激光动平衡仪原理

仪器信息网激光动平衡仪原理专题为您提供2024年最新激光动平衡仪原理价格报价、厂家品牌的相关信息, 包括激光动平衡仪原理参数、型号等,不管是国产,还是进口品牌的激光动平衡仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光动平衡仪原理相关的耗材配件、试剂标物,还有激光动平衡仪原理相关的最新资讯、资料,以及激光动平衡仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光动平衡仪原理相关的仪器

  • 浮式隔振光学平台,由台面和支撑两部分组成。台面采用三层夹心式结构,上台面为热变形系数很小的430系列高导磁镍合不锈钢,中间为真蜂窝支撑结构,底面为钢板,具有高刚性和非常优秀的隔振效果。上台面按照25mm× 25mm孔距均布M6螺纹孔,方便安装各类位移台和调整架,每个螺纹孔下方具有独立的隔离杯密封,非常方便清洁。 气浮支撑使用高品质气囊,气室为二层结构,3个真空管水平调节阀反应灵敏,响应时间短,此外支撑腿为整体式结构,并且带滚轮。支撑腿下方有调整支架高度的结构,台面高度调整机构也非常方便灵活。DVIO-I型光学平台在同类进口平台中,具有很高性价比,适合于对隔振性能和洁净要求较高的环境中使用。 ■技术指标:◆固有频率:垂直:1.2~1.5Hz,水平:1.5~1.7Hz;◆自动充气,自动平衡,响应时间短,平衡速度快;◆工作压力:3~7kgf / cm2,空气压缩机需另配;◆气浮支撑:二层结构式气室,三个水平调节阀,四或 六个气囊;◆台面结构:真蜂窝三层夹心结构;◆上台面:4.0mm厚430系列高导磁镍合不锈钢;◆蜂巢内核:钢制蜂窝芯,钢板厚度0.25mm,每个蜂 巢面积3.2cm2;◆螺孔密封:每个螺纹孔下方设有柱形隔离杯密封, 方便清洁;◆下底面:4.0mm厚碳钢,表面氧化处理;◆边墙板:2.0mm厚碳钢,包裹高阻尼聚乙烯材料;◆台面厚度:50/100/200/300mm可选,详见选型表;◆平面度:± 0.1mm/600mm× 600mm;◆孔距:25mm× 25mm(英制孔距可选),最外边孔距 平台边缘37.5mm;◆孔径:M6(英制螺纹孔可选);◆台面重量:同DVIO-B; DVIO-I平台选型表型号台面尺寸型号台面尺寸长度(mm)宽度(mm)台面厚度(mm)长度(mm)宽度(mm)台面厚度(mm)DVIO-I-090990090050/100DVIO-I-181218001200200/300DVIO-I-1007100075050/100DVIO-I-181518001500200/300DVIO-I-1206120060050/100DVIO-I-20102000100200/300DVIO-I-1207120075050/100DVIO-I-201220001200200/300DVIO-I-1209120090050/100DVIO-I-201520001500200/300DVIO-I-12121200120050/100DVIO-I-24092400900200/300DVIO-I-1506150060050/100DVIO-I-241224001200200/300DVIO-I-15071500750100/200DVIO-I-241524001500200/300DVIO-I-15091500900100/200DVIO-I-30093000900200/300DVIO-I-151015001000100/200DVIO-I-201030001000200/300DVIO-I-151215001200100/200DVIO-I-301230001200200/300DVIO-I-151515001500200/300DVIO-I-301530001500200/300DVIO-I-1806180060050/100DVIO-I-361236001200200/300DVIO-I-18071800750200/300DVIO-I-361536001500200/300DVIO-I-18091800900200/300
    留言咨询
  • 一、产品简介Cxbalancer此仪器为多功能双通道动平衡设备。平衡不良易造成转动设备振动 过大,致使轴承、轴封等组件加速损坏。大部份的转动设备都可以接在线实施平衡校正,不需要拆卸叶轮或转子,除了节省时间与保养费用之外,更可以得 到较佳的平衡效 果。此仪器内建单、双平面动平衡校正功能, 操作简易、精度高,并具 备砂轮平衡块 移动等功能。二、功能及特点1、型号:Cxbalancer2、单面动平衡校正功能3、双面动平衡校正功能4、数据导出功能5、砂轮平衡块移动6. 谐波分析功能三、线上功能:线上动平衡1、可作单、双平面线上动平衡校正2、适用设备转速范围 300 至 30000 RPM3、可同时使用 2 个振动感测器实施双面动平衡4、可选择超高精度平衡校正,振幅可达0.01um5、高灵敏OPTEX光电传感器四、动平衡设备多种转子类型可选择Cxbalancer提供了多种转子类型选择,可对设备进行针对性动平衡校正五、转子设置(以双悬臂转子为例,可输入转子模式8)单面测量模式输入9六、波形测试(用以判断设备大小)七、砂轮固定平衡块移动算法,让操作者更容易找到角度,几分钟完成动平衡。八、谐波分析,判断振动产生的原因
    留言咨询
  • VT800动平衡测量仪是一款高精度、高性能的现场动平衡仪。关键技术在于采用先进的软件、硬件数字处理技术,实现了恒带宽的相关滤波。可以将频率差在0.2Hz以上,也就是在转速大于12转/分的振动信号区分开来。显示了一起优异的滤波特性和强大的抗干扰能力。在相同的环境工况条件下,动平衡仪VT800在动平衡测量中,振动与相角的测量值表现更加稳定、更加可靠、重复性、一致性更加好,进一步提高动平衡仪的测量精度,尤其改善了小信号状态下的现场动平衡运用效果。VT800除具有一般的动平衡功能外,还针对卧式螺旋离心机、碟式离心机类产品的整机动平衡进行特殊设计, 増加了抗干扰能力,能够很方便的测量有差转速复合转鼓体的振动及进行整机现场动平衡. 技术参数 1.一般测量:转速测量: 30~30,000 rpm 振动测量: 0.01~5000μm (峰峰值)0.01~2000mm/s (有效值)振动分析: FFT 频谱分析 显示方式: 64X240点阵图形液晶汉化菜单键 盘: 八键 2.动平衡测量: 测量点数:    单测点或单面  双测点或双面同频工作转速: 180~30,000 rpm 同频振幅量程: 0.01~5000μm (峰峰值)振动烈度量程: 0.01~2000mm/s (有效值)相位精度: 0-360°±1 ° 不平衡量减少率:    ≥90%动平衡测量中用户关心的几个问题3.1、动平衡测量为什么首先选择试重法本仪器是现场便携式动平衡仪,由于设备转子尺寸,大小是不固定的。振动传感器与转速传感器的安装位置也是不固定的,所以仪器的设计基本原理是通过加重的方法来寻找转子不平衡的点。具体说,对于单面测量,要经过二次振动测量步骤,一次是原始振动测量,另一次是加重后的振动测量,才能找到不平衡点的位置。对于双面测量,要经过三次振动测量步骤:一次原始振动测量,另二次分别是在A面加试重后的振动测量和B面加试重后的振动测量,才能找到不平衡点的位置,看到动平衡的效果。 3.2、为什么说影响系数法,可以省去加试重的步骤 对于第 一个设备转子(新转子),必须通过试重法得到一组影响系数。对于第二个设备转子(老转子)在保证新老转子外形,尺寸,结构都相同情况下,保证传感器安装位置不变的条件下,可以输入影响系数进行动平衡,省去加试重的步骤,经过一次振动测量就能找到不平衡点位置。 3.3、仪器是如何将振动测量矢量值转变为不平衡量矢量值 仪器测到振动幅值有二个单位,一个是振动速度值用mm/s表示,另一个用振动位移值用u微米表示,两个单位是通过“+1”键选择的。一般用户都应用u微米表示:1mm=1000微米。振动的相角只仅表示振动传感器与转速传感器输出信号相位差。然后仪器要求输入试重的重量(克数)以及试重的位置(度数),仪器通过加试重前后两次振动矢量的变化,就可以将振动矢量值(微米与相角)转变为不平衡矢量(克数与角度)。从屏幕上看到M=xxg,ФM =xx°。既不平衡点的重量和角度,这才是用户最关心一组数据。 3.4、为什么说明书上技术参数没有动平衡精度指标 我们只生产动平衡测量仪,被测对象是用户提供的设备转子,其设备转子可能是进口的,国产的,甚至是自制的。各种设备转子的精度是不一样的,差别很大,所以我们没办法制定同一的平衡精度标准。动平衡测量精度取决于支撑转子运转的设备精度等级,设备的精度等级越高,动平衡测量精度也越高,说明书的技术指标不平衡减少率>80%。意思是说,如原来设备转子剩余不平衡量是10g(克),通过现场动平衡操作,可以去掉9.0克重量,剩余不平衡量可以达1g(克)左右,这个指标也是一个平均数。对于精度高,干扰小的旋转设备转子完全能达到这个指标。对精度差,干扰大的旋转设备转子有可能达不到这个指标。 3.5、为什么振动的幅值和相角,大小有时会不停地变化 在振动信号测量中,振动值与相角不稳定是很常见现象。由于不平衡量引起的振动是有周期性有规律的正弦波,正弦波信号是很稳定。但是现场设备的振动是很复杂的,一般来说是混频振动。包括各种振动信号,只有在不平衡振动分量占混频总振动量的80%以上,振动信号幅值和相角才比较稳定。振动设备的幅值有10%的跳动,相角有10度以内的变化,就认为振动信号是稳定的。如果不平衡振动分量只占混频总振动量50%以下,振动信号的幅值与相角就出现不稳定现象。这时就要想办法寻找干扰振动信号的根源。如何查找设备转子振动故障,可以用本仪器的“信号分析”里的“FFT分析”功能,对于振动信号进行频谱分析,通过谱线对应分析出引起振动的各种频率份量。振动信号幅值和相角不稳定,现场处理方法有:①振动传感器安装位置尽量靠近设备转子的轴承座上。②将菜单中带宽选择,选到带宽0.2Hz。③当振动幅值很小时,可以通过扩大仪器放大倍率,进行测量。④如果设备转子底脚没有固定,要想法固定好。用橡皮垫起来进行隔振。 有一种现象需要说明:做动平衡过程中,不平衡量值由大变小,振动测量的振动值和相角由稳定变为不稳定,这属于正常现象,说明已达到仪器的测量精度。
    留言咨询

激光动平衡仪原理相关的方案

激光动平衡仪原理相关的论坛

  • 【分享】购买动平衡机选型的原则及注意事项

    维库仪器仪表的营销工程师把动平衡机的种类大致可从原理和应用两方面来划分。. 一、.从测量原理上区分,动平衡机可分为: 1.硬支承动平衡机 2.软支承动平衡机 软支承平衡机具有测量精度高的优点,但又有转速高、操作繁琐等缺点,尤其是在使用不当或使用频度较高时故障率也很高.硬支承平衡机具有一次性永久定标、操作简便、转速低(本厂生产的系列硬支承平衡机大部分可在180(转/分)开始正常工作)、安全性好的特点。一般用户在选购动平衡机时,建议优先选用硬支承动平衡机。 二、从应用方面区分,动平衡机可分为: 1. 通用动平衡机和专用动平衡机 2. 卧式动平衡机和立式动平衡机 . 通用动平衡机是在规定的转子质量范围内,能平衡多种转子的平衡机,如:电机转子等。我厂生产的YYQ系列动平衡机即属此类 . 专用动平衡机是针对某一类型转子专门设计制造的动平衡机,如:风机叶轮转子、汽车传动轴、曲轴、车轮等。我厂生产的YYW系列、YYQ系列、YLD系列、BDB系列等动平衡机即属此类。 . 卧式动平衡机是指被平衡转子轴线处于水平状态的一类动平衡机,一般具有旋转轴或方便装配工艺轴的。

  • 现场动平衡仪知识解答

    [size=14px]现代的动平衡技术是在本世纪初随着蒸汽透平的出现而发展起来的。随着工业生产的飞速发展,旋转机械逐步向精密化、大型化、高速化方向发展,使机械振动问题越来越突出。机械的剧烈振动对机器本身及其周围环境都会带来一系列危害。亚泰光电为您解答[b]现场动平衡[/b]疑难:不平衡故障的特征? 1.振动频率主要是转速频率。转子每转一圈振动一次- 单峰频谱[/size][size=14px]2.波形近似为正弦波[/size][size=14px]3.水平和垂直方向的相位相差90°[/size][size=14px]4.振幅随转速提高而增加[/size][size=14px]相位诊断能做什么?[/size][size=14px]基础共振的故障特征:[/size][size=14px]1.振幅与转频有很强的依赖关系[/size][size=14px]2.水平和垂直方向的相位相同,即“定向振动”[/size][size=14px]3.相位通常不稳定[/size][size=14px]弯曲、不对中的相位特征:[/size][size=14px]1.相位稳定[/size][size=14px]2.轴两端轴向之间相位差180°[/size][b][size=14px]动平衡仪[/size][/b][size=14px]原理[/size][size=14px]什么是影响系数法?[/size][size=14px]现代动平衡仪普遍采用影响系数法,又叫测相平衡法,其步骤为(以单面平衡为例):[/size][size=14px]1.首先测转频的振幅和相位;[/size][size=14px]2. 加试重 [/size][size=14px]3.测取加试重后的振幅和相位;[/size][size=14px]4.计算出应加重量和位置[/size][size=14px]如设备做过平衡,影响系数已知,还要不要再加试重?上述步骤简化为:[/size][size=14px]1. 测转频的振幅和相位;[/size][size=14px]2.输入影响系数,仪器直接给出应加重量和位置[/size][size=14px]什么情况要做双面动平衡?[/size][size=14px]当转子的长度(不含轴)大于半径时,可能要进行双面平衡才能达到满意的效果。双面动平衡时,需选两个加重平面及两个测振点。在其中一个面加试重时,需同时对两个测点的振动进行测量,即要考虑所谓交叉效应。其步骤大致如下:[/size][size=14px]1.测量两个测点的初始振动[/size][size=14px]2.第1面加试重,测量两个测点的振动[/size][size=14px]3.第2面加试重,测量两个测点的振动[/size][size=14px]4.d、仪器自动计算出影响系数、两个面上的应加重量和位置[/size][size=14px]动平衡操作过程中要注意什么?[/size][size=14px]1.确认是否动平衡问题:看频谱和相位[/size][size=14px]2. 相位的计量方向:迎着旋转方向看[/size][size=14px]怎样选择动平衡测量参数?[/size][size=14px]1.中低速机器,用位移或速度测量[/size][size=14px]2.高速机器, 用速度或加速度测量[/size][size=14px]怎样判断试重是否可用?[/size][size=14px]1.加试重前后的幅值差 25%[/size][size=14px]2.相位差 25度测量值可用测量值可用[/size][size=14px]4.试重与最后的修正重量必须具有同一半径[/size][size=14px]5.转速必须稳定[/size][size=14px]使用建议:[/size][size=14px]1.由于在测量试重时只测量了钢块的重量而忽略了粘结剂的重量,造成了较大的计算误差。根据前面的分析,在现配重位置上再增加30克配重还可以减少一些振动.[/size][size=14px]2. 测量到的加速度和高频加速度较大, 怀疑是风机轴承或密封缺陷的早期征兆.[/size][size=14px]3. 由于风机直径较大, 几十克的不平衡量就会引起较大的振动, 建议在每次换轴承的玻璃钢密封后都作一次平衡.[/size][size=14px]4. 测试中发现电机振动也较大,虽属合格,但建议加强监测.[/size][size=14px]5. 在排除了轴承和电机振源后, 可进一步对风机作平衡以进一步降低其振动使其达到优秀或良好状态.[/size][size=14px]6. 考虑到生产的连续性, 建议购置振动测量诊断仪器和[b]动平衡仪[/b], 以减少意外事故, 停产损失和维修费用.[/size]

激光动平衡仪原理相关的耗材

  • 碲镉汞 MCT(HgCdTe) 平衡/自动平衡 红外检测模块 2.9–5.5μm 1.8 MHz
    NIPM-I-5是一款专为差分光信号检测而设计的红外检测模块。该设备可以在平衡和自动平衡模式下运行。该检测模块使用两个基于 HgCdTe 异质结构的独立检测器。这些 IR 检测器(信号和参考)精确匹配,以实现非常高的共模抑制比 (CMRR)。 NIPM-I-5 专用于在激光的过量噪声超过检测器的基本噪声的系统中运行。 光谱响应2.9-5.5um感光规格1x1mm材质碲镉汞 MCT(HgCdTe) 带宽(Hz)1.8 MHz技术参数特点两个具有相似光谱特性和频率的通道 手动改变平衡或自动平衡模式 低噪音运行和高检测率(接近 BLIP 限制) 集成风扇和热电冷却器控制器 单电源,兼容光学附件 探测器类型: PVI-4TE-5-1×1-TO8-wAl2O3-36 产品应用 ● QCL 激光器在气体分析中的过度噪声抑制参数 (Ta = 20°C, Vb = 0 mV) 参数 典型值 光学参数 起始波长 λcut-on (10%), μm 2.9±1.0 峰值波长 λpeak, μm 4.2±0.5 最佳波长 λopt, μm 5.0 截止波长 λcut-off (10%), μm 5.5±0.3 探测灵敏度 D* (λopt, REF), cmHz1/2/W ≥1.0×1010 探测灵敏度 D* (λopt, SIG), cmHz1/2/W ≥1.0×1010 输出噪声密度 vn (100 kHz, RLoad = 50 Ω, REF), nV/Hz1/2 ≤100 输出噪声密度 vn (100 kHz, RLoad = 50 Ω, SIG), nV/Hz1/2 ≤100 电学参数 电压响应度 Rv (λopt, REF), V/W ≥1.0×104 电压响应度Rv (λopt, SIG), V/W ≥1.0×104 低截止频率 flo, Hz DC 高截止频率 fhi, MHz ≥1.8 输出阻抗 Rout (REF, SIG, BAL/A-BAL), Ω 50 输出电压范围 Vout (RLoad = 50 Ω), V 0.4 输出偏置电压 Voff, mVDC ±30 CMRR平衡/参考(100 kHz), dB ≤-32 CMRR自动平衡/参考 (100 kHz), dB ≤-22 供电电压 Vsup, VDC +9 供电电流 Isup, A 1.5 其他参数有源元件材料 (REF and SIG) 外延HgCdTe异质结构 感光区域 AO (REF and SIG), mm×mm 1×1 窗口 (REF and SIG) wAl2O3 接收角 Φ (REF and SIG) ~36° 环境工作温度 Ta, °C 5 to 25 参考输出端口 (REF) SMA 信号输出端口 (SIG) SMA 平衡/ 自动平输出端口 SMA 电压端口 DC 2.1/5.5 安装孔 M6 风扇 yes (2 pcs)
  • 德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器
    德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器德国Cycle GmbH成立的宗旨是为科学和工业应用构建创新的超快技术。Cycle Laser提供前沿的定时设备,使射频和光学设备彼此同步,具有亚飞秒分辨率。这些技术的主要发展起源于十多年前的麻省理工学院,并在Deutsches Elektronen-Synchrotron德国电子同步加速器研究所(DESY)得到了改进。几千公里内的亚飞秒同步已经得到证实[1]并且目前正在商业化。Cycle GmbH是由Franz X. Kaertner教授和其他科学家创立的DESY衍生公司,拥有从他在麻省理工学院的研究中商业化关键同步技术的专门许可。描述: 德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器(Two Color Balanced Optical Cross Correlator)能精确地检测两个不同中心波长的光脉冲串之间的相对时间延迟。这是Cycle公司众所周知的(单色)BOC技术的延伸,其用于超过千米距离的亚飞秒光纤链路稳定。由于采用了平衡光学检测方案,TCBOC提供了优异的时间灵敏度、高至阿秒时间分辨率、振幅不变性和抗环境波动的稳定性。它产生一个与相对时间延迟成正比的基带电压信号,然后接着可以用在锁相环结构中,以同步具有不同波长的两个光源(例如,将Ti:Sapph振荡器锁定到一个时间稳定光纤链路输出中)。支持标准波长为800nm,1030nm和1550nm。应用: 不同波长下两个光脉冲重复频率的紧密同步 超快激光器重复频率与稳定光纤链路输出的紧密同步 脉冲激光与主激光器的紧密同步 由放大器在激光放大器链或不同设置中引入的抖动补偿飞秒激光同步器TCBOC双色平衡光学互相关器参数值单位备注时间灵敏度 10mV / fs探测器输出端时间分辨率 0.5fs10kHz 带宽输入光学波长 2000nm根据实际波长确定方案输入光学功率10 - 20mW根据波长和其他参数光学输入方式free space or fiber重复频率 10GHz根据实际重频调整典型尺寸300mm x 270mm x 66mmTCBOC数字同步模块TCBOC数字同步模块参数值单位备注尺寸19英寸宽集成反馈包含优化 PID 参数控制系统界面包含Epics, Tang等可选自动锁定 包含德国Cycle飞秒激光同步器TCBOC双色平衡光学互相关器CycleLaser产品列表:1. TDS时间分布同步系统Timing Distribution System2. FLS光纤链路稳定器3. 超快激光同步器BOMPD光学微波平衡相位检测器4. 飞秒激光同步器TCBOC双色平衡光学互相关器
  • 双色平衡光学互相关器/仪 (BOC and TCBOC)
    总览全自动平衡光学互相关器TCBOC可以高精度的检测两个中心波长相同/不同的光脉冲序列之间的相对时延。由于采用了平衡的光学检测方案,TCBOC具有极高的时序灵敏度、阿秒定时分辨率、幅值不变性和对环境波动的鲁棒性。它产生与相对时延成比例的基带电压信号,然后可以在锁相环配置中使用该信号来同步具有不同波长的两个光源(例如将Ti:Sapphire振荡器锁定到时间稳定光纤链路的输出)。标准波长为800nm、1030nm或1550nm。 技术参数产品应用两个相同或不同波长的光脉冲序列的重复率精确同步超快激光的重复频率与稳定光纤链路输出的精确同步由激光放大器链或类似设置中的放大器引入的抖动补偿测量两个同步激光器或来自同一光源的两个光束路径之间的抖动和漂移测量光程长度波动(例如由温度引起的变化)特点优势超过10 mV/fs的灵敏度低于0.5 fs的基底噪声低至10 fs RMS的定时抖动和时序漂移 采样同步设置 双色平衡光学互相关器(TCBOC)同步两个不同波长的超快激光器的脉冲序列。TCBOC有两个版本可供选择:测量设备(MD):独立式双色平衡光学互相关器(TCBOC)同步装置(SD):独立式双色平衡光学互相关器(TCBOC),配备反馈和控制电子设备。请联系我们的专家团队,提出您的定制需求。规格参数参数值单位备注 检测器灵敏度 10mV / fs检测器输出(未放大)检测器分辨率 0.5fs10 kHz带宽内的集成检波器基底噪声 时间抖动1 15fs在35 μHz - 1 MHz带宽内,根据主/参考激光器的噪声特性和从激光器腔内执行器的性能尺寸(H xW x L)300 x 270 x 66mm重量5kg不同规格重量不同要求光输入波长2000nm可定制光输入功率10 - 50 mW取决于波长范围和其他激光参数光学输入类型保偏(PM)光纤FC或SC连接器(自由空间输入可选)脉冲重复频率 10GHz可定制SD版本的控制单元(同步设备) 大小机架安装,19英寸宽,4个单元高度综合反馈包括优化的PID参数控制系统界面包括EPICS, TANGO自动锁定包括1当在最高0.5 K温度和3 %相对湿度偏差的环境中运行时。请注意,激光器之间的时间抖动必须低于锁定带宽以上的目标精度。 测量数据

激光动平衡仪原理相关的资料

激光动平衡仪原理相关的资讯

  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。论文链接 图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • 物理所在光激发二维材料中的非平衡态电声耦合研究方面取得进展
    随着超快技术的发展,超快激光脉冲激发条件下的凝聚态物质的响应,即非平衡态涌现出来的新物理现象,引起了人们的广泛注意。超快物质调控逐渐成为量子调控的新兴研究方向。通过非平衡态的电声耦合激发相干声子调控材料中的铁电、磁性、超导等性质以及探索新型超快信息处理方式等研究方向体现出巨大的潜力。然而,目前非平衡态下的电子-声子耦合的微观物理图像依然不清楚。   过去人们对于光激发条件下材料中电子和声子的演化的理解一般是基于双温模型或者相应的推广模型。双温模型假设非平衡态下电子和声子体系内部形成热平衡,这样就可以用一个有效温度来描述两者的演化以及它们互相之间的耦合。推广的多温模型和更一般的玻尔兹曼方程可以从第一性原理出发计算光激发下电子和声子的演化,为理解光激发下非平衡态物理现象奠定了基础。然而,这些模型都是基于微扰论得到的基态情况下电声耦合矩阵元,没有考虑电声耦合矩阵元在光激条件下的变化。如果想充分理解非平衡态下电声耦合的具体物理图像和它在非平衡态物理现象中所扮演的重要作用,必须定量探究光激发条件下体系中电声耦合矩阵元的变化以及相应的电子态和声子态的演化。   近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员,利用基于含时密度泛函理论的分子动力学方法,结合冻结声子法定量地探究了光激发条件下典型二维材料二硫化钼中相干声子的产生和电声耦合强度的变化(图1)。研究发现,光激发二硫化钼中的声子以声子为主,并且光激发下模式的电声耦合矩阵元会增大(图2)。同时,声子模式在光激发下出现了类似于电子掺杂时出现的声子软化现象,这说明光激发会影响体系中的介电屏蔽(图3)。通过进一步分析,他们发现电声耦合的增强是由于光激发诱导电子-空穴对导致体系中的电子对声子微扰的屏蔽减弱。除此之外,该研究定量化描述了光激发下体系中光激发载流子到晶格的能量弛豫速率随时间的演化,建立了光激发条件下固体中非平衡态电声耦合的清晰物理图像(图4)。   相关成果以Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS2为题发表在Nano Letters上。相关研究工作得到科学技术部重点研发计划、国家自然科学基金委、中科院战略性先导科技专项等的资助。图1 光激发产生的电子-空穴对减弱了电子对声子微扰运动的屏蔽,从而导致电声耦合增强。图2 可见光照射下单层二硫化钼中电子和声子的激发及其随时间的演化。图3 光激发下声子模式电声耦合矩阵元的变化。图4 光激发下非平衡态电声耦合主导的能量弛豫过程。
  • FREEDOM迷你拉曼实现小型化和高性能之间的完美平衡
    全球领先的石英玻璃透射光栅和工业级光谱仪模块的生产厂商Ibsen Photonics13号宣布发布新的用于分析和过程控制仪器集成的FREEDOM HR VIS-NIR光谱仪平台。   FREEDOM迷你拉曼采用Ibsen Photonics独特的透射光栅技术,仪器设计中完美的实现了小型化和高性能之间的平衡。此款光谱仪抗噪性能好、几乎没有热变化,可以在苛刻的环境条件下运行。   这些优势使FREEDOM迷你拉曼适合于过程控制和现场应用的小体积、掌上和便携型仪器,如制药和安保领域等。   FREEDOM迷你拉曼的大小只有61 x 64 x 19毫米,拥有宽的光谱范围(475 nm - 1100 nm)和高的分辨率(0.6nm)。该款光谱仪非常灵活,可以选用许多不同的激光波长,包括常用的532、785、830nm。例如,使用785nm的激光可以覆盖200-3650cm&ndash 1波段,分辨率为10cm-1 。   此外,FREEDOM迷你拉曼支持一系列不同的探测器,用户可以根据特定的应用选择最适合的检测器,可以在成本、灵敏度和噪声之间实现很好的平衡。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制