当前位置: 仪器信息网 > 行业主题 > >

静电场描绘仪原理

仪器信息网静电场描绘仪原理专题为您提供2024年最新静电场描绘仪原理价格报价、厂家品牌的相关信息, 包括静电场描绘仪原理参数、型号等,不管是国产,还是进口品牌的静电场描绘仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合静电场描绘仪原理相关的耗材配件、试剂标物,还有静电场描绘仪原理相关的最新资讯、资料,以及静电场描绘仪原理相关的解决方案。

静电场描绘仪原理相关的资讯

  • 科研团队提出一种质谱仪离子高效传输的静电场离子漏斗聚焦新技术
    近日,中科院合肥研究院健康所医用光谱质谱研究团队提出了一种静电场离子漏斗聚焦新技术,可在静电场下实现对离子的高效聚焦引导,进而提升质谱类仪器的灵敏度。相关结果作为封面文章发表在国际分析领域TOP期刊Analytical Chemistry上。   质子转移反应质谱(PTR-MS)技术在环境监测、医学研究、公共安全和食品科学等领域都有着极其重要的应用价值。医用光谱质谱研究团队坚持PTR-MS技术研究和仪器研制工作不松懈,通过十余年时间实现了PTR-MS仪器产品化。前期研制的PTR-MS仪器在具有高灵敏的同时,还有大功率和大体积的不足。针对大气挥发性有机物(VOCs)车载监测需求,如何在减小体积和功率的情况下保证较高的灵敏度是车载小型化PTR-MS发展的难题。国外研究者为了提高灵敏度,一般在PTR-MS中采用射频场离子漏斗来聚焦离子,但射频场需要射频电源,这会增加功率和体积,不适用于车载小型化PTR-MS。   为解决上述问题,团队提出了一种静电场离子漏斗聚焦新技术,将传统的圆环状电极改进为球面加网电极,并通过孔径逐渐缩小的漏斗状组合设计,实现静电场下离子的高效聚焦引导。实验表明,相比于传统的反应管结构,新型结构对于考察的8种VOCs灵敏度提升了3.8-7.3倍,且不破坏PTR-MS中的软电离效果。团队已围绕该技术申请了专利,并将其应用于大气VOCs车载走航监测的小型化PTR-MS中,相关仪器已成为政府部门和行业龙头企业开展业务化监测的重要工具。静电场离子漏斗聚焦技术是一种通用的离子聚焦引导,还可以拓展应用于其他质谱仪器中,可为我国高端质谱仪器自立自强提供关键支撑。   本文的第一作者是张强领博士后,通讯作者为中科院青促会会员沈成银研究员。本研究得到了国家自然科学基金、中国科学院青年创新促进会、安徽省重点研发计划、合肥研究院院长基金等项目的支持。静电场离子漏斗聚焦效果
  • 655万!上海体育学院超高分辨四极杆静电场轨道阱液相质谱仪采购项目
    项目编号:SHXM-00-20220407-1016项目名称:超高分辨四极杆静电场轨道阱液相质谱仪预算编号: 0021-W09520 预算金额(元): 6550000(/)最高限价(元): 6550000 采购需求:超高分辨四极杆静电场轨道阱液相质谱仪 包名称:超高分辨四极杆静电场轨道阱液相质谱仪 数量: 1 预算金额(元):6550000 简要规格描述或项目基本概况介绍、用途:详见招标文件 合同履约期限: 合同签订后90天内完成交付、安装、调试,并通过采购人验收。 本项目( 不允许 )接受联合体投标。
  • 709万!贵州医科大学静电场超高分辨液质联用仪等仪器设备采购项目
    一、项目基本情况项目编号:TXZB4208-2256A项目名称:贵州医科大学静电场超高分辨液质联用仪等仪器设备采购项目项目序列号: P52000020230001XR预算金额(元):7093800最高限价(元):6699700采购需求: 标项名称: 贵州医科大学静电场超高分辨液质联用仪等仪器设备采购项目 数量: 1 预算金额(元): 7093800 简要规格描述或项目基本概况介绍、用途:贵州医科大学静电场超高分辨液质联用仪等仪器设备采购项目招标项目的潜在投标人应在贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/) 获取招标文件 。贵州医科大学静电场超高分辨液质联用仪等仪器设备采购项目于2023年4月26日 11时0分0秒(北京时间) 前递交投标文件。 合同履约期限:标项 1,详见招标文件本项目(否)接受联合体投标。 二、获取招标文件 时间:2023年04月05日至2023年04月21日 ,每天上午00:00至11:59 ,下午12:00至23:59(北京时间,法定节假日除外)地点:贵州省公共资源交易中心方式:贵州省公共资源交易中心网上获取(交易中心网址:http://ggzy.guizhou.gov.cn/)售价(元):300.00 三、对本次采购提出询问,请按以下方式联系1.采购人信息名称:贵州医科大学地址:贵安新区大学城内联系方式:0851-884160992.采购代理机构信息 名称:贵州天信招标有限公司地址:贵阳市花果园中央商务区中心 1号楼2单元4208号联系方式:0851-858277633.采购代理机构信息项目联系人: 陈燕电话:0851-85827763
  • 655万!超高分辨四极杆静电场轨道阱液相质谱仪采购项目(二次招标))
    项目编号:SHXM-00-20220602-1030项目名称:超高分辨四极杆静电场轨道阱液相质谱仪预算编号: 0021-W09520 预算金额(元): 6550000(/)最高限价(元): 6550000 采购需求: 包名称:超高分辨四极杆静电场轨道阱液相质谱仪 数量:1 预算金额(元):6550000 简要规格描述或项目基本概况介绍、用途: 详见招标文件合同履约期限: 合同签订后90天内完成交付、安装、调试,并通过采购人验收。 本项目( 不允许 )接受联合体投标。
  • 广东工业大学采购超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪
    一、项目基本情况项目编号:0809-2241GDG13033项目名称:广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目采购方式:公开招标预算金额:4,650,000.00元采购需求:合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目):合同包预算金额:4,650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪1(套)详见采购文件4,650,000.00-本合同包不接受联合体投标合同履行期限:合同签订后9个月内完成供货、安装、调试、交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2020年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求:合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目)落实政府采购政策需满足的资格要求如下:本项目不属于专门面向中小企业采购的项目。本项目的中小企业划分标准所属行业为: 工业。3.本项目的特定资格要求:合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单”记录名单; 不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。 (以采购代理机构于投标(响应) 截止时间当天在“信用中国”网站(www.creditchina.gov.cn) 及中国政府采购网(http://www.ccgp.gov.cn/) 查询结果为准, 如相关失信记录已失效, 供应商需提供相关证明资料) 。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)本采购包不接受联合体投标三、获取招标文件时间: 2022年05月18日 至 2022年05月25日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年06月08日 09时30分00秒 (北京时间)地点:广州市越秀区广仁路1号广仁大厦6楼五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过400-1832-999进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。本项目支持电子保函,可通过登录项目采购电子交易系统跳转至电子保函系统进行在线办理。电子保函办理办法详见供应商操作手册。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393221462.采购代理机构信息名 称:广东华伦招标有限公司地 址:广州市越秀区广仁路一号广仁大厦七楼联系方式:020-83172166-8333.项目联系方式项目联系人:李工电 话:020-83172166-833广东华伦招标有限公司2022年05月18日
  • 700万!天津师范大学静电场轨道阱高分辨液质联用仪采购项目
    项目编号:YFGP-2022-B-0344项目名称:天津师范大学静电场轨道阱高分辨液质联用仪项目预算金额:700.8万元最高限价:700.8万元采购需求:包号是否设置最高限额预算(万元)最高限额(万元)采购目录采购需求第1包否700.8700.8光学式分析仪器根据《政府采购进口产品管理办法》(财库〔2007〕119号)规定,经财政部门审核同意,本项目允许进口产品投标(优先采购向我国企业转让技术、与我国企业签订消化吸收再创新方案的供应商的进口产品),同时也接受满足需求的国内产品参与竞争。(其余各包)本项目不接受进口产品投标合同履行期限:签订合同之日起270日内到货,货到之日起60日内安装完成本项目不接受联合体参与
  • 465万!广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目
    项目编号:0809-2241GDG13033项目名称:广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目采购方式:公开招标预算金额:4,650,000.00元采购需求:合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目):合同包预算金额:4,650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪1(套)详见采购文件4,650,000.00-本合同包不接受联合体投标合同履行期限:合同签订后9个月内完成供货、安装、调试、交付使用。
  • 680万!厦门大学环境与生态学院四极杆-静电场轨道阱组合型高分辨液质联用仪采购项目
    项目编号:XDZB2022-A-043项目名称:厦门大学环境与生态学院四极杆-静电场轨道阱组合型高分辨液质联用仪预算金额:680.0000000 万元(人民币)最高限价(如有):680.0000000 万元(人民币)采购需求:四极杆-静电场轨道阱组合型高分辨液质联用仪 1 套合同履行期限:最长不超过6个月(进口货物为进口免税手续办理完成前提下)本项目( 不接受 )联合体投标。(word)厦门大学环境与生态学院四极杆-静电场轨道阱组合型高分辨液质联用仪招标文件(最终稿).docx
  • 清华大学液相色谱-静电场轨道阱高分辨质谱联用仪招标公告
    招标项目编号:清设招第2014025号 1、清华大学(以下称&ldquo 招标单位&rdquo )以公开招标的方式购置&ldquo 液相色谱-静电场轨道阱高分辨质谱联用仪&rdquo 1套,现邀请国内外合格供应商提交投标。不同时为制造商的投标商应随投标文件提供生产厂商针对此次招标项目的授权书。 2、投标人的资格要求:在中华人民共和国注册的、具有法人资格的设备厂商或其代理商。 3、购买标书时间、地点:有意向的供应商请于2014年4月28日~5月5日(工作日8:30至11:30,13:30至16:30),到北京清华大学实验室与设备处9号楼215室购买招标文件。本招标文件每套售价为人民币300元,售后不退。 4、投标截止时间、地点:所有投标文件应于2014年5月20日上午9:00(北京时间)之前递交到北京清华大学实验室与设备处9号楼212会议室。 5、开标时间、地点:定于2014年5月20日上午9:00(北京时间),在北京清华大学实验室与设备处9号楼212会议室开标。届时请参加投标的代表出席开标仪式。 6、投标文件要求:一份正本,七份副本,同时提交电子文档。投标函、投标(分项)价格表、开标一览表各一份,请单独封装,投标文件中不再包括投标函、投标(分项)价格表、开标一览表,所有体现价格的文件不能出现在装订成册的投标文件中。 7、有意向的厂商可通过以下方式与招标单位联系。 联 系 人:王 慧   联系方式:62785713F,sys-zb@tsinghua.edu.cn  清华大学仪器设备招标管理办公室   2014年4月28日
  • 赛默飞中标上海交通大学四极杆串联静电场轨道阱超高分辨质谱仪项目
    p 上海国际招标有限公司受上海交通大学的委托,就“上海交通大学”转化医学国家重大科技基础设施(上海)”项目建设指挥部办公室四极杆串联静电场轨道阱超高分辨质谱仪国际招标”项目(项目编号:0705-184016603760)组织采购,评标工作已经结束。 /p p 项目编号:0705-184016603760 /p p 项目名称:上海交通大学”转化医学国家重大科技基础设施(上海)”项目建设指挥部办公室四极杆串联静电场轨道阱超高分辨质谱仪国际招标 /p p 项目联系人:张靖姝 /p p 联系方式:86-21-62791919× 198 /p p br/ /p p 中标结果如下: /p p img src=" https://img1.17img.cn/17img/images/201810/uepic/a75fce2b-24dc-4fca-ba1f-6642e6566de1.jpg" title=" 屏幕快照 2018-10-31 下午10.35.11.png" alt=" 屏幕快照 2018-10-31 下午10.35.11.png" / /p
  • 1300万!中国科学院新疆生态与地理研究所四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪采购项目
    一、项目基本情况项目编号:OITC-230582639项目名称:中国科学院新疆生态与地理研究所四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪采购项目预算金额:1300.000000 万元(人民币)最高限价(如有):1300.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪1台是 1300万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月23日 至 2023年11月30日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方在线www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院新疆生态与地理研究所     地址:新疆乌鲁木齐市北京南路818号        联系方式:010-68290511/0551/0509      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:赵倩 任伟松 焦怡泽,010-68290511/0551/0509,wsren@oitc.com.cn            3.项目联系方式项目联系人:赵倩 任伟松 焦怡泽电 话:  010-68290511/0551/0509
  • 720万!上海申权招标咨询有限公司关于高效液相色谱静电场轨道阱超高分辨率质谱联用仪的中标(成交)结果公告
    一、项目编号:SHXM-00-20210823-1066二、项目名称:高效液相色谱静电场轨道阱超高分辨率质谱联用仪三、中标(成交)信息 序号标项名称中标(成交金额)中标供应商名称中标供应商地址1高效液相色谱静电场轨道阱超高分辨率质谱联用仪7200000.00上海高驰进出口有限公司上海市长宁区娄山关路555号1502室 四、主要标的信息 序号包名称标的名称品牌数量单价规格型号1高效液相色谱静电场轨道阱超高分辨率质谱联用仪高效液相色谱静电场轨道阱超高分辨率质谱联用仪Thermo Fisher Scientific17200000.00Orbitrap exploris480 五、评审专家(单一来源采购人员)名单: 石慧华、吴守军、龚谦、潘桂华、胡鹏飞 六、代理服务收费标准及金额: 1.代理服务收费标准:参照国家计委计价格【2002】1980号文计算的基础上乘以63%计算 2.代理服务收费金额(元):48258 七、公告期限 自本公告发布之日起1个工作日。 八、其他补充事宜 / 九、凡对本次公告内容提出询问,请按以下方式联系 1.采购人信息 名 称:上海大学 地 址:上海市宝山区上大路99号上海大学A502 联系方式:021-66135586 2.采购代理机构信息 名 称:上海申权招标咨询有限公司 地 址:国霞路458弄2号11楼 联系方式:55231986 3.项目联系方式 项目联系人:肖蜀隽 电 话:55231986
  • 464万!赛默飞中标广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目
    一、项目编号:0809-2241GDG13033二、项目名称:广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目三、采购结果合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目):供应商名称供应商地址中标(成交)金额广州科纳进出口有限公司广州市天河区珠江西路8号1201室(部位:自编01A、06A)4,645,000.00元四、主要标的信息合同包1(广东工业大学超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪采购项目):货物类(广州科纳进出口有限公司)品目号品目名称采购标的品牌规格型号数量(单位)单价(元)总价(元)1-1其他专用仪器仪表超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用仪Thermo ScientificQ-Exactive Plus1.00(套)4,645,000.004,645,000.00
  • 4991万!ZYCGR22011901公共仪器共享平台静电场轨道阱超高分辨质谱联用仪等采购项目
    项目编号:OITC-G220290845项目名称:ZYCGR22011901公共仪器共享平台(第二批)科研设备采购项目预算金额:4991.0000000 万元(人民币)最高限价(如有):4786.0000000 万元(人民币)采购需求:包号品目货物名称数量(台/套)是否允许采购进口产品预算金额(万元)最高限价(万元)11静电场轨道阱超高分辨质谱联用仪1是7407402纳微流液相色谱仪1是787821单细胞蛋白质组学纳升移液工作站1是2352302高准确度单分子测序系统1是5205203多功能激光扫描成像系统1是11310831台式超速离心机1是45452多功能酶标仪1是95923实时荧光定量PCR仪2是1801684蛋白结晶自动化工作站1是1301305多功能微孔板检测仪1是757541X射线单晶衍射仪1是1800165051超高参数全光谱流式细胞分析仪1是52052061高通量蛋白结晶自动观察系统1是460430 合同履行期限:详见项目需求。本项目( 不接受 )联合体投标。
  • 910万!中国科学技术大学气相色谱-静电场轨道阱质谱仪和台式X射线吸收精细结构谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G230320048项目名称:中国科学技术大学气相色谱-静电场轨道阱质谱仪采购项目预算金额:510.000000 万元(人民币)最高限价(如有):510.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1气相色谱-静电场轨道阱质谱仪1是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。2.项目编号:OITC-G230322029项目名称:中国科学技术大学台式X射线吸收精细结构谱仪采购项目预算金额:400.000000 万元(人民币)最高限价(如有):400.000000 万元(人民币)采购需求:采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1台式X射线吸收精细结构谱仪1是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年10月20日 至 2023年10月27日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号        联系方式:0551-63602706       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层;(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京):窦志超、曹山、王琪 010-68290502;(合肥):郑文彬、李文海0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、郑文彬、李文海电 话:  010-68290502/0551-66030322
  • 1296万!赛默飞世尔科技等中标中国科学院新疆生态与地理研究所四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪采购项目
    一、项目编号:OITC-230582639(招标文件编号:OITC-230582639)二、项目名称:中国科学院新疆生态与地理研究所四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪采购项目三、中标(成交)信息供应商名称:上海高驰进出口有限公司供应商地址:上海市长宁区娄山关路555号1502室中标(成交)金额:1296.8000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海高驰进出口有限公司 四级杆-线性离子阱-静电场轨道阱超高分辨质谱仪 赛默飞世尔科技等 Orbitrap Ascend等 1台 ¥12,968,000.00 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院新疆生态与地理研究所     地址:新疆乌鲁木齐市北京南路818号        联系方式:010-68290511/0551/0509      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:赵倩 任伟松 焦怡泽,010-68290511/0551/0509,wsren@oitc.com.cn            3.项目联系方式项目联系人:赵倩 任伟松 焦怡泽电 话:  010-68290511/0551/0509
  • 1245万!樟树市教育体育局液相色谱-四极杆静电场轨道阱高分辨质谱、液相色谱-三重四级杆质谱仪等采购项目
    一、项目基本情况:1.项目编号:JXTC2024040061-03项目名称:樟树市教育体育局采购液相色谱-四极杆静电场轨道阱高分辨质谱项目采购方式:公开招标预算金额:6570000.00 元最高限价:6570000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求宜购2023B001017997江西师范大学健康产业学院实验平台建设项目(液相色谱-四级杆静电场轨道阱高分辨质谱)1套6570000.00元详见公告附件合同履行期限:合同签订后120天内,中标人应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。2.项目编号:JXTC2024040061-02项目名称:樟树市教育体育局采购液相色谱-三重四级杆质谱仪等项目采购方式:公开招标预算金额:5880000.00 元最高限价:5880000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求宜购2023B001017998江西师范大学健康产业学院中医药与健康技术创新中心实验平台建设项目(液相色谱-三重四级杆质谱仪等)1批5880000.00元详见公告附件合同履行期限:合同履行期限:合同签订后90天内,中标人应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。二、获取招标文件:时间:2024年03月05日 至 2024年03月12日,每天上午08:00至12:00,下午13:00至17:00(北京时间,法定节假日除外 )地点:江西省公共资源交易网(网址:http://jxsggzy.cn)方式:网上报名和下载招标文件售价:0.00元三、对本次招标提出询问,请按以下方式联系:1.采购人信息名称:樟树市教育体育局地址:樟树市药都南大道27号联系方式:0795-71607062.采购代理机构信息名称:江西省机电设备招标有限公司地址:江西省南昌市东湖区省政府大院北二路92号(咨询大厦)联系方式:0791-862142793.项目联系方式项目联系人:万里阳、胡涛电话:0791-86214279
  • 1245万!樟树市教育体育局液相色谱-四极杆静电场轨道阱高分辨质谱、液相色谱-三重四级杆质谱仪等采购项目
    一、项目基本情况:1.项目编号:JXTC2024040061-03C1项目名称:樟树市教育体育局采购液相色谱-四极杆静电场轨道阱高分辨质谱项目第二次采购方式:公开招标预算金额:6570000.00 元最高限价:6570000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求宜购2023B001017997江西师范大学健康产业学院实验平台建设项目(液相色谱-四级杆静电场轨道阱高分辨质谱)1套6570000.00元详见公告附件合同履行期限:合同签订后120天内,中标人应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。2.项目编号:JXTC2024040061-02C1项目名称:樟树市教育体育局采购液相色谱-三重四级杆质谱仪等项目第二次采购方式:公开招标预算金额:5880000.00 元最高限价:5880000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求宜购2023B001017998江西师范大学健康产业学院中医药与健康技术创新中心实验平台建设项目(液相色谱-三重四级杆质谱仪等)1批5880000.00元详见公告附件合同履行期限:合同签订后90天内,中标人应保证在要求时间内完成全部货物的供货、安装、调试和培训工作,符合国家标准、行业规范和合同等相关文件的要求。本项目不接受联合体投标。二、获取招标文件:时间:2024年05月21日 至 2024年05月28日,每天上午08:00至12:00,下午13:00至17:00(北京时间,法定节假日除外 )地点:江西省公共资源交易网(网址:http://jxsggzy.cn/)方式:网上报名和下载招标文件售价:0.00元三、对本次招标提出询问,请按以下方式联系:1.采购人信息名称:樟树市教育体育局地址:樟树市药都南大道27号联系方式:0795-71607062.采购代理机构信息名称:江西省机电设备招标有限公司地址:江西省南昌市东湖区省政府大院北二路92号(咨询大厦)联系方式:0791-862142793.项目联系方式项目联系人:胡涛、万里阳电话:0791-86214279
  • 1585万!生物育种钟山实验室双光子激光共聚焦显微镜、气相色谱-高分辨率静电场轨道阱联用系统等采购项目
    一、项目基本情况项目编号:JSZC-320100-SMDY-G2024-0082项目名称:生物育种钟山实验室建设第一批设备采购项目预算金额:1585.000000万元(采购包1:480.000000万元;采购包2:400.000000万元;采购包3:255.000000万元;采购包4:450.000000万元)最高限价(如有):1585万元采购需求:分包号分包名称数量(套)简要技术要求★合同履行期限预算金额(万元/人民币)是否接受进口产品1双光子激光共聚焦显微镜1详见招标文件第四章招标技术规格及要求合同签订后180天内交货480.00是2120kv透射电子显微镜1合同签订后10个月内交付400.00是3气相色谱-高分辨率静电场轨道阱联用系统1合同签订后120天内交付255.00是4超高效液相色谱质谱联用成像系统1合同签订后180天内交货450.00是合同履行期限:详见采购需求本项目(是/否)接受联合体投标:否二、获取招标文件时间:2024年8月23日至2024年8月30日,每天上午09:00至11:30,下午14:00至17:30(北京时间,法定节假日除外);若潜在投标人未能在购买招标文件的截止时间之前向采购代理机构购买,则其投标将被拒绝。地点:江苏苏美达仪器设备有限公司,南京市长江路198号14楼方式:具体要求详见其他补充事宜售价:0.00元三、对本次招标提出询问,请按以下方式联系。1.采购人信息采购包1、采购包2、采购包3、采购包4单位名称:生物育种钟山实验室单位地址:南京市玄武区童卫路5号8号楼513联系人:任润生联系电话:199519876082.采购代理机构信息(如有)单位名称:江苏苏美达仪器设备有限公司单位地址:南京市长江路198号联系人:谭一凡联系电话:025-845325473.项目联系方式项目联系人:谭一凡电话:025-84532547
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 扫描探针显微镜(Scanning Probe Microscope--SP
    什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。 使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZL STM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件      培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统       什么是扫描探针显微镜(Scanning Probe Microscope--SPM)? SPM是一个大的种类,目前,SPM家族中已经产生了二三十种显微镜,如扫描隧道显微镜STM)、原子 (力显微镜(AFM)、磁力显微镜(MFM)、静电力显微镜(EFM)、近场光学显微镜(SNOM)等等。 SPM的工作原理是基于微观或介观范围的各种物理特性,通过原子线度的极细探针在被研 究物质的表 面上方扫描时检测探针&mdash 样品两者之间的相互作用,以得到被研究物质的表面特性,不同类型的SPM之间 的主要区别在于它们的针尖特性及其相应的针尖----样品相互作用方式的不同。   扫描隧道显微镜模块:   STM(Scanning Tunneling Microscope的简称)的工作原理来源于量子力学中的隧道效应原理。 当金属探针在与导电样品非常接近时(小于1nm),控制探针在样品表面进行逐行扫描,检测探针与样 品间隧道电流的变化来获取样品表面形貌、I-Z、I-V曲线等其它特性。 由于要在探针和样品间产生并传输隧道电流,所以只能检测导电 样品。   什么是原子力显微镜(Atomic Force Microscope -- AFM)? AFM是SPM最重要的发展。它控制一个微悬臂探针在样品表面进行逐行扫描,当探针在与样品非 常接近时(小于1nm),由于两者间原子的相互作用力,使对微弱力极敏感的微悬臂发生偏转,再 通过光杠杆作用将微小偏转放大,用四象限光电探测器检测,以获取样品表面形貌和其它物理、化 学特性。AFM按照其成像模式和检测信号的不同,有多种不同的工作模式,适用于不同性质的材料. 样品。 由于AFM对样品没有导电性的要求,应用范围十分广泛,弥补了STM只能观察导电样品的不足。   原子力显微镜基础模块:   该模块包含原子力显微镜接触模式和横向力模式。 模式 接触模式:微悬臂探针紧压样品表面,扫描过程中与样品保持接触。该 时探 模式分辨率较高,但成像针对样品作用力较大,容易对样品表面形 测表 成划痕,或将样品碎片吸附在针尖上,适合 检测强度较高、结构 稳定的样品。 横向力模式:是接触模式的扩展技术,针尖压在样品表面扫描时,与起 伏力方向垂直的横向力使微悬臂探针左右扭曲,通过检测这种扭 曲,获得样品纳米尺度局域上探针的横向作用力分布图。 原子力显微镜专业模块:   该模块包含原子力显微镜轻敲模式和相移模式。 轻敲模式:在扫描过程中微悬臂被压电驱动器激发到共振振荡状态,样 品表面的起伏使微悬臂探 针的振幅产生相应变化,从而得到样品 的表面形貌。 由于该模式下,针尖随着悬臂的振荡,极其短暂地对样品进行&ldquo 敲 击&rdquo ,因此横向力引起的对样品的破坏几乎完全消失,适合检测粉体颗 粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率接触模式低。 相移模式:是轻敲模式的扩展技术,通过检测微悬臂实际 振动与其驱动信 号源的相位差的变化来成像。引起相移的因素很多,如样品的组分、 硬度、粘弹性、环境阻尼等。因此利用相移模式,可以在纳米尺度上 获得样品表面局域性质的丰富信息。 液相模式:(选配)配有液体池,工作时探针和样品都在液体环境中, 适用于生物样品 摩擦力显微镜模块:   原子力显微镜基础模块中的横向力模式可以获得样品与探针的横向作用力分布图。由于影响 横向力的因素很多,主要包括样品移动方向与针尖悬臂角度、样品晶格排列角度、摩擦力、台阶扭动、 粘弹性等,因此,如果能够基本确定其它因素,利用横向力模式可以对样品纳米级摩擦系数进行间接测 量,进行表面裂缝及粘弹性分析等。 摩擦力显微镜是用于定量评价极轻载荷下(10^-7&mdash 10^-9N)薄膜材料的摩擦学特性,通过对针 悬臂 尖及悬臂的力学特性准确标定,能够获取微观摩擦系数,为纳米摩擦学研究提供依据。利用我们独创的 对分模式扫描,可以准确标定针尖悬臂与扫描方向的90度角,以消除针尖放置角度的不准确和扫描器 误安装位置的差;通过设定正压力的变化范围,可以连续改变正压力, 几分钟内就可完成几小时才能 完成的测量过程,而且系统状态变化很小, 使得测量更准确;由于有4通道同步采集,在所有的力测量过程中,我们 可以同时采集到样品的起伏、针尖所受到的起伏力、横向力,可以准确 分析针尖的状态,为精确分析摩擦力提供了更为详实的数据。   磁力/静电力显微镜模块:   抬起模式:该工作模式分两个阶段,第一阶段与普通原子力显微镜形貌成像一样,在探针与样品间 距1nm以内成像,然后,将探针抬起并一直保持相同距离,进行第二次扫描,该扫描过程可以对一些 相对微弱但作用程较长的作用力进行检测,如磁力或静电力。 磁力显微镜(Magnetic Force Microscope -- MFM):控制磁性 探针在磁性样品表面进行逐行扫描,利用抬起模式进行二次成像,获得样 品纳米尺度局域上磁畴结构及分布图。 静电力显微镜(Electrostatic Force Microscope -- EFM): 控制导电探针在样品表面进行逐行扫描,利用抬起模式二次成像,获得 样品纳米尺度局域上静电场分布图。   扫描探针声学显微镜模块: 扫描探针声学显微镜(SPAM,Scanning Probe Acoustic Microscope)是将原子力显微镜与电声成 像技术相结合,采用声学成像模式,借用声波记录下物质的内部模样,建立了低频(30kHz)高分 辨率(~10nm)扫描探针声学显微成像技术。其特点是能够获得反映材料亚表面纳米尺度结构的声 学像和性能的原位检测,克服了现有SPM只能获得材料表面结构和性质的不足。迄今为止,反映材 料亚表面纳米尺度结构及有关物性的声学功能模式的SPM在国内外报道甚少。   样品定位辅助模块:   该模块包含高分辨CCD光学显微系统和高精度电控样品移动平台。 高分辨CCD光学显微系统:在计算机上成像,用于观察探针和样 品,放大80&mdash 600倍。 高精度电控样品移动平台:计算机自动控制,配合 光学显微系统 进行精确样品移动和定位的装置。移动范围5mm*5mm,单步移动步长最小 85nm。   纳米加工模块:   SPM的纳米加工技术是纳米科技的核心技术之一,常用的加工方法包括机械刻蚀、电致/场致刻 润笔 蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。其基本原理是利用SPM针尖在样品表面准确移动, 与样 同时控制针尖-样品间的相互作用,就可完成所需的加工过程。 常用的移动方法包括矢量和点阵。矢量法通过矢量产生插件建立矢量数据文件,然后进行刻蚀。使用这种方法,线条连续,刻蚀速度快,但矢量编辑较为麻烦。点阵法通过插件自动分析需要刻蚀的图 象,在样品上边扫描边刻蚀。这种方法不用编辑矢量,与原图像几乎不失真,但刻蚀速度慢,线条不连 续。可以根据需要选择不同的方法。   SPM通用平台开放式开发系统模块:   SPM通用平台开放式开发系统是一套完整的SPM模块化开发平台,简称&ldquo 开发系统&rdquo 。包括软件 板和 开发模硬件开发套件。如果您需要在已有的SPM功能上开发特殊要求的功能模块,就需要购买开发系 统。目前,离线软件开发模板我们都免费赠送,鼓励用户亲自开发,或者提出详细要求和算法,委托我 们为SPM定制1-2个特殊功能的处理插件,这都是免费的服务。 软硬件结合的特殊功能的SPM开发就要使用&ldquo 开发系统&rdquo 了。这套系统具体包括软件开发模板、硬件 扩展接口测试箱(硬件扩展实验板组)、硬件接口插件模板、开发手册。该系统的设计充分考虑了用户级 二次开发的方便性、可行性和可靠性。当然,您也可以购&ldquo 开发系统&rdquo ,然后提出IDEA,由我们来帮您 合作完成。 在您了解了各个功能模块后,您可以选型了,我们为了您搭建了四种机型,它们的外形都基本 一样,那是因为这样便于您今后无障碍模块化升级。 模块/型号 ZLSTM-II 型 扫描隧道显微镜 ZLAFM-II型 原子力显微镜 ZLAFM-III型 扫描探针显微镜 ZL3000型扫 描探针显微镜 扫描隧道 显微镜模块         原子力显微镜 基础模块         原子力 显微镜 专业模块         摩擦力 显微镜模块     可选配    磁力/静电力 显微镜模块         样品定位 铺助模块   可选配     纳米 加工 模块   可选配 可选配 可选配 SPM通用平台 开发系统     可选配 可选配 扫描探针 声学模块     可选配 可选配 各功能模块介绍摘要: 1.扫描隧道显微镜只能检测 导电样品,因其有样品的局限性,所以通常作为教学仪器。 2.原子力显微镜对样品没有导电性的要求,应用范围十分广泛。AFM基础模块包括接触模式和横 向模式;AFM专业模块包括轻巧和相移模式。 3.接触模式AFM适合检测表面强度较高、结构稳定的样品。 4.横向力模式AFM可以获得样品纳米尺度局限上探针的横向作用力分布图。 5.轻敲模式AFM适合检测粉体颗粒、生物样品及其它柔软、易碎、易吸附的样品,但分辨率比接 触模式较低。 6.相移模式AFM对不同组分材料的组分变化比较敏感。 7.磁力显微镜可以获得样品纳米尺度局域上磁畴结构及分布图。 8.静电力显微镜可以获得样品纳米尺度局域上静电场分布图。 9.样品定位辅助模块用于实现样品在毫米量级范围内以纳米精度搜寻定位。 10.纳米加工模块用于实现矢量刻蚀和图形刻蚀方法的纳米加工。 11.如需开发特殊功能SPM,需要购买SPM通用平台开放式开发系统。 配置/型号 ZL STM-II ZL AFM-I ZL AFM-II ZL AFM-III ZL 3000 主机 可扩展式电子学控制机箱 多模式扫描探针显微镜组合式探头 扫描隧道显微镜 原子力显微镜 接触/横向力 模式 原子力显微镜 轻敲/相移 模式 摩擦力显微镜 磁力/静电力显微镜 针尖粗调/自动趋近机构 扫描器(单一多量程自适应扫描器不更换技术) 针尖架 扫描隧道模式针尖架 原子力基础模式针尖架 原子力专业模式针尖架 磁力模式针尖架 静电力模式针尖架 组合式纳米级减振系统 1个 包含 包含 包含 包含 包含                     1套 6&mu m 6&mu m 50&mu m 50&mu m 100&mu m 1个 2个 3个 5个 1个       1套 软件 系统   在线控制软件 1套 离线图像处理/分析软件 离线软件开发模板 摩擦力分析软件         网络实验室远程控制软件       培训课件/实验教材/科普教材/说明书光盘   附件 标准样品 1套 样品载片 5片 5片 10片 10片 15片 STM探针 Pt-Ir 20 20cm   20cm AFM接触/横向力/摩擦力模式探针(进口)   10枚 AFM轻敲/相移模式探针(进口)       10枚 MFM磁力探针(进口)         5枚 EFM导电探针(进口) 5枚 专用工具(镊子、针尖剪刀、玻璃皿 等) 1套 样品 定位 模块 高分辨CCD光学显微系统 可选配 高精度电控样品移动平台     纳米加工模块 SPM通用平台开放式开发系统
  • 全球首个!钟南山团队首次精确描绘德尔塔变异株的完整传播链
    南京、扬州的疫情还没过去多久,这几天福建疫情又刷爆了热搜,让人们稍微平静的心再次悬了起来。经检测,此次疫情仍是因德尔塔变异毒株感染引起的,那么德尔塔变异株的完整传播链到底是怎样的?  近日,钟南山院士联合广州医科大学附属市八医院的相关科研学家给出了答案,他们在《柳叶刀》子刊《EClinical Medicine》发表了一篇题为“Transmission, viral kinetics and clinical characteristics of theemergent SARS-CoV-2 Delta VOC in Guangzhou, China”的文章,将流行病学和病毒基因组测序技术相结合,针对此前德尔塔病毒在广州引起的“521新冠肺炎疫情”进行深入分析,首次追踪并完整报道了这起疫情的清晰传播链,并结合临床资源,多方位描绘了这次疫情中感染者的临床特征及病毒的动力学特征。  据悉,此次“521新冠肺炎疫情”的起因是一名75岁女性因意外暴露感染,并通过密切的家庭接触或聚餐又感染其他3人,然后该变异病毒传播6代,致使159人感染。此外,研究人员观察到,该疫情中病毒的传播途径主要是通过直接和间接近距离接触,其中30.8%的感染者是用餐传播,30.13%的感染者是家庭接触传播、18.59%的感染者是社区传播、19.87%的感染者是包括工作和社交接触在内的其他传播途径。  为了了解德尔塔变异毒株的主要特点,研究人员提取了2021年5月21日至6月18日期间七个传播代的159例德尔塔感染病例相关的流行病学和临床信息,并将病毒载量动力学和临床特征与广州第八人民医院2020年收治的野生型感染队列进行多方位分析比较。  研究结果显示,与普通新冠毒株相比,德尔塔变异株的潜伏期短,传播速度快,在10天内可传播4代,中位潜伏期只有4.7天,其中最快的代际传播不超过24小时。不仅如此,德尔塔变异株感染者的病毒载量也更高,感染后核酸转阴的时间明显延长。  除此之外,感染德尔塔变异株是预测病情转为危重症的危险因素,在60岁及以上老年患者中,感染德尔塔变异株出现危重症的风险是感染野生株的1.65倍,发展为危重症的速度比野生株快2.98倍。这说明快速追踪、隔离以及时发现病毒感染者,对重点场所实施及时管控和在特殊情况下实施局部地区全员核酸筛查均非常重要。  (图注:德尔塔毒株的流行病学传播网络)  总而言之,这项研究揭示了德尔塔变异毒株具有潜伏期短、传播速度快、病毒载量高、核酸转阴时间长、更易发展为危重症的特点。但值得注意的是,这里的一项“潜伏期”数据似乎与近日发生的“莆田疫情”不符,据了解,莆田疫情源头疑似出现了“38 天”的潜伏期。为此,有专家分析可能有3种原因。  其一是检测结果出现“假阴性”。但德尔塔毒株病毒载量较高,理论上应该可以轻松检测出来,出现这种现象的概率极小。而另一种推测是患者出现了所谓的超长潜伏期,相关专家表示,不排除个别病例存在超长潜伏期的可能性。超长潜伏期或者长期病毒携带者在其他一些病毒感染中曾被发现过,比如在脊髓灰质炎中,有些免疫缺陷患者感染后会长期排毒,甚至长达数年。因此尽管还不清楚新型冠状病毒是否也能在特殊人群中长期携带,但这种风险也需要考虑。此外,还有最后一种可能就是隔离过程中的暴露感染。  对此,相关专家表示,“外防输入、内防反弹”的任务依然艰巨,防控须臾不可放松,没有发生疫情时关键在“防”,发生疫情后处置措施要“快”要“细”,核酸检测、流调溯源、风控管理、场所和物资准备等每一个环节都要责任到人、精准到位,只有做好“万无一失”的准备,才能避免“一失万无”的后果。
  • 黄超兰与高福团队描绘新guan刺突蛋白糖基化图谱
    新突破新guan肺炎自2019年暴发以来,给全社会带来了灾难性的影响,不仅对quan世界人民的健康造成了巨大威胁,还对全球经济产生了震荡性的影响。因此,对新guan肺炎的研究也显得愈发重要。近期,来自北京大学医学部jing准医疗多组学研究中心的黄超兰团队、中国科学院院士高福团队以及中国科学院天津工业生物技术研究所高峰团队,通过采用基于质谱的糖基化修饰鉴定技术,对新guan肺炎颗粒上S蛋白的O-糖基化修饰图谱进行了整体描绘,进而提出了“O-Follow-N”的O糖基化修饰规律,为新guan肺炎的致病机制探索提供了研究基础。而这项出色的研究,也于2021年8月2日以“O-glycosylation pattern of the SARS-CoV-2 spike protein reveals an“O-Follow-N” rule”为题发表在了Cell Research期刊上。糖基化修饰(Glycosylation)是蛋白质主要的翻译后修饰类型,其广泛参与细胞黏附、识别、信号转导等重要过程,影响蛋白质的分泌、运输和稳态调控,可发生在细胞50-70%的蛋白质上,2021年糖基化修饰鉴定被Nature Methods评为zui值得关注的技术之一。根据糖苷链类型,蛋白质糖基化修饰可以分为四类:(1)N-连接糖基化;(2)O-连接糖基化;(3)C-连接糖基化;(4)糖基磷脂酰肌醇锚定。其中O-糖基化修饰,是在高尔基体中产生。它在人体中有70余种常见糖型,无特定氨基酸结构域。目前,对O-糖基化修饰研究存在许多困难,比如:1糖基化修饰的糖链形成无固定模版;2受200多种糖基转移酶的复杂调控;3糖基化肽段剂量水平低;4规模化糖链结构解析通量低;5糖链构成微不均一性,定性与定量困难;6功能性糖基化位点及关键糖结构指认困难。受这些因素影响,对O-糖基化修饰的研究也是少之又少。现阶段,对于大规模、高通量的蛋白质翻译后修饰的研究,zuihao的途径就是利用基于高分辨质谱的蛋白质组学技术。在这篇报道中,黄教授等团队,就是通过基于质谱的蛋白质组学技术,克服一系列困难,shou次对新guan病毒上S蛋白的O-糖基化进行了综合性描绘。实验中,研究者为获得天然状态下S蛋白的N-和O-糖基化修饰完整图谱,首先从SARS-CoV-2病毒颗粒上获得S蛋白,并使用了LysC+Trypsin, Chymotrypsin, GluC, Elastase 以及 alpha-Lytic等多种蛋白酶将S蛋白酶解成肽段。而对于这种复杂糖蛋白酶解后产生的肽段,普通质谱很难进行检测。研究者则采用了具有超高分辨率的Orbitrap Eclipse 三合一质谱仪,并利用三合一仪器多种碎裂功能中的阶梯HCD(stepped collisional energy SCE),HCD(Higher-energy collisional dissociation)以及组合式的HCDpdEThcD三种碎裂方法进行质谱分析。图1. Orbitrap Eclipse 三合一质谱仪Orbitrap Eclipse三合一质谱仪是一台不仅拥有着CID, HCD, ETD HD, EThcD HD, ETciD, UVPD, PTCR等多种碎裂模式的质谱仪,而且还具有高达50万的分辨率,能够对多种形式的修饰肽段进行jing准定性与定量,为研究者提供了更坚实的硬件基础。研究中,研究者共鉴定到了39个糖基化修饰位点。其中包括此前已报道的22个N-糖基化修饰位点,以及17个O-糖基化修饰位点。值得注意的是,这17个O-糖基化修饰位点是shou次从SARS-CoV-2病毒颗粒中提取的S蛋白上鉴定到的。并且通过深入分析这些位点,研究者发现在这17个位点中,有11个位点位于糖基化的天冬酰胺(Asn, N)附近。为了更准确的对这一现象进行挖掘,研究者将NxS/T共有基序内糖基化的N每一侧的3个氨基酸定义为“N±1-3”。分析结果显示,11个O-糖基化修饰位点分布在“N±1-3”的位置上,位点信息确定的位点有10个,其中7个位点分布在“N+2”的位置上。研究者还通过开展定点突变实验进一步证实N糖基化修饰的存在是“N±1-3”的位置上出现O-糖基化修饰的先决条件。基于以上分析,研究者提出SARS-CoV-2病毒S蛋白的糖基化修饰存在O-糖基化修饰追随N-糖基化修饰发生的现象,并将这一现象命名为“O-Follow-N”规律。图2.新guan病毒S蛋白上符合“O-Follow-N”规律的O糖基化修饰(点击查看大图)小结Summary研究基于前沿的质谱分析技术,通过使用超高分辨的三合一质谱仪Orbitrap Eclipse,揭示了新guan病毒上S蛋白的O糖基化修饰谱,进而提出了O 糖基化修饰的“O-Follow-N”规律,同时这一规律也可能适用于其它蛋白。这个规律提示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。黄超兰(北京大学医学部jing准医疗多组学研究中心主任)问根据您的经验,O-糖基化修饰鉴定的难点在哪里?答对于所有的蛋白翻译后修饰鉴定都普遍存在着几个相同的难点:(1)修饰丰度相对较低,难以直接鉴定,往往需要进行修饰富集,因此对样本量等要求较高;(2)修饰调节为动态变化过程,鉴定重复性会相对低一点。而对于O-糖基化修饰,因其特殊性,又有几个其他因素影响:(1)糖基化修饰的糖链形成无固定模版,且受多种糖基转移酶的复杂调控;(2)规模化糖链结构解析通量低,定性与定量困难;(3)功能性糖基化位点及关键糖结构指认困难。问Orbitrap Eclipse Tribrid三合一质谱联用仪在该研究中发挥了怎样的作用?答在我们的实验体系中,使用了多种蛋白酶对S蛋白进行处理,因此会产生长短不一,形式各异的肽段,而这就要求配套的质谱仪器能够具有多种碎裂模式,而 Orbitrap Eclipse质谱仪就很好地满足了我们的需求。并且Orbitrap Eclipse具有很好的分辨率以及稳定性,这对我们的实验提供了很大帮助。问新guan病毒颗粒上提取的S蛋白O-糖基化修饰图谱的揭示对新xing冠状病毒肺炎的研究有哪些帮助?答我们在实验中发现了“O-Follow-N”变化规律,这对研究糖基化的变化具有很好的提示作用。并且这个规律也显示O-糖基化修饰具有潜在的调控新机制,特别是N-和O-糖基化修饰之间可能存在的协同作用,未来有望在极大程度上推动糖生物学领域的研究。专家介绍黄超兰教授长期致力于质谱和蛋白质组学前沿新技术和方法的研究开发,应用范围包括生物学基础、医学和临床研究,是高度跨界,善于交叉学科整合,战略规划制定和人员管理的quan方位技能科学家。如需合作转载本文,请文末留言。这样的应用图书馆不来了解一下?点击进入小程序完成注册即刻抽取盲盒好礼
  • 电子烟油检测好比“雾里看花”?带你了解一招制敌的“神器”
    近年来,电子烟已经不再是个新名词了。在追求时尚的人群中,电子烟更是早早就走上了舞台,在欧美的大街上,随处可见吞云吐雾的抽着电子烟的时尚年青男女。 但是与很多新生事物一样,在广泛接受的同时也伴随着不少的质疑声音,其的安全性是质疑的焦点。 尼古丁做为一种间接的致癌物,是传统烟草有害身体健康的主要危害物质之一,但电子烟却有更低的尼古丁含量,可以很大程度上减少尼古丁的暴露量,在这一点上,电子烟无疑是更安全的。但是电子烟油做为一个混合物,也确实比传统烟草有更大的可能会引入更多的未知物,需要有更多的实验以及时间去证明其的更好的安全性。电子烟的烟油是一个安全性分析的关键基质。不像传统烟草,电子烟本身就有很多的口味,可以带来更多的口感。除了品牌,口味可能是很多人选择电子烟品类的一个重要参考指标。 那么想搞清楚烟油的成分容易吗?如果你有拥有一台赛默飞的超高分辨静电场轨道阱液质平台,答案自然是容易的。那么让我们来看看赛默飞的超高分辨质谱是如何一步步来搞定烟油的成分分析吧。 ■ 静电场轨道阱质谱是属于超高分辨率的范畴,可以提供zui高高达100万的分辨率,而市面上飞行时间质谱仅能提供几万的分辨率,所以在分辨率的维度上,静电场轨道阱质谱有巨大的优势。烟油成分是一个比较复杂的混合物,里面的物质成千上万种,超高的分辨率可以确保可以把里面的化合物表征的更加准确,而不会发生质量数很接近的化合物之间的互相干扰。■ 静电场轨道阱质谱而且还有超过市面其它产品一到两个数量级的灵敏度优势,可以确保对里面的微量、痕量成分进行检测,比如里面的亚硝胺杂质。 下图为采用静电场轨道阱质谱对市面上某烟油产品进行全扫描的结果:(点击查看大图)烟油产品中的物质及其复杂,但是超高的分辨率决定了对里面的化合物进行jing准表征并不难。我们针对其中的尼古丁成分的一级质谱图,还有二级质谱图,可以看出,赛默飞的静电场轨道阱质谱可以通过超高分辨率提供超高的质量精度,不仅可以将化合物与干扰物分开,而且可以将同位素进行分离,进行精细同位素分析。(点击查看大图)(点击查看大图) CompoundDiscoverer除了硬件上的巨大优势外,赛默飞的静电场轨道阱质谱还有另外一个秘密武器,那就是Compound Discoverer软件。众所周知,高分辨质谱采集数据只是完成了分析的一部分,高分辨质谱的数据处理更是重中之重。因为高分辨质谱是全扫描质谱,会将电离的化合物全部采集,这样我们的目标信号很有可能就被隐藏在了数万个信号里面,想要从这里挖掘出我们想要的信号,大有大海捞针的架势。所以高效率的软件是高分辨质谱数据处理的重要组成部分。 ■ Compound Discoverer可以实现对复杂的LCMS数据的提取和分析并得到独立的有色谱峰型的信号,然后对这些信号进行Group, 将加合离子,源内裂解碎片进行合并,并且自动将归属的二级质谱信息进行关联。zui后再连接数据库尤其是mZCloud进行搜索,得到化合物的定性信息。整个过程清晰明了,结果见下图: (点击查看大图)软件自动进行了同位素标记,以及搜库信息,化合物的结构式,二级质谱的匹配等。结果直观,明了。看了上面是不是觉得赛默飞静电场轨道阱质谱很厉害?那么它为什么能够提供别的高分辨质谱更高的分辨率、灵敏度以及质量精度呢?下图是它的一个工作原理图:主要是因为静电场轨道阱质谱是傅立叶变换质谱,测定的是频域信号,而不是时域信号,频域信号经过傅里叶变化具备更好的特异性以及抗干扰的特性。 想要了解更多的关于赛默飞静电场轨道阱质谱的信息,请关注我们的微信公众号。
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 扫描电镜样品荷电现象成因新解——安徽大学林中清33载经验谈(12)
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜测试过程中,样品的荷电现象被公认为是最大且棘手的问题。对于样品荷电现象的成因,目前的解释大都语焉不详,存在许多的疑问。其中最经典的解释似乎是基于如下这张电子产额与加速电压的关系图所展开。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7b4e9c9a-cc0b-4387-9dbc-319ec0829c11.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 零电位:无荷电;负电位:异常亮;正电位:异常暗 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但这个解释存在以下几个步进式的问题: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " A)无论是样品的表面形貌像,还是表面的荷电表象都基于溢出样品表面的电子信号。样品中产生再多的二次电子和背散射电子,没有溢出样品表面,没有被探头接收到,对形成表面形貌像是毫无影响的,更遑论荷电表象。故样品荷电现象,对应的应该是电子信息溢出量出现的异常。这张图对产额是啥?交代不清,故是否适合做为参照? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " B)二次电子和背散射电子产额多是否就一定溢出的多?二次电子和背散射电子产额的多少和样品中形成怎样的荷电场是否能画上等号? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 一个电中性的样品。当注入样品的电荷总量与溢出样品的电荷总量存在差异,才可能在样品中形成电场。如果溢出样品表面的电荷总量低于注入样品的电荷总量,且多余的电荷聚集在样品中,就会在样品的局部或全体部位形成负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中二次电子和背散射电子产额多不代表其溢出量大。溢出样品表面的二次电子和背散射电子占其产额的总量往往都很低。产生所谓正电场必须是溢出样品的电子比注入样品的电子还要多,使样品局部或全部有大量的正电荷聚集。这种情况在扫描电镜的测试过程中几乎是不可能发生的。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " C)样品如果真的存在正电位,将会出现怎样结果? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经典观点认为,当样品电子的产额大于入射电子总量,且这些电子都溢出样品表面,才在样品中形成正电位。如果这种情况确实发生了,那形貌像应该如何变化呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先图像将由于有大量二次电子和背散射电子的溢出而变得异常明亮;随后出现正电场使得这些电子溢出急遽减少,图像变暗;随着电子束将大量电子注入样品,这些正电荷将被中和,正电位减弱,样品的电子信息又将逐渐显现,图像也渐渐变亮,直至下一次信息爆发。故样品中出现正电位现象,图像将产生亮暗相间的闪烁,而不是稳定的异常变暗。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 现实中这种图像亮暗相间的闪烁几乎看不到,也就是正电位应该不存在。那么是否图像异常暗的现象也不存在? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 实际情况是样品的荷电现象,存在三种表现形式 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/83c7e731-b1a0-4ca5-b85c-8177b17e0cfa.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中只可能存在负电位,那么以上三种现象的形成机理是什么?形成样品荷电的真正原因是什么? /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun " strong span style=" color: rgb(0, 176, 240) font-family: 宋体, SimSun font-size: 18px " 一、荷电现象的形成 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 扫描电镜所面对的样品相对于信号激发源“高能电子束”来说,可看成无穷厚。因此在电子束轰击样品时,电子束中的高能电子因无法穿透样品而驻留在样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,会在样品中形成散射电子并激发出样品的二次电子等信息。其中一小部分的二次电子及背散射电子(与入射电子方向相反的散射电子)将溢出样品表面,被探头接收,形成样品表面形貌像的信号源。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当注入样品的电子数与从样品表面溢出的电子数不相等时,就有可能在样品中形成静电场。从而影响电场部位的二次电子和背散射电子的正常溢出,样品表面形貌像将出现异常亮、异常暗及磨平这三种现象。这就是样品的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 对样品荷电现象的探讨,将牵扯到一个电子迁移的问题,因此将引入一个漏电能力的概念。“漏电能力”是指样品的漏电子能力,即样品上自由电子的迁移能力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 物体的体积、密度以及结构都会影响样品中自由电子的迁移能力。体积越小、密度越大、晶体结构越紧密,自由电子在这些物体上的迁移能力即漏电能力就强。体积较大且密度低、晶态较差的物体以及颗粒物的松散堆积体。自由电子的迁移能力一般较差,漏电能力也较差,容易形成电荷堆积。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 荷电现象的形成过程 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束轰击样品时,大量的电子被注入样品,由于扫描电镜所应对的样品足够厚,故在样品中会驻留大量电子。虽然有不少二次电子和背散射电子溢出样品表面,但和驻留电子的数量相比,将形成一个不对等的关系。其结果是大量多余的自由电子存在于样品中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力很强,且接地良好。这些多余的自由电子就会通过样品迁移掉,样品中不存在电荷堆积的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品的漏电能力较弱,那么自由电子就会在样品的全部或局部形成堆积,并在堆积处形成强弱不等的静电场(负电场),影响该部位二次电子甚至背散射电子的正常溢出。样品表面形貌像的局部或全部将叠加出现异常亮、异常暗、磨平这三种异常现象,对表面形貌像造成程度不等的干扰,形成所谓的样品“荷电现象”。该静电场也称“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果样品中各部位的漏电能力强、弱不均匀,自由电子将会从漏电能力强的部位集中迁移到漏电能力弱的部位,并在漏电能力较弱部位堆积形成荷电场。此时样品的荷电现象就只在表面形貌像的某些部位出现。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f8e09c03-be02-4633-a468-2ef64aede90f.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 1.1 样品的漏电能力和导电性 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 传统理论将样品是否会产生荷电现象归因于样品的导电性。认为只有导电性好的样品不容易产生荷电现象。而样品导电性的判断又以材料名称来决定,金属材料归类于导电性好,非金属材料归类于导电性差。以此观点来解释样品荷电现象常常会产生许多疑惑。充分的实例表明,大量所谓导电性差的非金属样品并不存在荷电现象,如:许多晶体材料、纳米粉体虽然是非金属材质,都不必然会形成所谓的荷电现象。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1eb2676b-6d05-43df-a1d4-4f314f487d0f.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 许多被公认为导电性好的金属材料,若密度较小、形态松散或形成堆积体也会产生极强的荷电现象。如下图实例所示: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/ee1ad80d-a703-435a-883d-78acc0f1eaba.jpg" title=" AA.png" alt=" AA.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为什么会出现以上这种与传统观念完全不一致的现象?以样品导电性来解释荷电现象存在怎样的问题? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电现象是静电现象,是由大量自由电子在样品的全部或局部区域形成堆积,产生荷电场,所引发的信息异常溢出。自由电子只要失去通道就会形成堆积,与材料本身导不导电的关系并不那么紧密。也就是说样品导电,仅仅是一个有利于减少荷电影响的因素,但并不充分也不能说是必要。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 形成电子通道的因素众多,除前面所说与物质性质有关的因素如:体积、密度、结构等等,还包括外界因素如:加速电压、样品的堆积程度等。以样品是否导电来做为形成荷电场的唯一成因,那是以偏概全、以孔窥天。存在这种理念对正确应对样品荷电的影响,充分获取样品信息极为不利。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 二、拆解样品荷电现象的三种形态 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 前面介绍了样品的荷电现象表现为三种形态:异常亮、异常暗、表面磨平。并分析了扫描电镜荷电现象的成因是:样品中存在大量自由电子堆积形成的荷电场,造成表面电子信息溢出异常,而这个荷电场只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 那是什么原因酿成了荷电现象出现这三种表现形式呢?& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 背散射电子能量较高,溢出量仅在荷电场极强时才受影响。故以易受荷电影响的二次电子信息为例来加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中自由电子的聚集点就是形成荷电场的位置。荷电场的强度及深度与加速电压和束流的大小、样品结构和体积以及颗粒物的堆积状态等因素有关联。测试时虽很难直接给出荷电场强度及位置的具体数值,但它存在一定的变化趋势。同等条件下,增大加速电压将使荷电场在样品中所处的位置下沉,达一定量,会引起荷电现象的形态发生改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 以荷电场在样品中的位置分布对二次电子溢出量的影响为线索,就比较容易去拆解荷电现象的三种形态: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (A)异常亮:如果入射电子在二次电子溢出区(浅表层)产生较多的二次电子,同时形成的荷电场位于浅表层下方。荷电场会将位于其上方原本无法溢出的二次电子推出样品表面,使得溢出样品表面的二次电子异常增多,图像异常变亮。荷电场足够强大会将周边的二次电子信息都大量推出,图像的形态也就受到影响。现实中,荷电现象出现“异常亮”的几率相对较高,较高的加速电压出现该现象的几率也较大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/737aaa0a-926b-4f28-9975-19c055e45e95.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (B)异常暗:较低的加速电压在一定条件下,会使得荷电场形成于样品二次电子溢出区域的上部。此时荷电场将抑制二次电子的正常溢出,出现异常暗的现象。加速电压越低在样品中累积的自由电子越靠近浅表层上部,荷电场的形成位置将越高,也越容易形成异常暗的现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 极低的加速电压(100V),在样品表面产生的二次电子少,形成荷电场的位置靠近最表层,易形成强烈的异常暗现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 在凹坑上边缘有电荷累积,也易酿成异常暗这种荷电现象。因形成条件较为苛刻,故产生该现象的几率相对较低。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/f760bb93-896d-4854-a6d9-638a23a465d6.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp & nbsp & nbsp & nbsp br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 随着加速电压的提升,表面二次电子产额增加,最关键的是荷电场位置下沉,有些异常暗的现象也会转移成异常亮。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/7d4f23ef-e0a1-45d2-adec-38f881638503.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (C)表面磨平:当样品中形成的荷电场位置较高,与二次电子的溢出区混杂。荷电场会对溢出样品表面的二次电子产生部分的遏制作用,表面细节由于溢出信息的不足而被抑制,出现磨平现象。松软的样品容易出现该现象。出现这一现象时,往往会在样品颗粒的边缘或较大斜面处,由于极表层的二次电子增多,而伴随出现异常亮的现象。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品出现细节磨平这种荷电现象的几率较异常暗高。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/aba027e0-4f45-48b2-ab47-e4359f611a15.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当荷电现象出现后,提升加速电压,荷电场位置将下沉,荷电现象的形态会发生变化。趋势:异常暗& gt 磨平& gt 异常亮& gt 正常。这个变化趋势会有跳跃式的变动,但不会逆转。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59912e7c-5595-4a6a-b844-c7f0ee6140a7.jpg" title=" 9.png" alt=" 9.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 240) font-size: 18px font-family: 宋体, SimSun " strong 三、小 & nbsp 结 /strong /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 当自由电子累积在样品中的某一个部位就会形成静电场,从而影响电场及周边电子信息的正常溢出,使得样品表面形貌像上形成异常亮、异常暗或细节磨平的现象,这个异常现象称为:样品的荷电现象。该静电场也称为“荷电场”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 二次电子能量较弱,极容易受到荷电场的影响。在探头接收到的样品电子信息中,其含量的占比越多,表面形貌像中出现荷电现象的几率也就越大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 高能电子束入射样品,形成的电子信息中,只有很少的一部分溢出样品表面,溢出量和入射电子量相差甚远。注入和溢出样品电子数量的不平衡就容易形成荷电场。荷电场是由样品中自由电子的堆积所形成,因此它只可能是负电场。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 自由电子在样品中存在一定迁移能力,迁移能力随样品性质以及样品堆积状态的不同而不同。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面连续、结构紧密的晶体材料或体积较小(纳米级别)的样品,电子在这类样品中的迁移能力都很强。电子迁移能力强,样品的漏电能力就好,也就不容易产生荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 表面断续、结构松散、体积较大的非晶态样品,电子在这类样品中迁移能力差,容易积累在某个部位形成荷电场,影响样品表面电子信息的正常溢出,产生所谓的荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 样品中如果各部位的漏电能力强、弱不均,则漏电能力强的部位不会有电荷堆积。自由电子只会堆积在漏电能力弱的部位,形成所谓的局部荷电现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 异常亮、异常暗和磨平是样品荷电现象的三种表现形式。样品表面的二次电子溢出区和荷电场之间的相对位置是造成这三种荷电表像的关键因素。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场在样品中的位置与样品的性质以及加速电压等因素有关。同等情况下,改变加速电压,荷电场的位置也会跟着发生变化,样品荷电的表现形式也会跟着改变。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场如果位于样品表面二次电子溢出区下方,则荷电场将把超量的二次电子推出样品表面,形成异常亮的现象。较高加速电压下,观察表面略紧实的样品容易出现该现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场存在于溢出区的上部且溢出样品表面的二次电子产额少,则荷电场会抑制样品信息的溢出形成异常暗的现象。当用较低的加速电压来观察低密度样品时,或者样品表面有凹坑,在一定条件下就会出现这一现象。采用极低的加速电压(如100V)观察凹坑部位时,最容易出现该现象。由于该现象的形成条件较为苛刻,因此形成的几率也较低。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 荷电场所处位置较高,位于二次电子溢出区内。那么荷电场会对样品二次电子的溢出量产生一定抑制,使得样品的表面形貌细节受到一定程度的掩盖,出现磨平现象。较低加速电压,在观察松散的样品时,容易出现这种现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 同等条件下,随着加速电压的提升,荷电场在样品中的位置逐渐下沉,荷电形态也将发生改变。荷电形态的变化趋势是: /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/59e152fb-6c63-420b-a71b-cc449ac98d1c.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 经常会看到这种变化趋势有跳跃的情况,但逆向变化则基本看不到。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于加速电压和束流的改变会对样品的荷电现象产生那些影响?这些影响都会带来怎样的结果?我们又该如何正确应对样品的荷电影响?都将在下一篇中通过充分的事例来与大家进行详细探讨。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " strong 作者简介: /strong /span /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202009/uepic/f18ee0a2-3ea9-48dc-86e2-dd06d5c3e6a9.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / span style=" font-family: 宋体, SimSun " 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong br/ /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200817/556801.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11) /span /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /strong /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /span /strong /a /p
  • 还原食品真实的模样——新年送点“礼”
    2018年10期的《食品安全质量检测学报》中刊登的,“馥郁香型白酒等级鉴别的研究”,文中提到了,建立超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法和主成分分析法对馥郁香型白酒等级鉴别的方法。该方法简单、快速,为馥郁香型白酒质量分级提供了一种新的途径。 赛默飞食品组学的工作流程可助力于食品掺假分析、食品溯源分析、食品类别分析,帮你去伪存真,还原食品最真实的模样。 食品掺假分析掺假蜂蜜中果葡糖浆分析 蜂蜜作为一种天然保健食品,在药用方向它既是一味中药也可用作药用辅料。但一直以来蜂蜜品牌繁多,掺假手段层出不穷,近几年常用的蜂蜜掺假方式中,利用果葡糖浆掺假形式最为普遍。 按照2015 版药典中增加了寡糖项(薄层色谱法),以下赛默飞针对不同品牌的蜂蜜样品加入果葡糖浆测定谱图:A品牌蜂蜜(点击查看大图) B品牌蜂蜜(点击查看大图) 结论本方法将药典中寡糖测定的薄层色谱法提升为高效液相色谱,灵敏度更高,测定结果,更准确。实验采用通用型检测器Corona Veo RS 进行测定,使用其阀切换功能将高浓度的单糖切换到废液,只测定聚合度大于等于5 的寡糖,避免了高浓度的糖污染检测器。对于不带阀的常规Corona Veo 检测器可以外置一个阀来实现该功能。CAD 操作简单,灵敏度高,稳定性好,适用于单糖和寡糖的检测。 食品溯源分析威士忌酒进行化学轮廓描绘和示差分析 威士忌酒是一种常见的烈性酒。由于威士忌酒零售价格普遍较高,市面上充斥着大量伪劣商品。最普遍的一种方式是讲威士忌酒的主要已知化学成分加入某种低价烈酒中,以“人造产品”冒充威士忌;另一种造假就是以次充好,夸大威士忌陈酿的年数。气相色谱-质谱联用仪(GC-MS)被广泛用于的威士忌酒表征分析,能非常有效地帮助实现酒中挥发性和半挥发性化学成分的鉴定。同时,利用 Thermo Scientific™ Q Exactive™ GC 混合四极杆-Orbitrap™ 质谱仪出色的分析表现来对不同产地、年份、和类型的威士忌酒进行轮廓描绘分析。下图总结了达成这些目标所需的工作流程。(点击查看大图) 食品类别分析在白酒香型鉴别中的应用 白酒在中国有着悠久的生产历史, 是我国优秀而宝贵的民族遗产,与白兰地、威士忌、伏特加、朗姆酒、金酒并列为世界 6 大蒸馏酒。我国固态发酵白酒质量的影响因素很多, 每个生产批次所产酒的酒质是不一致的。为了统一达到本品所固有的各种微量成分和它们之间适宜的比例, 就必须进行勾兑。 经过勾兑后的成品白酒, 具有其固定的化学成分组成以及这些成分之间的固定量比关系, 从而形成各自不同的香型和风味。目前对白酒香气成分的分析多采用 GC 或 GC/MS 的方法。而对于香型的鉴定,主要依靠品酒师的感官鉴别。该方法简单快捷,但对人员要求较高,且较为主观。也有采用电子舌技术对不同香型的白酒进行区分,但电子舌技术尚有待进一步发展且通用性较差。本实验采用超高效液相色谱(UHPLC)和基于 Orbitrap 高分辨质谱技术的 Q Exactive 台式质谱仪,结合组学分析软件 SIEVE 和统计学软件 SIMCA 对不同香型的白酒进行了组学研究,利用多元统计分析建立了一种快速、准确、客观地鉴别白酒香型的新方法,并对找到的标志物进行了鉴定。基于组学分析方法的全流程解决方案(点击查看大图) 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 500万!武汉理工大学招标采购光谱仪、超声探伤仪等设备
    项目概况理工科基础及专业实验室设备购置 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)获取招标文件,并于2024年06月28日 09点00分(北京时间)前递交投标文件。项目基本情况项目编号:WUTH2024040016(ZB0101-202406-ZCHW0706)项目名称:理工科基础及专业实验室设备购置预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:本项目共分3个包。投标人可对本次采购的各包进行选择性投标,也可同时投标;但评审时将以包为单位进行独立评审,分别确定中标人,投标人可中多包。投标人若同时响应多个包,则须分别编制投标文件、分别报价。各包报价均不得超过各包预算金额(最高限价),否则按该包无效投标处理。包号名称采购内容数量预算金额(万元)备注是否为核心产品是否为进口产品包1基础物理实验室设备购置超快脉冲I-V测试模块1205.5是否电激励磁悬浮实验仪12否否LED特性实验仪11否否近距转镜杨氏模量仪12否否超声探伤及特性综合实验仪12否否临界现象观测及气液相变测定实验仪12否否物理实验教学选排课管理系统1否否静电场描绘实验仪20否否热膨胀实验仪13否否空间光调制器1否否CMOS相机1否否高性能计算平台1否否包2光电专业实验室设备购置红外稳态荧光光谱仪系统181.46是否信号与系统实验系统5否否台式计算机2否否数字示波器5否否波形发生器2否否电源2否否紧凑型激光二极管控制器4否否光纤耦合光电探测器4否否激光同轴光纤耦合系统4否否包3力学实验室设备购置材料力学多功能实验装置35213.04否否动态疲劳控制器1否否非接触式复合材料热值无损检测系统1否否恒荷载装置22否否Zwick/Roell专用DCSC部件1否否柜式空调3否否电致应变驱动测试系统1否否摩擦磨损力学试验机1否否复合材料超声探伤仪1是否合同履行期限:包1供货期:合同签订后3个月内交货;质保期:自验收合格之日起不少于1年。包2供货期:合同签订后1个月内交货;质保期:自验收合格之日起不少于1年。包3供货期:合同签订后3个月内交货;质保期:自验收合格之日起不少于1年。本项目( 不接受 )联合体投标。获取招标文件时间:2024年06月07日 至 2024年06月17日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)方式:符合资格的投标人应当在获取时间内,通过以下方式获取招标文件。 (1)拟参加本项目的投标人须在阳光招采电子交易平台免费注册(网址:https://www.yangguangzhaocai.com ---【新用户注册】,相关操作帮助详见:帮助中心--- 投标人注册操作指南); (2)注册完成后,登录电子交易平台,点击【投标人】,在【公告信息】---【采购公告】栏下载拟投标段采购文件(拟投多标段的,应按标段分别下载),500元/份(包),售后不退。联合体参与响应的,由牵头人注册及下载采购文件。未按规定获取采购文件的,其响应文件将被拒绝; (3)本项目非全流程电子标,投标人无须办理CA数字证书; (4)在电子交易平台遇到的各类操作问题(登录、注册认证、报名购标、制作及上传标书等问题),请拨打技术支持电话010-21362559(工作日:08:00~18:00;节假日:09:00~12:00,14:00~18:00); (5)企业注册信息审核进度问题咨询电话:027-87272708; (6)项目具体业务问题请向代理机构联系人咨询。售价:¥500.0 元,本公告包含的招标文件售价总和提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2024年06月28日 09点00分(北京时间)开标时间:2024年06月28日 09点00分(北京时间)地点:湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1 号会议室公告期限自本公告发布之日起5个工作日。对本次招标提出询问,请按以下方式联系1. 采购人信息名 称:武汉理工大学地址:洪山区珞狮南路122号联系方式:晏老师 027-876452562. 采购代理机构信息名 称:湖北国华项目管理咨询有限公司地 址:武汉市武昌区中北路109号中铁1818中心10楼联系方式:宋黎明、王刚、汪树新、余轶菲 027-872727183. 项目联系方式项目联系人:宋黎明、王刚、汪树新、余轶菲电话:027-87272718
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制