当前位置: 仪器信息网 > 行业主题 > >

不同温度下标准

仪器信息网不同温度下标准专题为您提供2024年最新不同温度下标准价格报价、厂家品牌的相关信息, 包括不同温度下标准参数、型号等,不管是国产,还是进口品牌的不同温度下标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合不同温度下标准相关的耗材配件、试剂标物,还有不同温度下标准相关的最新资讯、资料,以及不同温度下标准相关的解决方案。

不同温度下标准相关的论坛

  • 【讨论】测不同温度下样品的比重,那空白水的温度是多少度?

    平时我们在测比重时,一般温度是20度或25度,样品和空白的温度是一样的。现在我需要测一个样品在不同温度下的比重,例如:40、45、50、55、60、65、70度,那相比的空白(纯水)是该在多少温度下的值呢?也是25度吗?还是也要在40、45、50、55、60、65、70度的值。很困惑,盼解答,最好附上参考依据,各类标准说明什么的。

  • 对于任何25度时PH值相同的溶液,在不同温度下PH值都相同吗?

    不同温度时各种标准缓冲溶液的pH值如下表所示:温度℃草酸盐酒石酸盐邻苯二甲酸盐磷酸盐硼酸盐氢氧化钙01.67—4.006.989.4613.4251.67—4.006.959.4013.21101.67—4.006.929.3313.00151.67—4.006.909.2712.81201.68—4.006.889.2212.63251.683.564.016.869.1812.45301.693.554.016.859.1412.30351.693.554.026.849.1012.14401.693.554.046.849.0611.98对于某任一被测溶液,如果在25聂氏度时,PH值与氢氧化钙缓冲液一样为PH12.45,当该某任一被测溶液为5聂氏度时,其PH值也是与氢氧化钙标准缓冲液一样PH13.21,还是一般不会是PH13.21?

  • Absorptometer C型炭黑吸油计吸油仪不同温度下检测白炭黑所产生的变化

    Absorptometer C型炭黑吸油计吸油仪不同温度下检测白炭黑所产生的变化

    专业的炭黑吸油值检测需要专业的技术人员来操作,在不同的环境下,产生的结果也会出现变化,如:温度,空气湿度等自然条件往往成为了限制实验结果的唯一标准。那么,在标准炭黑吸油计检测仪前面,不同温度下的炭黑吸油值,又会出现什么样的变化呢?今天,我们以稳定为标准,在其他环境条件特定下,进行白炭黑吸油值检测实验,看看白炭黑在不同稳定下回出现什么样的变化!1、[b]不同温度下白炭黑的等温吸月兑附曲线[/b]t=90℃图1不同温度下白炭黑5000倍SEM观测图由图1可以看出,随着温度升高,得到的白炭黑产品结构更加疏松,其平均粒径较小。高温使得反应器内溶液的黏度降低,分子间布朗运动加剧,此时刚生成的粒子很难聚集成为较大的聚集体,因此制得的产品粒径较小。当反应温度低时,刚生成的粒子易动性较差,容易结合成为较大的聚集体,进而得到的产品粒径偏大。2.2温度对白炭黑比表面积及孔结构的影响氮气吸附法测得的比表面积是指单位质量物料所具有的总面积,是评价白炭黑的重要指标之一,根据BET理论进而可以得到比表面积、孔体积、孔径等指标。[img=炭黑吸油计不同温度下白炭黑的等温吸月兑附曲线,256,156]https://ng1.17img.cn/bbsfiles/images/2019/03/201903291040514872_9822_3557318_3.jpg!w256x156.jpg[/img]不同温度下白炭黑试样的BJH测试结果见表2。表2不同温度下白炭黑的比表面积、孔径及孔体积温度/℃30507090比表面积/(m2g-1)354.321326.874114.48442.381平均孔径/nm23.873320.607015.784115.1388孔体积/(mLg-1)2.1151.6840.4330.167由表2可以看出,随着温度的升高,比表面积由354.321m2/g降低至42.381m2/g,孔体积明显减小,孔径也略有减小,对比前面提到的温度对粒径和吸油值的影响,可以看出粒径减小,吸油值增加,但其比表面积减小,吸油值与比表面积呈负相关性。这是由于测定吸油值所用到的邻苯二甲酸二丁酯渗透不到孔道内部,仅包裹在颗粒表面,其仅与颗粒的外表面积相关,因此粒径越小,颗粒外表面积越大。2、[b]不同温度下白炭黑的孔径引J体积分布曲线[/b]t=90℃图1不同温度下白炭黑5000倍SEM观测图由图1可以看出,随着温度升高,得到的白炭黑产品结构更加疏松,其平均粒径较小。高温使得反应器内溶液的黏度降低,分子间布朗运动加剧,此时刚生成的粒子很难聚集成为较大的聚集体,因此制得的产品粒径较小。当反应温度低时,刚生成的粒子易动性较差,容易结合成为较大的聚集体,进而得到的产品粒径偏大。2.2温度对白炭黑比表面积及孔结构的影响氮气吸附法测得的比表面积是指单位质量物料所具有的总面积,是评价白炭黑的重要指标之一,根据BET理论进而可以得到比表面积、孔体积、孔径等指标。[img=炭黑吸油计不同温度下白炭黑的孔径引J体积分布曲线,256,135]https://ng1.17img.cn/bbsfiles/images/2019/03/201903291041428162_7615_3557318_3.jpg!w256x135.jpg[/img]不同温度下白炭黑试样的BJH测试结果见表2。表2不同温度下白炭黑的比表面积、孔径及孔体积温度/℃30507090比表面积/(m2g-1)354.321326.874114.48442.381平均孔径/nm23.873320.607015.784115.1388孔体积/(mLg-1)2.1151.6840.4330.167由表2可以看出,随着温度的升高,比表面积由354.321m2/g降低至42.381m2/g,孔体积明显减小,孔径也略有减小,对比前面提到的温度对粒径和吸油值的影响,可以看出粒径减小,吸油值增加,但其比表面积减小,吸油值与比表面积呈负相关性。这是由于测定吸油值所用到的邻苯二甲酸二丁酯渗透不到孔道内部,仅包裹在颗粒表面,其仅与颗粒的外表面积相关,因此粒径越小,颗粒外表面积越大,3、[b]不同温度下白炭黑的FTIF谱图[/b]t/℃图4不同温度下白炭黑的热重分析图由图4可以看出,四个不同温度下白炭黑产品热重分析的质量损失分别为17.86%,13.32%,9.73%和8.01%。造成这些质量损失是吸附水分脱离与Si—OH受热分解引起的。LTZhurav-lev[12]得出的结论是表面羟基开始脱除的温度约为180℃,因此可将热重区间分为两个阶段:第一阶段(30~180℃)为表面及孔道内部物理吸附水脱除阶段,第二阶段(180~1200℃)为Si—OH受热分解阶段。四个样品Si—OH受热分解阶段的质量损失分别为13.81%、10.07%、7.91%和6.46%。因此可以看出,随着温度的提高,白炭黑表面羟基的含量逐渐减少。[img=炭黑吸油计不同温度下白炭黑的FTIF谱图,256,153]https://ng1.17img.cn/bbsfiles/images/2019/03/201903291042103782_5387_3557318_3.jpg!w256x153.jpg[/img]不同温度下所得产物的FTIR图见图5。σ/cm-1图5不同温度下白炭黑的FTIR谱图由图5可以看出,红外光谱曲线上出现了三个明显的特征峰:800、1102和472cm-1,分别是Si—OH的伸缩振动峰,硅氧烷键不对称振动峰和Si—O—Si氧桥振动峰。此外,958cm-1处是Si—O—(H…H2O)氧桥弯曲振动峰,3630和1635cm-1处是粉末骨架处微孔和颗粒之间毛细作用吸附的自由水分子特征峰。比较四条红外曲线可以看出随着反应温度的升高,800cm-1的Si—OH伸缩振动峰和3630及1635cm-1的自由水分子特征峰的峰强度趋于减弱,即随着温度升高其Si—OH密度逐渐减少,藏于骨架处及颗粒间的水分4、[b]不同温度下白炭黑的热重分析图[/b]t/℃图4不同温度下白炭黑的热重分析图由图4可以看出,四个不同温度下白炭黑产品热重分析的质量损失分别为17.86%,13.32%,9.73%和8.01%。造成这些质量损失是吸附水分脱离与Si—OH受热分解引起的。LTZhurav-lev[12]得出的结论是表面羟基开始脱除的温度约为180℃,因此可将热重区间分为两个阶段:第一阶段(30~180℃)为表面及孔道内部物理吸附水脱除阶段,第二阶段(180~1200℃)为Si—OH受热分解阶段。[img=炭黑吸油计不同温度下白炭黑的热重分析图,256,180]https://ng1.17img.cn/bbsfiles/images/2019/03/201903291042422522_2828_3557318_3.jpg!w256x180.jpg[/img]四个样品Si—OH受热分解阶段的质量损失分别为13.81%、10.07%、7.91%和6.46%。因此可以看出,随着温度的提高,白炭黑表面羟基的含量逐渐减少。不同温度下所得产物的FTIR图见图5。σ/cm-1图5不同温度下白炭黑的FTIR谱图由图5可以看出,红外光谱曲线上出现了三个明显的特征峰:800、1102和472cm-1,分别是Si—OH的伸缩振动峰,硅氧烷键不对称振动峰和Si—O—Si氧桥振动峰。此外,958cm-1处是Si—O—(H…H2O)氧桥弯曲振动峰,3630和1635cm-1处是粉末骨架处微孔和颗粒之间毛细作用吸附的自由水分子特征峰。比较四条红外曲线可以看出随着反应温度的升高,800cm-1的Si—OH伸缩振动峰和3630及1635cm-1的自由水分子特征峰的峰强度趋于减弱,即随着温度升高其Si—OH密度逐渐减少,藏于骨架处及颗粒间的水分为了更加了解相关炭黑吸油值检测知识,北京市冠远科技有限公司利用[url=http://www.crowningtech.com/nav/33.html][b]德国brabender仪器公司Absorptometer C型炭黑吸油计[/b][/url]对整体白炭黑在不同温度下所呈现出的不同现状进行分析,形成最终说明文件,帮助更多人了解在实验过程中,不同的因素条件,不同的环境影响,都可能让整个实验的测试毁于一旦,所以,白炭黑吸油值检测对于实验室的环境计环境条件的优化尤为重要。联系电话:13691365936联系人:刘先生地址:北京市朝阳区南沙滩35号科华商务大厦516室

  • 【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    摘要:针对某种牌号导热脂这种热界面材料,采用瞬态平面热源法(HOTDISK法)测量了这种材料在25℃~150℃范围内导热系数变化,由此了解导热脂在不同温度下的导热性能,为这种材料的工程应用提供参考。1. 测试背景 导热脂作为一类典型的热界面材料(TIM—ThermalInterfaceMaterials)长期以来在各个行业中被用作传热材料,具有诸多优势,包括高低温稳定性、本身固有的低离子含量及很高的纯度。而且,由于其可与基板实现优异的表面接触和无孔隙界面,因而它们常常是各种传热材料的首选。导热脂在化学性质上为惰性,可在-45℃至+200℃的温度范围内保持较稳定的物理性能,这使其成为极少数能够承受各种恶劣运行环境的材料之一。由于模量很低,导热脂具有足够的柔性,可适应不同的热膨胀系数(CTE),传递到部件或基板的应力达到最小。导热脂有多种形式: (1)灌封剂和凝胶形式导热脂 (2)粘合剂形式导热脂 (3)填隙形式导热脂 导热脂这类热界面材料在冷却散热中应用广泛,各种厂家和型号的产品也是众多,但很少看到过厂家提供导热脂在不同温度下的导热系数数据,而不同温度下的导热系数数据是产品性能评价、冷却散热系统设计和工程应用选型的重要依据。 本测试试验针对导热脂这类材料,采用瞬态平面热源法,在不同温度下测量导热脂的导热系数,由此给出导热脂随温度变化的规律,为导热脂产品的评价和应用提供参考。2. 测试方法和测试仪器2.1. 测试方法 对于导热脂导热系数的测量,我们选择采用瞬态平面热源法。瞬态平面热源法作为一种绝对测量方法,在理论上可以达到很高的测量精度,特别适合导热脂这类热界面材料的测试。采用瞬态平面热源法测量导热脂的导热系数,主要体现出以下几方面的优势: (1)标准测试方法:瞬态平面热源法是一种标准测试方法,具有相应的测试标准方法,及ISO/DIS 22007-2.2 Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (Hot Disk) method。具有标准方法有利于测试的准确性、可延续性和可对比性。 (2)测试精度高:在瞬态平面热源法标准测试方法中,明确把瞬态平面热源法归结到塑料材料,塑料类材料的一般特征是热导率在0.1~10 W/mK 范围并呈现各项同性,而瞬态平面热源法对塑料类材料的测试可以达到很高的精度。关键的是在这个导热系数测试范围内,有各种标准参考材料来对测量精度进行校准。 (3)试样制造的方便性:导热脂类热界面材料在工程上的应用可能会呈现出油脂状、膏脂状和固体状形式,特别是对于脂状的导热脂,可以很方便的将探测器插入导热脂试样中进行直接测量,大大降低了制样难度和测试难度。2.2. 测试仪器 导热脂导热系数变温测试采用了上海依阳公司出品的TC-4010型号瞬态平面热源法导热系数测试系统,如图 2.1所示。此系统采用冷热循环油浴增压泵流出的硅油作为加热介质流经装载有试样的腔体壁,整个腔体放置在厚实的隔热材料套中,使得被测试样可以精确的按照循环油浴温度进行恒温控制,充分利用了循环油浴±0.05℃的高精度温度控制功能保证试样温度均匀性和稳定性。通过计算机控制循环油浴的设定温度来自动实现不同温度下的试样热导率测量,一般温度变化范围为-40℃~250℃。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141137_550100_3384_3.jpg图 2.1 瞬态平面热源法导热系数测试系统http://ng1.17img.cn/bbsfiles/images/2015/06/201506141133_550098_3384_3.png图 2.2 测试探头和导热脂试样的安装 在TC-4010型号瞬态平面热源法导热系数测试系统配置有专门的试样加载装置,此装置可以从加热腔体内抽取出放置在专门固定架上进行试样安装操作,如图 2.2所示。试样安装时取出独立的试样盒进行导热脂导填充,然后再插入探测器。 被测试样为某公司的导热脂,通过填充和挤压方式将导热脂试样装入试样盒内并进行测量。3. 测试结果和讨论 在25℃~150℃温度范围内对导热脂导热系数进行了测量,测试温度点分别为25、50、75、100、125和150℃六个温度点,测量过程可以分为两个步骤: (1)在某一温度恒定点上多次重复测量 由于导热脂在不同温度下的导热系数可能不同,所以测试过程中测试参数,如加热功率、加热时间,可能就需要进行调整以获得最好的测试结果。这样就需要在试样温度达到稳定后,对测试参数进行选择和试验,找到合适的测试参数,然后再进行此温度下的多次重复性测量。测试完成后,控制油浴升高温度并恒定,进行下一个温度点下的导热系数测量。 导热脂的导热系数一般比较大,加热功率选择也比较大(300mW和500mW两档),而加热时间则较小(10s和20s两档),两次测量间隔时间选择40分钟,以保证每次测量结束后试样温度恢复到稳定状态。 (2)整个温度区间内逐个温度点下导热系数全过程自动测量 因为TC-4010型号瞬态平面热源法导热系数测试系统可以进行全自动连续测量,即可以自动控制油浴的自动恒温和升温,并自动进行任意设定时间和任意温度下的导热系数测量。这样就可以自动进行整个台阶式升温过程中的导热系数连续测量,即自动控制油浴达到某一恒定温度,自动进行导热系数重复测量,然后再控制油浴恒定在另一个恒定温度上进行此温度下的导热系数自动测量。由此,通过一次试验可以完成整个温度变化过程中的导热系数测量,大大减少了人工操作,可以在几天甚至几周时间内连续进行测量,此特点尤其适合用对材料在各种老化过程中的导热系数变化进行监控。 由于在不同温度下导热系数可能不同,测试参数也需要进行调整,因此在进行这种全过程自动测量前,一定要进行初步的试验,摸清不同温度下的试验参数,然后在全过程控制程序中输入不同的试验参数再进行全过程的自动测量,这样可以有效保证测量精度。 如图 3.1所示为六个温度点下导热脂导热系数测量结果,在每个温度点至少进行了20次的重复性测量。图 3.2为导热脂导热系数测量结果随温度的变化情况。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550104_3384_3.png图 3.1 导热脂不同温度下多次重复性测量结果http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550105_3384_3.png图 3.2 不同温度下导热脂的导热系数 从测试结果可以看出,随着温度的升高,导热脂的导热系数呈现出近乎线性的降低。当温度高于125℃后,导热脂导热系数有较大的突变,在150℃时的导热系数相对于常温导热系数几乎下降了三分之一。4. 结论 通过以上对导热脂在不同温度下的导热系数测量,可以发现导热脂的导热系数会随温度上升发生明显的改变,温度越高,导热系数越小。特别是在125℃以上,导热脂导热系数会发生较大的改变。 对于其他型号的导热脂也进行了相应的测试,基本都是这种规律。 这种随温度上升导热系数降低

  • pH有证标准样品质控在现场分析时不同温度下的真值如何确定

    各位老师,依据HJ1147-2020进行现场pH检测中,遇到了一个问题,首先pH温度补偿只是将斜率补偿至当前温度下,检测的pH值也是溶液当前温度下的值,在标准中要求每连续测定20或1个批次的样品就需要分析一个有证标准样品或标准物质,在现场分析时大部分都没有条件将标准样品恒温至25℃,也就是不同的温度,标准样品的pH值并不一样,但一般标准样品证书中提供的值只有25℃下的值,所以在现场分析中,怎么确定当前温度下该标准物质的真值呢?毕竟没有真值,就无法确定是否在其保证值范围

  • 不同温度下测量溶液紫外怎么测

    [color=#444444]求助,想看一下自己做的有机太阳能电池材料的温度依赖性聚集特征,通过测量不同温度下的紫外可见光谱,请问应该怎么做?是直接把溶液加热到相应的温度立刻测试,还是?[/color]

  • 对PH计校准时,标准缓冲液不同温度下的PH值选择问题

    雷磁PHS-3C型ph计,自带温度调整补偿;用的E-201f复合电极;购买的标准缓冲粉末,上面给出的标准ph值,是随温度不同而变化的,以硼砂为例,25度时ph为9.18,但10度时为9.23。。现在问题是:假设我配置出的标准缓冲温度为10度,也将仪器上的温度补偿调成10,那么,我在校准时,是按9.18校还是按9.23校呢?[img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012241054335893_3785_2190215_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/12/202012241054333781_163_2190215_3.png[/img]

  • JJF1101-2019建标扩项湿度溯源是否考虑不同温度下问题

    阻容性湿度传感器连接采集温湿度记录仪,在建标扩项时,温度溯源较为容易,但是湿度溯源,考虑到计量院规范要求,一般在20或者25摄氏度给溯源不同温度,对于建标扩项开展1101-2019相关项目,湿度传递一般是在5-85℃下对10-95%RH开展计量工作,故是否必须溯源5℃和85%RH上下限不同温度下湿度,并动态根据传递要求修正传感器?大家实验室评审是否严格这样考核?欢迎指点,讨论和分享,谢谢!

  • Tenax TA 对丙酮,异丙醇在不同温度下的安全采样体积数据?

    热脱附的冷肼填料是Tenax TA (应该是20mg)推荐的一级解吸条件:样品管脱附温度300℃,脱附流量40ml/min 脱附10min,冷肼5℃。这样算起来冷肼Tenax TA在5℃通过的流量有400ml丙酮,异丙醇是否穿透了?所以想看看Tenax TA 对丙酮,异丙醇在不同温度下的安全采样体积数据或者上哪里可以查?

  • 标准物质配制?仪器环境温度设置?

    各位老师,标准品(液体)一般在多少度下配制?配制有没有哪些注意事项?此外,仪器工作环境温度设置多少比较合适,不同温度对进样影响大不大?例如 样品在不同温度下进样针吸取1uL,但样品溶剂在不同温度下体积大小不一样,因而样品吸取量不一样而对实验结果有影响呢?

  • 【原创大赛】不同温度下ZIF-67碳化物制备及表征

    【原创大赛】不同温度下ZIF-67碳化物制备及表征

    不同温度下ZIF-67碳化物制备及表征1.1基于ZIF-67的碳化物制备 将ZIF-67,研磨至微小粉末状;称取一定量的ZIF-67装入小瓷盅内,在通入N2的条件下,在高温炉内以10 ℃/min的速率升温至一定温度,并维持5 h,自然冷却后取出,研磨。 本实验将ZIF-67分别在700、800、900、1000、1100 ℃温度下进行直接碳化,共制得五个样品。下文用(ZIF-67-700,ZIF-67-800,ZIF-67-900,ZIF-67-1000,ZIF-67-1100表示)图1.1是基于ZIF-67的碳化物制备流程图:http://ng1.17img.cn/bbsfiles/images/2016/08/201608291032_607212_2984502_3.png2结构表征2.1 XRD 图2.1为ZIF-67分别在700、800、900、1000、1100℃下的碳化物的XRD谱图对比图。如图所示,不同温度下进行碳化,所得ZIF-67碳化物的晶型结构基本一致。在44°、51 °、76 °附近,所有温度下的ZIF-67碳化物都有三个较为明显的峰,通过与Co的XRD谱图进行对比,峰值的强度和出现位置基本相吻合,可能含有金属Co;另外,在26°附近,也存在明显的峰,通过与C的XRD谱图进行对比,峰值的强度和出现位置基本相吻合,可能含有碳。所以得到的产物可能是负载Co的纳米多孔碳,但还需要进一部验证。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291033_607213_2984502_3.png3电化学测试3.1 电极的制备与工作环境 本实验选择Ag/AgCl电极作为参比电极 (武汉高仕睿联有限公司),其电势相对于标准氢电极 (NHE)为0.197V。选择碳棒为辅助电极。采用负载催化剂的东丽20%疏水性碳纸为工作电极和负载催化剂的玻璃电极头为工作电极。选择电解池为三电极体系电解池。 碳纸工作电极的制备:首先将碳纸裁成2×1 cm2大小,并用无水乙醇冲洗。取2.5 mg待测样品,加入2.5mg Vulcan XC-72活性炭,分散于1 mL无水乙醇中,并加入50 μL Nafion溶液,超声搅拌至均匀分散后,形成工作电极的活性材料。使用移液枪取100 μL活性材料均匀铺于碳纸1×1cm2内。50 ℃下干燥30分钟,得到工作电极。RDE工作电极的制备:首先使用金相砂纸,粒度为0.3 μm的Al2O3抛光粉将玻璃电极打磨抛光,并用无水乙醇冲洗干净。取2.5 mg待测催化剂样品,再加入 2.5mg Aulcn XC-72活性炭,分散于1 mL无水乙醇中,并加入50 μL Nafion溶液,超声搅拌至均匀分散,形成工作电极的活性材料。使用移液枪取21 μL活性材料均匀铺于面积为0.196cm2的玻璃电极头上,50 ℃下干燥30分钟,得到工作电极。碳纸测试环境:在0.1 M KOH为电解液中,使用电化学工作站进行碳纸测试。(1) 首先在N2饱和环境下,分别以50 mV/s、5mV/s的扫描速率进行背景测试,然后在O2饱和的环境下以5 mV/s的扫描速率进行ORR测试。(2)在N2饱和环境下以5 mV/s的扫描速率进行OER测试。RDE测试环境:在0.1 M KOH为电解液中,使用电化学工作站进行旋转圆盘电极测试。(1) 首先在N2饱和环境下,分别以50 mV/s、5mV/s的扫描速率进行背景测试,然后在O2饱和的环境下以5 mV/s的扫描速率在2025rpm,1600 rpm,1225 rpm,900rpm,625 rpm,400 rpm的转速下分别进行ORR测试。(2)在N2饱和环境下以5 mV/s的扫描速率在1600rpm的转速下进行OER测试。3.2不同温度下ZIF-67碳化物的催化活性比较 不同温度下ZIF-67碳化物的ORR与OER催化性能分别由图3.1和图3.2表示。 如图3·1和表3·1所示,在ORR中,ZIF-67-700碳化物的起始电压为-0.20V,-0.3 V时电流密度是-7.454 mA/cm2,ZIF-67-800碳化物的起始电压为-0.19V,-0.3 V时电流密度是-7.53 mA/cm2,ZIF-67-900的起始电压为-0.16V,-0.3 V时电流密度是-11.203 mA/cm2, ZIF-67-1000碳化物的起始电压为-0.23V,-0.3 V时电流密度是-5.423 mA/cm2, ZIF-67-1100碳化物的起始电压为-0.27V,-0.3 V时电流密度是-2.968 mA/cm2。相比之下,ZIF-67-900起始电压低出很多,-0.3V时电流密度也更大,拥有最好的催化性能。 如图3.1和表3.1所示,在ORR中,ZIF-67-700的起始电压为0.77V,0.8 V时电流密度是3.045 mA/cm2,ZIF-67-800的起始电压为0.75V,0.8 V时电流密度是4.449 mA/cm2,ZIF-67-900的起始电压为0.72V,0.8 V时电流密度是6.024 mA/cm2,ZIF-67-1000的起始电压为0.73V,0.8 V时电流密度是4.699 mA/cm2,ZIF-67-1100碳化物的起始电压为0.74V,0.8 V时电流密度是3.838 mA/cm2。相比之下,ZIF-67-900,拥有最低的起始电压,0.8V时电流密度也最大,有最好的OER催化活性。 上述结果过说明,不同温度下碳化ZIF-67,900 ℃下碳化得到的ZIF-67碳化物拥有更好的催化性能,相比其他温度下的碳化物,ZIF-67-900起始电压较小,电流密度也最大,在ORR和OER中都展现了良好的催化性能,说明了900 ℃可能是利用碳化过程优化ZIF-67催化剂的最适宜温度,也再一次证明了ZIF-67碳化物是性能优良的双功能催化剂。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291034_607214_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608291034_607215_2984502_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/08/201608291034_607216_2984502_3.png

  • 原位漫反射红外做不同温度下吸附在高温时谱图很多毛刺是什么原因?

    原位漫反射红外做不同温度下吸附在高温时谱图很多毛刺是什么原因?

    各位老师您们好,我最近在做漫反射研究催化反应机理,内容为CO2加氢,我的样品是深黑色的,现在先研究CO2在不同温度下在催化剂表面的吸附物种,但不知为何高温时的谱图在特征峰出现的区域(1200-1800)出现很多毛刺,谱图毫无规律,导致根本无法分析,用的是布鲁克的红外,Pike的原位池,请问是何原因呢?求助!谢谢您http://ng1.17img.cn/bbsfiles/images/2016/12/201612122104_01_3169363_3.png

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制