当前位置: 仪器信息网 > 行业主题 > >

地表水排放标准

仪器信息网地表水排放标准专题为您提供2024年最新地表水排放标准价格报价、厂家品牌的相关信息, 包括地表水排放标准参数、型号等,不管是国产,还是进口品牌的地表水排放标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地表水排放标准相关的耗材配件、试剂标物,还有地表水排放标准相关的最新资讯、资料,以及地表水排放标准相关的解决方案。

地表水排放标准相关的资讯

  • 国家地表水环境质量监测的109项标准中不含抗生素
    广州市环境监测中心站站长王宇峻告诉记者,国家地表水环境质量监测的109项标准中不含抗生素,&ldquo 目前地表水的抗生素指标既无明确的国家标准,也没有明确的监测方法。&rdquo 专家则表示,药厂排放的污水和医院的医疗废水也是珠江等地表水出现抗生素的主要来源之一。   那么,对药厂和医院的排污是如何监测的呢?王宇峻表示,医疗机构水污染排放指标与地表水指标类似,但增加了粪大肠杆菌等标准,但也不含抗生素这种指标。   记者同时了解到,今年4月下旬广州市环保局开展了医疗、医药制造企业专项环境执法检查,对广州市疾控中心和5家医院&mdash &mdash 南方医科大学珠江医院、广州市妇女儿童医疗中心、广东省口腔医院、中山大学孙逸仙纪念医院、广州医科大学附属第一医院(广州医学院第一附属医院)开出罚单。   业内人士告诉记者,制药行业废水排放不达标的情况也较多,不少企业存在直排废渣废物的问题。   市环保局副局长谢明此前曾表示,由于抗生素未纳入地表水监测范围,环保部门只能从源头上加强监管。但他同时强调,地表水中含有抗生素与饮用水安全并没有直接关系,饮用水来源不是普通的地表水,自来水厂会对有机物质进行降解和消毒,在这一过程中会消除抗生素的影响,自来水出厂时也都会按照饮用水标准进行检测。
  • 国家地表水水质自动监测系统介绍
    p   实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 /p p   及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 /p p   现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个 (2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 /p p    strong 地表水质自动监测站仪器配置与运行方式 /strong /p p   水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 /p p   水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心站及中国环境监测总站。 /p p   为充分发挥已建成的100个国家地表水质自动监测站的实时监视和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 /p p   每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 /p p   每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 /p p   为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。 /p p style=" text-align: center " 评价指标在GB3838-2002标准中的标准限值 /p p style=" text-align: right "   单位:mg/L /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f5b6ff1f-72b5-4ba2-a8c7-44bd05995212.jpg" title=" QQ截图20171027153506.jpg" / /p p   水质自动监测站为在线连续监测设备,在仪器故障检查维修、日常维护校准时将出现数据缺失现象。水质自动监测站在日常运行中也会经常受到停电、洪水、断流、雷击破坏、通讯中断等意外影响,造成水站暂停运行。目前部分水站的仪器设备已运行8~9年,已超过使用寿命,造成故障率较高或停止运行,目前已列更新计划,年底前实施完毕。 /p p    strong 主要监测指标含义 /strong /p p   pH:表征水体酸碱性的指标,pH值为7时表示为中性,小于7为酸性,大于7为碱性。天然地表水的pH值一般为6~9之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层pH值升高。 /p p   溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可14.6mg/L,25℃为8.25 mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。 /p p   高锰酸盐指数(CODMn):以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的mg/L来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。 /p p   总有机碳(TOC):代表水体中有机物质含量的另一项综合指标。采用燃烧水样中的有机物,通过测定生成的二氧化碳(CO2)含量,以C元素的量来表示总有机碳的含量。对于化学成分相同的水样,总有机碳与高锰酸盐指数存在一定的相关性。 /p p   氨氮(NH3-N):氨氮以溶解状态的分子氨(又称游离氨,NH3)和以铵盐(NH4+)形式存在于水体中,两者的比例取决于水的pH值和水温,以含N元素的量来表示氨氮的含量。水中氨氮的来源主要为生活污水和某些工业废水(如焦化和合成氨工业)以及地表径流(主要指使农田使用的肥料通过地表径流进入河流、湖库等)。 /p p    strong 应用实例 /strong /p p   随着国家水质自动监测系统的运行,充分发挥了实时监视和预警功能。在跨界污染纠纷、污染事故预警、重点工程项目环境影响评估及保障公众用水安全方面已经发挥了重要作用。 /p p   2002年在浙江-江苏的跨省污染纠纷处理过程中,自动站的连续监测数据在监督企业污染治理和防止超标排放方面发挥了重要作用。 /p p   长江干流重庆朱沱和宜昌南津关水质自动监测站在2003年5~6月三峡库区蓄水期间,共取得库区上下游2520个水质实时数据,为管理部门的决策提供了有力的依据。 /p p   淮河干流淮南、蚌埠及盱眙站成功地全程监视了2001~2006年淮河干流大型污染团的迁移过程,为沿淮自来水厂及时调整处理工艺,保证饮水安全提供了依据,为环境管理及时提供了技术支持。 /p p   汉江武汉宗关自动监测站自建立以来,每年对汉江水华的预警监测都发挥了重要作用,及时通知武汉市主要饮用水处理厂提前做好处理,保障水厂出水达标。 /p p   2007、2008、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据,发挥了重要作用。 /p p   2008年四川汶川特大地震发生后,中国环境监测总站立即通过水质自动监测系统远程查看灾区水质状况,将灾区7个水质自动监测站的监测频次由原来的4小时一次调整为2小时一次,在第一时间分析了地震灾区地震前后水质状况,并将灾区水质无明显变化的情况及时向国务院抗震救灾总指挥部上报,并编制《汶川大地震后相关国家水质自动监测站水质监测结果》,每天在互联网上发布自动监测结果,为保障灾区饮用水安全,稳定灾区群众发挥了重要作用。 /p p   2008年北京奥运会期间,利用北京密云古北口自动站(密云水库入口)、门头沟沿河城自动站(官厅水库出口)、天津果河桥自动站(于桥水库入口)、沈阳大伙房水库及上海青浦急水港自动站等国家水质自动监测站对城市的饮用水源实施严密监控,每日以《奥运城市地表水自动监测专报》形式上报环境保护部,为奥运期间饮水安全提供了技术保障。 /p
  • 环保部:地表水水质月报评价项目及标准
    根据国家环保总局环函[2003]2号文的规定,河流评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类和流量。   湖库评价项目为水温、pH值、电导率、溶解氧、高锰酸盐指数、五日生化需氧量、氨氮、汞、铅、挥发酚、石油类、总磷、总氮、透明度、叶绿素a和水位。   水质评价标准执行《地表水环境质量标准(GB3838-2002)》,按Ⅰ类~劣Ⅴ类六个类别进行评价。   湖泊、水库富营养化评价方法执行中国环境监测总站总站生字[2001]090号文,按贫营养~重度富营养六个级别进行评价。
  • 《地表水环境质量标准》等12项环保领域国标计划制修订
    《地表水环境质量标准》等12项环保领域国标计划制修订环境保护部:  为推进实施大气、水、土壤污染防治行动计划,加强环境保护标准体系建设,现将《地表水环境质量标准》等12项国家标准制修订计划项目下达你单位,请组织主要起草单位,抓紧落实和实施计划,在标准起草过程中加强与有关方面的协调,广泛听取意见,保证标准质量和水平,按时完成标准制修订任务。  国家标准委  2016年3月7日序号计划编号项目名称标准性质制修订代替标准号采用国际标准项目周期 (月)主管部门归口单位起草单位120160118-Q-467地表水环境质量标准强制修订GB 3838-2002无12环境保护部环境保护部中国环境科学研究院220160113-Q-467大气污染物综合排放标准强制修订GB 16297-1996无12环境保护部环境保护部中国环境科学研究院320160107-Q-467土壤环境质量标准强制修订GB 15618-1995无36环境保护部环境保护部环境保护部南京环境科学研究所420160108-Q-467机场周围环境噪声标准及测量方法强制修订GB 9660-1988无24环境保护部环境保护部中国环境科学研究院、河北科技大学、中国民航大学、杭州爱华仪器有限公司、宁波市环境保护科学研究设计院520160114-Q-467涂装(汽车制造业)大气污染物排放标准强制制定 无12环境保护部环境保护部中国重型汽车集团有限公司技术发展中心620160115-Q-467活性炭工业污染物排放标准强制制定 无12环境保护部环境保护部宁夏回族自治区环境监测中心站、环境保护部环境标准研究所720160116-Q-467恶臭污染物排放标准强制修订GB 14554-1993无12环境保护部环境保护部天津市环境保护科学研究院、上海市环境监测中心、北京市环境卫生设计科学研究所820160109-Q-467摩托车污染物排放限值及测量方法(中国第四阶段)强制修订GB 14622-2007无12环境保护部环境保护部天津摩托车技术中心920160110-Q-467轻便摩托车污染物排放限值及测量方法(中国第四阶段)强制修订GB 18176-2007无12环境保护部环境保护部天津摩托车技术中心1020160111-Q-467三轮汽车用柴油机及其车辆排气污染物排放限值及测量方法(中国第三阶段)强制修订GB 19756-2005无12环境保护部环境保护部济南汽车检测中心、中国环境科学研究院1120160112-Q-467车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法强制修订GB 3847-2005无12环境保护部环境保护部中国环境科学研究院1220160117-Q-467点燃式发动机汽车排气污染物排放限值及测量方法(双怠速法及简易工况法)强制修订GB 18285-2005无12环境保护部环境保护部中国环境科学研究院
  • 十四五地表水监测 新型污染物值得关注
    p   日前,生态环境部部长黄润秋主持召开部常务会议,审议并原则通过《“十四五”国家地表水监测及评价方案(试行)》以及《电子工业水污染物排放标准》《铸造工业大气污染物排放标准》等标准或标准修改单。 /p p   会议指出,国家地表水质量监测评价和信息发布,在客观反映全国地表水环境质量状况、落实地方政府水污染防治责任、支撑“水污染防治行动计划”目标考核、服务社会公众等方面发挥了重要作用。随着生态环境保护工作的深入推进,有必要进一步完善监测评价方式,优化监测资源配置,更好支撑精准治污、科学治污、依法治污。要客观确定“十四五”考核评价基数, span style=" color: rgb(255, 0, 0) " 推动由人工监测与自动监测并行向以自动监测为主过渡 /span ,缩短监测评价周期,降低运行成本,提高工作效率。要进一步优化地表水监测指标和评价方式, span style=" color: rgb(255, 0, 0) " 逐步在有条件的流域和地区探索开展新型污染物监测评估工作 /span 。要不断加强监测数据质量管理,确保数据“真、准、全”,客观真实反映水环境质量状况。要做好地表水环境质量信息公开工作,自觉接受社会监督,压实地方政府水污染防治责任。 /p p   会议强调,生态环境标准是生态环境管理最基本、最常用、最有效的手段之一,是开展环境监测执法和环境应急预警的依据和基础。开展大气、水和固体废物有关环境标准修订,既是中央改革办确定的年度改革任务,也是中央巡视反馈意见整改的重要举措。要坚持问题导向,加强环境基准研究,做好已有研究成果转化,不断提高标准制修订质量。要合理把握国家标准和地方环境标准之间的关系,鼓励地方因地制宜制定出台更加严格的环境保护标准,提高污染物排放管控要求。 span style=" color: rgb(255, 0, 0) " 要抓紧制定涉挥发性有机物、氮氧化物排放重点行业标准,为推进细颗粒物与臭氧协同控制提供有力支撑。要通过制定和完善相关标准,规范固废危废处理处置设施高水平建设和运行,加快补齐危废和医废集中处置能力短板,切实保障公众健康。 /span /p p   同时,11月10日,生态环境部又发布了《关于同意建设国家环境保护新型污染物环境健康影响评价重点实验室的函》,同意以上海市环境科学研究院、上海市疾病预防控制中心、上海交通大学为依托单位,建设国家环境保护新型污染物环境健康影响评价重点实验室(以下简称重点实验室)。 /p p   重点实验室建设任务是针对我国新型污染物环境与健康管理需要,开展我国新型污染物的检测与识别技术、生物毒性与生态风险、人体暴露特征与健康效应、削减与预警技术和健康风险干预策略等研究,为新型污染物环境健康风险管理提供科技支撑。并以重点实验室为学术交流与合作平台,培养创新型骨干人才和青年拔尖人才,构建我国新型污染物环境健康影响评价的研究平台和人才培养基地。 /p p   据悉,重点实验室建设期两年。按照《国家环境保护重点实验室管理办法》(环办科财〔2020〕24号)的有关规定,由上海市生态环境局加强对重点实验室建设的支持和指导,协调推动落实相关条件 由依托单位围绕《计划任务书》中提出的建设目标和建设内容,建立“开放、流动、联合、竞争”的运行模式,落实资金投入,按期完成重点实验室的各项建设任务。 /p p   就在11月17-18日,仪器信息网将举办“环境新型污染物检测”主题网络研讨会,邀请大气、水、土壤环境监测及检测领域的专家,针对饮用土壤抗生素检测、水中叶绿素检测、环境二噁英手动监测、环境超细颗粒物的识别及溯源等当下的热点及相关检测技术进行在线交流和探讨。 /p p   扫描下方二维码或点击链接报名即可报名参会: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/b624a44d-5172-4611-a75d-16574819bb31.jpg" title=" 报名二维码.jpg" alt=" 报名二维码.jpg" / /p p   报名链接: a href=" https://www.instrument.com.cn/webinar/meetings/XXWRW2020/" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/XXWRW2020/ /span /a /p
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知   总站水字[2011]177号   内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):   为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。   现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。   根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。   联系人:姚志鹏 电话:010-84943091   附件:《地表水重金属专项监测方案》(征求意见稿)   二〇一一年八月五日   地表水重金属专项监测方案   (征求意见稿)   中国环境监测总站   二〇一一年八月   一、 目的   为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。   二、 监测范围和期限   监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。   地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。   三、 监测断面设置原则   监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:   1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地   3、重点区域内受重金属重点污染源影响的河流设置监测断面。   4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标   开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。   1、监测指标   监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。   2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。   3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。   五、 监测方法   1.分析方法   我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。   当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。   必测与选测重金属指标的推荐标准分析方法见详见表1、表2。   表1 5种必测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铅 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 汞 冷原子吸收分光光度法 HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法 冷原子荧光法 HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镉 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铬(六价) 二苯碳酰二肼分光光度法 GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法 砷 氢化物发生 原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 表2 9种选测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铜 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锌 火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 硒 石墨炉原子吸收分光光度法 GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镍 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钒 石墨炉原子吸收分光光度法 GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锰 火焰原子吸收分光光度法 GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钴 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锑 原子荧光法 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8   2.前处理方法   2.1 样品采集   样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。   2.2 样品制备   样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。   表3 ICP-AES与ICP-MS分析样品的前处理方法 监测项目 监测方法 前处理方法 方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴 电感耦合等离子体发射光谱法(ICP-AES) 取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。 水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑 电感耦合等离子体-质谱法(ICP-MS) 前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。 EPA 200.8   3.方法选择原则   3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。   3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。   3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。   六、 监测时间频次   手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。   重金属全分析在每年枯水期开展一次。   七、 数据报送及报告编制   各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。   重金属全分析结果通过FTP报送总站水室。   八、 数据报送格式   报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。   九、 质量控制和保证   监测数据实行三级审核制度,省站对报送的监测结果负责。   质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。   十、 附表   表1:重金属污染重点区域 序号 省份 重点区域 1 内蒙古 巴彦淖尔乌拉特后旗 2 赤峰巴林左旗 3 赤峰克什克腾旗 4江苏 无锡惠山区 5 泰州姜堰市 6 泰州靖江市 7 泰州海陵区 8 浙江 温州鹿城区 9 温州平阳县 10 宁波鄞州区 11 宁波余姚市 12 嘉兴海宁市 13 台州玉环县 14 湖州长兴县 15 江西 赣州大余县 16 赣州南康市 17 上饶市上饶县 18 上饶弋阳县 19 赣州章贡区-赣县 20 南昌进贤县 21 赣州崇义县 22 河南 焦作济源市 23 三门峡灵宝市 24 安阳龙安区 25 洛阳栾川县 26 焦作孟州市 27 三门峡义马市 28 周口项城市 29 湖北 黄石市区 30 黄石大冶市及周边 31 襄樊谷城县 32 十堰郧县 33 荆门钟祥市 34 孝感大悟县 35 湖南 株洲清水塘及周边地区 36 湘潭竹埠港及周边地区 37 郴州三十六湾及周边地区 38 长沙七宝山地区 39 娄底冷水江地区 40 岳阳原桃林铅锌矿及周边地区 41 意义按桃江安化涉砷锑地区 42怀化沅陵、辰溪、溆浦等涉砷镉地区 43 邵阳邵东县 44 永州东安县 45 张家界慈利县镍钼矿开采区 46 常德石门县雄黄矿地区 47 广东 韶关乐昌市 48 韶关浈江区 49 清远清城区 50 珠三角电镀区 51 韶关大宝山矿区及周边区域 52 韶关凡口铅锌矿周边 53 汕头潮阳区 54 广西 河池金城江区 55 河池南丹县 56 河池环江县 57 四川 凉山会东县 58 凉山会理县 59 德阳什邡市 60 凉山西昌县 61 内江隆昌县 62 宜宾翠屏区 63 绵阳安县 64 云南 昆明东川区 65 红河个旧市 66 曲靖会泽县 67 怒江兰坪县 68 文山马关县 69 昆明安宁市 70 曲靖陆良县 71 保山腾冲县 72 红河金平县 73 玉溪易门县 74 陕西 安康旬阳县 75 宝鸡凤县 76 渭南潼关县 77 宝鸡凤翔县 78 商洛商州区 79 汉中略阳县 80 汉中宁强县 81 商洛洛南县 82 商洛镇安县 83 宝鸡陈仓区 84 甘肃 白银市 85 金昌金川区 86 陇南成县 87 酒泉瓜洲 88 陇南西和县 89 陇南徽县 90 嘉峪关甘肃矿区 91 酒泉玉门市 92 酒泉肃北县 93 西宁湟中县 94 海西格尔木市 95 西宁城东区 96 西宁大通县 97 吴中青铜峡市 98 锰三角地区 贵州松桃县、重庆秀山县、湖南花垣县   表5 重金属监测断面表(略)   表6 锰三角地区监测断面表(略)   表7 河流监测断面数据报送格式表(略)   表8 湖库监测点位数据报送格式表(略)
  • 进一步规范∣多项地表水水质自动监测站相关国家生态环境标准征求意见
    日前,生态环境部办公厅发布通知,对《地表水水质自动监测站选址与基础设施建设技术要求》、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范》、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范》、《地表水自动监测系统通信协议技术要求》等多项标准征求意见。环境监测是环境管理的顶梁柱,为环境管理提供了重要技术支撑。与常规的手工监测相比,水质自动监测具有运行连续、监测实时、数据量大等优势。水站的建设与水质自动监测网络的完善,可实现监测数据的共享、提高监测数据的质量,能有效反映所在断面水质状况、预警和防范水环境风险,为进一步提升水环境管理水平、引导地表水监测发展方向提供有力支撑。因其在时间和空间上的连续性,弥补了手工监测的不足,水质自动监测在监测水质变化及变化趋势、实时掌握水质状况等方面发挥了重要作用,已成为我国地表水环境监测中的一个重要组成部分。据《地表水水质自动监测站选址与基础设施建设技术要求(征求意见稿)》编制说明介绍:我国从1999年开展地表水水质自动监测,按照《“十四五”国家地表水环境质量监测网设 置方案》(环办监测〔2020〕3号),共设置国考断面3646个,其中1837个断面建有国控水站,仍有1809个断面未建设国控水站。这些监测断面仍然以每月一次的手工采样、实验室分析为主,存在工作任务繁重、数据量少、数据时效性不足、易受外部因素干扰等问题,无法满足新形势下国家对环境管理的需要。《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范(征求意见稿)》编制说明提到,截至目前,国家已在国考断面建设水质自动监测站1837个,新建站监测项目主要有水温、 pH、溶解氧、电导率、浊度、高锰酸盐指数、氨氮、总磷、总氮共计九个。目前运行频次均为水温、pH、溶解氧、电导率、浊度自动监测仪器1小时/次,其他项目4小时/次。各省市也建设了数千个水质自动监测站,监测项目以九参数和增配特征污染物为主,水站所有监测项目运行频次与国家网一致。大批量水站的新建和运行对现有技术体系提出挑战,当前也存在一些问题,比如在地表水水质自动监测站站房和采水单元的建设与验收方面,缺乏系统的、统一的技术规范;水站在安装方面存在水路电路安装不规范、仪器设备随意摆放、整体效果不美观、对水样代表性有一定影响等问题;在仪器设备调试方面由于运维人员水平参差不齐,现有规范调试方法不明确,且忽略了功能检查和调试,导致水站调试不全面,影响后续运行;系统试运行目前的主要依据是试运行期间的数据传输率和故障情况,并未要求进行完善的质控测 试,导致试运行结果不能充分代表新系统的运行情况;大部分水站的质控是通过维护人员到现场进行相关质控测试的方式,存在质控措施单一、质控间隔长、难以实现远程质控等问题,不能及时了解分析仪器的运行状态等。而此次系列标准的制定是建立健全“自动监测为主、手工监测为辅”的地表水环境质量监测体系重要技术支撑。其中,《地表水水质自动监测站选址与基础设施建设技术要求》规定了地表水水质自动监测站选址、站房与采水单元等基础设施建设和验收等技术要求,是对《地表水自动监测技术规范(试行)》(HJ 915—2017)中地表水水质自动监测站站址选择、站房建设与采水单元建设部分的修订;《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范》明确了地表水水质自动监测站设备安装、系统调试、试运行、验收、档案与记录等技术要求,明确了地表水水质自动监测站设备安装、系统调试、试运行、验收、档案与记录等技术要求;《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范》规定了地表水水质自动监测站检查维护、运行质量控制、异常情况处置和运行记录等技术要求,是对《地表水自动监测技术规范(试行)》(HJ 915—2017)地表水水质自动监测站运行维护、质量保证与质量控制等部分内容的修订;《地表水自动监测系统通信协议技术要求》为首次发布,规定了地表水水质自动监测系统数据传输的系统结构、协议层次和协议内容等技术要求。更多阅读:6项水质国家生态环境标准征求意见发布,涉及光、色、质谱及运行维护规范
  • 坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录
    坛墨质检|肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品目录 日前,生态环境部在《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急监测工作的通知》和《应对新型冠状病毒感染肺炎疫情应急监测方案》中要求生态环境监测相关部门积极应对,认真履职,主动作为,全力做好空气、地表水等相关环境应急监测工作。地方生态环境部门应充分利用现有环境空气质量自动监测网络、地表水环境质量自动监测网络、饮用水水源地水质自动监测网络等系统,全天候密切关注空气、水环境质量变化状况和趋势。为保障民生,确保饮用水安全,进一步加强饮用水水源地保护,做好饮用水水源水质预警监测,确保饮用水水源不受污染。 其中,重点开展饮用水水源地监测,地表水参照《地表水环境质量标准》(GB 3838-2002)要求开展监测与评价,地下水参照《地下水质量标准》(GBT 14848-2017)要求开展监测和评价,在61项常规指标的基础上,增加余氯和生物毒性2项疫情防控特征指标的监测。 涉及相关国家标准GB 50014-2006《室外排水设计规范》GB 19193-2015《疫源地消毒总则》GB 3838-2002 《地表水环境质量标准》GB 3095-2012 《环境空气质量标准》GBT 5750.11-2006 《生活饮用水标准检验方法 消毒剂指标》GBT 15441-1995 《水质 急性毒性的测定 发光细菌法》GBT 14848-2017 《地下水质量标准》 坛墨质检为各地方生态环境相关部门迅速有效开展空气、水环境质量监测工作,针对以上7个环境监测国家标准,提供一套完整的肺炎疫情医疗污水和城镇污水、地表水、地下水等环境应急标准品方案。坛墨质检环境应急标准品目录咨询北方地区王宏姝:13671388957南方地区汪丽红:13501101929众志成城 抗击肺炎温馨提示多通风 勤洗手 戴口罩 坛墨质检-标准物质中心(www.gbw-china.com),是一家专业致力于研发和生产标准物质标准样品、集敏捷制造、现代营销和现代物流的高科技企业,是标准物质标准样品研发、生产、销售、服务四位一体的综合服务平台。是中国CNAS标准物质标准样品生产者认可实验室(注册号:CNAS RM0024),并通过ISO90012015质量管理体系认证。
  • 哈希公司地表水监测解决方案:为地表水安全助力
    近期上海黄浦江松江段水域大量漂浮死猪的情况,引起了人们对饮用水源安全的思考和讨论,地表水是人类宝贵的水源,地表水的质量与人民生活密切相关。然而,层出不穷的地表水污染事件使得公众对水质监控越来越关心。如何确保水质安全以及如何对地表水源实时监测等技术问题也成为了环保业内人士热点讨论的话题。 哈希公司作为水质监测业内一员,一直都对地表水源监测技术的开发投入了相当大的资源。哈希地表水在线监测解决方案,可以为客户提供快速、准确的实时水质监控数据。 地表水常规五参数:提供pH,溶解氧,电导率,浊度,水温等常规水质参数的检测。 蓝色卫士:可根据客户需求最多同时监控8种水质参数,并可自动根据当地水源状况监测出突发的水质变化情况并报警。在添加了客户定制数据库的情况下,蓝色卫士系统还可以根据数据库内容分析水质变化的原因,为相关部门决策及快速反应提供重要的参考依据。 湖泊、水库等浮标式水质检测系统 DREL2800系列便携式水质分析实验室:全面的便携式快速水质分析系统。适用于野外各种环境水质测试要求,也适用于突发事件的快速水质参数检测。 Eclox便携式水质毒性分析仪:快速分析水质综合毒性。克服了传统发光细菌法的使用限制,操作更加简单方便,可以在各种环境下快速提供水质毒性参考。可用于常规检测或突发事件的处置。 document.write("") xno = xno+1 更多信息可以致电哈希公司客户热线电话了解:400-686-8899 / 800-840-6026 更多详情请点击
  • 环保部称近1/4地表水被污染
    中国环保部周一发布的环境监控数据显示,中国近四分之一的地表水仍处于污染状态,甚至不能做为工业用水,而只有不到一半的地表水可以饮用。   环保部网站(www.mep.gov.cn)发布报告称,今年上半年,该部监察员对全国主要河道及湖泊的水样进行检测,仅有49.3%的地表水可以安全饮用,同比提高1.3个百分点。   中国将水质分为六个级别,前三个级别可以安全饮用并用于洗浴。四级和五级地表水占26.4%,六级占24.3%,前者仅能做为工农业用水,而後者完全不能使用。   尽管过去十年间环保部门了颁布更为严格的法律法规,但依然难以遏制数以千计的小型造纸厂、水泥厂、化工厂的污水直接排放至江河,化肥过量使用导致国内湖泊及河流藻类过度繁殖等现象。   环境部称,今年上半年全国环保重点城市空气质量明显好转,二氧化硫同比下降30.2%。但在今年上半年,监测的443个城市中,189个城市出现酸雨。
  • 水纹预警溯源技术助力地表水水质监测
    p   地表水的保护一直是各地环保工作的重点,而我国南方地区因人口密集、经济发达,污染物排放总量居高不下,再加上复杂的水网地形,保护难度更大。近年来,地表水保护有了长足进步。以江苏省为例,在饮用水源地、国控点等地表水重点监控断面已实现自动监测的全覆盖,可实时监测pH、溶解氧、氨氮、总磷、总氮、高锰酸盐指数、蓝绿藻等常规指标。地表水应急预警监测实现了常态化。但常规有机物监测指标(如高锰酸盐指数等)只反映总量,不反映有机物毒性和来源。,所以当前水体管理存在着入侵污染物的性质说不清、变化原因说不透,污染源头更难抓的突出问题。由于地表水污染事件频发,监控污水偷排以及诊断污染来源已成为当前预警监测亟待解决的重点和难点,迫切需要一种新型的在线监测技术。 /p p   三维荧光光谱检测水体中的有机污染物是近年新兴的一项技术,但目前多数研究还只用于监测水体中的有机物浓度,未发现被用来识别污染来源的报道。清华大学研发了污染预警溯源技术,可用于水体水质异常的快速预警以及污染类型的快速诊断。苏州环境监测中心基于该项技术对南方某水体开展在线监测应用,研究了水体的荧光水纹特征、强度规律及荧光强度与常规监测指标的关系,并针对研究期间检测到的水质异常现象进行了污染溯源分析。 /p p   水体中天然有机物的主要成分(如腐殖质、蛋白质以及叶绿素等)都有特征荧光。污水也含有很多FOM,如油脂、蛋白质、表面活性剂、腐殖质、维生素、酚类等芳香族化合物、药品残余及其代谢产物等。由于每种FOM都有特定发光位置,大部分工业和生活污水的水纹也各不相同,可作为污染类型的判断依据。目前,清华大学已将该技术仪器化。该仪器能在15—30 min识别污染类型并发出警报。目前可识别长三角地区的10种主要废水,包括生活污水、印染废水、电子废水、石化废水、焦化废水、造纸废水和金属制造废水等。通常情况下,仪器判定的与已知污染的相似度大于0.9,就可以认定水样受到该种污水的污染。 /p p   水纹预警溯源技术及其在线仪器的应用,增强了水质自动监测站的预警监测能力。预警溯源仪已具备了良好的预警和溯源功能,成功地捕捉了水质异常并确定了污染类型,为环境监管提供了有力的技术支撑。 /p
  • 生态环境部发布《“十四五”国家地表水监测及评价方案》(试行)
    “十四五”国家地表水监测及评价方案(试行)一、监测范围按照《“十四五”国家地表水环境质量监测网断面设置方案》(环办监测〔2020〕3号),开展水环境质量监测。二、监测指标监测指标为“9+X”,其中: “9”为基本指标:水温、pH、溶解氧、电导率、浊度、高锰酸盐指数、氨氮、总磷、总氮(湖库增测叶绿素a、透明度等指标)。“X”为特征指标:《地表水环境质量标准》(GB3838-2002)表1基本项目中,除9项基本指标外,上一年及当年出现过的超过III类标准限值的指标;若断面考核目标为Ⅰ或Ⅱ类,则为超过Ⅰ或Ⅱ类标准限值的指标。特征指标结合水污染防治工作需求动态调整。三、监测频次9项基本指标:建有水质自动监测站的断面,开展实时、自动监测;未建水质自动监测站的断面,按照采测分离方式开展人工监测(湖库增测叶绿素a、透明度等指标),监测频次根据实际情况确定。“X”特征指标:按照采测分离方式开展人工监测,监测频次根据实际情况确定。每年组织对所有国控断面开展《地表水环境质量标准》(GB3838-2002)表1全指标监测,监测频次根据实际情况确定,用于掌握和筛选国控断面特征指标,对全国地表水监测结果进行校验和总体评价。四、评价方式按照《地表水环境质量评价办法(试行)》(环办〔2011〕22号)、《地表水环境质量监测数据统计技术规定(试行)》(环办监测函〔2020〕82号)开展水质评价,评价指标为“5+X”,即:pH、溶解氧、高锰酸盐指数、氨氮、总磷等5项基本指标及该断面的“X”特征指标。水温、电导率、浊度因无相应标准限值,不参与水质评价,但作为参考指标用于判断水质是否受泥沙、盐度及对溶解氧影响情况等开展监测;总氮参与湖库营养状态评价。五、质量保证和质量控制国家地表水采测分离监测按照《地表水和污水监测技术规范》(HJ/T 91-2002)、《环境水质监测质量保证手册》(第二版)、《国家地表水环境质量监测网采测分离管理办法》(环办监测〔2019〕2号)和《国家地表水环境质量监测网监测任务作业指导书(试行)》(环办监测函〔2017〕249号)要求,开展质量保证和质量控制工作。水质自动监测按《地表水自动监测技术规范(试行)》(HJ 915-2017)、《国家地表水水质自动监测站运行管理办法》(环办监测〔2019〕2号)等要求,开展质量保证和质量控制工作。六、实施时间本方案自2021年1月1日起实施。对《方案》调整的目的意义、方案的具体内容等,生态环境部生态环境监测司有关负责人回答了记者的提问。  问:近日,生态环境部印发《方案》,对“十四五”国家地表水监测评价方式进行了优化调整,目的意义为何?  答:根据2018年《国务院机构改革方案》,生态环境部统一负责生态环境质量监测评估工作,并将水利部的水功能区划编制、排污口设置管理、流域水环境保护职责划转生态环境部。为全面贯彻落实国务院机构改革精神,科学、全面、客观反映全国地表水环境质量状况及重要江河湖泊水体功能保障情况,构建统一的水生态环境监测体系,按照“科学监测、厘清责任、三水统筹”原则,2019年底,生态环境部组织完成了“十四五”国家地表水环境质量监测网优化调整工作,在“十三五”1940个国家地表水考核断面、110个入海控制断面和水利部门4493个水功能区断面(合计6543个断面)基础上,进一步优化调整点位布局,并于2020年2月正式印发《“十四五”国家地表水环境质量监测网断面设置方案》,“十四五”在全国共布设3646个国控断面,点位覆盖全国重要流域干流及主要支流、重要水体省市界、地级及以上城市和全国重要江河湖泊水功能区,有效实现生态环境部门水环境质量监测网和水利部门水功能区监测网的“两网合一”。  为进一步满足“十四五”全国水生态环境保护工作需求,更好支撑“精准治污、科学治污、依法治污”,2020年12月22日,生态环境部印发了《方案》(环办监测函〔2020〕714号),明确“十四五”国家地表水按“9+X”方式进行监测,按“5+X”方式进行评价,该方案进一步完善国家地表水监测及评价方式,优化监测资源配置,充分发挥国家地表水水质自动监测站(以下简称水站)实时、连续监测优势,实现地表水主要污染指标的实时监控和特征指标的精准监测。该方案将于2021年1月起实施。  问:《方案》中提出的按“9+X”进行监测,按“5+X”进行评价,分别是指什么?  答:“9+X”是指“十四五”国家地表水监测模式,“5+X”是指“十四五”国家地表水评价模式。  “9”为国控水站配置的水温、pH、浊度、电导率、溶解氧、氨氮、高锰酸盐指数、总磷、总氮等9项基本监测指标;未建水站的国控断面开展人工采测分离监测。  “X”为《地表水环境质量标准》(GB3838-2002)表1基本项目中,除9项基本指标外,上一年及当年出现过的超过III类标准限值的指标;若断面考核目标为Ⅰ或Ⅱ类,则为超过Ⅰ或Ⅱ类标准限值的指标。特征指标结合水污染防治工作需求动态调整。“X”指标开展人工采测分离监测。  9项基本指标中,水温、电导率和浊度因无相应标准限值,作为参考指标,不参与水质评价,总氮参与湖库营养状况评价。水质评价方式为“5+X”,即:pH、溶解氧、氨氮、高锰酸盐指数、总磷和“X”特征指标。  问:“十四五”国家地表水“9+X”监测模式,具有什么优点?  答:“十四五”国家地表水“9+X”监测模式,具有以下优点:  一是具有更好的代表性、科学性,能更好地满足水污染防治工作需求。国家地表水环境监测网监测结果表明,2019年1940个国家地表水考核断面中有484个断面出现超标,其中5项基本指标超标断面占总超标断面的73.3%;“X”指标超标断面共129个,占26.7%;2020年上半年1940个国家地表水考核断面中有385个断面超标,其中5项基本指标超标断面占61.8%,“X”指标超标断面共147个,占38.2%,“X”指标主要为化学需氧量、氟化物、五日生化需氧量、石油类和挥发酚等。“9+X”方式涵盖了我国地表水主要污染指标。  二是具有更好的经济性、可行性,对特征指标实施精准监测,进一步优化了监测资源配置。“十四五”建有水站的断面,开展9项基本指标实时、自动监测,充分发挥水站的作用和优势;未建水站的断面开展人工9项基本指标监测;“X”特征指标开展人工监测。与按《地表水环境质量标准》(GB3838-2002)表1中24项全指标监测相比,对于9项基本指标以外的长期未检出或已稳定达标的指标,不再每月开展人工监测。  “十四五”国控断面“9+X”方式能大大降低监测成本,减轻基层监测人员工作负荷,具有更好的经济性和可行性,更加客观反映地方政府水污染防治成效,有效支撑精准治污、科学治污、依法治污。  问:水温、电导率、浊度三项指标无相应标准限值,不参与水质评价,有无必要监测?  答:目前,我国国控水站均配置了水质五参数(水温、pH、溶解氧、电导率、浊度)测定仪,大多采用电极法开展实时监测,五参数一体化设计,简便易行、成本较低,对实时监控水质状况、判断变化趋势有重要的参考作用。按照《国家地表水环境质量监测网监测任务作业指导书》和《地表水总磷现场前处理技术规定(试行)》等相关规定:一是对于浊度高于500 NTU的一般水体和浊度高于200 NTU的感潮河段,应采取现场离心的前处理方式,否则监测结果受泥沙影响较大,监测结果没有代表性;二是电导率与盐度有一定的相关性,盐度对水质监测结果干扰较大。一般电导率≥3000μS/cm时,盐度≥2‰,受盐度影响较大,水质监测数据可不参与评价;三是测量溶解氧时,需要使用水温进行补偿及修正;四是水温、浊度和电导率作为参考指标,还可用于判断该断面是否受到暴雨、事故性污染排放等影响,也是水生态监测的重要指标。  因此,水温、电导率、浊度虽无相应标准限值,不参与水质评价,但有必要进行监测,仍应纳入监测范畴。  问:“5+X”和现行“21项”评价方式是否具有可比性?  答:按照“5+X”和现行国家地表水“21项”两种评价方式,对“十三五”1940个国家地表水考核断面分别进行评价,结果表明:“5+X”与现行“21项”评价方式具有较好的一致性。2019年上半年、全年以及2020年上半年,全国I~III类比例差值分别为0.3、0.1和-0.9个百分点,劣V类比例完全一致;单月I~III类比例差值在0至1.4个百分点之间,劣V类比例差值在-0.1至0个百分点之间。测算结果表明,“十四五”国家地表水按“9+X”方式进行监测、按“5+X”方式进行评价,与现行监测评价结果具有较好的一致性和可比性,是合理、可行的。  问:2020年1-11月全国地表水环境质量状况如何?  答:2020年1-11月,1940个国家地表水考核断面中,水质优良(Ⅰ~Ⅲ类)断面比例为82.0%,同比上升5.6个百分点;劣Ⅴ类断面比例为0.7%,同比下降2.1个百分点。主要污染指标为化学需氧量、总磷和高锰酸盐指数。  长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西北诸河、西南诸河和浙闽片河流水质优良(Ⅰ~Ⅲ类)断面比例为85.7%,同比上升5.2个百分点;劣Ⅴ类断面比例为0.2%,同比下降2.3个百分点。主要污染指标为化学需氧量、高锰酸盐指数和五日生化需氧量。其中,西北诸河、长江流域、西南诸河、浙闽片河流和珠江流域水质为优,黄河、松花江和淮河流域水质良好,辽河和海河流域为轻度污染。监测的112个重点湖(库)中,Ⅰ~Ⅲ类水质湖库个数占比75.0%,同比上升7.7个百分点;劣Ⅴ类水质湖库个数占比5.4%,同比下降1.9个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。
  • 征集对修订环标《地表水环境质量标准》等标准意见
    为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,加强生态文明建设,适应国家经济社会发展和环境保护工作的需要,保护生态环境和人体健康,完善国家环境质量标准体系,我部决定对国家环保标准《地表水环境质量标准》(GB3838-2002)、《农田灌溉水质标准》(GB5084-92)和《渔业水质标准》(GB11607-89)进行修订。   鉴于该标准对于环境保护和环境质量评价工作有重大影响,与社会公众利益密切相关,为做好标准修订工作,充分了解各有关方面的意见,根据《国家环境保护标准制修订工作管理办法》的有关规定,现就修订该标准公开征集意见。各机关团体、企事业单位和个人均可参照附件一所列问题或其他问题,就修订标准工作向我部提出意见和建议。征集意见截止时间为2009年10月30日。   联系人:环境保护部科技标准司 滕云 冯波   通信地址:北京市西直门内南小街115号   邮政编码:100035   传真:(010)66556213   附件:1.修订国家地表水环境质量标准相关问题      2.地表水环境质量标准      3.农田灌溉水质标准      4.渔业水质标准      5.部分主送单位名单   附件一:   修订国家地表水环境质量标准相关问题   一、现行《地表水环境质量标准》主要存在哪些不适应国家经济社会发展和环境保护工作需要的问题?   二、修订《地表水环境质量标准》的过程中,是否有必要解决国家地表水环境质量标准内容重叠的问题,统一国家水环境质量标准体系,将《农田灌溉水质标准》、《渔业水质标准》和《地下水质量标准》的内容纳入统一的国家水环境质量标准?   三、现行《地表水环境质量标准》中的评价指标数量(109项)应该增加、减少还是保持不变?   四、对调整现行《地表水环境质量标准》的评价指标体系有何具体建议?   五、是否要改变现行《地表水环境质量标准》实行的“单指标评价”方法(即只要有一项指标超标,就判定水体不符合要求并降低评价等级)?   六、是否调整现行《地表水环境质量标准》实行的水域环境功能分类方式?
  • 中国近1/4地表水被污染 外媒称地方政府监管不力
    中国仅有49.3%的地表水可以安全饮用,近四分之一的地表水处于污染状态,甚至不能作为工业用水。   《国际先驱导报》记者金微发自北京、吉林漂浮的蓝色化工物料桶成了过去一周松花江的一道“风景线”,在洪水肆虐时,这道“风景线”多少让人有些心惊。   “它们就像一个个蓝色的‘定时炸弹’。”一名在松花江上参与打捞物料桶的市民说。   7月28日,吉林省永吉县突降暴雨引发山洪,致使该县新亚强生物化工有限公司和吉林众鑫集团的库房被冲毁,约4000个空桶和3000个原辅料桶被冲入松花江。   吉林市民发现这些漂浮在江边的桶“弥漫着一股异常的气味”。这些曾经或者正在装着三甲基一氯硅烷等物质的化工桶让吉林市民和下游的哈尔滨市民陷入恐慌,2005年松花江污染后市民去超市抢水的一幕再次上演。   仅49.3%的地表水可安全饮用   2005年11月,吉林石化发生爆炸,导致松花江出现水污染,哈尔滨全城停水多日。5年以后,抢水一幕再现。   如今,有关部门通报指出,化工桶打捞工作基本结束,没有一只桶流出吉林省,而在此期间,松花江水质也未见异常。不过,住在松花江沿岸的人们仍然如“惊弓之鸟”的抢水行为却让人深思。   国务院批准实施的《松花江流域水污染防治规划(2006-2010)》中称,该沿岸仅排放汞、镉、六价铬等重金属和难降解有机污染物的企业就有157家。这些企业被一些外电看作是中国表面风光的城市里面隐藏的大量“定时炸弹”。   这样的“定时炸弹”不仅仅存在松花江流域。环保问题专家、北京公众环境研究中心主任马军介绍,湘江的污染已有几十年的历史,上游的金属矿的开采和冶炼,造成重金属超标,这些年问题开始加剧。“另外,在我们河流的上游,长江流域、黄河的中上游,矿区开采也较多,尾矿的处理没有做到位。虽然造成的影响还没有其他河流突出,实际上已经有很多隐患。”   不过,这些区域尚未列入国家治理污染的重点,有着更为严重污染的“三河”(海河、淮河和辽河)是治理重点。   十几年来一直为淮河污染奔忙的民间环保人士霍岱珊回忆,过去淮河被污染到河边不能站人。如今,经过十几年治理,虽然进展缓慢,但是“至少可以站人了”。即便如此,环保部的监控结果显示,淮河上的86个监测断面中,只有37.3%能达到饮用水标准。   近年来,中国各地化工、石化项目纷纷上马,大多布局在江河湖海沿岸和人口稠密城市近郊。2006年,中国化工、石化项目环境风险大排查的结果显示,总投资约1万亿元的7555个化工、石化建设项目中,81%布设在江河水域,人口密集区等环境敏感区域,45%为重大风险源。   中国环保部今年上半年对全国主要河道及湖泊的近千份水样进行检测,最近发布的监测结果显示,仅有49.3%的地表水可以安全饮用,近四分之一的地表水处于污染状态,甚至不能作为工业用水。   出现新型污染   让环保界人士有些不安的是,最近几年出现的新型污染,并未体现在统计数据中。   “有机化学物污染和重金属污染已经成为我国河流的新型污染,不同于河水的黑臭污染,这些污染物有时隐于无形,一旦排放到环境中,危害几十年长期存在,难以治理。”绿色和平污染项目主任马天杰忧心忡忡地告诉记者。   “由于重金属在自然界难降解,随着其逐渐的累积,今后污染的风险会一天天加大,即使减少排放,但过去累积的风险不会在短期内消除,而在局部地区它已经累积到爆发的程度。”马军说。   一个现实的例子就是去年和今年,湖南郴州、陕西凤翔等地发生数百名儿童血铅中毒事件,原因就是当地工厂的排污工作没有做好。   在霍岱珊的“淮河水系环境科学研究中心”,陈列着很多畸形的鱼,这些都是重金属和化学污染所致。“你看过后,肯定都不太敢吃鱼。”霍岱珊说,水生生物和陆地生物往往互相印证,而在淮河两岸村庄除了癌症高发,村民不孕不育的现象增多,而且出现不少畸形儿。   他说,现在淮河的监控和治理对象只有氨氮含量、PH值、融解氧等指标,而不包括重金属和持久性化学污染物。   绿色和平在调查珠江工业污染时也发现,很多有害物质在目前并不受现有政策法律的管制,所以许多企业能够在不违反法律的情况下排放这类物质。   马天杰说,西方国家几百年的发展,初级污染和新型污染不会同时出现,而我们现在初级污染未解决又添新型污染,“压缩型”污染更难治理。   地方政府庇护   美联社、香港《南华早报》将中国的污染问题归结于中国注意经济发展而忽略的环境保护所致,包括监管不力。   《南华早报》举例说,中国环保部2008年成立时,在北京的工作人员只有“区区300人”,“与之形成鲜明对比的,美国的环境保护署有多达1.7万名工作人员”。   不过,点开环保部的网站不难看到,环保部并非不作为,像松花江干流、淮河干流,水质已经出现明显好转。   而在频繁发生的污染事故背后,经常看到环保部门与地方政府的博弈,结果又常常是地方政府背靠着“有利地形”而占据上风。   马军于2006年推出中国首个水污染公益数据库“中国水污染地图”。目前,他的“中国水污染地图”每天都更新着各地企业排污的报告,“我们已经有67000条政府公布的企业超标违规纪录,其中涉及水污染的约有40000条。”   数据库里收录了被洪水冲走化工桶的这两家吉林企业的信息。“现在对这起事故原因还没有详细的调查报告,但我们发现这家厂子曾有过爆炸的记录,这些都收录在我们的数据库里,这反应了它的管理水平存在问题。”马军说。   而最近闹得沸沸扬扬的紫金矿业集团紫金山铜矿湿法厂污水池发生渗漏,大量污水涌入汀江导致污染事件,也并非无迹可寻:今年5月,环境保护部发文严厉批评11家存在严重环保问题的上市企业,名列榜首的正是紫金矿业。针对环保部的批评,当地官员对紫金矿业的违规行为不闻不问,反而加入隐瞒行列。   马天杰介绍,湖南有色金属股份有限公司的两家下属企业因超标排放多次被环保部门点名,但绿色和平在今年1月和3月分别对两家公司进行调研发现,他们的排放程度并没有收敛。“他们完全是光明正大的排放。”马天杰说。   “很多情况表明地方官员相信其让污染企业继续运作的做法不会受到惩罚。”《南华早报》报道说。   应加大公众监督力度   在马军看来,环境问题迟迟得不到解决的原因,是缺乏动力。“这个动力应来自于政府的监管、法院的判罚,但是这两个重要的动力来源尚不具备,不仅监管较弱,而且法院的介入也不积极,地方保护因素不是在一夜之间能够扭转,因此需要社会的参与来弥补动力的不足。”   2008年5月,由环境保护部制定的《环境信息公开办法(试行)》被认为是引进社会参与的一次尝试。《办法》提出:环保部门应当向社会主动公开污染物排放超标的企业名单。   “信息公开并不能减少污染,但是却是公众参与到环境监督的关键一环。”马天杰举例说,一些地方环保部门保留着对污染企业的监测数据,而这些数据往往又是污染受害者打赢环保官司的重要证据,这就是实现社会监督最直接的形式。   美国80年代就要求企业列出有毒物质排放清单,其中包括300多种的有毒有害物质。居民只要输入邮政编码就可以知道周围企业排放了哪些污染。   然而,在中国环境信息公开办法实施两年多后,却遭遇另类尴尬。绿色和平曾多次致函要求株洲市环保局公开当地两家污染企业的环境信息,但是,环保部门却以两家企业为上市公司比较敏感为由,拒绝公开相关信息。   “我们经常遇到这种打太极的现象,地方政府有惯性思维,本能地觉得这会导致社会不稳定。政府部门应意识到信息公开的重要性,鼓励公民参与,而不能成为其中的阻碍因素。”马天杰说。   长期在淮河环保一线工作的霍岱珊对社会监督的作用深有体会,他认为加大公众的监督力度对解决污染问题是一条有效的途径,“莲花模式”就是很好的例子。   莲花味精曾是淮河上出名的排污大户——每天排放污水12万吨,受过罚款后仍然偷排。为此,霍岱珊常上门去“找茬”,双方关系搞得“很不愉快”。2005年,这家厂的日资撤离,新换的负责人找到霍岱珊,决定接受公众监督,践行企业环境责任。其后,莲花味精改变生产工艺,制造1吨味精从消耗37吨水到耗水4吨左右即可,废料还进一步处理,加工成复合肥,每年多盈利2000多万元,实现了循环经济。霍岱珊更是富有创意地在莲花味精污水处理厂门口放置了一块环境信息公示牌,标注出每天的排污信息。这种NGO与企业互动,而且达到双赢的案例,被称为“莲花模式”。   目前,霍岱珊在沿淮河800公里范围内,有了8个工作站,形成企业排污观测网络,但霍岱珊仍有无奈:“国家有法律,但到地方难落实,他们将环保信息作为机密或以政治问题对待,对公众监督实行种种限制。我们淮河卫士能够得到高层领导和底层百姓的支持,得不到地方政府的支持,这也应照了中国环保两头热的现状。”
  • 新地表水环境质量标准 GB3838-2002 定制混标标样
    地表水环境质量标准 GB3838-2002 定制混标标样 我们公司一直致力于地表水环境质量标准 GB3838-2002 定制混标,并且根据实际情况不断改进,在原来有机物前35项定制二种有机物混标基上,增加了6种有机磷(替代原有机磷7种),12种氯苯类混标,10种硝基苯类混标。非常适合我国现有地表水有机项目检测。 混标 组分 规格 备注 12种氯苯类订制混标 1,2- 二氯苯;1,4- 二氯苯;1,3- 二氯苯;氯苯;1,2,3- 三氯苯;1,2,4- 三氯苯;1,3,5- 三氯苯;1,2,3,4- 四氯苯;1,2,3,5- 四氯苯;1,2,4,5- 四氯苯;五氯苯;六氯苯(100ppm) 200ppm甲醇溶剂*1ml 地表水氯苯类混标 10种硝基苯类混标 2,4-二硝基氯苯;2,4,6-三硝基甲苯;2,4-二硝基甲苯;邻硝基氯苯;间硝基氯苯;对硝基氯苯;邻二硝基苯;间二硝基苯;对二硝基苯;硝基苯; 2000ppm甲醇溶剂*1ml 6种有机磷订制混标 甲基对硫磷 对硫磷 马拉硫磷 乐果 敌敌畏 内吸磷 100ppm甲醇溶剂*1ml 原有机磷7种组分中敌百虫组分干扰敌敌畏测定,敌百虫本身物质不稳定,剔除敌百虫组分 25种VOC订制混标 地表水前35项挥发性 100ppm甲醇溶剂*1ml 地表水前35项挥发性 24种SVOC订制混标 地表水前35项半挥发性 500ppm甲苯溶剂*1ml 地表水前35项半挥发性 8种有机氯订制混标 4,4' -DDD、4,4' -DDE、4,4' -DDT、2,4' -DDT、&alpha -HCH、&beta -HCH、&gamma -HCH、&delta -HCH 50ppm甲苯甲醇溶剂*1ml 国产 8种苯系物混合标液 苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、苯乙烯、异丙苯 1000ppm甲醇 进口订制 除标注国产以为,均为进口订制混标,保证可溯源性。 我公司可以提供GB3838-2002其它所有标样,有任何疑问请随时与我们公司联系。
  • 地表水新标即将实施!污染物检测有新变化?
    随着“自动监测为主、手工监测为辅”监测模式的推行,我国地表水环境监测能力与自动预警水平持续提升,配套的多项地表水监测标准得到修订。2022年5月,生态环境部发布《地表水环境质量监测技术规范》(HJ 91.2-2022),该标准适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测,支撑《地表水环境质量标准》(GB 3838-2002)实施,并将于2022年8月1日实施。修订了什么?《地表水环境质量监测技术规范》(HJ 91.2-2022)为首次修订,适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测。与《地表水和污水监测技术规范》(HJ/T 91-2002)相比,本标准明确了总磷监测的现场前处理方法,完善了布点与采样、监测项目与分析方法、监测数据处理、质量保证与质量控制等相关内容,进一步规范地表水环境质量手工监测工作,支撑《地表水环境质量标准》(GB 3838-2002)实施。自动监测市场,再现“新空间”2019 年 5 月,生态环境部印发《地级及以 上城市国家地表水考核断面水环境质量排名方案(试行)》,提出为充分发挥城市国家地表 水考核断面水环境质量排名的倒逼作用,对设置有国家地表水考核断面的所有地级及以上城市水环境治理进行排名。十四五以来,自动为主、手工为辅的融合监测模式更是在全国落地开花。《“十四五”生态环境监测规划》提出开展自动为主、手工为辅的融合监测,以支撑全国水环境质量评价、排名与考核,精准、及时的自动监测数据将作用于各城市排名。与此同时,《生态环境 监测规划纲要(2020-2035 年)》提出建立 9+N 自动监测能力要求,即在常规 9 参数基 础上,增加化学需氧量、五日生化需氧量、阴阳离子、重金属、有机物、水生态综合毒性 等特征指标。不难看出,多方讯号显示水质在线监测仪器市场将迎来新增长。无论是手动监测,还是自动监测,若想精准检测数据,检测人员、仪器分析依然是关键!基于此,仪器信息网将于7月14日举办地表水检测分析技术网络研讨会,届时将邀请领域内权威专家出席,优秀厂商进行技术分享!点击链接报名:https://www.instrument.com.cn/webinar/meetings/surfacewater20220714/详细会议日程(持续更新中):报告时间报告方向报告嘉宾09:30--10:00《地表水环境质量监测技术规范》(HJ 91.2-2022)标准解读标准制定单位专家邀请中10:00--10:30待定吉天仪器10:30--11:00安捷伦质谱技术助力环境监测与保护杜伟安捷伦科技(中国)有限公司 液质应用工程师11:00--11:30微波消解-离子色谱法测定地表水中痕量总磷中国环境监测总站 业务主管/高级工程师14:00--14:30地表水自动监测技术难点解析钟声江苏省环境监测中心 高级工程师16:00--16:30待定孙娟江苏省南京环境监测中心 科室主任/高级工程师
  • 地表水总磷现场检测前处理介绍
    一、总磷及其前处理介绍水体富营养化造成的水生态系统问题是地表水等常见危害。而水体富营养化主要是磷、氮等物质促使藻类和其他水生生物繁殖迅猛,使水体透明度、溶解氧等指标异常,造成地表水水质超标,引起生态危害。生态环保部公布的《全国地表水质量状况》中指出总磷也是我国地表水主要污染指标之一。环保总站引发的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标。而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。当浊度低于200NTU自然沉降处理30min而后取上清液;介于200~500NTU自然沉降处理60min而后取上清液;大于500NTU进行2000rpm离心处理2min而后取上清液;感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。 二、总磷样品浊度测试步骤仪器:WZB-175型便携式浊度仪和DGB-401型多参数水质分析仪试剂:浊度标液、总磷工作试剂包、总磷校准液样品:上清液WZB-175浊度测试流程如下:DGB-401总磷测试流程:三、仪器介绍雷磁WZB-175和DGB-401便携式仪器可对地表水浊度、总磷等进行精|准有效测量。其中WZB-175便携式浊度仪符合国标GB 1075和ISO7027标准要求,采用LED光源,量程高达1000NTU;DGB-401内置总磷、总氮、氨氮、COD等多参数检测功能等,两款仪器详情如下WZB-175便携式浊度仪WZB-175便携式浊度计依据ISO 7027 、HJ 1075等标准进行设计,采用850 nm红外LED光源,通过比率校正的方式,有效降低颜色对于浊度测量的干扰。外观新颖,小巧便携,使用方便,可以广泛应用于地表水、工业用水、饮用水、饮料、景观水、游泳池水、废水等样品的浊度检测。 【主要特点】● LED光源,采用850 nm波长,满足ISO 7027和HJ 1075标准;● 采用散射-透射光测量原理,多方向接收散射光信号,比率校准,自动色度补偿;● 量程自动切换,自动调零;● 支持零点和最多6点校准;● 支持平均测量功能;● 支持存储2000组测试数据,符合GLP规范;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理,支持自动关机;● IP65防护等级,良好防水防尘性能;● 配套提供浊度校准溶液。 【技术参数】型号技术参数WZB-175光源850 nm LED,满足ISO 7027标准测量范围(0~20.00)NTU,(20.0~200.0)NTU,(200~1000)NTU分辨率0.01 NTU,0.1 NTU,1 NTU示值误差±6%重复性±0.5%零点漂移±0.5% FS/30min示值稳定性±0.5% FS/30min防护等级 IP65尺寸(mm),重量(kg)220×100×80, 0.8 DGB-401型多参数水质分析仪 【主要特点】● 内置420nm、470nm、620nm、700nm四个LED光源,寿命长,精度高;● 采用分光光度法,内置高低化学需氧量(COD)、氨氮、总磷、总氮5个检测项目,检测项方法直接调用,无需进行波长选择;● 支持单点和多点校准,支持用户编辑校准曲线;● 支持吸光度和浓度两种测量方式;● 支持两种读数方式:Smart-Read功能(智能判别终点),Cont-Read功能(连续测量); ● 每个检测项目可存储测量结果各200套,符合GLP规范,支持数据查阅、删除和打印;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理功能,可设置自动关闭光源和自动关机;● IP65防护等级,良好防水防尘性能;● 支持固件升级,支持恢复出厂设置,允许功能扩展和应用拓展。 【技术参数】测量参数测量方法光源波长测量范围(mg/L)示值误差重复性低COD重铬酸钾法470nm0.0~150.0mg/L±8%3%高COD重铬酸钾法620nm150.0~1500mg/L±8%3%氨氮纳氏试剂法420nm0.000~4.000mg/L,可扩展至 300mg/L±10%3%总磷钼酸盐分光光度法700nm0.000~1.000mg/L,可拓展至25.00mg/L±10%3%总氮过硫酸盐氧化法420nm0.000~30.00mg/L,可扩展至300mg/L≤10mg/L:±1 mg/L;>10mg/L:±5%;3%
  • 地表水环境质量标准109项全分析难点项目技术研讨会召开
    为提高地表水环境质量监测能力,特别是集中式生活饮用水水源地监测技术水平,解决109项全分析监测中的技术难点和存在的问题, 2012年12月20-21日,中国环境监测总站在厦门举办了“地表水环境质量标准109项全分析难点项目技术研讨会”,总站王业耀副站长致辞,各省(自治区、直辖市)及全国113个环保重点城市环境监测中心(站)共270多名环境监测技术人员参加了会议。   会上针对地表水环境质量标准109项全分析之技术方法现状与能力建设需求、特定项目优化检测技术研究、109项控制项目QA/QC体系的不足及建议,在大会进行了主旨报告。 会议现场   随后,会议分有机分析、常规和无机分析技术两个分会场,代表们针对地表水样品保存和前处理、常规项目如高锰酸盐指数、活性氯、氨氮等分析技术中存在的问题、大型仪器ICP-MS、GC-MS、UPLC-MS/MS等在环境监测分析中的应用,以及四乙基铅、丁基黄原酸、甲基汞、塑化剂等难点项目的监测分析技术进行了重点发言及讨论交流。   为了筹划此次研讨会,分析室在“十一五”水专项子课题“地表水环境质量特定监测项目分析测试方法优化研究”成果的基础上,结合地表水监测的经验,组织河南省、重庆市、江苏省等监测站针对109项全分析工作存在的问题和技术难点开展了专题研究,并汇集了各地方监测站近期《地表水环境质量标准》分析技术与方法的最新研究成果,整理出版了《地表水环境质量标准109项全分析技术难点研究》论文集。   此次会议的召开为环境监测技术人员提供了一个良好技术交流平台,共同研讨了《地表水环境质量标准》109项全分析难点技术,有力促进了各级环境监测分析部门难点问题的解决和技术水平的提高,为推进“十二五”期间集中式生活饮用水水源地水质监测工作提供了技术保障。 “地表水环境质量标准109项全分析难点项目技术研讨会议”相关PPT如下所示(下载):   一、无机类   1、ICP-AES测试地表水中铬含量不确定度的研究分析-陈波   2、ICPMS测定微量元素-余斌   3、ICP-MS在水质监测中的应用-陈纯   4、地表水基本项目监测的几点思考-张瑜龙   5、地表水重金属监测的样品前处理方法探讨-张霖琳   6、分光光度法测定水中活性氯的方法研究-王媛媛   7、流动注射分析法与分光光度法测定水中氨氮的比较-张星星   8、石墨炉原子吸收法测定地表水特定项目-毛雨廷   9、石墨炉原子吸收法测定水中钒的方法探讨-季彦鋆   二、有机类   1、GCMS在环境中的应用-邓力   2、地表水109项中挥发性有机物的测定-吹扫捕集-气相色谱-质谱法-王 荟   3、地表水环境质量标准109项控制项目QAQC体系的不足及建议-戴秀丽   4、地表水特定项目检测技术研究-杨丽莉   5、地表水中四乙基铅的分析方法和样品保存研究-王玲玲   6、丁基黄原酸测定方法的研究-朱红霞   7、气相色谱法测定地表水中甲基汞分析条件的优化-丁曦宁   8、全自动固相萃取-气相色谱测定环境水样中有机磷农药残留-何书海   9、水样中极性化合物的分析-王静   10、水中邻苯二甲酸酯类塑化剂的测定-邢冠华   11、汛期水样中五氯酚的含量测定及其健康风险评价-贺小敏   12、液相色谱及液质联用技术在环境分析中的应用- 张蓓蓓
  • 广州将监测地表水抗生素
    《广州市环境状况公报2014》发布 流溪河水源保护区调整将有公众参与   2014年全市环境空气质量达标天数为282天,同比增加22天 PM2.5年均浓度为49微克/立方米,比2013年下降4微克,是全国五大中心城市中浓度最低的 60条进行水质监测的河涌中有17条达标&hellip &hellip 昨日,广州市环保局发布了《广州市环境状况公报2014》,并就近期公众关注的多个环境焦点问题进行了回复。   去年广州环境总结   空气质量   全国中心5城PM2.5广州最低   数据显示,2014年广州空气质量达标天数为282天,同比增加22天,达标天数比例为77.5%,同比增加6.3个百分点,其中优61天、良221天、轻度污染67天、中度污染14天、重度污染1天,未出现严重污染。六项主要污染物指标中,除了臭氧外,其余五项全部呈下降或持平,其中PM2.5年平均浓度为49微克/立方米,超过国家二级标准0.40倍,比2013年下降4微克。广州成为全国五大中心城市(北京、上海、天津、重庆和广州)中PM2.5浓度最低的。   此外,从昨日起,广州新增的5个空气质量监测点正式对外发布信息,分别是:白云山、海珠湖、大夫山、番禺亚运城和增城派潭。这样,在市环保局的网站上可以实时查询到全市36个监测点的空气质量情况。   市环保局发言人、副局长谢明表示,去年做的广州PM2.5的源解析工作在去年12月通过环保部的专家论证,结果与以往的分析判断基本一致,燃煤和工业排放占PM2.5的约1/3,机动车排放占1/4,扬尘、生物质燃烧等各占10%左右。   河涌监测   棠下涌、深涌连续8个月黑臭   从去年5月开始,市环保局每月定期发布全市60条主要河涌的水质监测情况。从8个月的情况看,60条河涌中,19条河涌达到或优于Ⅴ类(其中17条河涌达到功能区水质目标)。棠下涌、深涌这2条河涌连续8个月均存在黑臭现象,28条河涌偶尔出现黑臭现象。   去年珠江水中检测出抗生素的消息引发市民关注。谢明昨日表示,市环境监测中心站已迅速与中科院地化所等单位合作对一些水样进行检测分析并制订计划,&ldquo 目前没有相关标准和规范的情况下,市环境监测中心站正在开展抗生素类指标检测方法研究,要对广州地表水中主要的抗生素进行监测。&rdquo   环保部门还将主动协调农业、卫生、药监等职能部门,从源头上加强对抗生素使用的控制。据悉,预计8~9个月能把检测方法建立起来,年内争取开展监测工作。   土壤污染   将对广州土壤进行更全面调查   记者注意到,在环保部门每年发布的环境状况公报中,讲述了空气、水、声环境、辐射环境四大问题的情况,但没有提到土壤问题。   对此,谢明表示,广州对土壤问题就一些专题项目做过调查,尤其是针对工业场地,要求对土壤情况进行严格的调查和分析,但对整个区域的土壤情况没有进行普查。下一步计划通过一些调查,更全面掌握广州土壤信息情况,未来一段时间内土壤信息公开会有比较大的进展。   国家环保部正在制定&ldquo 土十条&rdquo ,会对土壤监测、治理修复作出一些明确的要求,未来广州会按照国家和省的要求,做更多的信息公开。   流溪河保护   非备用水源地   但有保护条例   近日,市水务局提出流溪河下游不再作备用水源。对此,谢明首次进行了回应,并透露水务部门对供水水源进行调整后,环保部门会对流溪河下游的二级饮用水源保护区进行调整,这需要省政府批准,而且调整前会有公众参与环节。   谢明说:&ldquo 目前由环保局牵头正在做广州饮用水源保护区调整工作,处于方案研究和论证阶段,会按照程序推动。&rdquo 谢明表示,广州会从饮用水安全的高度出发,在本次保护区调整过程中,不只是对一些不具备备用水源功能的水源地进行调整,还有新增一些备用水源保护区,例如牛路水库,目的就是保证备用水源地的安全。   那么,未来流溪河下游不再作为饮用水源保护区后是否就面临着无法可依、建设项目可随意建设的境地呢?谢明说:&ldquo 去年6月1日开始实施的《流溪河保护条例》中对流溪河保护工作已经做了明确的保护要求。对流溪河的保护已经上升到广州的战略高度,不会因为这样的调整受到削弱。&rdquo 据悉,《流溪河保护条例》中的保护范围比二级饮用水源保护区的范围更大,但对建设项目的限制不像水源保护区那么严格。   据悉,目前环保部门已经对流溪河太平、李溪坝、汇入珠江前等3个断面及白坭河汇入珠江前1个断面开展水质连续监测,并启动了在流溪河珠江西航道汇入口、李溪、太平、良口设置4个水质自动监测站建设前期工作,预计两年内可以完成,届时,流溪河各个交接断面的水质情况在网上进行实时发布。
  • 搞地表水检测?看看行业专家是怎么说的
    p style=" text-align: justify text-indent: 2em " 社会经济的迅猛发展加之人口数目的不断增长,导致地表水污染不断加剧,水资源安全受到了严重的威胁。随着国家对环保问题关注力度的增强,水污染已受到环保部门的高度重视。今年3月底,国家生态环境部新发布了3项水质检测的国家环境保护标准的征求意见函,标准中对水中58种污染物及微生物检测方法做出了明确的规定。 /p p style=" text-align: justify text-indent: 2em " 确保水质的健康安全,做好水质检测工作至关重要。 /p p style=" text-align: justify text-indent: 2em " 鉴于此,仪器信息网( a href=" https://www.instrument.com.cn/" _src=" https://www.instrument.com.cn/" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/ /span /a )联合 strong span style=" color: rgb(255, 0, 0) " 青岛市分析测试学会 /span /strong ,将于 strong 2020年5月13日 /strong 召开“ strong 地表水检测与分析” /strong 主题网络研讨会,携手该领域的专家和一线工作者带来精彩的分享,解读水质检测标准,探讨提高水质检测水平的相关技术,力求可以为水环境的保护尽绵薄之力。 /p p style=" text-align: center text-indent: 2em " span style=" font-family: 微软雅黑 color: rgb(255, 0, 0) " strong span style=" font-family: 微软雅黑 font-size: 18px " 精彩内容抢先看↓↓↓ /span /strong /span /p p strong 一、会议日程 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/11da8250-1ca0-4731-8a64-2e25030c3d13.jpg" title=" 地表水日程.png" alt=" 地表水日程.png" / /p p strong 二、演讲嘉宾阵容 /strong /p p & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/cc857e11-22a0-46b5-997f-73ac6f70fe3c.jpg" title=" 地表水专家.png" alt=" 地表水专家.png" / /p p style=" text-align: justify " strong 三、会议报名 /strong /p p style=" text-align: center " 扫描下方二维码或点击链接: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" _src=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" style=" color: rgb(0, 112, 192) text-decoration: underline " https://www.instrument.com.cn/webinar/meetings/DBS2020/ /a /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 了解会议详情及报名& nbsp /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/02ed3bdb-87a4-4ac5-b593-14daca58d833.jpg" title=" 地表水.png" alt=" 地表水.png" / /p p style=" text-align: center " br/ /p p style=" text-align: center " strong 扫描下方二维码 /strong /p p style=" text-align: center " strong 提前进入“地表水检测”会议群 /strong /p p style=" text-align: center " strong 了解更多会议信息 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 291px height: 464px " src=" https://img1.17img.cn/17img/images/202004/uepic/89239e66-d861-435b-a75c-a6c970a2defa.jpg" title=" 微信图片_20200430134522.png" alt=" 微信图片_20200430134522.png" width=" 291" height=" 464" / /p p br/ /p p & nbsp /p
  • 终于确定:地表水国控点将以自动监测为主
    p   目前,国家地表水环境监测网共设置国控断面(点位)2767个,其中实施自动监测的点位为310个,占比为11%。随着国家地表水环境质量监测事权上收工作的开始,这些点位是否开展自动监测?手工监测是否有新模式?一系列问题受到广泛关注。 /p p   昨天,环保部地表水环境质量监测事权上收工作视频会展开,环保部副部长翟青正式宣布: /p p    span style=" color: rgb(0, 176, 240) " 一是手工监测全面推行采测分离模式。 /span 中国环境监测总站已针对样品采集发布了招标公告,总金额达2.66亿元。(详见: a href=" http://www.instrument.com.cn/news/20170817/226921.shtml" target=" _blank" title=" " 地表水国控点手工监测招标 总金额达2.66亿 /a ) /p p    span style=" color: rgb(0, 176, 240) " 二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式。 /span 这意味着,未来我国地表水自动监测仪器市场将迎来新一轮高峰,根据目前国家站的建设投资估算,总金额将近50亿元。 /p p   翟青指出,地表水监测事权上收是贯彻落实党中央、国务院生态文明建设和环境保护决策部署的重要举措,是厘清中央和地方事权、化解不当行政干预的必然要求,是提升环境监测能力、减轻基层压力的现实需求,是加强数据应用共享、满足公众和社会需求的重要保障。总体思路是:以“国家考核、国家监测、数据共享”为原则,以确保地表水监测数据质量为核心,以提升水质自动监测能力和水平为任务,以实现监测数据实时共享和信息公开为目标,统一标准规范和质控要求,国家、地方和第三方机构各负其责,分阶段、分步骤开展国家地表水监测事权上收,上收后监测数据实行联网共享并公开。 /p p   具体来说,要完成三方面的任务: /p p   一是全面推行采测分离模式。所谓采测分离,就是将考核断面水质采样和分析测试工作交由不同单位承担,改变现行属地监测模式,从机制上与利益相关方脱钩。 /p p   二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式,提升环境监测能力和自动预警水平。 /p p   三是实行数据联网共享。采测分离数据由承担检测分析任务的实验室直传中国环境监测总站,监测总站与各级环保部门实行数据共享。水质自动站数据也将统一联网并共享。同时开展远程质控和实时监督,确保数据真实、准确,并向社会实时公开发布。 /p p   翟青强调指出,上收工作时间紧、任务重,各地方、各有关单位要按照任务时间节点,倒排工期,确保上收工作顺利完成。 /p p   具体要把握好以下四个方面: /p p   一是要把握上收总体要求,本次上收范围为2050个考核断面,自今年10月起实施采测分离, span style=" color: rgb(0, 112, 192) " 2018年7月底前基本完成自动站建设 /span 。 /p p   二是要严格落实责任,各省(区、市)环境保护厅(局)、各地市人民政府及相关部门、监测总站,要加强协调联动,切实负起各自责任,积极稳妥推进上收工作。 /p p   三是要加强沟通协调,环境保护部专门成立地表水监测事权上收工作领导小组,建立工作调度与督办制度,加强监督检查,对进度缓慢、工作不力的,要现场督办,对工作成效明显的,要予以公开表扬。 /p p   四是要严格纪律要求,提高廉政意识,坚决遵守法律法规和八项规定要求,决不能触碰法律红线。加强监督,公开透明,确保干成事、不出事。 /p
  • 地表水监测仪器需求或将主要来自地方省市
    仪器信息网讯 2014年4月18日,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站工程师姚志鹏就《我国地表水和饮用水环境监测管理与技术》做了报告,报告就我国水环境监测网络体系、国控地表水环境监测网络体系、地表水环境监测网现状等进行了全面的介绍分析。 中国环境监测总站工程师姚志鹏讲解我国地表水和饮用水环境监测技术   针对较多人问到的水质自动监测站建设情况,姚志鹏透露,目前国家已在大江大河的省界断面和重要国界河流建设了149个地表水水质自动监测站,监测频次为4小时一次,监测项目为常规五参数、高锰酸盐指数、总有机碳、氨氮等。水质自动监测站需要建设费用、运行维护费用,持续监测生成的海量数据也需要处理,而相关费用大多已投入到大气监测方面,即使是水质自动监测站的一些比较旧的水质监测仪器的更新有些也因此搁置,因此目前来看,“十二五”期间,国控地表水水质自动监测站建设将会比较少,增建站点的可能性比较小,而一些地方省市的建设力度则是比较大的,如河南、江苏等,其省内包括浮标站在内的自动监测站就已经增加到二百多个甚至三百多个。   姚志鹏也为参加会议的业内人士介绍了最受关注的水质监测相关政策法规如“水十条”等的情况,他透露,《地表水环境质量标准》的修订工作或为“水十条”让路,因而其修订工作将大幅延期。《地表水和污水监测技术规范》的修订工作也在进行之中,过去的旧规范把地表水和污水的检测标准融合在一起,比较注重其科学性,但对实际应用中的可操作性考虑的不够,如果完全严格按照规范进行水质监测,很难去完成检测工作,但如果不按规范进行检测,检测数据又不具有法律效力,因此新规范的修订将更注重其实际应用,修订工作最快可能于2015年完成。
  • 《地表水自动监测技术规范》征求意见
    关于征求国家环境保护标准《地表水自动监测技术规范》(征求意见稿)意见的函 各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定国家环境保护标准《地表水自动监测技术规范》。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面修改意见返回我部科技标准司。征求意见截止时间为2010年4月30日。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1《地表水自动监测技术规范》(征求意见稿)   2.《地表水自动监测技术规范》(征求意见稿)编制说明
  • EZ1009 六价铬分析仪在地表水站的应用
    EZ1009 六价铬分析仪在地表水站的应用哈希公司背景介绍铬是环境风险较高的重金属元素之一,特别是六价铬,具有致癌致畸毒性和生物富集性。健康的自然水体中六价铬本底值非常低,一般不具有环境风险和健康风险。冶金、皮革制造等工业活动是引起水体中六价铬超标的主要原因之一,此外水体酸化也会导致土壤中六价铬成分析出,从而引起六价铬超标。桂林是以山水闻名的旅游城市,工业虽少,但地处西南酸雨带, 六价铬在部分流域依然是重点关注参数。在桂林几处地表水站安装有 EZ 系列六价铬分析仪。应用情况客户现场安装的是 EZ1009 标准版本:量程 0-500ppb、1 路进样、1 路 mA 输出,水样在前端进行沉淀预处理。现场六价铬每小时测试一次,由运维商定期更换试剂并进行校准。日常数据一般小于 10ppb,偶尔由于降雨会增加水样浊度,进而导致结果偏离日常值。水样经前端水泵打入集成样品管,由仪器自带样品经蠕动泵吸入。试剂除必需成份外还配有纯净水用于管路冲洗。目前已应用一年半的时间,运维商主要工作为定期添加试剂及更换备件。需要注意的是样品的预处理,本案例中仅采用简单的静置沉淀处理,难以解决汛期水样浊度及色度上升带来的浊度干扰,建议可采用微滤预处理以消除类似干扰。现场安装示意图如图 1 所示。▲ 图1 现场安装图▲ 图2 现场部分时间监测数据现场数据表明,该地地表水六价铬指标大多数情况满足《地表水环境质量标准》(GB3838-2002)中I类水要求,少数情况下满足II类水标准。对于水中六价铬含量的波动,EZ1009能够较为准确的进行监测反馈,这也体现了其优异的性能。总结EZ1009 六价铬分析仪能够实现地表水六价铬的在线监测需求。客户现场情况表明EZ1009 性能稳定、维护量少,能够在较短的时间内提供准确的数据。整体而言,其优异的性能得到了客户的认可。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 赛默飞:提供完整解决方案提高地表水监测质量
    p   地表水作为人类生活用水的重要来源之一,关系着人们的饮用水安全和国民经济的可持续发展。有效地检测地表水环境对于水资源的保护工作意义重大,地表水的各项检测数据可以反映出地表水的污染情况,也是环境监测的重要指标。近日生态环境部发布的四项国家环境保护标准征求意见稿中就有一项是《地表水监测技术规范》,这意味着国家可能有新的标准发布。那么,目前我国地表水的检测现状是什么样的?未来又将如何发展呢?为了帮助相关用户学习、了解地表水的分析方法与检测技术的最新进展等内容,仪器信息网特别策划了“ strong 地表水检测与分析技术进展 /strong ”专题,并邀请到赛默飞世尔科技(中国)有限公司水质分析仪器产品经理步万里就相关问题发表看法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/43c3bdde-7427-4a70-a21e-c36a5d37927e.jpg" title=" 产品经理步万里.png" alt=" 产品经理步万里.png" / /p p style=" text-align: center " 步万里:赛默飞世尔科技,水质分析仪器产品经理 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:请您介绍一下地表水检测与分析技术的相关情况、主要检测内容和行业现状。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 目前地表水检测依据的主要技术标准是《地表水环境质量标准》(GB 3838-2002),涉及的监测项目共109项。其中主要的测量参数如下表,标黄的是必测项目,蓝色的是选测项目。 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" margin-left: 10px border-collapse: collapse border: none " align=" center" tbody tr style=" height:2px" class=" firstRow" td width=" 151" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 常规五参数 /span /strong strong /strong /p /td td width=" 435" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" span style=" background-color: rgb(255, 255, 0) " strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " pH /span /strong strong span style=" background: rgb(255, 255, 0) font-size: 12px line-height: 115% font-family: 微软雅黑, sans-serif " 、电导率、溶解氧、浊度、水温 /span /strong /span strong /strong /p /td /tr tr style=" height:1px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 营养盐及有机污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 1" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:yellow background:yellow" 高锰酸盐指数 span COD sub Mn /sub /span 、化学需氧量 span COD sub Cr /sub /span 、氨氮、总磷、总氮 /span /strong strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 、 span style=" background:aqua background:aqua" 硝酸盐氮 /span /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 无机阴离子 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 氰化物、氟化物、硫化物、氯化物、硫酸根 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 重金属类 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 铜、铅、锌、镉、砷、汞、六价铬、铁、锰、钴、镍、锑 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 有机类污染物 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 石油类、阴离子表面活性剂、以及苯、卤代烃、芳香烃等 span 18 /span 种挥发性有机物 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 细菌学指标 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 粪大肠菌群 /span /strong /p /td /tr tr style=" height:2px" td width=" 160" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center text-indent:24px line-height:115%" strong span style=" font-size:12px line-height: 115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 其它 /span /strong /p /td td width=" 444" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 2" align=" center" valign=" middle" p style=" margin-top:8px margin-right:0 margin-bottom: 8px margin-left:0 text-indent:0 line-height:115%" strong span style=" font-size:12px line-height:115% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 background:aqua background:aqua" 叶绿素、藻密度 /span /strong /p /td /tr /tbody /table p   《地表水自动监测技术规范(试行)》(HJ 915-2017)则定义了地表水水质自动监测系统建设、运行和管理等方面的技术要求。 /p p   关于地表水监测行业的情况,最近几年地表水监测行业发展迅速。2015年,国务院办公厅发布了《生态环境监测网络建设方案》,明确提出坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局 2016年,环保部发布了《“十三五”国家地表水环境质量监测网设置方案》,新增1795个国控断面,调整后新国控断面(点位)共2767个,包括河流断面2424个,湖库点位343个,共监测1366条河流和139座湖库。据我了解,现在全国从事在线自动水质监测仪器生产企业约300家,有近200家的产品拥有CCEP认证。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:目前在地表水相关检测项目中哪些值得重点关注?检测的特点和难点在哪里? /strong /span /p p    strong span style=" color: rgb(255, 0, 0) " 步万里: /span /strong 目前在地表水的检测中我认为有高锰酸钾指数、COD sub Cr /sub 和重金属测量这3个项目值得重点关注。 /p p   高锰酸盐指数:市场上大部分为两种测量原理,高锰酸盐氧化-比色法和高锰酸盐氧化-电位滴定法两种,后者更接近国标法《水质-高锰酸盐指数的测定》GB 11892-89。但目前考核高锰酸盐指数数据时,使用葡萄糖还是草酸钠会得出完全不同的结果,因此急需国家对此方法做一定程度的明确规定。 /p p   COD sub Cr /sub :主要是废液的二次污染问题,目前是根据新标准HJ 35X-2019来进行废液分离,但如何判定清洗废液是否完全无害还没有统一的标准,在数次清洗后,我们发现清洗废液仍能检测出痕量重金属,因此建议此检测项目使用独立的废液回收系统。 /p p   重金属测量:由于现有技术的局限性,目前的难点是如何找到测量准确度、运维成本小的方法,且能够满足国标要求。以阳极溶出伏安法为例,用这种方法检测重金属存在维护量大,试剂有毒有害,运行不稳定等技术成熟度的问题。 /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:贵公司在地表水检测方面可以提供哪些产品组合和解决方案?相比于同类产品,优势在哪里? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 赛默飞世尔科技作为科学服务领域的世界领导者,始终以帮助客户“使世界更健康、更清洁、更安全”为使命。在地表水检测方面赛默飞有多款仪器可以满足需求,并且可以提供完整的地表水监测方案: /p p style=" text-indent: 2em " strong 6800微型水质在线自动监测系统 /strong ,占地仅需1平米,可测量五参数和高锰酸盐指数、氨氮、COD sub Cr /sub 、总铜、总镍、六价铬、总磷、总氮、氰化物等参数。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/965278ba-7a12-41c8-b4a6-7ad901e50ec8.jpg" title=" 6800_300.jpg" alt=" 6800_300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C395497.htm" target=" _blank" strong 6800微型水质在线自动监测系统 /strong /a /p p style=" text-indent: 2em " strong 3106 COD化学需氧量自动监测仪 /strong ,可自动切换量程,无需重复校准 IP66防护等级。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a055647e-b9a8-4bfc-bb57-8fc0b7126529.jpg" title=" 在线 Orion 3106 COD.jpg" alt=" 在线 Orion 3106 COD.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C235904.htm" target=" _blank" strong 3106 COD化学需氧量自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3131 高锰酸盐指数自动监测仪 /strong ,氧化还原电位滴定法,不受浊度计色度的影响 油浴加热,安全、均匀 双高精度注射泵,1/10000精度。 /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/65ba7005-38d0-4a7c-a430-5928b8bd8808.jpg" title=" 3131.png" alt=" 3131.png" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414758.htm" target=" _blank" strong 3131 高锰酸盐指数自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 3150 总磷/总氮水质在线自动监测仪 /strong ,可自动切换量程 可灵活配置总磷、总氮单参数或二合一 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9ee1662-9b8a-44fc-afa4-18ece49c0e3a.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C396581.htm" target=" _blank" strong 3150 总磷/总氮水质在线自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 2240 氨氮自动监测仪 /strong ,氨气敏电极法测量原理,不受水样浊度和色度的影响 测量范围最高可达1000mg/L 采用标准加入法自动进行校正,适用于低浓度或背景复杂样品。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2f915c3d-814c-4dfe-85c6-f718a9f91fe3.jpg" title=" 2240.jpg" alt=" 2240.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C220173.htm" target=" _blank" strong 2240 氨氮自动监测仪 /strong /a /p p style=" text-indent: 2em " strong 8010cX 氨氮自动监测仪 /strong ,水杨酸分光光度法原理 可自动切换量程,且无需新校准 高精度注射泵保障了高精度测量 IP65防护等级。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/debbbd89-2cde-449d-9b63-29ef3bc15c4a.jpg" title=" 8010.jpg" alt=" 8010.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C340805.htm" target=" _blank" span & nbsp 8010cX 氨氮自动监测仪 /span /a /p p style=" text-indent: 2em " strong 3300重金属水质在线自动监测仪 /strong ,可自动切换量程 定量准确,不受样品色度、浊度干扰。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/5c37245d-5a68-429e-9e67-ed6b06305048.jpg" title=" 3150.jpg" alt=" 3150.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C414760.htm" target=" _blank" strong span 3300重金属水质在线自动监测仪 /span /strong /a /p p style=" text-indent: 2em " strong MPC 20在线多参数通用控制器 /strong ,可同时测量常规五参数、水中油、叶绿素、蓝绿藻、UV全光谱等参数 IP65防护等级。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a90a8649-20d0-4cd2-a92c-1a45472a895f.jpg" title=" MPC 20 正面.jpg" alt=" MPC 20 正面.jpg" / /p p style=" text-align: center " img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/77478974-1f45-463e-9712-de3175b53ce6.jpg" title=" MPC 20 下.jpg" / /p p style=" text-align: center " strong span MPC 20在线多参数通用控制器 /span /strong /p p   span style=" color: rgb(0, 112, 192) " strong  仪器信息网:生态环境部在6月1日发布了《地表水监测技术规范(征求意见稿)》,原《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及 /strong /span span style=" color: rgb(0, 112, 192) " strong 地表水监测的部分将会废止,您觉得新标准实施后将会带来怎样的变化?请问从厂商角度会怎么应对呢? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 此次《征求意见稿》内容更新了地表水监测项目分析方法、完善了监测数据处理、质量控制与质量保证,这些对仪器的测量性能和稳定性都提出了更高的要求,这些都会促进厂商改进仪器的设计,以满足将来新的现场要求。 /p p    span style=" color: rgb(0, 112, 192) " strong 仪器信息网:您觉得在地表水检测与分析技术方面,未来的发展趋势有哪些?会出现哪些新的需求? /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 步万里: /strong /span 我认为地表水自动监测站和分析仪器未来的发展趋势是主机更加紧凑、小型化 试剂使用量减少、维护量减少 为了应对上面提到的新法规带来的变化,未来相关仪器会增加自动质控功能、废液分离功能等。 /p p   随着技术和市场的发展,将会涌现更多创新技术,以提高分析仪器/系统的智能化、网络化、无人化。检测方面可能会新增测量参数,如水中油、叶绿素、藻密度等。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 小结: 此次仪器信息网就地表水检测与分析技术方面的问题咨询了步万里经理,他和我们分享了在地表水检测中需要关注的检测项目,以及《地表水监测技术规范(征求意见稿)》将给仪器厂商和市场带来的变化。面对标准上对测量性能和稳定性要求的提升,厂商们也在积极跟进,升级相关检测仪器的性能来满足地表水检测的需要。他还对地表水检测技术的发展做了展望,预测随着环境的变化以及对地表水质要求的提高,未来在检测项目中可能会出现新增的测量参数。 /span /p
  • 河南药厂排污致地表水含68种抗生素
    据中国之声《央广新闻》报道,近日,有报道称河南南阳普康药业有限公司,距南阳镇平县城郊乡大刘营村不到一千米。药厂污水管道直接埋进地下,污水五颜六色,刮风三里外能闻见酸味,地表水经过检测发现68种抗生素。村民被气味熏得不敢出门,地下水烧开像面糊,孕妇只好离村待产。   据了解,生活在河南省南阳市镇平县城郊乡大刘营村的村民们,平日里几乎家家户户都大门紧闭,就因为距离村子不到一千米的药厂整日排放污水,刺鼻的气味熏得村民们都不敢出门。当记者问及村民的饮水时,村民们也是纷纷表示:村口流淌了千百年的河水,现在也不敢碰了。因为现在一碰这个河水,身上就会出现红疹,异痒难耐,更别说喝了。有村民用锅将水烧开后,周围出现了一圈白色物体,将烧开的水晃一下,水就彻底变浑浊甚至就跟面糊一样。大刘营村的村民还说:为了怕污染影响孩子,孕妇也纷纷离村待产。   多年从事环境保护研究工作的国务院发展研究中心资源与环境研究所的副所长常纪文说:&ldquo 制药企业的污染应该说是几十年来都是存在的,特别是河南、河北,还有其他缺水的地方,污染物渗透到地下之后,对地下的污染将是长期的,特别是抗生素的污染会影响到生态平衡,对身体健康和生物的健康产生一些可能是长期的影响。&rdquo 常纪文还表示说:以前有一个现象叫做违法成本低,守法成本高。但随着新环保法的实施,违法成本将会变得非常高,如果地方环保部门真正的严格执法,落到实处,相信这种偷排的现象也会有所减少。
  • 聚光环境 | 水质监测再升级,全覆盖地表水“X”指标
    政策背景《“十四五”国家地表水监测及评价方案(试行)》监测指标为“9+X”,其中:“9”为基本指标:水温、pH、溶解氧、电导率、浊度、高锰酸盐指数、氨氮、总磷、总氮(湖库增测叶绿素a、透明度等指标)。“X”为特征指标:《地表水环境质量标准》(GB3838-2002)表1基本项目中,除9项基本指标外,上一年及当年出现过的超过III类标准限值的指标;若断面考核目标为Ⅰ或Ⅱ类,则为超过Ⅰ或Ⅱ类标准限值的指标。特征指标结合水污染防治工作需求动态调整。相关标准《地表水环境质量标准》(GB3838-2002)表1解决方案聚光科技不断扩充和完善产品体系,经过多年的沉淀,已拥有多个技术平台,包括:原子荧光分析技术、非色散红外分析技术、紫外-可见光全波长吸收光谱技术、酶底物法分析技术、发光细菌法技术、阳极溶出伏安法技术、顺序注射进样技术、间断分析技术、环形注射流路分析技术等。基于这些技术平台开发出数十款水质在线分析仪器,广泛应用于地表水、饮用水、地下水、海洋水、工业过程水、污染源废水等领域。针对《“十四五”国家地表水监测及评价方案(试行)》的监测指标要求,聚光科技应对“X”特征指标具备完整的监测产品体系,满足地表水环境质量标准的要求。特征因子监测产品体系
  • 生态环境部:1-3月全国地表水水质优良断面比例为89.1%
    据生态环境部微信公众号消息,生态环境部23日公布2023年1-3月全国地表水环境质量状况。1-3月,全国地表水水质优良(Ⅰ—Ⅲ类)断面比例为89.1%,同比上升0.9个百分点;劣Ⅴ类断面比例为0.6%,同比下降0.4个百分点。主要污染指标为化学需氧量、总磷和高锰酸盐指数。1-3月全国地表水水质类别比例。 主要江河水质状况 1-3月,长江、黄河、珠江、松花江、淮河、海河、辽河等七大流域及西南诸河、西北诸河和浙闽片河流水质优良(Ⅰ—Ⅲ类)断面比例为90.3%,同比上升0.6个百分点;劣Ⅴ类断面比例为0.4%,同比下降0.4个百分点。主要污染指标为化学需氧量、五日生化需氧量和氨氮。其中,西南诸河、西北诸河、长江流域、浙闽片河流和珠江流域水质为优;黄河、辽河、松花江、海河和淮河流域水质良好。1—3月七大流域和西南、西北诸河及浙闽片河流水质类别比例重点湖(库)水质状况及营养状态 1-3月,监测的195个重点湖(库)中,水质优良(Ⅰ-Ⅲ类)湖库个数占比81.0%,同比上升2.9个百分点;劣Ⅴ类水质湖库个数占比4.6%,同比下降0.1个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。186个监测营养状态的湖(库)中,中度富营养的4个,占2.2%;轻度富营养的34个,占18.3%;其余湖(库)为中营养或贫营养状态。其中,太湖为轻度污染、轻度富营养,主要污染指标为总磷;巢湖水质良好、轻度富营养;滇池为轻度污染、轻度富营养,主要污染指标为化学需氧量;洱海水质为优、中营养;丹江口水库水质为优、贫营养;白洋淀水质良好、中营养。1—3月6个湖(库)水质及营养状态1—3月6个湖(库)水质及营养状态 地级及以上城市国家地表水考核断面排名 1-3月,全国地级及以上城市中,丽水、张掖和崇左等30个城市国家地表水考核断面水环境质量相对较好(从第1名至第30名),白城、五家渠和开封等30个城市国家地表水考核断面水环境质量相对较差(从倒数第1名至倒数第30名)。 白城、那曲和运城等30个城市国家地表水考核断面水环境质量变化情况相对较好(从第1名至第30名),朔州、咸阳和鄂州等30个城市国家地表水考核断面水环境质量变化情况相对较差(从倒数第1名至倒数第30名)。2023年1—3月国家地表水考核断面水环境质量状况排名前30位城市及所在水体2023年1—3月国家地表水考核断面水环境质量状况排名后30位城市及所在水体注:表中带*水体水质达到《地表水环境质量标准》(GB3838—2002)Ⅰ类或Ⅱ类。2023年1—3月国家地表水考核断面水环境质量变化情况排名前30位城市及所在水体注:负值表示地表水环境质量同比变好,正值表示同比变差。2023年1—3月国家地表水考核断面水环境质量变化情况排名后30位城市及所在水体注:表中带*水体水质达到《地表水环境质量标准》(GB3838—2002)Ⅰ类或Ⅱ类。
  • 1600余万!谱尼、华测等中标国家地表水监测监督检查技术服务项目
    一、项目编号:2241STC61324(招标文件编号:2241STC61324/1-4)二、项目名称:国家地表水监测监督检查技术服务三、中标(成交)信息供应商名称:谱尼测试集团股份有限公司供应商地址:北京市海淀区锦带路66号院1号楼5层101中标(成交)金额:429.5660000(万元) 供应商名称:华测检测认证集团股份有限公司供应商地址:深圳市宝安区新安街道兴东社区华测检测大楼1号楼101中标(成交)金额:414.7530000(万元) 供应商名称:华测检测认证集团股份有限公司供应商地址:深圳市宝安区新安街道兴东社区华测检测大楼1号楼101中标(成交)金额:411.7965000(万元) 供应商名称:深圳市绿恩环保技术有限公司供应商地址:深圳市南山区西丽街道新围社区九祥岭工业区第九栋3楼整层中标(成交)金额:387.9320000(万元)四、主要标的信息序号 供应商名称 服务名称 服务范围 服务要求 服务时间 服务标准1 谱尼测试集团股份有限公司 国家地表水监测监督检查技术服务 国控水站459个、国控断面815个,涉及省份包括天津市、河北省、北京市、安徽省、江苏省、山东省、上海市。 详见招标文件 2022年5月至2023年4月 详见招标文件序号 供应商名称 服务名称 服务范围 服务要求 服务时间 服务标准2 华测检测认证集团股份有限公司 国家地表水监测监督检查技术服务 国控水站451个、国控断面842个,涉及省份包括西藏自治区、青海省、四川省、云南省、贵州省、重庆市、湖南省、广西壮族自治区。 详见招标文件 2022年5月至2023年4月 详见招标文件序号 供应商名称 服务名称 服务范围 服务要求 服务时间 服务标准3 华测检测认证集团股份有限公司 国家地表水监测监督检查技术服务 国控水站490个、国控断面765个,涉及省份包括湖北省、浙江省、江西省、福建省、广东省、海南省。 详见招标文件 2022年5月至2023年4月 详见招标文件序号 供应商名称 服务名称 服务范围 服务要求 服务时间 服务标准4 深圳市绿恩环保技术有限公司 国家地表水监测监督检查技术服务 国控水站437个、国控断面918个,涉及省份包括黑龙江省、吉林省、辽宁省、内蒙古自治区、山西省、河南省、甘肃省、宁夏回族自治区、陕西省、新疆维吾尔自治区。 详见招标文件 2022年5月至2023年4月 详见招标文件
  • 环保部今起公布地表水水质实时监测数据
    国家地表水水质自动监测站是我国地表水环境监测网络的重要组成部分。自1999年至今,已在主要河流的省界断面、入海口、支流汇入口以及重要湖区及国界河流上,建设了100个水质自动监测站,初步形成了覆盖我国主要水体的水质自动监测网络。多年来,在地表水监测预警、跨界污染纠纷处理、省界水质目标考核、保障人民群众用水安全方面,水质自动监测站发挥了重要作用。   为进一步深化环境信息公开工作,充分发挥国家地表水水质自动监测站在环境管理、水污染防治方面的实时监控与预警监视作用,落实省界目标责任制,满足人民群众的环境知情权,积极为环境保护优化经济发展和构建和谐社会提供基础性服务,环境保护部定于2009年7月1日起向社会公开发布国家地表水水质自动监测站的实时监测数据。   本次发布的国家地表水水质自动监测站的实时监测数据,主要指标包括:pH、溶解氧、CODMN、氨氮、TOC。监测频次为每四小时一次,每天动态发布六次监测数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制