当前位置: 仪器信息网 > 行业主题 > >

三胺固化剂检测

仪器信息网三胺固化剂检测专题为您提供2024年最新三胺固化剂检测价格报价、厂家品牌的相关信息, 包括三胺固化剂检测参数、型号等,不管是国产,还是进口品牌的三胺固化剂检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三胺固化剂检测相关的耗材配件、试剂标物,还有三胺固化剂检测相关的最新资讯、资料,以及三胺固化剂检测相关的解决方案。

三胺固化剂检测相关的论坛

  • 固化剂中游离TDI检测

    小弟使用色谱不久,想请问一下固化剂中游离TDI检测的色谱方法设置,以及注重点。公司新买了一台安捷伦的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]7820A,想问一下配安捷伦的什么柱子,比较好出峰分析。本人是小白,基本上算是半路出家。希望大神能从分析的材料和使用的柱子,都仔细讲解一下。谢谢

  • [求助]能否用凝胶色谱测定三聚氰胺固化剂的分子量

    我们这里用的是Waters的凝胶色谱,柱子是Styregel HT型的柱子,想请问各位老师有没有人知道能不能用它来测定三聚氰胺类聚氨酯固化剂样品(注:该物质会与羟基反应)的分子量。另外,不太明白软件里面的Mz+1和Mz+1/Mw的意思,希望能帮忙解释一下。非常感谢!

  • 【求助】固化剂可否进样

    单位6890机器,一直是检测溶剂的。我现在想检测固化剂(比水稍微浓点的混合溶剂,成分是异氰酸酯,二甲苯,芳香烃等)是否可以进样?

  • 固化剂中游离MDI的高效液相色谱分析

    建立了反相高效液相色谱法测定固化剂中游离MDI含量的方法。以异丙醇为衍生剂进行柱前衍生化,选用WatersXTerraC18,5μm,3.9mm×150mm色谱柱,乙腈—水为流动相,V(乙腈)∶V(水)=50∶50,检测波长为254nm。在5~50μg/mL范围内,4,4'-MDI、2,4'-MDI的回归方程相关系数均大于0.999,固化剂中4,4'-MDI、2,4'-MDI添加回收率在102.3%~109.9%。按样品测定方法平行测定5次,2,4'-MDI、4,4'-MDI峰面积的相对标准偏差(RSD)分别为0.74%、0.49%。该法测定固化剂中游离MDI具有良好的准确性和精密度。 关键词:高效液相;游离MDI;固化剂;异丙醇;衍生剂 0前言 二苯基甲烷二异氰酸酯(MDI)为白色或浅黄色固体,有毒,刺激眼睛、黏膜,空气中允许浓度为0.02×10-6g/m3,应用于固化剂的合成。在涂料工业中,固化剂能使高聚物分子间产生交联形成体型结构,从而增加产品的不溶、不熔性。随着涂料工业的不断发展,MDI固化剂应用于各种涂料领域。借鉴TDI固化剂的发展历程,国家将对MDI类固化剂的游离量做出相应限制,势必要求提高MDI固化剂的合成与应用技术。从技术层面上说游离MDI含量与合成的工艺控制与应用性能息息相关;从环保角度来说,控制游离MDI的含量是对环境保护和生命安全的保证。因此,对游离MDI的含量测定也提出了更高要求。MDI较难气化,因而不能用GC检测。而液相色谱正好弥补了GC的这个不足,但由于MDI化学性质较活泼,能与醇类、胺类物质进行反应,若采用常规的反向液相色谱分离,必须对MDI进行必要的衍生反应,使其变成相对稳定的物质并且能在液相色谱中得到很好的分离与检测。MDI分子结构中包含有两个苯环,所以其在液相色谱的紫外检测器有很好的吸收。国外在对空气中游离固化剂中的限量检测中,一般采用1-(2-吡啶)哌嗪作衍生试剂,该衍生试剂检测灵敏度较高,适宜于空气中微量的各类游离异氰酸酯的检测,而且价格比较昂贵。开发本方法目的是检测固化剂中的游离MDI,且选择了合适的衍生试剂及液相色谱的分离条件。 1试验部分 1.1仪器与试剂 Waters1525二元泵(Waters);Waters2487双波长可见光紫外检测器(Waters)。4,4'-MDI、2,4'-MDI、四氢呋喃、异丙醇、乙腈,均为色谱纯;超纯水。 1.2色谱条件 色谱柱:WatersXTerraC18,3.9mm×150mm,i.d.5μm;流动相:V(乙腈)∶V(水)=50∶50,流速1.0mL/min;检测波长:254nm;柱温:30℃;进样量:5μL。 1.3样品预处理 样品的衍生化:精确称取0.5~1.0g固化剂,置于25mL容量瓶中,加少量四氢呋喃,振荡使样品全部溶解,再加入异丙醇至容量瓶刻度线下1cm处,在50℃恒温水浴中进行10min衍生化反应后,取出,冷却至室温,用异丙醇定容,作为色谱试样。 2结果与讨论 2.1样品的衍生化 2.1.1衍生试剂的选择 常用于测定—NCO值的试剂为二丁胺,二丁胺与—NCO反应的速率很高,放热很大,由于该物质是过量的,衍生产物中二丁胺含量极高,而反向色谱柱对胺类物质最难分离,这就需要对衍生反应必须精确控制。另外胺类物质极易形成拖尾(峰形稳定性差),选择二丁胺作为液相色谱的衍生试剂难度较大。选择醇类物质作为衍生试剂相对色谱柱安全,于是选用甲醇与异丙醇作为衍生试剂进行对比,结果发现采用甲醇衍生,由于衍生产物的极性较大,易在乙腈或甲醇(液相色谱的流动相)中结晶析出(可能会导致定量不好)。而采用异丙醇衍生反应,衍生产物极性适中,反应条件比较缓和,容易控制。 2.1.2衍生条件的选择 纯MDI在常温下是固体状,必须先溶解或取用其液体产品,高温(120℃)以上会开始自聚,所以要先选用合适的溶剂将其溶解。选用四氢呋喃(色谱纯)将MDI溶解,再与异丙醇反应,在红外光谱上确认50℃反应温度,10min就能满足衍生反应完全。 2.2线性范围 4,4'-MDI标准溶液配制:精确称取对照样12.5mg置于25mL容量瓶中,用四氢呋喃溶解并定容至刻度,得0.5g/L标准溶液。分别取标准溶液100μL、200μL、500μL、1000μL置于10mL容量瓶中,并加入7mL异丙醇,在50℃水浴中加热10min后,冷却至室温,用异丙醇定容至刻度。分别得到0.005g/L、0.01g/L、0.025g/L、0.05g/L衍生溶液。按上述色谱条件下进行测定,以浓度为横坐标,峰面积为纵坐标绘制标准工作曲线,见图1。http://img00.hc360.com/pcrm/201112/201112051020442099.gif 图1 4.4'-MDI标准工作曲线 结果表明,在0.005~0.05g/L范围内,回归方程的相关系数大于0.999。在表1中,列出各组分标准曲线的关联式。表1各组分标准曲线的关联式(借用http://www.saidetc.com/)http://img00.hc360.com/pcrm/201112/201112051021217929.gif 2,4'-MDI标准溶液配制:按上述方法配制,得0.43g/L、0.64g/L、1.32g/L、2.03g/L衍生溶液。2,4'-MDI标准工作曲线见图2。标准溶液中2,4'-MDI、4,4'-MDI色谱图见图3。http://img00.hc360.com/pcrm/201112/201112051021439827.gif 图2 2,4'-MDI标准工作曲线http://img00.hc360.com/pcrm/201112/201112051022275514.gif 图3 2,4'-MDI,4,4-MDI标准溶液的色谱图 2.3回收率测定 配制不同浓度的标准样品,进行回收试验,结果见表2。由表2可知,2,4'-MDI、4,4'-MDI的回收率在102.3%~109.9%,表明该方法具有良好的准确性。 表2回收率试验测定值http://img00.hc360.com/pcrm/201112/201112051022561232.gif 2.4精密度和重现性 精密吸取2,4'-MDI、4,4'-MDI的混合标准工作溶液(4.05g/L)5μL,按样品测定方法平行测定5次,2,4'MDI、4,4'-MDI的峰面积相对标准偏差(RSD)分别为0.74%、0.49%,表明该试验结果准确性可靠,方法的精密度良好。 3结论 以上试验结果表明,采用HPLC方法测定固化剂中的游离MDI含量,分析方法简单准确。该方法已在固化剂生产过程控制中得以应用。

  • 【讨论】使用固化剂需要资质吗?

    最近比较堕落,经常看电视,不过我会把我看到的有点价值的给不堕落的同志们分享下。某垃圾收购处收了一批旧的无标签的蓝色塑料桶,堆放在院子里,结果工人搬运的时候其中一个爆炸了,伤了人经追溯,收购站-孤老头-村工艺品加工厂-贸易公司-厂家从厂家得知该桶内装的固化剂的成分、特性,属易燃易爆品贸易公司说包装外原来有标签标识(从它仓库的仍有的同种固化剂包装可以证实),他们也有合法的经营许可证。村工艺品加工厂说原来就没有标签,工厂已用了十年了,他们也不知其危险性,更不知道这种旧桶必须要经过特殊的后期处理(如清空、清洗,交指定处理单位等)。公安机关出具证明说属意外事故(就是无人负责,他们不是专业人员,不懂就算了)后来收购站状告孤老头和村工艺品加工厂,而法院追加贸易公司与村工艺品加工厂同为被告。村工艺品加工厂的过错比较清晰(出12万),法院认为贸易公司的过错在于:没有审查村工艺品加工厂的资质-可以使用固化剂类危险品(出3万) 数字是大概数字。尽管我夫人说财务制度上是有规定需要审查对方资质,只是一般都没有按规定执行。 但我没明白的是:使用固化剂还需要资质吗?我觉得贸易公司很冤。

  • 新手求助★关于★水性环氧树脂与固化剂★的DSC分析问题

    新手求助★关于★水性环氧树脂与固化剂★的DSC分析问题

    [font='微软雅黑',sans-serif]各位DSC方面的前辈老师们好,我是刚开始学习DSC,几乎从零开始,有些问题想求助咨询下,谢谢各位。我们这边打算测试水性环氧树脂与多元胺固化剂的,产品本身含有差不多50%的水(相当于固体环氧树脂颗粒在水中分散),一般是低温或常温固化(<[/font][font='Arial',sans-serif]100[/font][font='微软雅黑',sans-serif]℃),实际使用于涂料,水分先挥发再交联固化。最近公司刚购买了[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]设备,作为[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]设备的初学者,有几个关于检测的问题想咨询一下。[/font][font='微软雅黑',sans-serif]主要问题如下:[/font][font='Arial',sans-serif]1、[/font][font='微软雅黑',sans-serif]我看很多[/font][font='Arial',sans-serif]DSC[/font][font='微软雅黑',sans-serif]检测资料都是分析不含水或含水量很少的测试,我想知道像我们这种水性环氧树脂一般含水量是≥[/font][font='Arial',sans-serif]45%[/font][font='微软雅黑',sans-serif]的,这种时候假如我要检测该环氧树脂的[/font][font='Arial',sans-serif]TG[/font][font='微软雅黑',sans-serif],是否应该先把水蒸干后再用密封坩埚检测?也就是说这种含大量水的情况下,我的样品的制样应该采取哪种方式合理呢?因为水是增塑的,蒸干水分后再测试应该和我实际产品的tg结果不一样的吧?这样蒸干后检测的结果是否就表征我这个水性环氧树脂的实际[/font][font='Arial',sans-serif]TG[/font]呢?固体环氧E20的tg很好测,但因为水的存在下,测试时出不来台阶。而且,因为我们产品虽然有水,但实际使用时水是跑掉的,那我觉得是不是把水分蒸干后再测试tg就已经有实际意义了呢?2、在测试产品固化放热峰时,很难做出好的曲线,甚至出不来放热峰,显示的反而是吸热峰。我想主要原因也是因为水的吸热掩盖或干扰后放热峰的结果。实际尝试时使用铝坩埚,试过以下几种方法,请各位指导和协助优化下:①[font='微软雅黑',sans-serif]当液体(水性环氧树脂+固化剂)采用密封盘时,温度设置到[/font][font='Arial',sans-serif]150[/font]℃(此时坩埚未被冲破),只有很轻微放热峰出现,而且有时测试有峰,有时测试没有峰。[img=,690,416]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151417342508_9688_6179273_3.jpg!w690x416.jpg[/img]②[font='微软雅黑',sans-serif]当液体样品扎孔测试时,放热峰可能完全被水分挥发的吸热峰掩盖,无法出来。[/font][img=,690,394]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151419036458_5488_6179273_3.jpg!w690x394.jpg[/img]③[font='微软雅黑',sans-serif]当把样品预先低温([/font][font='Arial',sans-serif]70[/font][font='微软雅黑',sans-serif]℃×[/font][font='Arial',sans-serif]10min[/font][font='微软雅黑',sans-serif])烘干水分再密封盘测试时,有放热峰,但峰较平缓不尖锐,不知道是不是还有部分水分没有挥发,放热峰被干扰。我把升温速率提升后那个峰又出不来。而且,从图来看,低温40多度就已经开始反应了,[font=等线]前面[/font][font='Calibri',sans-serif]70[/font][font=等线]度预烘干时肯定也会带来样品的固化,这种测试方法是不是不合理呢?应该如何尝试。[img=,690,389]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151423350823_6822_6179273_3.jpg!w690x389.jpg[/img]④[font='微软雅黑',sans-serif]我们产品实际应用时是常温或低温的,常温或低温时肯定达不到[/font][font='Arial',sans-serif]100%[/font][font='微软雅黑',sans-serif]固化度。那这个时候我想要测试低温(例如[/font][font='Arial',sans-serif]70[/font][font='微软雅黑',sans-serif]℃)的固化度时,应该怎么设置方法才合理呢?[/font][/font][/font]

  • 测固化剂中的TDI HDI 峰拖尾问题!

    测固化剂中的TDI HDI 峰拖尾问题!

    各位好:我测那个油漆里的固化剂的 TDI HDI 峰拖尾比较严重,我把衬管,进样口,柱子,都换了,并且把柱子前面切了十厘米 ,增大开稀比例,减少进样量,增大尾吹,减小流速,降低柱温 这些我都试过了效果始终不明显,请帮我分析一下还要调整那里呢?http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648387_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648387_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409776_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409777_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409778_2322844_3.png

  • 固化剂TDI检验,5A分子筛除乙酸乙酯的水,醇!!!

    各位好: 请问测固化剂时用于稀释固化剂的(乙酸乙酯)里面的水分是怎么除出的, 我们是把那个5A(300克)分子筛在500度烤两个小时。加入到250ml乙酸乙酯里,放一天再测水分,但是我们用那个TCD测水分时还有0.01%(国家标准里是要小于0.0002%),请各位帮我分析一下是什么原因呢? 还有那个5A分子筛再活化的温度是多少呢?分子筛最高能到多少度呢?这个分子筛能不能同时除去乙酸乙酯里面的醇呢?

  • 测固化剂中的TDI HDI 峰拖尾问题!

    测固化剂中的TDI HDI 峰拖尾问题!

    各位好:我测那个油漆里的固化剂的 TDI HDI 峰拖尾比较严重,我把衬管,进样口,柱子,都换了,并且把柱子前面切了十厘米 ,增大开稀比例,减少进样量,增大尾吹,减小流速,降低柱温 这些我都试过了效果始终不明显,请帮我分析一下还要调整那里呢?http://ng1.17img.cn/bbsfiles/images/2012/12/201212052057_409775_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052057_409775_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409776_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409777_2322844_3.pnghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212052058_409778_2322844_3.png

  • 高手帮忙看下这个固化剂的谱图

    高手帮忙看下这个固化剂的谱图

    这个是个异氰酸酯类型的固化剂,可能为混合物,能帮忙给分析下具体是什么吗http://ng1.17img.cn/bbsfiles/images/2012/05/201205201734_367818_1766615_3.jpg

  • 【求助】请高手指教如何分析环氧树脂的固化剂

    【求助】请高手指教如何分析环氧树脂的固化剂

    样品为液态,有氨味,是环氧树脂的固化剂。请高手帮忙看看红外图,谁做过这类样品的分析还请指点一下要怎么分离,还要用什么仪器才能搞清楚里面的各种成分?第一次遇到这样的样品,一片茫然,请大家多多给与指点。谢谢![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910291141_178690_1720933_3.jpg[/img]

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】水平钻井废液固化

    要达到国家二级标准,固化剂要怎样选择才能满足钻井废液的固化?成本要低点的??急求!!!!!!!高手请支支招!!!!

  • 如何找到聚合反应所需要的固化条件

    环氧树脂(如BPA型)+固化剂(如双氰氨)+促进剂(2MI)聚合反应,如何通过DSC模拟并找到相应的固化条件如需要多少热能固化完全?需要多少度?多长时间?以及最高温度不能超过多少等?什么时候开始反应?什么时候开始分解?

  • 【求助】环氧树脂E51固化物的DSC曲线 为什么两个Tg

    【求助】环氧树脂E51固化物的DSC曲线 为什么两个Tg

    RT,环氧树脂E51,固化剂是低分子聚酰胺651(添加量是50%),DSC自带的软件分析在48.27度和95.03各有一个Tg,请教一下这是为什么呢,先行谢过了[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903151845_138605_1637724_3.jpg[/img]

  • 紧急求助!样品突然检测不了,求帮助!

    有没有哪位同行做过“消光固化剂”的粒度分析?过去的检测一直没有问题,这几天仪器一切都显示正常,检测其他样品也没有问题,可是做消光固化剂的时候却完全没有信号,什么都检测不出来,突然间像撞邪了一样,对这个样品完全检测不了了,消光固化剂的粒径有十几个微米,可现在确什么都测不出来,不知道发生什么事了,仪器一切参数显示正常,其他样品都能正常分析,到底发生了什么?有没有人碰到过类似的情况?求帮忙??

  • UV固化涂料成分分析

    一、UV固化涂料的低聚物 低聚物又叫寡聚物,也称预聚物,是UV固化涂料的基体树脂,作为骨架在UV固化涂料体系中占有相当大的比例,对体系的基本性能(包括附着力、硬度、柔韧性、耐磨性、耐热性、耐化学药品性、耐久性、光学性能及耐老化性能等)起着决定性作用。UV固化涂料研究和应用较为广泛的低聚物的类型主要有不饱和聚酯,环氧丙烯酸酯和聚氨酯丙烯酸酯等。1.1 环氧丙烯酸酯 环氧丙烯酸酯(Epoxy acrylate,EA)是由环氧树脂和丙烯酸或甲基丙烯酸在催化剂作用下开环酯化而得,按结构类型可分为双酚A环氧丙烯酸酯、酚醛环氧丙烯酸酯、改性环氧丙烯酸酯和环氧化油丙烯酸酯等。EA光固化反应速率较快,固化膜附着力、硬度、强度、光泽度和耐化学药品性好,且价格较低,是光固化产业内消耗量最大的光固化低聚物。EA粘度高,影响施工和流平,固化膜性脆、柔性差、不耐老化,因此改进环氧丙烯酸酯性能的研究一直在进行,如增加低聚物的相对分子质量来减小固化时的收缩率,引入含硅化合物合成了一种预聚物提高涂膜耐热性能,引入柔性长链来克服环氧树脂的脆性等。1.2 聚氨酯丙烯酸酯(PUA) 聚氨酯丙烯酸酯(Polyurethane acrylate,PUA)是由多异氰酸酯的NCO基团和多元醇的羟基反应,并利用含羟基的丙烯酸酯引入光活性基团而得,随分子质量的增大和分子中含有的光反应性基团的增加固化速度加快,是一类重要的光固化低聚物。使PUA具有三维球状结构的星型超支化聚合物正成为研究的热点,该结构与传统的线性聚合物不同,使聚合物具有高官能度、分子间和分子内不缠结等特点,因此该类聚合物活性高、黏度低、溶解性好、官能团易改性等,可以获得合适的施工性能和优良的涂膜性能。虽然PUA价格相对较高,但是聚氨酯丙烯酸酯固化膜具有优异的柔韧性和耐磨性,良好的耐化学药品性和耐冲击性,较好的附着力等优点,所以PUA是用量上紧次于EA的低聚物。1.3 不饱和聚酯 不饱和聚酯(Unsaturated polyester,UPE)是最早用于UV固化涂料的低聚物,是指分子中含有可反应C=C双键的直链或支链状聚酯大分子。在活性自由基引发下发生活泼的乙烯基等单体与UPE共聚,可交联固化网络结构。然而该聚合反应时间长、温度高,且聚合过程的氧阻聚现象较严重,增加了涂膜的黄变,因此应用受到一定的限制。采用超支化技术制备多官能度的不饱和聚酯是解决问题的一个方向。超支化低聚物有独特的三维分子结构,使其具有相溶性好、黏度低和反应活性高等性能,固化膜的收缩率变小,有良好的基材附着性能,并且还能避免使用挥发性活性稀释剂,所以更环保。二、 UV固化涂料的活性稀释剂、光引发剂和助剂及颜填料2.1 活性稀释剂 活性稀释剂是含有可聚合官能团的有机小分子,能够溶解和稀释低聚物,调节体系的粘度,改善施工性能,并可以参与聚合固化成膜,调节光固化速度和固化膜的各种性能,如耐磨、硬度、柔韧性等。1)单官能团活性稀释剂。(甲基)丙烯酸酯等,每个分子仅含有一个可参与固化反应基团,一般具有黏度低、转化率高、固化速率低、体积收缩小、交联密度低等特点。2)双官能团活性稀释剂。含有两个(甲基)丙烯酸酯官能团,对比单官能团活性稀释剂,一般具有良好的稀释性、固化速率加快、交联密度增大等特点。3)多官能团活性稀释剂。含有3个及以上(甲基)丙烯酸酯官能团,一般具有黏度较大、光固化速度快、成膜硬度高等特点。4)阳离子UV固化体系的活性稀释剂。如脂环族环氧树脂、多元醇和乙烯基醚等。在选用活性稀释剂时应考虑如下问题:与低聚物的相容性、稀释能力、固化速度、固化收缩率和对固化涂膜性能的影响等。2.2 光引发剂 光引发剂是光固化体系的关键组分之一,它的性能决定了UV固化涂料的固化速率和固化程度,按反应机理的不同为自由基聚合光引发剂与阳离子聚合光引发剂,自由基光引发剂分为裂解型和夺氢型两种类型。 在UV固化涂料领域使用较多的为小分子自由基光聚合引发剂,其中未反应的光引发剂及光解碎片容易使涂膜老化黄变;还可以使用聚合夺氢型光引发剂,其中光引发剂的不能完全反应也会使涂膜老化黄变。如果将光引发剂大分子化和多官能度(含有2个及以上光化学活性基团),则可以降低光引发剂引起涂膜的黄变。对阳离子光固化体系,适用的低聚物仅有乙烯基醚官能团的树脂、环氧树脂和环氧官能化聚硅氧烷树脂等,使阳离子光固化剂使用受到一定限制。 自由基光引发剂具有低价优势,大多数UV固化涂料采用自由基固化,也有采用阳离子与自由基混合双重UV固化,可以形成互穿网络结构来改善涂膜性能。通过合理利用光引发剂种类和用量以及与光增敏剂配伍技术等,调整固化速率和固化程度,以适应不同的需要。UV固化涂料用于形状复杂的构件时会出现阴影难以固化,用于厚涂层、不透明介质和有色体系的固化也有困难。这些可以用双重固化体系来克服,即通过光固化反应阶段和暗反应(包括热固化、湿气固化、氧化固化或厌氧固化反应等)阶段完成,其中光固化反应使体系快速定型或达到表干,而暗反应使底层部分或阴影部分固化完全。2.3 助剂 在实际UV固化涂料应用中,由于光固化速率较快,除了基本成分外,还要加入各种助剂(包括流平剂、消泡剂、润湿分散剂、偶联剂和消光剂等),以达到使用要求。流平剂的加入可解决UV固化涂料因流平差而产生涂膜表的缺陷等;润湿分散剂和消泡剂的加入可增加产品稳定性和施工性能等;偶联剂的加入可提高施工性能和附着力等。随着UV固化涂料应用领域不断拓展,为满足被涂物件的使用要求,可供选用的助剂还有消光剂、热阻聚剂、增感剂、稳定剂等。2.4 颜填料 为配制UV固化有色涂料,还要加入颜填料。1)颜料。颜料对涂料性能的影响应引起注意,许多颜料(如炭黑、铁黄等)会散射或吸收UV辐射阻碍了UV固化。颜料在涂膜表面与涂膜深处对UV吸也收存在较大差别,可能会导致表面与底部固化不同步引起涂膜收缩起皱,因此要选择与体系配套颜料。2)填料。试验表明滑石粉和碳酸钙等可作UV固化涂料的填料。一些纳米填料的加入,使涂膜耐磨性、抗菌性、抗老化性、柔韧性和光泽度得到显著提高。南京蓝大飞秒检测竭诚为您服务 联系人 :王老师 TEL 18061750890(同微信号) QQ 1683131911

  • 【求助】关于环境监测和固体废物处理

    谁有环境监测的实验书和固体废物处理实验书?或者谁知道以下实验都需要到什么仪器和试剂:(1)连续完全混合曝气污水厂工艺调整操作实验(2)破碎产物粒度分布曲线测绘(3)危险废物固化处理与固化剂研究实验(4)浮选药剂性能测试(5)电镀污泥水泥固化试验

  • ATR胶黏剂样品固化率测试

    求助,我现在用布鲁克阿尔法系列的ATR测胶黏剂样品的固化率,得出来的谱图重现性很不好,而且与实际不符合,该怎么做?附件里面有内测的数据和外测的数据,其中3000\4000\7000表示固化能量的大小。

  • 【分享】UV固化的工艺特点

    材料要得到满足实际应用要求的力学、机械、化学及其他性能,大都需有一个成型加工的过程通过固化使液体材料具有一定形状,是最常见的成型方法之一 液态材料固化一般可分为物理方法和化学方法二种物理方法使用加热或溶剂,使材料处于焙融或溶解状态,待成型以后冷却或蒸发溶剂,从而达到维持一定形状的目的;化学方法则是利用化学反应产生的键合力,使分子间不易产生相对运动,实现成型目的通常,物理方法得到的多是热塑性材料,化学方法得到的则多是热固性材料 uV固化属于化学方法,它是uv引发化学反应的结皋与其他固化方法比较,uv固化具有许多独特的优势,主要表现在以下三个方面: (1)速率快 液态的材料最快可在0 05 -0. ls的时间内固化,较之传统的最快也需几秒,常常多达数小时甚至几天才能固化的热固化工艺,无疑大大提高了生产率,节省了半成品堆放的空问,更能满足大规模自动化生产的要求同时,uV固化产品的质景也较易得到保证此外,由于是低温固化,因此uv固化可避免因热固化时的高温对各种热敏感基质(如塑料、纸张或其他电子产品等)可能造成的损伤,辐射固化工艺技术在某些领域已经是满足高水平标准的惟一选择[71由于容易控制,因而降低了废品率,产品性能稳定,而且,uv固化产品的结构也较容易调整 (2)费用低 uV固化仅需要用于激发光引发剂(或光敏剂)的辐射能(如中、高压汞灯的辐射).不像传统的热固化那样需要加热基质、材料、周围空间以及蒸发除去稀释用的水、有机溶剂的热量,从而可节省大量的能源同时,由于uv固化材料同含量高,使得材料实际消耗量大幅度减少此外uv固化设备投资相对较低,可节省一大笔热固化设备的投资,减少厂房占地 (3)污染少 传统的热固化法需向大气中排放大量稀释用的有机溶剂,以涂料为例,全世界每年消耗涂料2000多万吨,其中有机溶剂约占40%,就是说,每年有大约800多万吨溶剂进入大气进入大气的有机物可以形成比二氧化碳更严重的温室敢应,而且在阳光照射下可形成氧化物和光化学烟雾,从而造成环境污染和对操作工人身体健康的损害uv固化基本不使用有机溶剂,其稀释用的活性单体也参与固化反应,基本上100%固寒量,因此可减少因溶剂挥发所导致的环境污染以及可能产生的火灾或爆炸等事故随着世界各国对生态环境保护的重视,对大气排放物进行了严格的立法限制,uv固化技术的重要性也愈显突出美国、欧洲、日本等均将VOC的减少作为优先采用UV固化技术的重要原因之一在我国,随着经济规模的迅速扩大及对环境保护的日益重视,作为环保型“绿色”工艺的uv固化材料的研究、开发和应用也已日益深入和普及. 当然,任何技术或工艺都不可能是无缺陷的,uv固化也是这样与热固化相比,它仅仅有30余年的研宄、开发历史,由于尚未形成大的产业规模,故成本相对较高此外,有些uv固化材料,特别是其中单体,还存在着气味或毒性问题,有待进一步解决当然,这同时也给uv固化材料的研究与开发提供了广阔的空间.

  • 【求助】固化剂 六价铬

    我用碱式消解法做的六价铬加标检测中,怎么没有回收率呢?还有纸箱、电镀液等都没有回收率?有哪位高人知道为什么么?

  • 【求助】紫外固化机求助

    在网上寻找了紫外固化机,感觉上都是固化成膜的一种,我们的使用是在强紫外照射下,喷射物料,瞬间固化成粒或块的,不知道有没有这种机器。求教了,谢谢各位。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制