能量的角度分离出Low-Loss BSE 信号,分为了五种 BSE 信号。 以上3种 SE 信号和5种 BSE 信号,加上本章介绍的减速模式下的信号SE+BSE (BDM) ,一共有九种信号。这九种信号往往需要不同的电镜条件,也有不同的衬度特点,各自信号有着独特优势的同时也存在相应的缺点,具体请参见表1。表1信号衬度工作距离分辨率表面敏感度抗荷电能力景深立体感二次电子(SE)低角SE形貌为主均可一般好好好高角SE形貌、电位为主短好好差差轴向SE形貌、电位为主短好很好差差背散射电子(BSE)低角BSE成分、形貌、通道、阴影分析距离差差很好好中角BSE成分、形貌、通道短好一般好一般高角BSE成分、通道短好好好差TopoBSE形貌、阴影较短一般差很好很好Low- LossBSE成分短好很好好差减速模式下Signal(BDM)形貌、成分很短很好很好好差 衬 度 类 型 前面我们详细了解各个信号在衬度上的特点,那接下来我们反过来思考一下:为了获得各种类型的衬度,或者针对不同的试样和不同的目的,应该如何选择合适的信号进行采集以获得最佳的效果呢?1. 对于不追求超高分辨率的形貌衬度图像,立体感有时显得格外重要。此时,可以优先选择 Topo-BSE 信号来获得极具立体感的衬度;其次可以选择低角 SE 以及低角 BSE 信号。2. 如需获得高分辨的形貌衬度图像,应该优先选择轴向 SE 和高角 SE 信号,其次可以选择中角 BSE 信号。3. 如需获得非常纯的成分衬度图像,而不希望有其它衬度的干扰,可以优先选择高角 BSE 和 Low-Loss BSE 信号。4. 如需获得兼有形貌和成分衬度的图像,可以选择低角 BSE、中角 BSE 信号,有时候减速模式下的信号也可以兼有形貌和成分衬度。5. 如需获得非常表面的成分衬度,如表面污染,二维材料等,可以优先选择轴向 SE、高角 SE 信号,其次可以选择 Low-Loss BSE 以及减速模式下的电子信号。6. 如果不想获得非常敏感的形貌,比如抛光质量不够理想的金相试样,想要进一步减弱划痕影响,可以选择高角 BSE 和 Low-Loss BSE 信号,其次选择中角 BSE 信号。7. 如需获得较深处的成分信号,除了提高加速电压之外,也应该优先选择低角 BSE 和低角 SE 信号。8. 如需获得不同晶粒取向的通道衬度,优先选择立体角最大的低角 BSE 信号。9. 对于很多半导体试样,如果要想获得电位衬度,优先选择轴向 SE 和高角 SE 信号。10. 如需降低荷电效应影响,优先选择 Topo-BSE 和低角 BSE 信号,其次选择低角 SE 和中角 BSE,而避免高角和轴向 SE 信号。归纳一下,参见下表2。表2场景推荐1推荐2分辨率不高的形貌衬度Topo-BSE低角SE低角BSE分辨率较高的形貌衬度轴向SE、高角SESignal (BDT)中角BSE无形貌干扰的成分衬度Low-Loss BSE高角BSE兼有形貌和成分衬度低角BSE中角BSESignal (BDT)极高的表面敏感度轴向SE高角SELow-Loss BSE减弱形貌的干扰高角BSELow-Loss BSE中角BSE深层信息低角BSE低角SE通道衬度低角BSE电位衬度轴向SE高角SE降低荷电Topo-BSE低角BSE低角SE中角BSE̷̷ 这里只列举了一些常见的情况,对于不同的试样或者观察目的,我们要根据这些信号的特点进行灵活运用。甚至当只采集一个信号达不到目的时候,要利用探测器信号混合功能来进一步获得更理想的效果。 信号和探测器的选择 电镜观察中存在这么多的信号,那究竟用什么类型的探测器来区分这些信号呢?对于现在大部分场发射电镜来说,四探测器已经成为一个标准化的配置,即样品室一个ETD探测器,一个极靴下方的BSE探测器,镜筒内有两个探测器。样品室的两个探测器基本上差别不大,镜筒内的探测器会根据物镜的类型以及各厂家的一些特殊技术而有所差别。不过论共性而言,镜筒内的两个探测器,普遍一个位置相对较高,一个位置相对较低。 一台电镜根据自身的设计情况以及工作条件,能够分离出九种电子信号中的部分信号。粗略的进行归纳,可以总结为下表3。(不过需要注意的是,虽然有的探测器在表格中显示可以采集多种信号,但是这只是对大部分电镜做的一个归纳。对于一台具体的电镜而言,并不一定能够实现所有功能)。表3信号推荐探测器1推荐探测器2低角SEETD高角SE镜筒内低位探测器镜筒内高位探测器轴向SE镜筒内高位探测器低角BSE样品室BSE探测器中角BSE镜筒内低位探测器高角BSE镜筒内高位探测器Low-Loss BSE镜筒内能量过滤探测器Topo-BSE特殊优化的ETD非对称样品室BSE探测器 总 结 最后用一首七律对所有章节的内容进行一个总结,希望大家能够对 SE、BSE 信号以及各种衬度之间的关系能够有更深刻的理解,在电镜观察中获得更好的结果。《七律》粉末块体千百状用心制备导电亮半明半暗亮线条积分或能荷电抗二次背散各有用巧用二者图成双高低角度大不同多种模式减速场磁场浸没龙卷降吸汲电子扶摇上电磁静电复合式汇聚角度随能量非是高能分辨强低压窥得俏模样各类衬度分清楚图文相谶好文章元素结构何取向结晶参杂非所长光谱质谱原位解所见所得 All In One上一期答案问题:这是电池隔膜试样的图片,你知道不同角度(左为低角、右为高角)表现出的衬度差异是如何造成的吗?两张图都是在减速模式下拍摄:左图为低角电子,背散射相对占主要部分,表现出形貌衬度,因为材质均匀,所以没有明显的成分衬度;右图为高角电子,二次电子占主要部分,表现为比较明显的电位衬度和形貌衬度。
  • 解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程
    解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程 引言概述:电子脱扣器是一种广泛应用于电子设备中的关键元件,其工作原理是通过控制电流流过特定的电路,实现对电子器件的脱扣操作。本文将详细介绍电子脱扣器的工作原理,包括其基本原理、工作流程、应用场景、优势以及未来发展方向。一、基本原理1.1 电磁感应原理:电子脱扣器利用电磁感应原理,通过电流流过线图产生的磁场,引起磁铁的吸引或排斥,从而实现脱扣操作。1.2 磁铁工作原理:电子脱扣器中的础能够产生足够的磁场强度,以实现可靠日永磁材料,具有较强的磁性1.3电路控制原理:电子脱扣器中的电|电流的大小和方向,调节磁场的强弱和方向,从而实现对磁铁的控制脱扣操作。 二、工作流程:2.1 输入信号检测:电子脱扣器首先要检测输入信号,通常是通过传感器或开关来实现,一旦检测到输入信号,即可触发脱扣操作。2.2 电路控制:一旦输入信号被检测到,电子脱扣器会根据事先设定的参数,通过控制电路来调节电流的大小和方向,以实现对磁铁的控制。2.3 脱扣操作:当电子脱扣器控制电路调世刚合适的状态后,磁铁会受到电磁力的作用,实现脱扣操作,将电子器件从离出来。 3.1 电子产品制造:电子脱扣器广泛应用于电子产品的制造过程中,用于将电子器件从 PCB板上脱离,以便进行后续的加工和组装。3.2 电子设备维修:在电子设备维修过程中,电子脱扣器可以帮助技术人员快速、安全地分离电子器件,减少损坏的风险。3.3 生产自动化:随着生产自动化水平的提商,电子脱扣器被广泛应用于自动化生产线上,提高生产效率和质量。 优4.1 高效快速:电子脱扣器能够在短时间内完成脱扣操作,提高生产效率。4.2 精准可靠:电子脱扣器能够精确控制电流和磁场,确保脱扣深作的准确性和可靠性。4.3 安全环保:电子脱扣器在脱扣过程中不会产生大量的热量和噪音,对环境和操作人员都比敦安全。五、未来发展方向:5.1 智能化:未来的电子脱扣器将更加智能化,能够根据不同的工作环境和需求进行自动调节和优化。5.2 多功能化:电子脱扣器将会融合更多的功能,例如温度检测、电流监测等提供更全面的服务。g5.3 节能环保:未来的电子脱扣器将更加一源的节约和环境的保护,采用更高效的电路和材料。
  • 手机闪光灯镜片二次光学色温照度分析
    我们知道,采用手机便携式的拍照方式,已成为人们大众很重要的生活方式。然而,采用手机拍照方便的同时,人们对照片质量的苛求并没有降低。所以,如何提高手机的拍照质量是各大手机厂商关注的重点问题。为此,对于此类相关的检测技术也孕育而生,而汉谱公司手机闪光灯镜片二次光学色温照度分析,就是该检测技术的成功典范。   2012年6月29日,汉谱公司为旭瑞光电科技有限公司量身定做的项目:&ldquo 手机闪光灯镜片二次光学色温照度分析&rdquo 顺利经过客户的验收,并交付使用。   旭瑞光电科技有限公司主营光学塑胶模具制作、光学塑胶镜片生产、光学镜头开发制造。产品主要应用于手机、数码相机、汽车、医疗、电脑、监控、扫描灯各种光学镜头及LED应用照明等电子产品。   汉谱自主研发的HP-L100色彩照度计是一款应用于照明光源测试的便携式仪器,主要用于测量光源的三刺激值、照度、色差、相关色温及色度。操作简单,携带方便,具有很大的测量范围:0.1~99990lx,且能够最多同时支持30个测量探头工作,可对光源进行单点测试评估 可用多个探头组合布满需要测试的平面进行整个面的光源评估 可建立有线无线网络进行测量。   汉谱的HP-L100色彩照度计完全满足了旭瑞光电科技有限公司对于产品提出的实际应用要求:一、13个探头能同时测量手机闪光灯照度及色温的最大值 二、主机显示13个探头测量的照度和色温值 三、 PC软件测试13个探头的照度和色温值,对测量数据保存为EXCEL格式数据 四、探头以有线的方式连接主机 五、Ev的重复性为1%,台间差:Ev:2%。   此项目为有线多点的应用,针对客户的要求,在闪光灯闪灯的过程中,通过HP-L100色温照度计抓取闪光灯通过透镜模组发出光的Ev的最大值和相应的色温值。在测试的过程中, HP-L100色温照度计设置一段时间间隔,采集到测得该段时间内Ev的最大值和色温值 在此项目中,添加了单次测量和多次测量。   汉谱的研发团队仅用一个多月的时间就完成了整个项目的开发。这不仅基于汉谱拥有一支强大研发团队,更是汉谱服务精神全体贯彻的体现:想客户之所想,急客户之所急!优质、完善的项目服务,是我们获得客户信赖的基础。 下图为:一个主机,13个探头,测量各设置点的色温及照度值
  • 面向动态表界面分析的原位液相二次离子质谱新技术研究获进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)
    p style=" text-align: justify text-indent: 2em " strong 【作者按】 /strong 高能电子束轰击样品,产生样品的各种信息。其中溢出样品表面的二次电子、背散射电子是扫描电镜获取样品表面形貌像、成分像的主要信息源。 /p p style=" text-align: justify text-indent: 2em " 它们如何产生?传统观念认为:二次电子是高能电子束与样品原子核外电子发生非弹性碰撞,形成能量交换,核外电子获得能量被激发,产生“二次电子”;背散射电子是入射电子与原子核或核外电子碰撞,发生弹性或非弹性散射,形成散射电子,那些与入射电子方向相反的散射电子就是“背散射电子”。 /p p style=" text-align: justify text-indent: 2em " 二次电子主要来自原子核外那一层?许多教科书认为源于最外层,也有教科书认为来源于最内层。 /p p style=" text-align: justify text-indent: 2em " 为什么二次电子会含有样品表面形貌信息?背散射电子会带有样品成分信息?最流行的观念认为,不同斜率的平面二次电子产额不同,表面形貌可以看成由不同斜率的平面所组成,因此二次电子带有大量的样品形貌信息。样品的原子序数(Z)不同对高能电子束的散射也不同,故背散射电子含有大量成分信息。 /p p style=" text-align: justify text-indent: 2em " 以上观点是否存在问题?表述是否全面?要回答这些问题,就要从物质的组成谈起。 /p p style=" text-align: justify text-indent: 2em " strong 一、& nbsp 物质的组成 /strong /p p style=" text-align: justify text-indent: 2em " 分子、原子、离子是构成物质的三种基本粒子。它们都是如何定义?组成物质的特性又是如何? /p p style=" text-align: justify text-indent: 2em " 1.1分子 /p p style=" text-align: justify text-indent: 2em " 分子是指单独存在、相对稳定、能保持物质物理及化学特性的最小单元。任何一个分子都是由多个原子按照一定键合顺序以及空间排列结合在一起的整体。该粒子对外相对稳定,靠范德华力来维系粒子间的联系。 /p p style=" text-align: justify text-indent: 2em " 范德华力(分子作用力)产生于分子或原子之间的相互静电作用。该力较弱,因此组成的物质熔点、沸点、密度都比较低。 /p p style=" text-align: justify text-indent: 2em " 有些原子对外也表现出如分子般的特性(比如氦、氩等惰性元素),称为单原子分子。意为是原子又是分子。 /p p style=" text-align: justify text-indent: 2em " 液态、气态物质很多都是分子或单原子分子物质。 /p p style=" text-align: justify text-indent: 2em " 1.2原子 /p p style=" text-align: justify text-indent: 2em " 原子的定义:化学反应的基本微粒,在化学反应中不可被分割。原子的组成:内部带正电的原子核(质子和中子)和核外绕核运动带负电的电子。原子的大部分质量集中于原子核,而电子在核外按照一定的轨道做绕核运动。如同太阳系,原子核就是太阳,电子如同行星。原子直径大约是0.1nm,是原子核直径的1万倍到100万倍,电子的直径比原子核还要小,所以原子可以看成是一个非常大的空腔体。 /p p style=" text-align: justify text-indent: 2em " 原子的三个基本关系:1.数量关系:质子数=核电荷数=核外电子数。2.电性关系:原子失去核外电子为阳离子,获得核外电子成阴离子。3.质量关系:质量数(A)=质子数(Z)+中子数(N) /p p style=" text-align: justify text-indent: 2em " 原子核外电子运行轨道是量子化排布。不同轨道的电子都含有一定能量,这个能量包含电子运动产生的动能以及电子被原子核吸引产生的势能,它们共同组成了电子的内能。内能取决于核外电子与核的距离,电子离核越远能量越大。 /p p style=" text-align: justify text-indent: 2em " 电子可以在轨道间来回跃迁,电子跃迁会伴随能量的吸收和释放。电子由高能层向低能层跃迁时因势能降低而释放的能量,就是原子结合能。电子从低能的基态跃迁到高能的激发态所吸收的外界能量E,就是原子的激发能。不同原子、不同能层电子结合能不同,相应激发能也不同。当高能电子束轰击样品时就会引发电子在轨道间跃迁,从而产生样品的各种特征信息。 /p p style=" text-align: justify text-indent: 2em " & nbsp 激发能和结合能是电子在两个能层间的跃迁过程中发生的能量变化。两者在电子跃迁方向、能量变化上是互逆的,但变化的量值相当,为两个能级之间的差值。 /p p style=" text-align: justify text-indent: 2em " 原子核外电子排布必须满足四大要求:1.泡利不相容原理,2.能量最低原理,3.洪特规则,4不相容原理。 /p p style=" text-align: justify text-indent: 2em " 排布规律依照:能量最低原理,每个能层最多容纳2n2个电子(n为电子层数),最外层不超过8个电子、次外层不超过18个电子、倒数第三层不超过32个。按照该规律排布能保证原子的稳定。单原子分子物质(惰性元素)的稳定性正是来源于其最外层电子排布的是2个(氦)和8个电子(剩余的元素),即所谓的“八偶体”结构。别的元素的原子稳定性皆不如它们。 /p p style=" text-align: justify text-indent: 2em " 原子核外电子能层是按照电子内能的差异区分为K\L\M\N\O\P\Q这七层。最内层K层电子内能最低,Q层最强。能层层数与原子序数、电子排列规律有关。每个原子的能层都有其特定电子能量。 /p p style=" text-align: justify text-indent: 2em " 每个能层上含有若干个亚层用s\p\d\f表示,这些亚层也叫能级。能级间电子能量也不一样,按照s-f排列是依次增强。各亚层含有的电子轨道数不一样,轨道数按照s-f依次为1\3\5\7个,含有的电子数最多是2\6\10\14个。 span style=" text-indent: 2em text-align: center " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202001/uepic/da0d2058-2a70-497b-a0dd-918e3069380d.jpg" title=" 二次电子和背散射电子的疑问[上]1.jpg" alt=" 二次电子和背散射电子的疑问[上]1.jpg" style=" text-indent: 2em text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " strong 电子排列的轨道能层、能级图 /strong /p p style=" text-align: justify text-indent: 2em " 核外电子的在轨运行与行星在轨运行是有区别的,区别是电子运行轨迹很难被确定。只能用统计学方法对核外电子空间分布做形象描绘。电子运行的模拟形态类似一层疏密不等的“云”,称为 “电子云”。电子云的形态和能级有关,s\p\d\f对应不同的电子云形态。原子核以及核外电子云的周边会形成电场,即“库仑场”,电场形成的势垒就是“库仑势”。 /p p style=" text-align: justify text-indent: 2em " 以原子为基本微粒单位构成的物质都具有单一性,因此可称为单原子物质。这类物质除了前面提到的单原子分子(惰性气体),还包括单质非金属物质如碳、硅以及单质金属物质金、铁、钴、铜等等。这类物质微粒间的相互作用力是非常强烈的化学键,因此密度较大,熔点、沸点较高,微粒间的活泼型也较低。 /p p style=" text-align: justify text-indent: 2em " 化学键是相邻的多个原子或离子间相互作用力的统称,是原子间及离子间相结合的作用力。如果原子的核外电子排布不如惰性元素那样形成最稳定的 “八隅体”结构,那么其外层电子(一般是最外层)之间通过电子云杂化相互组成各种类型的化学键来满足那种最外层电子“八隅体”的稳定结构。这类化学键就是共价键和金属键,是组成单原子物质化学键的基本类型。 /p p style=" text-align: justify text-indent: 2em " 1.3离子 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 离子是指原子由于自身或外界作用而失去或得到一个或几个电子使其达到最外层电子数为8个或2个的稳定结构。 /p p style=" text-align: justify text-indent: 2em " 得到电子带负电称为负离子,失去电子带正电叫正离子。正负离子之间通过静电作用形成化学键,该化学键就是离子键。 /p p style=" text-align: justify text-indent: 2em " 离子微粒组成的物质包含有正、负离子间的吸引力,同时也包含电子和电子、原子核与原子核之间的静电排斥力,当静电吸引与静电排斥作用达到平衡时,便形成离子键。 /p p style=" text-align: justify text-indent: 2em " & nbsp 以离子组成的物质有: 大多数盐、碱和活泼金属氧化物。 /p p style=" text-align: justify text-indent: 2em " & nbsp 无论是以分子、原子还是离子为微粒组成的物质其根本都是原子。原子中,原子核和轨道电子形成的电子云周边都存在一个势垒“库仑势”。物质(不含惰性元素)的原子间都存在化学键,化学键会使得原子最外层电子的能量发生改变,但内层电子的能量保持不变。也就是说物质的原子之间无论发生怎样的化学反应,其内层电子的结合能和激发能不发生变化,因此能谱对化合物原子的定性、定量检测才有意义。 /p p style=" text-align: justify text-indent: 2em " strong 二、& nbsp 高能电子束对样品信息的激发 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 高能电子对样品信息的激发 /p p style=" text-align: justify text-indent: 2em " 形成高能电子束的微粒“高能电子”相对于组成样品的最小微粒原子来说,其体积和质量都非常的微小。高能电子射入样品就如同高速小微粒穿行在无数巨大空心球所组成的空间中。 /p p style=" text-align: justify text-indent: 2em " 每个空心球除了拥有巨大的空间,还有位于中心包含空心球全部质量的核,核周围有电场形成的势垒。与高能电子大小相仿的微粒(电子),在离核一段距离的轨道上做高速无规则运动并形成云态,俗称“电子云”。电子云及其形成的电场势垒如同为球体形成一个虚壳,有的球体拥有多层壳。球体中运动的电子可以在这些壳层间来回跳跃,并从外界获得或向外界释放能量。电子获得能量越出球体形成自由运动的电子,即 “二次电子”。 /p p style=" text-align: justify text-indent: 2em " 高能电子穿透一个个球体,整个过程如同骑车或步行在有许多汽车隔离桩的自行车道和人行道上,如下图: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/8578118e-aff1-4e8f-aed6-ba5804012f6e.jpg" title=" 二次电子和背散射电子的疑问[上]2.jpg" alt=" 二次电子和背散射电子的疑问[上]2.jpg" / /p p style=" text-align: justify text-indent: 2em " 原子核及核外各种电子云层如同这些隔离桩,层层叠叠交错排布在入射电子的运行轨迹上,疏、密有间。样品非常薄,隔离桩纵、横交错少,横向间隔空间也较大,大量的入射电子有足够空间自由穿越样品形成透射电镜的样品信息 “透射电子”。密的部位穿越少,疏的部位穿越多,形成透射电镜的投影像。 /p p style=" text-align: justify text-indent: 2em " 绝大部分的分子或原子体积庞大无法穿越这些隔离桩。几十纳米厚的薄膜会阻隔气体、液体的分子或原子,而电子却能畅通无阻。这就是透射电镜气液杆隔膜的作用原理。 /p p style=" text-align: justify text-indent: 2em " 样品足够厚,入射电子的运行轨迹上,隔离桩的互相交错由于深度增加使得纵、横排布密集度增加,电子无法自由穿透样品。而与原子核及核外电子云层的频繁亲密接触,形成如下火花。 /p p style=" text-align: justify text-indent: 2em " 入射电子接近原子核,由于电子质量远小于核的质量,在受到核及其所形成的库伦场强势影响时,将只发生方向改变而能量保持不变(或变化极少),这就是所谓的“弹性散射”。弹性散射所引起入射电子方向的改变较大,有些甚至于与入射方向完全相反,被称为“背散射电子”。这些背散射电子是形成原子序数(Z)衬度更大的“高角度背散射电子”的主要来源。形成高角度背散射电子的几率较少,信号强度不大,因此应用面也不广。 /p p style=" text-align: justify text-indent: 2em " 入射电子接近壳层电子时,壳层的库仑场会对其发生影响(也不排除与壳层电子直接碰撞)。由于电子间质量相当,入射电子在改变方向时将和壳层电子发生能量转移。壳层电子获得能量被激发,那些溢出原子的电子形成扫描电镜主要信息之一的 “二次电子”。入射电子在发生方向改变同时失去部分能量,形成“非弹性散射”。这一现象将会发生在原子的所有壳层。 /p p style=" text-align: justify text-indent: 2em " 入射电子进入样品后,弹性散射和非弹性散射会在样品中多次发生。如同连锁反应一般,激发出更多的二次电子同时失去更多能量且不停的改变方向。 /p p style=" text-align: justify text-indent: 2em " 扫描电镜的样品无穷厚,透射电子和散射电子无法从样品的另一端穿出,只在样品中经过多次散射消耗殆尽或从样品表面溢出。这些溢出样品表面的散射电子形成扫描电镜的另一个主要信息“背散射电子”。这类背散射电子与样品表面夹角较小,因此称为“低角度背散射电子”。“低角度背散射电子”同样含有大量的样品衬度信息(Z衬度以及表面形貌衬度),同时其在样品中做更大范围的扩散,入射电子能量越大扩散范围也就越大。 /p p style=" text-align: justify text-indent: 2em " 样品的原子内层电子被激发,在该壳层就会留下一个空位,外层电子在原子核引力的作用下从高能层跃迁到该层,同时以特征X射线形式对外释放能量,释放的能量称为结合能。特征X射线是扫描电镜进行能谱分析的信号源。 /p p style=" text-align: justify text-indent: 2em " 二次电子和背散射电子是以能量大小来区分。能量低于50ev为二次电子,背散射电子的能量和入射电子相当。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/33c41f2e-0aec-4587-8206-d0d16f673be2.jpg" title=" 二次电子和背散射电子的疑问[上]3.png" alt=" 二次电子和背散射电子的疑问[上]3.png" / /p p style=" text-align: justify text-indent: 2em " 2.2扫描电镜的各种衬度信息 /p p style=" text-align: justify text-indent: 2em " 图像衬度:图像上所存在的明、暗差异。正是存在这些差异才能使我们看到图像。影响图像衬度的因素有:信息衬度、对比度的调整,关键在于信息衬度。 /p p style=" text-align: justify text-indent: 2em " 形貌衬度:样品表面形貌高低差异所形成的图像衬度。图像空间 /p p style=" text-align: justify text-indent: 2em " 信息、立体感主要来自该衬度。探头、样品、电子束三者之间夹角对该衬度影响较大,探头所接收到的样品信息角度也会产生一定影响。想方设法把低角度信息引入探头,会增强图像的形貌衬度。 /p p style=" text-align: justify text-indent: 2em " Z衬度 :样品微区的平均原子序数或密度的差异所形成的图像衬度。该衬度主要与背散射电子的关联较大,二次电子对该衬度的形成也有一定的影响。 /p p style=" text-align: justify text-indent: 2em " 晶粒取向衬度:晶体材料的晶粒取向差异所形成的图像衬度。也 /p p style=" text-align: justify text-indent: 2em " 被广泛称为“电子通道衬度”。在扫描电镜中该衬度主要来自于背散射电子。 /p p style=" text-align: justify text-indent: 2em " 二次电子衬度:溢出样品表面二次电子数量差异所形成的图像衬度。该衬度主要与样品表面斜率关联较大也与样品微区的平均原子数序(Z)或密度有一定关系。 /p p style=" text-align: justify text-indent: 2em " 二次电子边缘效应:二次电子在样品形貌边缘处溢出最多。 /p p style=" text-align: justify text-indent: 2em " 电位衬度 :样品表面局部有少量充电,使得该位置出现信号异 /p p style=" text-align: justify text-indent: 2em " 常增多或减少而形成的衬度。二次电子图像出现这种现象居多。特点是:图像有信息异常却未发生形变。 /p p style=" text-align: justify text-indent: 2em " 2.3图示各种衬度信息与表面形貌像的关系。 /p p style=" text-align: justify text-indent: 2em " 1.& nbsp & nbsp & nbsp & nbsp 形貌衬度 /p p style=" text-align: justify text-indent: 2em " 肉凝胶,肉类深加工产品 /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/dc400e25-743b-4695-a6c5-4de81bbc9545.jpg" title=" 二次电子和背散射电子的疑问[上]4.png" alt=" 二次电子和背散射电子的疑问[上]4.png" / /p p style=" text-align: justify text-indent: 2em " 2.& nbsp & nbsp & nbsp & nbsp Z衬度及晶粒取向衬度 /p p style=" text-align: justify text-indent: 2em " Ag2WO4和Co-Ni氢氧化物复合物 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/d3652b5d-054f-42da-a071-0e7b2057d47b.jpg" title=" 二次电子和背散射电子的疑问[上]5.png" alt=" 二次电子和背散射电子的疑问[上]5.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/277952e7-d776-42c5-9c1a-39d2d249957e.jpg" title=" 二次电子和背散射电子的疑问[上]6.png" alt=" 二次电子和背散射电子的疑问[上]6.png" / /p p style=" text-align: justify text-indent: 2em " 3.& nbsp & nbsp & nbsp & nbsp 二次电子衬度和边缘效应 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/324f71dd-c540-4dac-94d9-f756445fbe43.jpg" title=" 二次电子和背散射电子的疑问[上]7.png" alt=" 二次电子和背散射电子的疑问[上]7.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/3771072e-b981-4132-ac90-70ff30b55c0b.jpg" title=" 二次电子和背散射电子的疑问[上]8.png" alt=" 二次电子和背散射电子的疑问[上]8.png" / /p p style=" text-align: justify text-indent: 2em " 倍率越低形貌衬度对结果影响越大,形貌衬度和二次电子衬度图像差别也越大。下图可见二次电子衬度并不能形成有效形貌像。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/de2f588b-1a83-45a0-bf4f-69c8c161a528.jpg" title=" 二次电子和背散射电子的疑问[上]9.png" alt=" 二次电子和背散射电子的疑问[上]9.png" / /p p style=" text-align: justify text-indent: 2em " 4.& nbsp & nbsp & nbsp & nbsp 电位衬度 /p p style=" text-align: justify text-indent: 2em " 镀膜玻璃表面飞溅的有机物斑点。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/46d5452b-0341-4c62-81a5-4d7ae0b861d9.jpg" title=" 二次电子和背散射电子的疑问[上]10.png" alt=" 二次电子和背散射电子的疑问[上]10.png" / /p p style=" text-align: justify text-indent: 2em " 形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、二次电子的边缘效应以及电位衬度都对形成扫描电镜的各类表面形貌像有着极为重要的影响。至于哪一个是最为关键的影响因素,这与样品的特性以及所需获取的样品表面信息有关。不同特性的样品以及不同的信息需求,起关键作用的影响因素也不同。 /p p style=" text-align: justify text-indent: 2em " 形貌衬度、Z衬度对形貌像的形成常常起到最关键的作用。 /p p style=" text-align: justify text-indent: 2em " 无论那种衬度信息,都必须依附于二次电子和背散射电子来呈现,因此有必要对这两种样品信息加以探讨。 /p p style=" text-align: justify text-indent: 2em " 二次电子、背散射电子到底能给出怎样的样品信息?都有什么认识误区?且听下回分解。 /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " strong 参考书籍: /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " 华南理工出版社 /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等& nbsp & nbsp & nbsp 2009年1月 /p p style=" text-align: justify text-indent: 2em " 中科大出版社 /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》& nbsp 恩格斯& nbsp 于光远等译 1984年10月 /p p style=" text-align: justify text-indent: 2em " 人民出版社& nbsp /p p style=" text-align: justify text-indent: 2em " 《显微传》& nbsp 章效峰 2015年10月 /p p style=" text-align: justify text-indent: 2em " 清华大学出版社 /p p style=" text-align: justify text-indent: 2em " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /p p style=" text-align: justify text-indent: 2em " 北京天美高新科学仪器有限公司& nbsp 高敞 2013年6月 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 作者简介: /span /strong /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 90px height: 140px " src=" https://img1.17img.cn/17img/images/202001/uepic/fa3796bc-5dc9-4eed-b931-a01b211bb0e7.jpg" title=" 二次电子和背散射电子的疑问[上]111.jpg" alt=" 二次电子和背散射电子的疑问[上]111.jpg" width=" 90" height=" 140" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span /a /p
  • 中科科仪顺利通过质量管理体系认证二次监督审核
    2011年10月12至13日,由方圆标志认证集团有限公司审核专家组对中科科仪公司的质量管理体系ISO9001:2008进行第二次监督审核。在二次审核过程中,审核组围绕公司的组织结构、运作情况、程序文件等进行了深入细致的审核,未发现任何可能导致暂停或撤销认证的不符合或其他情况,质量管理体系运作持续有效,认证机构将颁发确认证书。
  • 中国分析测试协会七届二次会议在北京召开
    仪器信息网讯 2012年12月4日,中国分析测试协会(以下简称“协会”)第七届理事会第二次全体会议在北京中苑宾馆召开,来自全国各地的理事约100人出席了本次会议。 中国分析测试协会第七届理事会第二次全体会议现场   会议流程包括:协会理事会换届选举工作、新一届理事会领导成员以及办事机构等情况介绍 2012年协会工作总结,2013年工作重点展望 2012年申请入会单位审议 2012年协会科学技术奖(CAIA奖)颁奖 协会新网站发布。会议由副理事长兼秘书长张渝英主持。 中国分析测试协会副理事长兼秘书长张渝英主持会议   首先,协会主管部门科技部人事司处长杨素荣介绍了科技部主管的社团情况及社团近期的重点工作。 科技部人事司处长杨素荣 中国分析测试协会理事长张泽   随后,协会理事长张泽作2012年工作报告,报告内容包括2012年完成的主要工作、2013年工作重点。   2012年完成的主要工作:   (1)积极筹备第十五届北京分析测试学术报告会暨展览会(BCEIA 2013)。BCEIA 2013定于2013年10月23日至26日在北京展览馆举办,已有90%以上展台被预定。同期举办学术报告会,主题确定为“分析科学创造未来”,大会主席为中科院院士江桂斌,副主席为张泽和张玉奎,学术报告会分为大会报告、分会报告会、专题报告会、应用技术报告会等。   (2)分析测试标准化工作取得较大进展。6项标准获国标委批准立项,是历年来标准立项最多一次 2项国标送审稿通过审查 《高纯试剂试验方法通则》报批稿获得“2012年全国化学标准化技术委员会化学试剂标准化成果”一等奖。   (3)举办和参加各种会议,促进学术和工作交流。   (4)采取多种方式,做好咨询服务。完成2012年“CAIA奖”评审工作,本年度“CAIA奖”共评出25项奖项,其中,一等奖6项、二等奖7项、三等奖8项 组织开展仪器评议工作 为企业创新产品进行技术鉴定 开展国产科学仪器应用于示范实验室工作等。   (5)开展全国分析测试技术人员技术能力的培训考核工作。发布技术考核大纲3项,出版技术培训教材4本,累计完成1239人次的辅导考核与发证工作,共涉及21项技术和32向标准。   (6) 以网络建设为依托,推动各项工作。   (7)积极申请和承担国家项目,提高服务水平和能力。完成2009年国家质检总局公益性项目《重点分析仪器性能测试技术标准研制》验收结题 与钢铁研究总院合作完成科技条件工作项目《科学仪器设备创新能力调研》 完成2013年国家质检总局公益项目《重点分析仪器性能测试技术标准研制(Ⅱ)》申报工作 配合北京理化测试中心进行申报北京是财政项目《国产科学仪器应用培训体系建设与示范》,协会承担其中《国产仪器与分析测试行业发展需求分析》任务。   (8)为实施重大科学仪器开发专项提供参考依据。为支撑“国家重大科学仪器设备开发专项”顺利实施,为有关决策提供可靠依据,科技部下达了由中国分析测试协会和钢铁研究总院共同承担的《科学仪器设备创新能力调研》项目,“凝练国家重点支持的科学仪器设备目录”是该项目的重要课题。   展望2013年,协会将重点进行如下工作:努力办好BCEIA 2013 进一步推进全国仪器分析测试标准化技术委员会工作,联合会员单位开展技术交流和标准宣贯工作 根据国家科技创新、社会公共安全等方面对分析测试的需求,举办形式多样的交流会,促进会员单位的合作与发展 组织符合条件的会员单位加入全国分析测试人员培训考核工作,扩大培训力量和覆盖面等。 中国工程院院士、中国检验检疫科学研究院庞国芳   会议期间还邀请了中国工程院院士、中国检验检疫科学研究院庞国芳做题为《追踪近20年SCI论文见证世界农药残留检测技术进步》的报告。报告中,庞国芳通过对15个SCI杂志、近20年(1991~2010) 的3505篇食用农产品中农药残留检测技术论文进行统计,对比分析了各国论文总量、样品制备技术、检测技术、质谱检测技术、SCI论文影响力等发展情况。   接着,协会组织部尹碧桃向参会理事介绍了2012年申请入会单位的情况。协会咨询部张经华介绍了CAIA奖的历史及2012年评选情况。副理事长丁辉宣读了2012年“CAIA奖”获奖名单,协会负责人张泽、张玉奎、张渝英、吴波尔、庄乾坤、李红梅为获奖者颁奖。 中国分析测试协会副理事长丁辉 中国分析测试协会咨询部张经华 中国分析测试协会组织部尹碧桃 2012年“CAIA奖”颁奖 中国分析测试协会新网站启动仪式 与会代表合影留念   2012年“中国分析测试协会科学技术奖(CAIA奖)”获奖名单
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArch® S140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArch® S140System
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArch® S140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArch® S140System
  • 相约兰州-普立泰科参与第二次全国计算毒理学学术会议
    2018年8月9日-11日,在这个酷暑的季节,炎热的天气也没有挡住学术人交流学习的脚步。就在金城兰州,“第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议”盛大召开。此次会议中心议题为“计算/预测毒理学:现状与展望”,旨在邀请知名领域专家就计算毒理学自身理论与方法学的发展及其在毒物鉴定和效应评估中的应用前景进行广泛而深入的学术交流,进行专场学术报告和展板交流,促进我国计算毒理学科的健康发展,为计算毒理新思路、新方法与新技术及其在污染与健康研究中的应用进展提供交流平台。为加强与客户之间的联系,同时提供更优质的服务,推进更先进的实验室技术,北京普立泰科仪器有限公司积极参加了这次技术交流会。 普立泰科总经理田莉娟女士与各位专家合影 在会上,普立泰科公司技术服务工程师郝开拓先生从全二维色谱技术的用途出发,详细的阐述了技术相关的原理、特点及应用解决方案。全二维气相技术作为近年来颇受关注的一项新兴色谱分离技术,越来越受到实验室老师的关注。 普立泰科郝开拓先生在会议上介绍全二维色谱技术 “全二维气相色谱技术”被誉为最高灵敏度、最高峰容量以及最高分辨率的分离手段,被广大科研工作者所认可。全球生产出第一套全二维气相色谱产品的美国ZOEX公司,拥有着最顶尖的全二维技术支持。全二维色谱是传统色谱技术的一大突破,发展到今天已经有几十年的历史,对于复杂成份的分析大家经常感觉到一根色谱柱的峰容量不能满足需求,全二维色谱将两根不同极性,不同长度的色谱柱通过调制解调器串联起来,从而大大提高了色谱的分辨率和灵敏度,在石油化工、天然产物、环境化学等领域都得到非常广泛的应用。 全二维气相色谱飞行质谱联用仪 全二维三维谱图普立泰科工作人员展台合影关于普立泰科:北京普立泰科仪器有限公司是一家集生产、研发、代理、销售及售后服务于一身的高新技术企业。公司总部设在北京,在上海、广州、安徽设有分支机构。早年取得美国J2Scientific公司样品前处理仪器中国地区总代理,将全自动前处理概念引入中国,并一直在样品前处理领域保持技术领先地位。此外,普立泰科自主研发的消解仪、全自动固相萃取、氮吹、二噁英处理系统、土壤干燥箱等产品,通过了ISO体系认证,目前有多条自主产品生产线。从2017年开始,普立泰科成为FLIR公司Griffin系列产品在中国市场的总代理商。
  • 上线啦!二次开发的免费手机热像仪APP
    手机热像仪APP二次开发众所周知,菲力尔不断创新的脚步从未停歇,为了更好地服务广大消费者,菲力尔推出一款经过二次开发的超值APP,有哪些不一样呢?一起跟随小菲来看看吧~FLIR ONE手机热像仪自上市以来,大部分客户用的是FLIR ONE使用软件和FLIR TOOLS分析软件。今天就给大家介绍一款经过二次开发的超值APP,具有之前2个软件都没有的功能。在苹果商店搜索THERMAL ANALYSIS就可以下载这款APP了呀。FLIR ONE,FLIR ONE PRO,FLIR ONE PROLT的苹果版都可以使用这款APP哦~此款APP很适合教育人士,在对学生进行热学解说或者在做实验的时候,可以录制特定区域的温度曲线。因此也适合对录制温度曲线有需求的行业客户,比如手机维修、电路板维修等。可以多点测温,还有区域测温,以及线测温,可以生成很酷的温度曲线,并且可以保存视频。可以设定区域的Max温、Min温参考值。这款免费的APP同时还有款收费高级版本——THERMAL ANALYSIS PLUS,适合有更多需求的客户,比如延迟功能,更多内容包括软件的课程可以登陆vernier.com浏览。这款免费的APP同时还有款收费高级版本——THERMAL ANALYSIS PLUS,适合有更多需求的客户,比如延迟功能,更多内容包括软件的课程可以登陆vernier.com浏览。
  • 雪迪龙:飞行时间质谱、二次离子质谱产品可应用于高校科研
    有投资者在投资者互动平台提问:请问雪迪龙公司是否有产品应用于高校?是否有高校的订单?  雪迪龙(002658.SZ)11月15日在投资者互动平台表示,公司的质子转移飞行时间质谱仪、二次离子飞行时间质谱仪及其他部分仪器可应用于高校、科研机构等的科研应用。  雪迪龙公司是环境监测行业的龙头企业之一,在过去几年大气污染防治过程中,以环境监测为切入点服务于我国的大气环境质量和水环境质量改善。自 2020 年双碳目标提出后,从全国碳排放权交易市场建设,到各行各业探索碳达峰行动积极履行减碳责任,再到国际公约下各国共同努力降低全球温室气体排放,贯穿全流程的一项重要工作便是二氧化碳等温室气体的监测计量,也就是计量企业实际排放了多少二氧化碳,雪迪龙也在积极布局双碳相关产品和业务。由于污染物排放和温室气体排放具有同根同源同过程的特点,两者监测技术原理相通,在现有污染源监测技术的基础上,需增加计量特性即可满足温室气体排放监测。因此,雪迪龙在前期多年的技术沉淀和经验积累基础上,开发出非分散红外、傅里叶红外光谱及色谱等多款温室气体在线及便携式产品,可应用于污染源和环境空气的温室气体监测,另外,通过将 5G、云计算、大数据等现代通信技术与监测技术结合,开发出智能化碳排放计量系统应用于碳排放监测计量。 2022 年上半年,公司实现营业收入 6.74 亿元,较上年同期增长 16.44% 归属于上市公司股东的净利润为 1.58 亿元,较上年同期增长 40.84%,主要原因是在国家大力振兴实体经济背景下,公司积极拓展业务,加快推进项目执行,同时公司内部管理上有所提升,加强费用管控,逐步实现降本增效。从近几年的业绩来看,2019 年净利润 1.4 亿元,2020 年 1.5 亿元, 2021 年是 2.2 亿元,经过近几年的业务拓展,内部管理提升,我们认为公司业绩已经走出低谷,在双碳战略和火电投资增加的背景下,公司面临良好市场机会,可以保持健康发展。从半年报细分行业来看,公司环境监测系统实现销售收入 3.93 亿元,占营业收入比重 58.32% 工业过程分析系统实现销售收入 2,593 万元,较上年同期下降 38.14%,该业务是针对客户在生产过程中对过程气体进行检测分析的系统,这类项目基本是定制化业务,项目周期较长且在上半年受疫情影响,项目执行进度放缓 气体分析仪及备件业务实现销售收入 1.02 亿元,较上年同期增长 18.78%,这部分业务主要是针对已经安装监测设备的客户更换耗材或提供备机备件,属于二次销售。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制