当前位置: 仪器信息网 > 行业主题 > >

水准仪测距离原理

仪器信息网水准仪测距离原理专题为您提供2024年最新水准仪测距离原理价格报价、厂家品牌的相关信息, 包括水准仪测距离原理参数、型号等,不管是国产,还是进口品牌的水准仪测距离原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水准仪测距离原理相关的耗材配件、试剂标物,还有水准仪测距离原理相关的最新资讯、资料,以及水准仪测距离原理相关的解决方案。

水准仪测距离原理相关的资讯

  • 《数字水准仪检定规程》等标准发布
    各省、自治区、直辖市测绘行政主管部门,国务院有关部门,局所属有关单位,《测绘成果质量监督抽查与数据认定规定》、《全球导航卫星系统(GNSS)测量型接收机RTK检定规程》、《数字水准仪检定规程》、《因瓦条码水准标尺检定规程》4项推荐性测绘行业标准和《可量测实景影像》测绘行业标准化指导性技术文件已经通过国家测绘局批准,并予以发布,自2009年7月1日起实施。   测绘行业标准名称和编号如下:   一、《测绘成果质量监督抽查与数据认定规定》,编号为CH/T 1018—2009。   二、《全球导航卫星系统(GNSS)测量型接收机RTK检定规程》,编号为CH/T 8018—2009。   三、《数字水准仪检定规程》,编号为CH/T 8019—2009。   四、《因瓦条码水准标尺检定规程》,编号为CH/T 8020—2009。   五、测绘行业标准化指导性技术文件名称和编号:《可量测实景影像》,编号为CH/Z 1002—2009。   国家测绘局   二〇〇九年六月九日
  • 一文了解|影响红外热成像仪探测距离的因素
    约翰逊准则探测距离是一个主观因素和客观因素综合作用的结果,主观因素跟观察者的视觉心理、经验等因素有关。国外在这方面做了大量的研究,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来,研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。目标探测可分为探测(发现)、识别和辨认三个等级。探测,在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1个像素以上。识别,可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到4个像素以上。辨认,可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到8个像素以上。以上都是在临界值,也就是刚好能发现目标,以及目标与背景的对比度为1的条件下所得到的数据,从上面的约翰逊准则可以看出,一套热像仪能看多远,是由目标尺寸、镜头焦距、探测器性能等因素决定的。影响因素1. 镜头焦距决定热像仪的探测距离的最重要的因素就是镜头焦距。镜头焦距直接决定了目标所成的像的大小,也就是在焦平面上占几个像素。通常这是用空间分辨率(IFOV)来表示,它表示每个像素在物空间所张开的角度,也就是系统所能分辨的最小角度,一般由像元尺寸(d)与焦距(f)的比值得出,即IFOV=d/f。每个目标在焦平面所成的像占几个像素,可由目标尺寸、目标与热像仪的距离、空间分辨率(IFOV)计算得出。目标尺寸(D)和目标与热像仪的距离(L)的比值为目标的张角,再与IFOV相除得到像占用像素点的数量,即n=(D/L)/IFOV=(Df)/(Ld)。从中可以看到,焦距越大,目标像所占用的像素点越多,根据约翰逊准则可知,其探测距离更远。但另一方面,焦距越大,视场角越小,同时成本也更高。这里举个例子。热像仪焦平面的像元尺寸为17μm,配100mm焦距镜头,则空间分辨率IFOV为0.17mrad。观察1公里远的大小为2.3m的目标,则目标所张开的角度为2.3mrad,目标所成的像占用2.3/0.17=13.5个像素。根据约翰逊准则可知,达到辨认水平。2. 探测器性能镜头焦距是从理论上决定了热像仪的探测距离,在实际应用中起着重要作用的另一因素是探测器性能。镜头焦距只是决定了所成像的大小,占用像素点的数量,探测器性能则决定图像质量,如模糊程度,信噪比等。探测器性能可从像元尺寸、热灵敏度、信号处理等方面来分析。像元尺寸越小,则空间分辨率(IFOV)越小,从前面的讨论可看出,其探测距离越大。一个典型例子是,FLIR非制冷热像仪的Photon320的像元尺寸是38μm,Photon640的像元尺寸为25μm,如果都配100mm镜头,观察2.3m的目标,按照约翰逊准则,其识别距离分别为1公里、1.5公里。探测器的热灵敏度和信号处理决定了图像的清晰度。如果探测器的热灵敏度和信号处理能力不好的话,则所成的像只是一个模糊的热像,也就无法识别。因此,一些探测器的热灵敏度不高的话,则采取加大镜头口径的方法来提高图像效果,这不但增加了成本,而且也增加了使用上的不方便。美国FLIR的Photon系列,使用的镜头F数一般可降低到1.4~1.7,也就是口径可做得特别小。像现在国内普遍更新换代的12um要比17um的机芯看的距离多1.4倍。3. 大气环境虽然热辐射对大气的穿透能力比可见光强,但大气吸收、散射等对热像仪成像还是有一定的影响,特别是大雾和大雨的天气环境,从而影响到了热像仪的探测距离。像长波在雨雾中的穿透能力很差,中波在雾中的穿透力强,但穿雨同样不行。综上所述,红外热像仪探测距离受到几个方面的影响,它是探测器、镜头、目标、大气环境等客观因素、人的主观因素及软件算法共同影响的结果,所以在不考虑其它因素影响的情况下还是按照下面的公式进行计算。n=(D/L)/IFOV=【目标尺寸(D)*焦距(f)】/【目标与热像仪的距离(L)*像元尺寸(d)】但是不考虑大气环境的影响的话,一般会在探测上增加0.5个像数作为标准,识别加1个像数作为标准,辨认加2个像数作为标准来弥补不同探测器的灵敏度不一致及镜头良率的问题,来增大目标所占像数的数值确保能够得到想要的效果。
  • 记国家光电测距仪检测中心
    成立于1988年的国家光电测距仪检测中心(中测国检(北京)测绘仪器检测中心)是目前我国测绘行业惟一获得国家质量监督检验检疫总局专项计量授权的国家级测绘仪器检定机构和新仪器定型鉴定机构,是国家认证认可监督管理委员会直属监督管理的国家级测绘仪器检测中心。其主要业务方向和研究领域包括:   计量检定——以计量法、测绘法为依据,在全国范围内依法开展测距仪、全站仪、经纬仪、GPS接收机、水准仪等测绘仪器的计量检定 受国家质量监督检验检疫总局委托,依法开展国内外测绘仪器新产品的定型鉴定,依法严把进口和国产测绘仪器新产品的质量关   科学研究——以科技创新为主导,建立具有国际先进水平的计量标准装置 利用技术优势,致力于国家测绘计量标准体系建设和完善,引领行业发展和技术进步   技术服务——为国内计量行业提供计量标准建设、软硬件研制等技术支持 为国家重大工程的仪器选型和质量控制提供技术方案和支持。   为保证国家量值统一和测绘成果的准确可靠,检测中心依法面向行业和社会开展测绘仪器计量检定,进行量值传递工作,并为广大客户提供测绘仪器检校、维修、测试及技术咨询等服务。从成立之初至今,累计完成各种种类、型号测绘仪器检测量达5万余台,为保证测绘仪器(尤其是大地测量仪器)质量及国家测绘成果的量值统一作出了重要贡献。   作为国家质量监督检疫检验总局授权的技术机构,检测中心承担着国外进口和国内测绘仪器新产品的定型鉴定工作,自2002年以来共完成国内外各种测绘仪器新产品定型鉴定100多个系列和型号。这项代表技术水平与综合实力最高水准的工作,得到政府部门的大力支持和信任,为国内外测绘仪器新产品的市场准入起到了决定性作用。   经过20多年的不懈努力,检测中心不仅注重硬件设施的投入与建设,而且培养了一支专业技术能力强、综合素质高的检测队伍和具有创新意识的科研队伍,在为社会提供优质计量检定服务的同时,在测绘计量技术研究、计量标准建设和计量标准器具研制及应用等方面一直处于国内领先,部分项目达到国际先进水平,为保证国家测绘成果质量和全国测绘量值统一作出了贡献。
  • 拉曼光谱无创血糖检测距离实用还有多远?
    近日,多家媒体就三星及苹果公司正在研发的可检测血糖的智能穿戴设备进行报道,据悉,这两家公司最新款的智能手表可能将借助光学传感器,采用拉曼光谱法进行人体血糖无损检测。消息一出,引来多方关注和议论,为此我们采访了多年从事光学无损检测相关研究的清华大学物理系联合培养博士后王成铭,请其为我们答疑解惑。王成铭博士  王成铭,物理学博士,现任北京鉴知技术有限公司光学工程师,毕业于清华大学物理系低维量子物理国家重点实验室,清华大学物理系联合培养博士后。多年从事光学相干层析成像(OCT)临床应用方向,有丰富的临床医学合作经验,就光谱方法在血糖检测中的应用做过深入研究。  仪器信息网:采用拉曼光谱法检测血糖是否可行?  王博士:方法原理是可行的,使用激发光照射皮肤后收集得到的拉曼光谱(经皮测量)可以反映出皮肤组织中的许多化学物质,例如真皮内的胶原蛋白,真皮下脂肪中的三油酸甘油酯,表皮角质层的胶质蛋白,皮肤血管中的血红蛋白,以及分布于组织液和血液中的葡萄糖等。在血糖无创检测的诸多光学方法之中,拉曼光谱法因其能检测葡萄糖的特征谱,是未来最有希望实现高精度测量血糖浓度的方法之一。拉曼经皮测量无创血糖检测示意图  Pandey, Rishikesh, et al. "Noninvasive monitoring of blood glucose with raman spectroscopy." Accounts of chemical research 50.2 (2017): 264-272. 葡萄糖分子位于皮肤真皮层中的组织液与血液中,葡萄糖的浓度可从其产生的拉曼光谱信号推断。  仪器信息网:请介绍目前拉曼光谱法检测血糖的最新研究进展?  王博士:麻省理工学院(MIT)在使用拉曼光谱测量无创血糖已研究了20多年,他们系统研究了皮肤拉曼光谱的成分、经皮血糖探测的定量化分析和矫正算法、动物血糖测量临床实验等等。去年三星和MIT研究人员在SCIENCE ADVANCES杂志上发表了最新的无创血糖检测的研究,通过对猪的活体葡萄糖钳制实验,从猪耳的拉曼信号图中直接观测到了葡萄糖的拉曼特征峰及其随血糖浓度的变化,这终结了长久以来关于拉曼光谱测量得到的是否是真实的葡萄糖浓度信号的争论,也为这项技术的应用带来一大突破。  除MIT外,还有一些公司曾经或正在尝试将拉曼血糖检测技术产品化,包括C8 Medisensors,Diramed, LLC和RSP Systems等。C8 Medisensors公司曾推出的可穿戴拉曼无创血糖检测设备  仪器信息网:拉曼光谱法检测血糖在实际应用中还有哪些问题亟待解决?  王博士:虽然利用葡萄糖的多个拉曼特征峰与皮肤组织中的其他物质信号峰的差异可做定量分析,但这一研究距离实际应用仍有一定的距离,主要有以下几个难题:  ①葡萄糖浓度低信号弱,并且有可能被其他物质的拉曼信号掩盖和干扰,如真皮层的胶原蛋白和真皮皮下脂肪的三油酸甘油酯,二者合计贡献了超过90%的皮肤拉曼光谱信号。  ②经皮测量还需要解决皮肤的荧光信号干扰,激发光功率的皮肤安全剂量限制以及皮肤表皮层黑色素对激发光和拉曼光的吸收效应等等问题,此外,不同种族之间肤色的差异,加大了这项技术的应用难度。  ③为解决以上两点问题,必然需要使用极高灵敏度的探测器,以及较长的积分时间,这给仪器尺寸及使用便利度带来挑战。  仪器信息网:据悉,目前已经有一些厂家在进行基于拉曼光谱原理的血糖仪器的研发,您认为可行性如何?有什么新的进展?  王博士:最近,有报道称三星和苹果将在其智能可穿戴设备上集成拉曼无创血糖检测技术。三星近几年和MIT研究组合作,从发表的公开学术文章看,已经进入临床实验阶段。曾有报道称苹果公司招募过C8 Medisensors公司的前员工,以此猜测苹果很有可能在继续发展可穿戴拉曼技术的路线,但具体进展不得而知。  虽然基于拉曼技术的无创血糖监测仪器在原理上是可行的,并且在过去十多年内虽然有很多拉曼血糖检测的学术文章报道,检测精度在不断提高,但尚未有成功的获得医疗器械资格的仪器出现,说明相关产品研发的难度确实较大。  仪器信息网:您对可检测血糖的智能手表这项技术的未来发展如何看待?  王博士:如上一个问题所讲,这个技术本身存在一定的技术难度,并且在可穿戴设备上集成低功耗的小型化拉曼光谱仪在工程上的难度也较大,但随着深度学习技术的飞速发展和大数据的不断积累,未来基于卷积神经网络的算法可能会替代当前拉曼葡萄糖浓度直接量化算法或者回归量化算法,使得智能穿戴设备的高精度无创血糖测量成为可能。  附:王成铭博士讲座回顾:《光学无创技术在临床检测中面临的挑战与未来》  在临床医学实践中,医疗影像(MRI、超声、CT)和病理切片对疾病的诊断起着至关重要的作用,而基于光与生物组织的散射、吸收、相干、偏振效应的光学无创方法,很有希望成为沟通影像学和病理学之间的重要桥梁。本次会议报告对光学无创方法进行概述,着重探讨其在实际临床应用中面临的困难和挑战,从发展的角度探讨技术的未来发展趋势和临床应用前景。
  • 福建省计量院“全站仪测距精度校准能力计量比对”中取得满意结果
    福建省计量科学研究院始建于1960年,现隶属于福建省市场监督管理局,是福建省属社会公益型科研事业单位,是依法设置的全省最高法定计量检定机构。承担国家法定计量检测任务,同时开展计量技术研究,为促进产业创新、提升产品质量提供技术支撑。   日前,由中国计量院作为主导实验室的国家计量比对项目“全站仪测距精度校准能力计量比对”结果公布,福建省计量院5个测段的比对结果|En|值均小于1,比对结果满意。   此次比对在中国计量院昌平科研基地进行,全国共有13个省市的计量和测绘实验室参加比对。通过比对验证了福建省计量院标准长度基线场稳定可靠,人员的技术能力突出,从而可确保我省全站仪测距的准确可靠和量值统一,能够为我省桥梁、隧道、港口、码头等大型工程建设安全生产保驾护航。   全站仪,即全站型电子测距仪(Electronic Total Station),是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。   全广泛应用于测绘、勘测、建筑施工等领域,仪器距离测量准确与否直接关系到工程建设质量和施工运行安全。福建省计量院长度所每年为数百家企业、科研事业单位提供全站仪测距测角技术服务,依托该院的标准长度基线场着力为企业解决了长距离激光测距中存在的难点问题,同时为企业研发新产品、产品升级、技术提升提供技术咨询与测试服务。
  • 浙江省计量院圆满完成全站仪测距精度校准能力全国计量比对
    近日,浙江省计量院圆满完成由中国计量科学研究院组织的国家计量比对项目“全站仪测距精度校准能力计量比对”,省计量院5个测段的比对结果|En|值均小于0.5,比对结果满意。全站仪,即全站型电子测距仪,是一种集光、机、电为一体的高技术测量仪器,是集水平角、垂直角、距离(斜距、平距)、高差测量功能于一体的测绘仪器系统。广泛应用于地上大型建筑和地下隧道施工等精密工程测量、变形监测领域,因此全站仪测距量值的准确可靠至关重要。此次比对在中国计量院昌平基地进行。比对期间,浙江省计量院克服沙尘暴恶劣天气,积极采取比对措施,确保比对工作井然有序、圆满完成。此次计量比对反映了省计量院计量工作水平稳定可靠、人员技术能力扎实,可确保我省全站仪测距数据准确可靠,能够为我省大型建筑、地下隧道施工以及变形监测等领域安全生产保驾护航。浙江省计量院每年为数百家企业、科研院所提供全站仪测距测角技术服务,并依托高精度测绘地理信息装备测量能力为企业解决设计、研发、生产过程中遇到的测量难题,发挥计量引领作用。
  • 大规模设备更新:中等职业学校农业与农村用水专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校农业与农村用水专业仪器设备装备规范:表 2 专业基础技能实训仪器设备装备要求(续)实训教学场所实训教 学目标仪 器 设 备序号名 称规格、主要参数或主要要求单位数量执行 标准号备注合格示范制图综合实训室7水利工 程识图 实训软 件1.采用实际工程图纸,包括闸、坝等常见 水利工程代表性的图样2.依据实际图纸建立矢量 BIM 三维模型, 能任意旋转、缩放、平移观察,能观察整 个施工图的三维结构和每根钢筋排布的细 节3.不同的构件配筋以不同颜色分别标注, 配筋颜色与平法标注信息颜色一一对应套11GB/T 25000.10网 络 版,41 节 点8图纸输 出设备1.最大打印宽度:914 mm2.最大分辨率:2400 dpi × 1200 dpi 3.内存: ≥1 GB台119激光打 印机打印 A3 图幅图纸台12GB/T 17540测 量 实 训 室1. 掌 握 水 准 测 量、距离 测量、坐 标 测 量 的 基 本 方法2. 掌 握 施 工 放 样 的 基 本方法3. 熟 悉 常 用 测 量 仪 器 的 操 作 方法1水准仪规 格 11. 1 km 往返水准测量标准偏差:≤4.0 mm2.望远镜:放大率:20×~32×最短视距不大于:2.0 m 3.水准泡角值:符合式管状:20 ″/2 mm 圆形:8 ′/2 mm4.自动安平补偿性能: 补偿范围: ±8 ′ 安平时间:2 s套1020GB/T 101562规 格 21. 1 km 往返水准测量标准偏差:≤1.0 mm2.望远镜:放大率:32×~38×最短视距不大于:2.0 m 3.水准泡角值:符合式管状:10 ″/2 mm;圆 形:8 ′/2 mm4.自动安平补偿性能: 补偿范围: ±8 ′安平时间:2 s 5.测微器:测微范围:10 mm、5 mm分格值:0.1 mm、0.05 mm套5GB/T 101563光学经 纬仪1.一测回水平方向标准偏差:室外:≤6.0 ″ ,室内:≤4.0 ″ 2.一测回竖起角标准偏差:≤10 ″ 3.望远镜:放大率:25×最短视距:2.0 m 4.水准泡角值:照 准 部:30 ″/2 mm 竖直度盘指标:30 ″/2 mm圆 形:8 ′/2 mm5.竖直度盘指标自动归零补偿器: 补偿范围: ±2 ′水平读数最小分格值:60 ″套1020GB/T 3161表 2 专业基础技能实训仪器设备装备要求(续)实训教学场所实训教 学目标仪 器 设 备序号名 称规格、主要参数或主要要求单位数量执行 标准号备注合格示范测 量 实 训 室1. 掌握 水准测 量 、 距 离 测 量 、 坐 标测量 的基本 方法2. 掌握 施工放 样的基 本方法3. 熟 悉 常用测 量仪器 的操作 方法4全站仪1.仪器等级: Ⅱ级2.角度测量标准偏差 mβ :1.0 ″ <mβ ≤2.0 ″ 3.电子测角部分:一测回水平方向标准偏差:≤1.6 ″一测回竖直角标准偏差:≤2 ″ 4.电子测距部分:测距标准偏差: ±(3+2×10-6 ×Da) mm5.工作温度:-20 ℃~ ﹢50 ℃套1020GB/T 27663激光部件安全执行GB 7247.15钢卷尺每套包括 10 m、20 m、30 m、50 m 四 种规格,数量各 1 个套2020QB/T 24436GPS测量仪1.接收机:一体化 GNSS(全球导航卫 星系统)接收机,级别不低于 C 级, 双频,观测量至少有 L1、L2 载波相位,同步观测接收机数不低于 3 部 2.设备误差:固定误差:≤10 mm比例误差系数:≤53.测量精度:(1)静态测量精度:平面精度:(5+1×10-6 ×Da )mm高程精度:(10+2×10-6 ×Da )mm(2)RTK(实时动态测量)测量精度:平面精度:(10+2×10-6 ×Da )mm高程精度:(20+2×10-6 ×Da )mm套14GB/T 18314CH/T 2009激光产品安全执 行GB 7247.19激光扫平垂直仪11有机玻璃执行GB/T 7134
  • 2020珠峰高程测量启动,国产测绘仪器担主角
    p   5月初,中国2020珠峰高程测量正式启动。测量登山队由国测一大队和中国登山队组成。高程测量即海拔测量。今年是人类首次从北坡成功登顶珠峰60周年、中国首次精确测定并公布珠峰高程45周年,开展此次珠峰高程测量具有重要的历史意义。自然资源部组织了中国测绘科学研究院、陕西测绘地理信息局及中国地质调查局等单位编制珠峰高程测量技术设计书和实施方案。根据方案,本次测量将综合运用GNSS卫星测量、精密水准测量、光电测距、雪深雷达测量、重力测量、天文测量、卫星遥感、似大地水准面精化等多种传统和现代测绘技术,精确测定珠峰高程。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/cfa49acc-84f4-4ef8-abfc-58a378b57f74.jpg" title=" 0506news pic2.jpg" alt=" 0506news pic2.jpg" / /p p style=" text-align: center " strong 珠穆朗玛峰 /strong /p p   据了解,本次珠峰高程测量工作将重点在以下几方面实现技术创新和突破:一是依托北斗卫星导航系统,开展测量工作 strong 二是国产测绘仪器装备全面担纲本次测量任务 /strong 三是应用航空重力技术,提升测量精度 四是利用实景三维技术,直观展示珠峰自然资源状况 五是测绘队员登顶观测,获取可靠测量数据。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/d225e173-285e-45dd-93d2-05c0dcccfde7.jpg" title=" news0506.jpg" alt=" news0506.jpg" / /p p style=" text-align: center " strong 珠峰高程测量队员扛着仪器前往测量点 /strong /p p style=" text-align: right " span style=" font-size: 14px " strong (图片来源:新华社) /strong /span /p p   测绘仪器,简单讲就是为测绘作业设计制造的数据采集、处理、输出等仪器和装置。一般包括各种定向、测距、测角、测高、测图以及摄影测量等方面的仪器。常见的测绘仪器有测量水平角和竖直角的经纬仪;测量两点间高差的水准仪;地面人工测绘大比例尺地形图的平板仪;用电磁波运载测距信号测量两点间距离的电磁波测距仪;快速进行测距、测角、计算、记录等多功能的全站仪;将陀螺仪和经纬仪组合在一起,用以测定真方位角的仪器陀螺经纬仪;装有激光发射器的各种激光测量仪器;利用连通管测定两点间微小高差的液体静力水准;由摄影机和经纬仪组装而成的供地面摄影测量野外作业用的摄影经纬仪;用于测定立体像对上同名点的像片平面直角坐标和坐标差(视差)的仪器立体坐标量测仪;用于地籍测量和空中三角测量,可获取数字地面模型、断面图、进行地面摄影测量以及修测更新地图立体测图仪和将具有倾斜和地面起伏的中心投影相片变换成正射影像图的正射投影仪等。 /p p   此次珠峰高程测量的成果可用于地球动力学板块运动等领域研究。精确的峰顶雪深、气象和风速等数据,将为冰川监测、生态环境保护等方面的研究提供第一手资料。GNSS测量、水准测量、重力测量的成果结合以前相关资料,不仅可以准确地分析目前地壳运动变化影响情况,同时也可为后续的似大地水准面模型建立提供准确的重力异常数据。重力测量成果可用于珠峰地区区域地球重力场模型的建立和冰川变化、地震、地壳运动等问题的研究。 /p
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • 国产测绘仪器正向国际市场迈进
    在中国测绘仪器发展史上,即使在最困难的时候,也从来没有闭门造车。一位测绘界老专家曾这样说。中国测绘行业在改革开放中走出国门,国产测绘仪器厂商在面对陌生的海外市场时,怎样实现突围? 两系闯世界 光学仪器率先走出国门,为中国测绘仪器出口立下了汗马功劳。 首先建立功勋的是天津系,以赛特和欧波为代表的企业出口光学水准仪;另一只劲旅是江浙系,以苏一光为代表的企业,出口附件和棱镜为主。两系都有着悠久的产业基础,足迹遍及全世界。据知情人透露,当时仅水准仪的年出口量就达好几万台。优质的性能和良好的性价比,让外国人眼前一亮,全世界都看到了中国光学测绘仪器的品质。上世纪90年代初,天津系和江浙系相继打破零星出口的局面,成为走向世界规模化出口的先锋。 十年淘金 南方测绘前身是做外贸起家的。凭借外贸积累起的第一桶金,公司开始研发出口国产测绘仪器,从水准仪到全站仪、RTK出口,南方测绘追求国际化梦想的步履千回百转、历尽挫折。 2003年9月,总经理马超带着3台全站仪、1台经纬仪、2台水准仪赴德参展,这是南方测绘第一次参加世界性展会,也是中国测绘仪器厂商第一次在世界舞台露面。第一次参展很折腾,摸不着门道,租了一个标准展位,马超带头发彩页。 第二年春天,马超又带队参加了在美国和日本举办的专业展会,在《GIM》和《POB》两大专业杂志上发布广告。就在这年,南方测绘率先推出的中文内存全站仪在日本参展引起了轰动。 凭借三场展会和两本杂志,南方测绘联系了100多个经销商。当时,很少中国人和中国企业参展。11年后,马超回忆:这批经销商奠定了南方测绘开拓海外市场的基础,直到现在他们仍然是我们最坚定的合作伙伴。 要开拓海外市场,须建立稳固的根据地,马超决定在测绘仪器最发达的法兰克福、纽约等地设立办事处。但是,在同德美日三国经销商接触之后发现,收效甚微。要在完全陌生的国外市场上淘金,不仅需要勇气,更需要谋略。在经历了短暂的失利之后,马超迅速调整方向,将主要目标放在东南亚和中南美洲等发展中国家。在越南、印度设立多家分公司,市场开拓向深度挖掘,销售量迅速提升。 万变不离其宗 伴随着中国经济实力的增强、制造业水平的提升,国产测绘仪器整体品质得到了很大提升。这种提升,从根本上推动了国产测绘仪器出口的大规模增长。特别在2010年之后,以全站仪为例,我国出口的全站仪有十几种语言,出口结构从棱镜附件到全站仪、再到GNSS,外贸出口呈现出逐步、均衡发展的态势。 2008年是一个转折,国产全站仪取得了跨越性发展。南方测绘率先将测距部分从原来的三块板集成为一块板,从红外转为激光测距,光栅升级成了绝对编码。升级后的全站仪成熟度高,为出口提供了精良武器,加之高性价比,国产全站仪成为中低端测绘仪器出口的主力。 经过3年攻关,南方测绘突破国外测绘仪器厂商的技术壁垒。2009年以后,RTK性能逐渐稳定,定位精度突破厘米级。2010年,南方测绘仪器出口突破亿元大关,成功实现了技术和产品重心的转移。一个全方位、全区域,多品牌、多层次的国产测绘仪器走出去的格局形成。 在下西洋的征途上,马超总结:出口需要一步步积累,是一件急不得的事。如果我们当初在策略上没有一步一步地走稳,舍不得投入、不下决心壮大规模,就走不到今天。南方测绘在出口之路上展现出来的开放、自信、包容性和应变力,是国产测绘仪器出口先行者、探索者的缩影。 今天,以南方测绘、华测为代表的诸多中国测绘仪器厂商正积极响应国家测绘地理信息局的号召,抓住机遇,以自主创新、自强不息的姿态走出去,迎接全球一体化的挑战。
  • 中小学实验室纳入5万亿设备更新计划(附仪器配置标准下载)
    2024年初,科学仪器行业迎来5万亿设备更新的“泼天富贵”。3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。随后,各省市积极响应并出台了相应的实施方案。在教育领域,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。仪器信息网关注到,河南省在实施方案中首次明确支持中学物理、化学、生物、地理等实验仪器更新,甘肃省紧随其后,提出中小学按照各学科教学仪器配置标准配备,此后,上海市在行动方案中提到,推动高校、职业院校、中学加强教学科研仪器设备配置,云南省在实施方案中也指出,推动中小学校严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备。可以预见,随着各省市实施方案的逐步落地,中学实验教学仪器的更新将成为一个重要的采购市场。本文特整理教育部发布的初中物理、化学、生物学、地理、数学和小学数学6个学科教学装备配置标准,为相关仪器厂商提供参考。根据配置标准,初中物理要求配置微型教学扫描隧道显微镜、光学显微镜、天平、各类传感器、激光测距仪、示波器等;初中化学要求配置电动离心机、烘干箱、电子天平 、各类传感器、溶解氧测定仪、COD 测定仪 、手持气体检测仪、土壤成分分析仪等;初中生物要求配置高压灭菌器、超净工作台、恒温培养箱、生物显微镜、各类试剂;初中地理要求配置试验箱、二氧化硫检测仪、PM2.5检测仪、水准仪 、激光测距仪、各类传感器、声级计、电子天平等;初中数学要求配置标尺、经纬仪、传感器等;小学数学则要求配置托盘天平、简易天平、数字天平等仪器设备。初中学科部分仪器配置要求《初中物理教学装备配置标准(JY_T 0619-2019)》.pdf《初中化学教学装备配置标准(JY_T 0620-2019)》.pdf《初中生物学教学装备配置标准(JY_T 0621-2019)》.pdf《初中地理教学装备配置标准(JY_T 0622-2019)》.pdf《初中数学教学装备配置标准(JY_T 0618-2019)》.pdf《小学数学教学装备配置标准(JY_T 0617-2019)》.pdf
  • 帕克网络讲堂:原子力显微镜测定力—距离曲线的原理和应用
    日期和时间:6月28日 上午10点-11点整主讲人: 帕克公司资深售后服务工程师&应用专家,AFM从业经验8年针尖-样品相互作用的力值量测 力-距离(F-D)曲线是一种分光镜检查技术,在Z轴扫描仪伸缩的同时,测量针尖与样品表面间的垂直相互作用。直接测量针尖与样品间的相互作用力时,对比悬臂偏转功能与压电扫描仪延伸,反映表面的力学性能。原子力显微镜包含各种各样的扫描模式可以到样品的形貌图或其他对应的特性分析图, 而这其中的力和距离曲线在表面科学,纳米技术,生物科学和许多其他研究领域中也扮演了非常重要角色。 在帕克的每一台设备的基本配置中都包含力和距离光谱分析。它不需要一些特殊的辅助模块进行操作,只是在探针和样品接触后分离的状态下,去获得相应点的力曲线。但是看似简单地操作, 却也涉及到了很多难点,想探针的选择,参数的设定,悬臂的校准等等。并且,液下力曲线,力曲线成像,更如PinPoint模式也都是这个领域的延伸。 而对于特殊材料进行力曲线分析,如细胞等,探针的改良也是一种保护样品不被破坏的途径,并能够让测量变成更容易的几何运算。它也是一种力曲线分析的难点之一。 这些信息都会在本次研讨会上进行讨论和分析。请参考友情链接,进入官网免费申请听取网络讲堂!
  • 我国天文学家建立星系批量高精度测距方法
    6月20日,国际学术期刊《自然天文》在线发表了中国科学院国家天文台副研究员陈孝钿领衔完成的一项重要成果。研究团队发现双周期的天琴座RR型变星是最好的标准烛光,利用它的两个周期来测量星系距离不再需要元素丰度的信息,这使得星系批量高精度测距得以实现。  一百年前,美国天文学家爱德文哈勃测量了第一个河外星系仙女座大星云的距离,从而确定了河外星系的存在,开创了星系天文学的研究。随着技术的发展,天文学家已经能测量数百亿光年之外的遥远星系的距离,这让人们认识到,银河系只是浩瀚宇宙中的一粒星尘。当前,天文学家关注的是如何更准地获得一颗恒星、一个星系、甚至整个宇宙的距离。  科研人员介绍,测量星星的距离通常需要使用“量天尺”,即标准烛光。标准烛光就像一盏已知功率的灯,其内在亮度一致,离它越远,就会感觉它越暗。人们观测到标准烛光的亮度随距离的平方降低。恒星中有两种常用的标准烛光:年轻(千万年)的造父变星和年老(百亿年)的天琴座RR型变星。它们的内在亮度分别是太阳的上万倍和一百倍。  那么,人们是如何知道这两类恒星的内在亮度呢?这类恒星的亮度随时间周期性变化,并且周期与内在亮度之间存在着线性的周光关系。利用周光关系,就可以得到这两类恒星的内在亮度,然后通过内在亮度与观测亮度的比较计算出距离。  使用这种方法可以得到一个误差为5%-10%的天体距离,如果想得到更准的距离,则需要判断标准烛光是否足够标准。天文学家发现,恒星的内在亮度会受元素丰度的影响,也就是说,拥有不同重元素的恒星具有不同的内在亮度。  因此,当天文学家想继续减小天体距离的误差时,就需要测量这些标准烛光的元素丰度。元素丰度的测量成本较高,需要依靠光谱测进行量。我国的郭守敬望远镜已经获得了数千万条光谱,是世界上最大的光谱库之一。然而,有光谱测量的天体仍然只是冰山一角。目前只有不到5个河外天体的距离误差小于2%。  陈孝钿研究团队利用我国郭守敬望远镜等数据,首次发现了双周期天琴座RR型变星的多个周期与金属丰度之间的线性关系,进而建立了双周期天琴座RR型变星的周光关系。基于该周光关系,星系的距离误差可以优化到1%-2%。  我国空间站巡天望远镜将在未来两年内升空,它将能发现近百个近邻星系中的双周期天琴座RR型变星。利用该成果的方法,高距离精度的星系样本将扩大20倍。届时,科学家有望看到一张精细的本星系群的三维直观图象,并能得到一个误差在1%的哈勃常数。
  • 全球最大流动卫星激光测距仪在武汉研制成功
    记者从位于武汉的中国地震局地震研究所获悉,全球最大流动卫星激光测距仪近日研制成功。   该仪器长10米、宽2.5米、高3.9米,其望远镜口径达到1米,居世界同类仪器之首,采用半挂车运载,具有白天观测能力。   项目负责人、中国地震局地震研究所研究员郭唐永介绍,该测距仪的研制为国家重大科学工程“中国大陆构造环境监测网络”支持的项目,它可用于观测3.6万公里远的地球同步卫星,测距精度达毫米级。去年底曾在湖北咸宁进行首次流动观测(如图),并成功观测到地球同步卫星。   其观测原理为:仪器通过对卫星发射激光,并根据激光反射回来的时间,来测算卫星运行的高度和轨迹。
  • 国产77吉赫兹毫米波芯片封装天线测距创纪录
    记者从中国电科38所获悉,在2月17日召开的第68届国际固态电路会议(ISSCC 2021)上,该所发布了一款高性能77GHz(吉赫兹)毫米波芯片及模组,在国际上首次实现两颗3发4收毫米波芯片及10路毫米波天线单封装集成,探测距离达到38.5米,刷新全球毫米波封装天线最远探测距离纪录。  该款芯片在24毫米×24毫米空间里实现了多路毫米波雷达收发前端的功能,创造性地提出一种动态可调快速宽带chirp信号产生方法,并在封装内采用多馈入天线技术,大幅提升了封装天线的有效辐射距离,为近距离智能感知提供了一种小体积和低成本解决方案。  此次发布的封装天线模组包含两颗77GHz毫米波雷达芯片,该芯片面向智能驾驶领域对核心毫米波传感器的需求,采用低成本CMOS(互补金属氧化物半导体)工艺,单片集成3个发射通道、4个接收通道及雷达波形产生等,主要性能指标达到国际先进水平,在快速宽带雷达信号产生等方面具有特别优势,芯片支持多片级联并构建更大规模的雷达阵列。基于扇出型晶圆级封装是封装天线的一种主流的实现途径,国际上的大公司都基于该项技术开发了集成封装天线的芯片产品。  下一步,中国电科38所将对毫米波雷达芯片进行进一步优化,根据具体应用场景提供一站式解决方案。  ISSCC被认为是集成电路领域的“奥林匹克盛会”,于1953年由发明晶体管的贝尔实验室等机构发起成立,在60多年历史中,众多集成电路史上里程碑式的发明都在这里首次亮相。
  • MIT研究团队打造新型红外测距系统,只需10美元成本
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 由Li-Shiuan Peh带领的麻省理工计算机科学与人工智能实验室(CSAIL)研究人员团队,已经开发出一套有趣的新型红外深度感知系统。这套系统能够在户外使用,只需10美元的成本,就能够为智能机添加新技能。基于它,传统的个人代步工具——比如轮椅车和高尔夫球车——都可以轻松升级为自动驾驶车辆。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/e2ae0fd0-c714-40ca-a6f8-ca145065910c.jpg" title=" d53f846893f96d1.jpg" width=" 600" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p style=" line-height: 1.75em "   上面这套原型,用到了普通手机中的摄像头组件,以及拆自仅10美元的测距仪上的商用激光发射器。 /p p style=" line-height: 1.75em "   实际上,类似微软Kinect之类的实惠型测距设备,已经在客厅娱乐之外的很多领域(比如机器人工程),发挥出了远胜于以往的潜力。 /p p style=" line-height: 1.75em "   在拥有现成廉价配件的同时,研究人员们还希望做出一个快速原型,甚至基于此打造出一个能够感知环境和导航的机器人,而无需不断改造必要的技术。 /p p style=" line-height: 1.75em "   遗憾的是,以Kinect为代表的红外系统,对光线条件的要求略有点高。阳光、火焰、热源,都可以轻松让它们抓瞎。 /p p style=" line-height: 1.75em "   相比之下,能够发射高能红外脉冲的商业户外测距仪,已经在过去30年里变得相当普及,其损伤眼睛的风险也被降到了最低。然而这样的系统非常昂贵,动辄上万的花费不是谁都承担得起。 /p p style=" line-height: 1.75em "   MIT的解决方案是测量定时发射的低能脉冲(捕捉4帧视频、2× 测量反射光、2× 只记录周围的红外线),然后用后者减去前者来算出距离。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/7787b238-849f-4e82-9ac9-b75f9a4ee326.jpg" title=" 0d87e0dee312826.jpg" / /p p style=" line-height: 1.75em "   在当前原型中,MIT研究人员用到了30fps的智能机摄像头(延迟约1/8秒--但也限制了这套系统的精度--240fps的摄像头可实现1/60的延时),虽称之为“主动式三测角”(active triangulation),但仍通过相机的2D传感器来测量。 /p p style=" line-height: 1.75em "   CSAIL研究人员表示,在3-4米的范围内(10-12英尺),设备的精度可以达到毫米级。在5米(16英尺)的时候,则减到了6厘米(2.3英寸)。 /p p style=" line-height: 1.75em "   不过,团队已经在一辆由新加坡-麻省理工研究与技术联盟开发的高尔夫球车上安装试验过,在15km/h(9pmh)的速度下都能够实现合适的深度测量。 /p p style=" line-height: 1.75em "   在技术成熟之后,就可以通过“插件式”的方法,轻松打造出一辆自动驾驶的高尔夫球车、电动轮椅、无人送货飞行器、甚至机器人。 /p p style=" line-height: 1.75em "   该团队将在斯德哥尔摩召开的“2016机器人与自动化国际会议”上披露更多细节。 /p p br/ /p
  • 小菲课堂|找准热像仪的距离系数比,才能获得清晰的热图像!
    距离目标多远,红外热像仪仍能精确测温?答案取决于诸多因素,但需要谨记:想要借助热像仪看到目标,并不一定意味着您的距离越近,获得目标的测量值越精确。类如医院的视力检查,当您坐在检查室里看视力表时,您或许能看清字母最小的那一行,但如果距离再远一点,您还能看得清吗(即精确“测量”它们)?为了确定能够测量的MAX距离,您需要了解红外热像仪的光斑尺寸比(SSR),也称作距离系数比(D:S比),能够决定您距离特定尺寸(光斑尺寸)的目标有多远(测量距离),仍能精确测量目标温度。光斑尺寸比保持恒定公式:SSR = 距离/光斑尺寸SSR为36:1的热像仪能在距离被测物36英尺(约11米)处测量直径1英尺(约0.3米)的目标,或距离被测物36米处测量直径1米的目标,或距离144米处测量直径4米的目标。需要注意的是,距离系数比保持恒定。计算光斑尺寸比假设需要在距离120英寸(约36.5米)处用FLIR E8红外热像仪对直径1英寸(约0.3米)的待测目标进行精确的温度测量。如何确定您的热像仪能否做到这一点,换句话说,如何确定您的热像仪的SSR是否大于120:1? 首先,您需要知道热像仪的瞬时视场角(IFOV)参数。视场角视场角(FOV)基本上就是您在热像仪屏幕上能看到的范围,而IFOV是单一像素的角度投影。每个像素能够覆盖的区域大小取决于待测目标的距离:离目标越近,每个像素覆盖的区域越小。IFOV即“距离系数比”中的“尺寸”。光斑尺寸比举例计算您可以利用热像仪的视场角和分辨率计算IFOV,也可以在线浏览,FLIR为每台热像仪创建了一个视场角计算器,让您省去大部分计算。若要访问计算器,点击FLIR热像仪系列名称,查看有关系列中全部热像仪的清单。点击您所使用的红外热像仪旁的“FOV calc.”,快速查找任意给定距离(单位为英尺或米)的IFOV(单位为英寸或毫米)。如果使用FLIR E8红外热像仪的视场角计算器,输入10英尺(120英寸/3米),得到的IFOV为0.31英寸(约7.8毫米),该数值为单一像素(1×1)的可测量尺寸。通过将这些数值代入S公式:SSR = 距离/光斑尺寸。我们得到的距离系数比为120:0.31。简而言之,0.31英寸大约为1英寸的1/3,因此该计算结果得出的结论就是:该热像仪能够在120英寸(3米)远的距离测量1/3英寸(约7.8毫米)的物体。但这并不是完全正确的,该单一像素测量值被称为“光斑尺寸比理论值”。尽管该数值真实准确,但会令人误解,因为它必定达不到高精确度。光斑尺寸比:理论≠实际光斑尺寸比理论值仅能反映单一像素内非常小范围的温度,但是单一像素测量值可能不准确的原因有很多:● 红外热像仪会产生坏像元;● 物体反射:镜头划伤或太阳光反射会造成错误的正读值或错误的高读数;● 物体温度较高:例如螺栓头,可能与单一像素宽度相近,但像素是正方形的,而螺栓头是六角形的;● 没有完美的光学组件:光学系统中通常会存在一些失真影响测量值。在实际情况下,为了获得最精确的温度测量值,您的确需要尽可能多地获取待测目标的像素。一两个像素可能足以定性地确定温差的存在,但它可能无法精确反映整个区域范围内的平均温度。我们建议确保用至少3×3像素的面积,覆盖待测物体数值所在的热区。为了计算3×3像素的SSR,只需将您的IFOV乘以3,得出3×3像素而不是1×1。此数值会更加精确。如果将之前的IFOV(0.31英寸)乘以3,会得到:0.31×3=0.93英寸,最终得出的SSR为120:0.93,这意味着您能从120英寸(3米)处精确测量尺寸将近1英寸的目标。光斑尺寸比确实很重要,因为它能够帮助您了解红外热像仪是否能够在需要的距离处精确地测量温度。如果需要对较小的目标进行远距离测量,那么了解红外热像仪的光斑尺寸比以及您是否位于精确测量范围内至关重要。红外热像仪的分辨率越高,您能在更远的距离处精确获取待测目标足够多像素的可能性也就越高。数字变焦并不能提高测量精确度,更高的分辨率或较窄的视场角才是关键所在。如果您正计划进行红外热成像调查,请考虑您是否能在保证安全的前提下足够接近待测目标以获取精确读数。总之,没有数据胜过基于不准确的数据作出错误的结论!
  • 5万亿设备更新——高等职业学校水利工程技术专业专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。《方案》明确了5方面20项重点任务,其中在实施设备更新行动方面,提到要提升教育文旅医疗设备水平,明确指出将“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平;严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备……”以下为仪器信息网整理的高等职业学校水利工程技术专业仪器设备装备规范,以飨读者。表1 专业基础技能实训室仪器设备装备要求实训教学场所实训教学目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位数量执行标准号备 注合 格示 范制 图 实 训 室1.掌握 投 影 知 识 与 绘 图 技能2. 掌 握 使 用 软 件 绘 制 水 利 工 程 图 的 技 能1绘图工具1.图板:1 号图板、2 号图板 2.丁字尺:600 mm套41412制图教具模型画法几何教具、水工建筑物模型套113计算机1.台式2.应不低于以下配置:屏幕尺寸:533.4 mm(21 in) 内存容量:8 GB DDR3硬盘容量:1 TB台4141GB/T 9813.14CAD 绘图软件Auto CAD 软件;节点数: ≥41套11网 络 版5交换机1. 48 端口千兆2.背板带宽 48 GB/S 以上,支持 背板升级3.转发速率 10 MB/S 以上台116图纸输出设备1.最大打印宽度:914 mm2.最大分辨率:2400 dpi×1200 dpi3.内存:1 GB台-17激光打印机打印 A3 图幅图纸台44GB/T 17540测 量 实 训 室1. 掌 握 水 准 测 量、方 位 测 量 及 距 离 测 量 的 基 本 方 法1光学经纬仪1.一测回水平方向标准偏差:室外:≤6.0 ″,室内:≤4.0 ″ 2.一测回竖起角标准偏差: ≤ 10 ″3.望远镜:放大率:25×最短视距:2.0 m4.水准泡角值:照准部:30 ″/2 mm竖直度盘指标:30 ″/2 mm 圆形:8 ′/2 mm5.竖直度盘指标自动归零补偿 器:补偿范围: ±2 ′水平读数最小分格值:60 ″套1010GB/T 3161表1 专业基础技能实训室仪器设备装备要求(续)实训教学场所实训教学目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位数量执行标准号备 注合 格示 范测 量 实 训 室2.悉用量器作法熟 常 测 仪 操 方2水准仪规格11. 1 km 往返水准测量标准偏差:≤4.0 mm2.望远镜:放大率:20×~32×最短视距不大于:2.0 m3.水准泡角值:符合式管状:20 ″/2 mm 圆形:8 ′/2 mm套1010GB/T 101563规格21. 1 km 往返水准测量标准偏差:≤ 4.0 mm;2.望远镜:放大率:20×~32×最短视距不大于:2.0 m 3.水准泡角值:符合式管状:20 ″/2 mm 圆形:8 ′/2 mm4.自动安平补偿性能:补偿范围: ±8 ′安平时间:2 s套510GB/T 101564规格31. 1 km 往返水准测量标准偏差:≤1.0 mm2.望远镜:放大率:32×~38×最短视距不大于:2.0 m 3.水准泡角值:符合式管状:10 ″/2 mm 圆形:8 ′/2 mm4.自动安平补偿性能:补偿范围: ±8 ′安平时间:2 s5.测微器:测微范围:10 mm、5 mm 分格值:0.1 mm、0.05 mm套-5GB/T 10156表 1 专业基础技能实训室仪器设备装备要求(续)实 训 教 学 场 所实训教 学目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位数量执行标准号备 注合 格示 范测 量 实 训 室3.掌握 水利工 程施工 放样基 本技能5全站仪1.仪器等级: Ⅱ级2.角度测量标准偏差 mβ :1.0 ″ <mβ ≤2.0 ″3.电子测角部分:一测回水平方向标准偏差:≤1.6 ″ 一测回竖直角标准偏差:≤2 ″4.电子测距部分:测距标准偏差:±(3+2×10-6 ×Da) mm5.工作温度:-20℃~﹢50℃台1020GB/T 27663激光产品安全执行GB 7247.16GPS 测量 仪1.接收机:一体化 GNSS(全球导航 卫星系统)接收机,级别不低于 C 级,双频,观测量至少有 L1、L2 载 波相位,同步观测接收机数不低于 3 部2.设备误差:固定误差:≤10 mm 比例误差系数:≤53.测量精度:(1)静态测量精度:平面精度:(5+1×10-6 ×Da)mm 高程精度:(10+2×10-6 ×Da)mm(2)RTK(实时动态测量)测量 精度:平面精度:(10+2×10-6 ×Da )mm 高程精度:(20+2×10-6 ×Da )mm台510GB/T 18314 CH/T 2009激光产品安全执行GB 7247.17激光测距仪1.测量范围:0.05 m ~ 200 m 2.测量精度: ±1.0 mm3.瞄准器:数码变焦不低于 4 倍4.彩色显示屏不小于61 mm(2.4 in)台2040GB/T 29299激光产品安全执行GB 7247.1Da——测距边长度,单位:km表1 专业基础技能实训室仪器设备装备要求(续)实 训 教 学 场 所实训教学 目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位数量执行标准号备 注合 格示 范测 量 实 训 室同上8钢卷尺每套包括 10 m、20 m、30 m、 50 m 四种规格套2020QB/T 24439激光扫平垂 直仪1.工作范围: ≥250 m2.水平精度: ±10 ″3.垂直精度: ±15 ″4.定向扫描:0、10 °、45 °、 90 ° 、180 °5.坡度设置范围: ±5 ° 6.激光下对点器:精度: ±1 mm/1.5 m工 作 温 度 : -20 ℃ ~ +50℃防护等级:不低于 IP 54台(5)(10)激光产品安全执行GB 7247.110激光三维定 向仪1.工作范围: ≥10 m2.精度: ±3 mm(10 m 长度) 自动水平范围: ±5 °(水平 及垂直)3.自动找平时间:3 s4.防护等级:不低于 IP 54台-(10)激光产品安全 执行 GB 7247.111激光准直仪1. 工作范围:0 m~50 m 2.标准偏差: ±0.2 mm3.激光光轴漂移量: ≤0.01 mm/h4.光轴与光靶中心高差:≤ 0.1 mm台(10)激光产品安全 执行 GB 7247.112数字化测图 软件与全站仪、GPS 相配套,软件 节点数: ≥41套11网络版表1 专业基础技能实训室仪器设备装备要求(续)实 训 教 学 场 所实训教 学目标仪 器 设 备序 号名 称规格、主要参数或主要要求单 位数量执行标准号备 注合 格示 范土 工 实 训 室1. 掌 握 土工材 料物理 及力学 性能指 标试验 检测方 法1电子天平规格 1:称量范围:0 g~3000 g分度值:0.01g台510GB/T 264972规格 2:称量范围:0 g~200 g分度值:0.001g台510GB/T 264973电热鼓风干燥 箱1.电压:220 V2.功率: ≥1000 W3.工作温度:10 ℃~300 ℃ 4.控温灵敏度: ±1 ℃台24GB/T 304354玻璃干燥器直径≥240 mm个24GB/T 157235环刀1.外型尺寸:直径 61.8 mm×高 20 mm 2.材质:不锈钢3.配切土刀个120120GB/T 15406 SL 3706标 准 筛细筛筛孔尺寸(mm):5.000、2.000、 1.000、0.500、0.100、0.0752.筛框内径 200 mm,高度 50 mm套510GB/T 15406 GB/T 6003.1 GB/T 6003.27粗筛1.筛孔尺寸:100 mm、80 mm、 60 mm、40 mm、20 mm、10 mm、 5 mm、2 mm2.筛框内径 200 mm,高度 50 mm套58液塑限联合测 定仪1.圆锥角度:30 ° ±0.2 °2.锥体质量:76 g±0.2 g 和 100 g ±0.2 g(各选 1)3.入土深度:0 mm~22 mm 4.测读精度:0.1 mm台1010GB/T 15406 GB/T 21997.2表1 专业基础技能实训室仪器设备装备要求(续)实 训 教 学 场 所实训教 学目标备 注合 格示 范土 工 实 训 室2. 了 解 水利工 程对土 工材料 的技术 要求9击实仪轻 型击锤2.5 kg,锤底直径 51 mm台1010GB/T 15406 GB/T 22541轻 、 重 型 任 选击锤落高305 mm
  • 工作距离的选择,对电镜拍摄会有什么影响?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性以及其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。今天主要谈一谈电镜拍摄时工作距离的选择。 这里是TESCAN电镜学堂第11期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。本期将为大家介绍工作距离的影响。 §3. 工作距离的影响① 分辨率由前面的束斑尺寸公式我们就已经得知,不管任何电镜、任何电压束流条件,都是工作距离越近,分辨率越好。不过工作距离越近,操作越危险,需要操作者较为小心,避免试样碰撞极靴。而且工作距离越近,试样允许的倾转角度也受到更大的限制。② 景深除了分辨率外,有时候景深也是电镜图片非常重要的因素,特别是当倍数较大时,景深会大幅度缩小,试样稍有起伏则不能全部聚焦清楚。 景深有如下公式可以表示: 其中M为放大倍数、D为工作距离、d为电子束直径、α为光阑孔径。TESCAN所有的电镜都可以从软件中读取当前工作条件下的景深,如图5-27。 图5-27 TESCAN软件直接读取景深 从景深公式中我们可以知道,影响景深的几个工作参数: 工作距离越大,景深越大;加速电压越大,电子束直径越小,景深越大;束流越小,电子束直径越小,景深越大;光阑孔径越小,景深越大;放大倍数越小,景深越大。 另外,TESCAN电镜具有独特的景深模式,通过中间镜和物镜的聚焦配合,能够增加高倍数下的景深。此外,无磁场模式的景深要好于磁浸没式。 图5-28是不同距离下的景深效果,可以明显的看出长工作距离下的景深优于短工作距离,但是工作距离过长会导致分辨率的下降。 图5-28 工作距离对景深的影响③ 衬度与工作距离的影响 对背散射电子来说,工作距离还会引起衬度的不同。工作距离较远时,极靴下背散射电子探测器的接收立体角较小,相对接收更高角的背散射电子信号;距离较近时,立体角变大,可以接收更多的低角背散射电子信号。图5-29,试样是抛光的金属镍,测试了不同区域的灰度值,可以发现工作距离较近时,不同的晶粒的灰度值相差更大,通道衬度更好。 图5-29 工作距离与背散射电子衬度④ 物镜模式和附件的要求 采用半磁浸没式物镜时(MAIA的Depth或Resolution模式),需要较近的工作距离。半浸没式物镜的磁场仅在物镜附近,工作距离远了磁场不能将试样表面包住,使得电子束不能很好的聚焦到试样表面。因此在这种工作模式下,工作距离最好小于7mm。如果插入了极靴下背散射电子探测器,由于探测器本身具有一定的厚度,所以工作距离也不能太近,否则会撞上探测器。插入极靴下背散射探测器的情况下,工作距离要大于6mm。如果工作距离更近了,可以拔出极靴下背散射探测器,改用镜筒内背散射电子探测器进行观察。在使用减速模式或者镜筒内二次电子探测器时,也需要相对较小的工作距离。 电镜的其它附件,比如EDS/WDS,由于这些附件自带准直器,需要有特定的工作距离,不在此工作距离下,附件会因为没有信号而不能正常工作。 福利时间每期文章末尾小编都会设置1个问题,大家可以在留言区自由作答,每期在答对的朋友中我们会选出点赞数最高的两位送出本书的印刷版。【本期问题】工作距离对背散射电子成像会有怎样的影响?(快去留言区回答问题领取奖品吧↓)奖品公布上期获奖的两位用户@Yuki@Organometallics,请在3个工作日内后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。电镜学堂“有奖问答”奖品 (印刷版书籍1本)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请戳以下文字或点击阅读原文:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置 电镜学堂丨扫描电镜的基本操作 & 分辨率指标详解电镜学堂丨电镜操作之如何巧妙选择加速电压?电镜学堂丨电镜使用中,如何选择合适的束斑束流? 更多详情内容请关注“TESCAN公司”微信公众号查看
  • 近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》
    近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》,最新的国家计量专业项目分类表在附件中一同发布。为方便量友查询使用,特转发国家计量专业项目分类表供量友参考。 国家计量专业项目分类表 长度-计量专业项目分类表编号项目子项目规程/规范名称规程/规范号010100激光波长——633nm稳频激光器检定规程JJG 353010200量块——量块检定规程 JJG 146 010301线纹标准线纹尺三等标准金属线纹尺检定规程JJG 71高等别线纹尺检定规程JJG 7324m因瓦基线尺检定规程JJG 306标准钢卷尺检定规程JJG 741分辨力板检定规程 JJG 827容栅数显标尺校准规范JJF 1280显微标尺校准规范JJF 1917010302工作线纹尺钢直尺检定规程JJG 1木直(折)尺检定规程JJG 2钢卷尺检定规程JJG 4纤维卷尺、测绳检定规程JJG 5套管尺检定规程JJG 473线缆计米器检定规程JJG 987π尺校准规范JJF 1423010401角度角度标准器角度块检定规程JJG 70正多面棱体检定规程 JJG 283多齿分度台检定规程JJG 472光学角规检定规程JJG 850010402角度角度常规测量仪器光学数显分度头检定规程JJG 57测角仪检定规程JJG 97水平仪检定器检定规程JJG 191自准直仪检定规程JJG 202小角度检查仪检定规程JJG 300旋光标准石英管检定规程JJG 864刀具预调测量仪检定规程JJG 938激光小角度测量仪检定规程JJG 998测微准直望远镜校准规范JJF 1077光学测角比较仪校准规范JJF 1078光学倾斜仪校准规范JJF 1083光学、数显分度台校准规范JJF 1114光电轴角编码器校准规范JJF 1115直角尺检查仪校准规范JJF 1140三轴转台校准规范JJF 1669倾角仪校准规范JJF 1915010403角度专用 测量仪四轮定位仪校准装置校准规范JJF 1489微机电(MEMS)陀螺仪校准规范JJF 1535捷联式惯性航姿仪校准规范JJF 1536陀螺仪动态特性校准规范JJF 1537钻孔测斜仪校准规范JJF 1550010501直线度和平面度直线度刀口形直尺检定规程JJG 63平尺校准规范JJF 1097010502直线度和平面度平面度平晶检定规程JJG 28平板检定规程JJG 117平面等倾干涉仪检定规程JJG 661研磨面平尺检定规程JJG 740平面等厚干涉仪校准规范JJF 1100010600表面粗糙度——干涉显微镜检定规程JJG 77光切显微镜校准规范JJF 1092表面粗糙度比较样块校准规范JJF 1099触针式表面粗糙度测量仪校准规范JJF 1105010701万能量具游标类量具通用卡尺检定规程JJG 30高度卡尺检定规程JJG 31电机线圈游标卡尺检定规程JJG 566010702微分类量具千分尺检定规程JJG 21内径千分尺检定规程JJG 22深度千分尺检定规程JJG 24杠杆千分尺、杠杆卡规检定规程JJG 26奇数沟千分尺检定规程JJG 182带表千分尺检定规程 JJG 427大尺寸外径千分尺校准规范JJF 1088整体式内径千分尺(6000mm~10000mm)校准规范JJF 1215测量内尺寸千分尺校准规范 JJF 1411010703指示表类 量具指示表(指针式、数显式)检定规程JJG 34杠杆表检定规程JJG 35010703万能量具指示表类 量具机械式比较仪检定规程 JJG 39百分表式卡规检定规程JJG 109扭簧比较仪检定规程JJG 118大量程百分表检定规程JJG 379深度指示表检定规程JJG 830内径表校准规范JJF 1102带表卡规校准规范JJF 1253010704角度量具直角尺检定规程JJG 7正弦规检定规程 JJG 37电子水平仪和合像水平仪检定规程JJG 103方箱检定规程JJG 194多刃刀具角度规检定规程JJG 275方形角尺检定规程JJG 1046框式水平仪和条式水平仪校准规范JJF 1084水平尺校准规范JJF 1085电子水平尺校准规范JJF 1119组合式角度尺校准规范JJF 1132通用角度尺校准规范JJF 1959010705量规类量具半径样板检定规程JJG 58塞尺检定规程JJG 62圆锥量规检定规程JJG 177光滑极限量规检定规程JJG 343标准环规检定规程JJG 894010705万能量具量规类量具针规、三针校准规范JJF 1207电子塞规校准规范JJF 1310楔形塞尺校准规范JJF 1548010801长度通用测量仪器长度常规测量仪器光学计检定规程 JJG 45工具显微镜检定规程JJG 56线纹比较仪检定规程JJG 72接触式干涉仪检定规程 JJG 101指示类量具检定仪检定规程JJG 201光栅线位移测量装置检定规程JJG 341量块光波干涉仪检定规程JJG 371读数、测量显微镜检定规程JJG 571激光干涉仪检定规程JJG 739感应同步器检定规程JJG 836测长机校准规范 JJF 1066投影仪校准规范 JJF 1093测长仪校准规范JJF 1189激光测径仪校准规范JJF 1250激光千分尺平行度检查仪校准规范JJF 1252数显测高仪校准规范JJF 1254量块比较仪校准规范JJF 1304线位移传感器校准规范JJF 1305扫描探针显微镜校准规范JJF 1351角位移传感器校准规范JJF 1352010801长度通用测量仪器长度常规测量仪器生物显微镜校准规范JJF 1402地面激光扫描仪校准规范JJF 1406数字式激光球面干涉仪校准规范JJF 1739凸轮轴测量仪校准规范JJF 1795微小孔径测量仪校准规范JJF 1806球径仪校准规范JJF 1831直线度测量仪校准规范JJF 1890激光干涉比长仪校准规范JJF 1913金相显微镜校准规范JJF 1914光学轴类测量仪校准规范JJF 1933010802坐标测量 仪器皮革面积测量机检定规程JJG 413图形面积量算仪检定规程JJG 660标准玻璃网格板检定规程JJG 832坐标测量机校准规范JJF 1064激光跟踪三维坐标测量系统校准规范JJF 1242坐标定位测量系统校准规范JJF 1251步距规校准规范JJF 1258影像测量仪校准规范JJF 1318关节臂式坐标测量机校准规范JJF 1408坐标测量球校准规范JJF 1422标准球棒校准规范JJF 1859基于结构光扫描的光学三维测量系统 校准规范JJF 1951010803测微仪气动测量仪检定规程JJG 356010803长度通用测量仪器测微仪斜块式测微仪检定器检定规程 JJG 525引伸计标定器校准规范JJF 1096电感测微仪校准规范JJF 1331激光测微仪校准规范JJF 1663光栅式测微仪校准规范JJF 1682电容式测微仪校准规范JJF 1944010804形状测量仪圆度、圆柱度测量仪检定规程JJG 429表面轮廓表校准规范 JJF 1476圆度定标块校准规范 JJF 1485010805测厚仪X射线测厚仪检定规程JJG 480磁性、电涡流式覆层厚度测量仪检定 规程JJG 818超声波测厚仪校准规范JJF 1126厚度表校准规范JJF 1255X射线荧光镀层测厚仪校准规范JJF 1306湿膜厚度测量规校准规范 JJF 1484橡胶、塑料薄膜测厚仪校准规范 JJF 1488掠入射X射线反射膜厚测量仪器校准 规范JJF 1613电解式(库仑)测厚仪校准规范JJF 1707010901齿轮测量齿轮标准器齿轮渐开线样板检定规程JJG 332齿轮螺旋线样板检定规程JJG 408标准齿轮检定规程JJG 1008010902齿轮测量 仪器跳动检查仪校准规范JJF 1109手持式齿距比较仪校准规范JJF 1121010902齿轮测量齿轮测量 仪器齿轮螺旋线测量仪器校准规范JJF 1122基圆齿距比较仪校准规范JJF 1123齿轮渐开线测量仪器校准规范JJF 1124滚刀检查仪校准规范JJF 1125铣刀磨后检查仪校准规范JJF 1138齿轮齿距测量仪校准规范JJF 1209齿轮双面啮合测量仪校准规范JJF 1233齿轮测量中心校准规范JJF 1561010903齿轮测量 量具公法线千分尺检定规程JJG 82齿厚卡尺校准规范JJF 1072圆柱直齿渐开线花键量规校准规范JJF 1557011001螺纹测量螺纹测量仪器石油螺纹单项参数检查仪校准规范JJF 1063丝杠动态行程测量仪校准规范JJF 1410螺纹量规扫描测量仪校准规范JJF 1950011002螺纹测量量具螺纹千分尺检定规程JJG 25螺纹样板检定规程JJG 60石油螺纹工作量规校准规范JJF 1108圆柱螺纹量规校准规范JJF 1345011100轴承测量——轴承内外径检查仪检定规程JJG 471球轴承轴向游隙测量仪检定规程JJG 626深沟球轴承跳动测量仪检定规程JJG 784深沟球轴承套圈滚道直径、位置测量仪检定规程JJG 785轴承套圈厚度变动量检查仪检定规程JJG 819011100轴承测量——滚动轴承宽度测量仪检定规程JJG 885滚动轴承径向游隙测量仪校准规范JJF 1089轴承套圈角度标准件测量仪校准规范JJF 1113圆锥滚子轴承套圈滚道直径、角度测量仪校准规范JJF 1545轴承圆锥滚子直径、角度和直线度比较测量仪校准规范JJF 1684011201测绘仪器及检定装置测绘仪器检定装置 经纬仪检定装置检定规程JJG 949水准仪检定装置检定规程JJG 960长度基线场校准规范JJF 1214011202测绘仪器水准标尺检定规程JJG 8全站型电子速测仪检定规程JJG 100光学经纬仪检定规程JJG 414水准仪检定规程JJG 425光电测距仪检定规程JJG 703超声波测距仪检定规程JJG 928手持式激光测距仪检定规程JJG 966工业测量型全站仪检定规程JJG 1152垂准仪校准规范JJF 1081平板仪校准规范JJF 1082全球定位系统(GPS)接收机(测地型和导航型)校准规范JJF 1118激光扫平仪校准规范JJF 1166脉冲激光测距仪校准规范JJF 1324工具经纬仪校准规范JJF 1349陀螺经纬仪校准规范JJF 1350011202测绘仪器及检定装置测绘仪器非接触式测距测速仪校准规范JJF 1612望远镜式测距仪校准规范JJF 1704011301长度其它测量仪器长度工程专用仪器焊接检验尺检定规程JJG 704刮板细度计检定规程项目子项目规程/规范名称规程/规范号020101质量天平
  • 河北省2300万水质监测设备大标揭晓
    相关新闻:青海质监局2000万色谱/质谱等仪器结果公布   2013年5月9日,河北省水文水资源勘测局在中国政府采购网公布了河北省2012年中小河流水文监测系统建设项目(中央投资部分)中标公告,此次采购仪器设备高达近300套,采购金额达到了2366万元。详情如下所示:   采购人名称:河北省水文水资源勘测局   采购人地址:石家庄市建华南大街85号   采购人联系方式:陈胜锁 0311-85696569   采购代理机构全称:河北华业招标有限公司   采购代理机构地址:石家庄市桥西区红旗大街25号西清公寓5楼   采购代理机构联系方式:刘 蓓 13933091090   采购数量:   第一标段:水文站断面监测设备采购及安装(张家口、承德、唐山、秦皇岛部分)   主要包括:雷达式水位计11套、翻斗式雨量计11套、无线传输设备11套、雷达波测速仪31套、雷达波测速仪控制器11套。   第二标段:水文站断面监测设备采购及安装(保定、廊坊、沧州、衡水、石家庄、邢台、邯郸部分)   主要包括:电子水尺32.4米、浮子式水位计4套、雷达式水位计5套、翻斗式雨量计11套、无线传输设备13套、雷达波测速仪20套、雷达波测速仪控制器4套。   第三标段:断面视频监控设备采购及安装23处。   第四标段:视频会议设备采购及安装(大屏幕视频会议系统6套)。   第五标段:声学多普勒流速剖面仪采购   主要包括:无线走航式ADCP 12套、微型ADCP 2套、电动遥控ADCP 2套。   第六标段:测速设备采购   主要包括:转子式流速仪116套、转子式流速仪(低速)53套、智能流量测算仪18套、手持式电波流速仪33套。   第七标段:水文测量设备采购   主要包括:经纬仪7套、自动安平水准仪17套、电子水准仪13套、全站仪8套、手持式GPS 8套、GPS(1拖3)2套、便携式测深仪18台、激光测距仪12台。   第八标段:计算机及网络通讯设备采购   主要包括:台式计算机45台、便携式计算机33台、系统服务器3台、数据库服务器1台、A3幅面激光彩色打印机2台、卫星电话5部、摄像机9台、照相机15台。   第九标段:预警预报软件采购   主要包括:开发信息交换系统软件、信息管理与监控维护平台软件、水情信息服务系统软件、水情产品制作平台软件、洪水预报系统软件各一套,编制50条中小河流洪水预报方案。   第十标段:钢制营房采购10处共240平米钢制营房。   项目实施地点:河北省境内(采购人指定地点)   供货、安装时间:1-2标段三个月,3-10标段两个月   合同履行期: 合同约定   采购公告日期: 2013 年 4月 10日   定标日期: 2013 年5月3 日   开标、评标地点:石家庄市桥西区裕华西路与西二环交叉口178号亨伦国际酒店16楼会议室   中标供应商名称:一标段:北京燕禹水务科技有限公司   中标供应商地址:一标段:北京市海淀区万寿路街道翠微路甲3号南楼五层518室   中标金额:一标段:3536080.00元   中标供应商名称:二标段:河南安宏信息科技有限公司   中标供应商地址:二标段:河南省郑州市金水区城北路5号   中标金额:二标段:2237092.00元   中标供应商名称:三标段:河北汉佳电子科技有限公司   中标供应商地址:三标段:石家庄桥西区新石北路368号   中标金额:三标段:1276500.00元   中标供应商名称:四标段:河北融商电子有限公司   中标供应商地址:四标段:石家庄市国泰街58号时代花园C8-4-301   中标金额:四标段:3337780.00元   中标供应商名称:五标段:水利部南京水利水文自动化研究所   中标供应商地址:五标段:江苏省南京市雨花台区中华门外铁心桥街95号   中标金额:五标段:5069750.00元   中标供应商名称:六标段:重庆华正水文仪器有限公司   中标供应商地址:六标段:重庆市北碚区龙风三村   中标金额:六标段:2271470.00元   中标供应商名称:七标段:广州市中海达测绘仪器有限公司   中标供应商地址:七标段:广州市番禺区番禺大道北555号番禺节能科技园内天安科技创新大厦1001   中标金额:七标段:2894000.00元   中标供应商名称:八标段:石家庄慷派世纪数码科技有限公司   中标供应商地址:八标段:石家庄市桥东区裕华东路49号中天世都商务楼1506室   中标金额:八标段:1852065.00元   中标供应商名称:十标段:泊头市东南西北特房制造有限公司   中标供应商地址:十标段:泊头市工业区   中标金额:十标段:1189600.00元   评标委员会成员名单:鲍虹、史永康、朱金钧、杜俊生、高明山、刘献峰、马存湖   项目联系人:刘蓓   联系方式:13933091090   传真电话:0311-67501100   采购代理机构受理质疑电话:0311-67501100
  • “大黄蜂”——距离2000公里的相遇
    不畏距离 疫情时期各地物流运输受到影响,时效性不好保证。为了“大黄蜂”更无损细致的运输,也为了客户能尽快使用到我们的“HTS-996高通量核酸样品转移系统”,来解决检测员人工转移过程中耗费时间过长以及样品污染问题。该款仪器自动化程度高,省去检测人员挨个录入被测人员信息过程,有效解决繁琐枯燥的人工操作,同时保证检测人员的安全。调试和培训 克服疫情的影响,不顾路途的疲惫与奔波,恒奥科技赵工在现场对“大黄蜂”进行了专业细致的调试。此台“大黄蜂”承载着丹棱县高速路口进出入人员的核酸检测任务,赋予了“大黄蜂”这么光荣的任务,我们恒奥人就更应该把仪器从出厂到送达,更应该严格把控,把仪器调整到适合状态,为我们的疫情防控工作奉献出应有的力量。 与客户面对面进行现场的操作演示以及仪器原理的讲解,解决客户在使用过程中遇到的问题,恒奥一直秉承着客户至上的态度,服务好我们的每一位客户! 致敬每一位奋战在一线的逆行者,您们辛苦了! 初心不变,让客户拥有更好的使用体验与服务,是我们不变的追求。您的需要与反馈是我们不断追求创新的动力,我们永远为您带去专业的服务。 感恩有您的支持,我们一路同行。
  • 走进怀柔大科学装置,近距离感受“国之重器”的魅力!
    近日,借助2023第十六届中国科学仪器发展年会(ACCSI2023)契机,北京怀柔科学城管委会联合仪器信息网组织了大科学装置参观活动,几十位仪器企业、科研院所、科技服务机构等人员走进怀柔科学城,近距离感受高能同步辐射光源、综合极端条件实验装置、多模态跨尺度生物医学成像设施等“国之重器”的魅力。参观综合极端条件实验装置综合极端条件实验装置,是国家重大科技基础设施建设中长期规划确定的“十二五”建设重点内容之一,也是怀柔科学城第一个开工的国家重大科技基础设施,2017年9月开工建设,2023年建成投入使用。 该装置是国际上第一个把极低温、超高压、强磁场、超快光场等极端条件结合在一起的用户装置。按研究方向,装置共分为四个科学实验平台,即位于北京的物性表征平台、量子调控平台、超快动力学表征平台以及位于吉林建设的高温高压大体积材料研究平台。装置能实现1毫开尔文的极低温、300吉帕斯卡的超高压、26特斯拉的全超导复合磁体强磁场以及约100阿秒的超快光场,并提供多种综合极端条件下的实验手段,将拓展物质科学的研究空间,助力相关前沿领域取得研究突破,促进新物态、新现象、新规律的发现。参观高能同步辐射光源高能同步辐射光源(High Energy Photon Source,HEPS),是国家重大科技基础设施建设“十三五”规划确定建设的十个重大科技基础设施之一,2019年6月开工建设,预计2025年建成投入使用。其主要建设内容由加速器、光束线站、配套设施等构成,工程目标为:建设国际领先的高能同步辐射光源,储存环能量达6GeV,亮度达1×1022phs/s/mm2/mrad2/0.1%BW,发射度小于0.06nm×rad,高性能光束线站容量不少于90个,可提供能量达300千电子伏的X射线;设施空间分辨能力达到10nm量级,具备单个纳米颗粒探测能力;能量分辨能力达到1meV伏量级;时间分辨达到ps量级,具备高重复频率的动态探测能力。 建成以后,HEPS将成为世界上亮度最高的第4代同步辐射光源,是我国的第5个同步辐射光源,也是我国能量最高的同步辐射光源,为基础科学和应用科学研究领域提供先进的实验平台,满足非平衡态、非线性、局域个体、复杂体系等前沿问题的研究需求。参观多模态跨尺度生物医学成像设施多模态跨尺度生物医学成像设施是“十三五”国家重大科技基础设施之一,也是第一个国家级生物医学成像设施,2020年3月开工建设,预计2024年建成投入使用。该设施分为四个装置,即多模态医学成像装置、多模态活体细胞成像装置(装置二)、多模态高分辨分子成像装置和全尺度图像数据整合系统。其融合光、声、电、磁、核素、电子等成像模态,提供从埃米到米,跨越10个空间尺度;从微秒到一年,跨越10个时间尺度,打通尺度壁垒、整合多模态信息,全景式揭示基因表达、分子构象、细胞信号、组织代谢及功能网络的时空动态和内在联系,精准描绘生命活动基本原理和疾病发病机制的全景图,全面开拓成像组学新学科,将为生物医学研究提供革命性的新工具、新技术、新方法,为阐明大脑认知的基本原理,了解疾病发病的机制,为生命科学基础研究、现代农业、生物技术、公共生物安全、人口与健康等生命健康各领域提供科学支撑。近年来,国家高度重视大科学装置建设,将其视为提升我国基础研究和应用研究水平、促进相关领域国际科技合作的重要支撑。据悉,作为国家批复的北京怀柔综合性国家科学中心的核心承载区,怀柔科学城正成为全球大科学装置最为密集的区域之一,截止目前,已围绕物质、空间、生命、地球系统和信息与智能五大科学方向,布局了40余个大科学装置、科教设施和交叉研究平台。本次参观活动,到场人员不仅切身感受到了大科学装置的魅力,了解到了最前沿的科技成果与科学动态,也近距离观看到了怀柔科学城的最新建设情况。
  • 服务万里行 | 奔赴3000多公里的西藏,让服务0距离
    前几天,西藏谱信检测的主任发来了感谢视频,深切感谢盛瀚服务工程师——蔡峰回访培训,并为盛瀚五星级优质售后服务点赞。服务万里行此次西藏客户回访培训是盛瀚老客户关怀活动“服务万里行”的体现。恰逢盛瀚20周年,为回馈老客户,盛瀚推出“服务万里行”为客户提供专业、细致、贴心的服务。7月28日,盛瀚蔡工到达西藏谱信检测。虽然,蔡工常年在外走访服务,去过很多城市,但初入西藏还会有些许不适应。蔡工提到,在西藏平常没有高原反应,但要是爬上两到三层楼梯,还会觉得心跳加速。在西藏谱信检测,蔡工为客户升级了软件系统,并对客户进行专业、系统的产品培训使用,让客户从原理上了解离子色谱仪,使用仪器更加顺手。正因为蔡工专业热情的服务感动客户,客户发来了感谢视频。(西藏宇轩环保服务照片)(青藏高原微生物检测中心服务照片)这次“服务万里行”西藏之行,蔡工还拜访服务了西藏宇轩环保、青藏高原微生物检测中心等6家盛瀚客户。客户表示:盛瀚仪器的稳定性和一致性都是非常不错的,盛瀚五星级服务也是值得点赞的。盛瀚服务万里行,让服务不受距离的限制,让服务不受时间的约束,让服务更有温度!
  • 近距离接触“高精尖”仪器,珠海市质计所举办实验室开放日活动
    为普及质量知识,提升质量意识,进一步增加社会各界对船舶及海工材料质量检测及产业计量测试中心的了解,3月31日,珠海市质计所推出第一季度 “实验室开放日”活动,面向社会开放船舶及海工材料质量检测及产业计量测试中心实验室。此次活动吸引珠海市高登机械有限公司企业代表、珠海技师学院学生及市民等80余人前来参观,近距离接触“高精尖”仪器设备,现场观摩检测实验过程。活动现场,国家船舶及海工质检中心相关技术人员带领参观人员参观了扫描电镜实验室、电磁兼容室,声学屏蔽室等相关检测实验室,详细介绍了国家船舶及海工质检中心的发展历程和技术检测能力情况,讲解了多类金属材料的检测原理和操作流程,现场答疑解惑并演示了金属材料拉伸试验、冲击试验、弯曲试验及疲劳试验的工作过程。参观过程中,学生们排队实操了火花直读光谱仪使用方法,并通过高端扫描电子显微镜放大金属材料表面形貌。实验室技术专家耐心讲解,回答学生疑问。活动结束后,大家纷纷表示:“通过此次活动,大开眼界,增长了学识!”国家船舶及海工质检中心技术人员还与部分企业代表了解企业难题,帮助解决企业在实际生产过程中遇到的疑难问题,助推珠海企业实现高质量发展。
  • 漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备
    漫反射涂料/目标板蓝菲光学permaflect-标定无人驾驶激光雷达距离测试性能、无人机机载相机、基于激光扫描技术的食品分类处理设备Labsphere(蓝菲光学) 发布的“漫反射涂层Permaflect”,进一步扩展了公司的漫反射材料和涂层产品线。这条产品线包含性能优异的Spectralon材料,Spectraflect涂料和Infragold镀金涂料。在此基础上,蓝菲光学为用户提供了涵盖多个领域的创新性应用解决方案,包括无人驾驶激光雷达校准、发光二极管(LED)、固态(SSL)照明,遥感,成像、消费相机、汽车、国防安全、健康和生物医学光学等。图1 蓝菲光学漫反射涂层Permaflect  蓝菲光学的Permaflect特有近朗伯特性的白色和灰色漫反射涂层,专门针对恶劣的环境、天气及其他可能影响典型漫反射涂层性能的场合而设计,其反射率范围在5%~94%。  蓝菲光学首席技术专家Greg McKee指出:“从医疗仪器使用的一次性基准物到成像传感器的基准目标板,蓝菲光学可定制漫反射涂层的应用是极其丰富的,且其性能也是无可比拟的。”  除了提供Permaflect涂层原材料,蓝菲光学也提供各种尺寸的Permaflect漫反射目标板。在野外各种苛刻的条件下,这些目标板无疑是比白纸或者白布更好的选择。 Permaflect提供了一种传统目标板无法比拟的替代方案,更轻、更均匀、更耐用。”Mckee评论说。漫反射涂层Permaflect推出后受到了客户的广泛赞誉。其被广泛应用于多个领域:(1)Permaflect目标板应用于校准激光雷达距离测量性能Matthew Weed, Luminar 技术研发总监曾讲到:“为部署安全的自动驾驶车辆,Luminar 的客户要求激光雷达系统能够在200多米的距离内对低至10%反射率的目标物实现精确测距。我们通常在200多米的距离上使用蓝非光学的permaflect目标板,来验证我们的产品是否满足客户严苛需求。针对顾客严苛的技术要求条件,蓝菲光学仪器有限公司产品总是不断优化创新,生产出的Permaflect ® 目标板满足激光雷达关键性能因素。图2 Permaflect目标板应用于校准激光雷达距离测量性能图3 无人驾驶激光雷达图4 典型8/H Permaflect漫反射板反射因子 (2)Permaflect产品用于标定其基于激光扫描技术的食品分类处理设备 由于其无可替代的优异性能,在食品加工和工业过程自动化行业的某国际知名企业已大批量订购了Permaflect产品,用于标定其基于激光扫描技术的食品分类处理设备。 图5 食物在线分检图6 基于激光扫描技术的食物分检设备 (3)Permaflect漫反射板应用于无人机机载相机的标定 漫反射涂层Permaflect进入中国市场后,其在恶劣环境下的高品质性能备受国内用户的瞩目。  相对于柯达灰卡,漫反射涂层Permaflect在更宽广的谱段上提供平坦的反射率特性,而且具有良好的刚性和平面度,防潮防水性能优异,面幅选择多(标准品最小0.5m x 0.5m,最大1.2m x 2.4m,其他面幅可定制),又相对较轻,因此适用于各种环境。目前,漫反射涂层Permaflect已经被中科院某研究所用于野外环境下对无人机机载相机的标定。图7 无人机图8 无人机机载相机图9 Permaflect和柯达灰卡的反射光谱对比
  • 胜利仪器产品推荐:远距离成像热像仪
    胜利仪器产品推荐——手机式长焦超远夜视红外热成像仪,镜头焦距10mm,256×192分辨率。产品特点• 970米,超远距离夜视;• 镜头焦距10mm,高精度快速响应;• 256*192分辨率,画质清晰,效果出色;• 1×-4×无极放大,双指轻滑,随心变倍;• 温度追踪,可选择开启或关闭实时画面中最高温、最低温,红色为最高温,蓝色为最低温;• GPS定位与电子罗盘,GPS可提供当前的经纬度、速度和海拔信息;• 多范围应用,广泛应用于地暖查漏、电气维修及更适合户外远距离平原使用(如露营探险、野外求生/救援、夜跑徒步、动物观察)等领域。技术指标分辨率256×192工作波长8~14μm帧率25HzNETD电子放大1x-4x无极放大(通过屏幕手势)色板铁红、彩虹、白热、黑热、冷蓝、红热热点追踪支持GPS可在App中显示手机GPS信息电子罗盘可在App中显示手机电子罗盘信息屏幕旋转支持拍照支持录像支持语言中文、英文工作温度-20°C~60°C存储温度-40°C~85°C防水防尘IP54电源配合手机使用、即插即用显示屏尺寸无显示屏、配合手机APP使用机身尺寸36×29.5×27.5mm标准配件便携收纳包、支架、数据延长线、说明书
  • 中国科大实现量子增强的微波测距
    中国科学技术大学郭光灿院士团队在实用化量子传感研究中取得重要进展。孙方稳教授研究组利用微纳量子传感与电磁场在深亚波长的局域增强,研究微波信号的探测与无线电测距,实现10-4波长精度的定位。该成果于3月9日发表在国际知名期刊《自然通讯》上。   基于微波信号测量的雷达定位技术在自动驾驶、智能生产、健康检测、地质勘探等活动中得到广泛应用。尤其在当前智能化、信息化发展大趋势下,发展高性能雷达测距技术对国防安全和经济发展都方面有重要意义。   量子信息技术的发展为发展雷达技术提供了新的解决方案。量子传感和精密测量利用量子相干、关联等特性提升系统对物理量的测量灵敏度,有望超越传统测量手段的精度。孙方稳研究组面向量子信息技术实用化,长期研究固态自旋体系的量子传感技术。发展了电荷态耗尽纳米成像方法,实现基于金刚石氮-空位色心的超衍射极限分辨力电磁场矢量传感与成像(Phys. Rev. Applied 12, 044039(2019)),并利用超分辨量子传感探索了电磁场在10-6波长空间内局域增强的现象(Nat. Commun. 12, 6389(2021))。   在本研究中,研究组结合微纳米分辨力的固态体系量子传感与电磁场的深亚波长局域,发展高灵敏度微波探测和高精度微波定位技术。研究组设计了金刚石自旋量子传感器与金属纳米结构组成的复合微波天线,将自由空间传播的微波信号收集并汇聚到纳米空间,从而通过探测局域的固态量子探针状态对微波信号进行测量。该方法将自由空间弱信号的探测转换为对纳米尺度下电磁场与固态自旋相互作用的探测,提高了固态量子传感器的微波信号测量灵敏度3-4个量级。为了进一步利用高灵敏度的微波探测实现高精度微波定位,研究组搭建了基于金刚石量子传感器的微波干涉测量装置,通过固态自旋探测物体反射微波信号与参考信号的干涉结果,得到物体反射微波信号的相位以及物体的位置信息。同时,研究组利用固态自旋量子探针与微波光子多次相干相互作用,实现了量子增强的位置测量精度,达到10微米水平(约波长的万分之一)。审稿人认为该工作是金刚石量子传感器在量子测距中的首次应用(…To my knowledge, this is a first demonstration of quantum ranging platform, based on NV center…)。   与传统雷达系统相比,该量子测量方法无需检测端的放大器等有源器件,降低了电子噪声等因素对测量极限的影响。通过后续的研究,将可以进一步提高基于固态自旋量子传感的无线电定位精度、采样率等指标,发展实用化固态量子雷达定位技术,超过现有雷达的性能水平。   文章第一作者为中科院量子信息重点实验室陈向东副研究员,通讯作者为孙方稳教授。该工作得到了科技部、基金委、中国科学院和安徽省的资助。
  • 国外垄断局面被打破 我国测绘仪器业迈步高端
    日前举办的第7届测绘仪器设备展览会上有许多新奇的“玩意儿”,国内外厂家“同台竞技”,各家都拿出自己的顶尖产品来展示。大到GPS测量车,小到配套产品乃至校正水准用的小气泡,产业链上的产品可谓应有尽有,且附件类产品都是由我国产品占主导。   自主创新 丰富品种   在光电测量仪器蓬勃发展的今天,除了种类繁多的传统光学仪器和迅猛发展的电子仪器外,还包括激光经纬仪、激光水准仪、激光全站仪等光电测量仪器。   测绘仪器的应用越来越广泛。以高铁轨道测量为例,高速铁路对轨道平顺度要求非常高,对钢轨之间的缝隙、轨道铺设的水平度等都有着严格的标定。因此,在高速铁轨铺设完后,就要用高速轨道测量仪来检验和把关。随着我国高铁建设进程的加快,高铁轨道测量仪也发挥着重要作用。   在展会上记者了解到,近年来,我国测绘仪器产业成熟度越来越高,逐渐打破了测绘仪器长期被国外公司垄断的局面。   据专家介绍,以前,我国的测量仪器设备都是以进口为主。1995年,以南方测绘为代表的自主品牌生产出了我国第一台电子全站仪,由此打开了国产测量仪器追赶世界先进水平的序幕。10多年来,国产自主品牌依托价格优势、灵活的市场营销手段及本土优势,逐渐从低端电子测绘产品向中端市场渗透。南方全站仪产量从2003年的3000台增长到目前的10万台,一举成为世界产量最大。起步较晚的苏一光全站仪,也从1000台发展到年产销量达6000台以上。   从传统光学到电子再到激光,我国水准仪、经纬仪、全站仪等测绘仪器得到迅猛发展,目前已经成为世界测绘仪器的生产基地,测绘仪器实现了国产化。据中国仪器仪表行业协会测绘仪器分会秘书长梁卫鸣介绍,我国生产的中低端测绘仪器在国际上占有90%的市场份额,每年出口量达50万台。从红外到激光,已经实现了全系列产品的生产。   服务为先 做大做强   随着测绘仪器市场的不断扩大,自主品牌之间、自主品牌与进口品牌之间的竞争加剧,也使产品价格有了大幅下降。   竞争在所难免,如何赢得更大的市场?“国内自主品牌的同一水平产品,其性能相差不多,因此,要赢得市场青睐,除增强产品自身品质外,还要靠服务和产品细节优势占领市场。”中海达和华测公司的技术人员都这样对记者表示。   梁卫鸣则认为,“要做强,就要创新,实现从低端向高端迈进。而且,我国的测绘行业要做强的话,不是一家两家就可以完成的,必须多家一起上,共同发展,才能使整个产业都强大起来。”   如今,根据国家发展战略和测绘发展的新思路,我国测绘业正面临着难得的发展机遇和重大挑战。梁卫呜介绍说,目前,以高技术为特征的现代化测绘技术装备正在逐步取代传统测绘仪器,成为测绘仪器发展的主流。因此,测绘仪器国产自主品牌要在竞争中发展、壮大,就要谋求产品的技术创新,走差异化之路。同时,实施走出去战略,积极拓展海外市场,最终实现测绘仪器由大国到强国的跨越。   挑战与机遇并存   在经济全球化趋势下,我国测绘仪器企业已经不可避免地加入到国际竞争的行列。激烈的国际竞争,在给我国民族工业带来冲击的同时,也带来了巨大的发展机遇。   我们看到,世界著名测绘仪器制造厂商已把我国作为一个重要市场,纷纷来设厂。他们利用低廉的制造成本,以技术优势抢占市场。   在二十世纪,我国的测量仪器设备是以进口为主、国产为辅。特别是在电子技术和电脑芯片技术快速发展的推动下,迅速发展出以电子全站仪为代表的新型测量仪器。而我国在最初的15年,由于电子技术和芯片技术的发展滞后,只能以进口方式得到最新的测量技术。   我们也应看到,国际测绘技术从传统技术向信息化技术转变的速度越来越快,特别是精度越来越高的激光雷达、三维扫描、多功能测量系统、航摄小飞机,以及功能越来越强、实用性越来越好的后处理软件开发和应用。这些先进测绘技术正在加速取代传统的测量方式,给依靠生产和销售传统测量仪器为主的企业带来危机感。   挑战面前有机遇。正当国外测绘仪器大行其道之时,国内自主品牌可以借势发力,在家门口近距离地接触、吸收和运用国际资本、先进技能等,使我国测绘仪器从研制到生产,从销售到服务都得到了成长壮大。事实也证明,我国自主开发的测绘仪器已打破了进口测绘仪器独占市场的局面,实现了中低端测绘仪器国产化。   国内测绘仪器市场已逐渐与国际市场接轨,形成了你中有我、我中有你的格局。因此说,竞争可以推动产业发展,推动测绘仪器的进步,抓住机遇,夯实功夫,积极作为,就能实现跨越。
  • 《最遥远的距离》慕尼黑零距离逛展突破界限
    世界上最遥远的距离,不是天与地,而是你远在天南海北办公,我却在办展。世界上最遥远的距离,不是你远在天南海北办公,我却在办展,而是你在展会门口急得团团转,我却在远处三号馆。世界上最遥远的距离,不是你在展会门口急得团团转,我却在三号馆。而是你匆匆走过我的展位,我却在与“友商开会”。世界上最遥远的,不是距离。而是厂商在展会与用户错过了一个回首,一席对话,一张名片,一场报告,一次合作。仪器信息网卓越用户服务部,秉承“卓越服务,服务卓越”的理念,开启“云端精选直连未来”仪采通卓越用户买家团直播逛展之旅,由行业大咖(团长)领衔检测机构、科研院所、高校及工业企业组成的15-20名卓越用户买家团,到访有限数量厂商展位进行长达每家20分钟的深度探访与互动交流。同时,仪器信息网视频号大号将全程进行线上直播,与在线观众同步互动。回顾BCEIA时间回到2023 年9 月北京,盛大的BCEIA 2023上,仪器信息网卓越用户服务部成功组织来自20余家重量级单位的VIP买家齐聚买家团参与直播逛展活动,参与人数达到60人,线上人数累积破万。中国认证认可协会检测分会副会长、中国认证认可协会科技委秘书长周琦研究员为活动做开场致辞,希望直播间的用户可以通过这个直播活动,对分析测试领域有更深入的理解和认识。此次活动,齐聚买家团,以专业的眼光和独特的视角,共同走进青岛盛瀚、格瑞德曼、皖仪、天美、海能、迅杰光远和骇思展位,深度逛展,对接采购需求,探讨行业动态。展位现场,厂商工作人员,从选型原则,技术进展,行业标准,市场表现,用户口碑,使用反馈,应用支持,售后服务,案例分享,真机测评等多个维度,向买家团做了详细介绍,同时解答了买家团的疑问与需求,完成资源对接。相约慕尼黑生化展2024年11月18-20日,我们将再聚上海慕尼黑生化展,届时仪器信息网卓越用户服务部将连开三天直播逛展活动,详情如下:直播时间:11月18日(场馆E7、E6)主题:“超级品牌馆”11月19日(场馆N4、N5)主题:“生命科学、生物技术诊断”11月20日(场馆N2、N3)主题:“前处理及通用”直播方式:线下展会逛展,每家20min ,仪器信息网视频号直播(每半天场限5家)专家团成员:每期直播15-20人团(相关主题用户:不限高校、检测机构、科研院所、工业企业等用户)为保证逛展质量,厂商报名限5家,先到先得,报名或咨询请扫下方二维码填写资料,相关负责人会与您联系做更详尽介绍:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制