当前位置: 仪器信息网 > 行业主题 > >

热解析仪结构原理

仪器信息网热解析仪结构原理专题为您提供2024年最新热解析仪结构原理价格报价、厂家品牌的相关信息, 包括热解析仪结构原理参数、型号等,不管是国产,还是进口品牌的热解析仪结构原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热解析仪结构原理相关的耗材配件、试剂标物,还有热解析仪结构原理相关的最新资讯、资料,以及热解析仪结构原理相关的解决方案。

热解析仪结构原理相关的资讯

  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 蛋白质结构解析六十年
    几种不同折叠模式的蛋白质模型(图片来源Protein Data Bank Japan )   上个世纪初,科学家们认为蛋白质是生命体的遗传物质,而具有独特的作用。随着这个理论被证伪,真正的遗传物质DNA的结构被给予了很大关注。然而,蛋白质作为生命体的重要大分子,其重要性也从未被忽视,而且在1950年代开始,科学家一直在探寻DNA序列和蛋白质序列的相关性。与此同时,蛋白质测序和结构解析蛋白质结构的努力开始慢慢获得回报。更多的生化研究揭示了蛋白质的功能重要性,因此蛋白质的三维结构的解析对于深入理解蛋白质功能和生理现象起着决定性作用。   本文简要回顾了蛋白质结构解析的重大历史事件,并总结了蛋白质结构解析的常用方法和结构分析方向。通过了解蛋白质结构,能够让我们更好地理解生物体的蛋白的理化特性,以及其相关联的化学反应途径及其机制,对于我们认识生物世界和研发治疗方法和药物都起着关键作用。在即将召开的2015高分辨率成像与生物医学应用研讨会上,各位专家学者将会进一步讨论相关议题。   蛋白质结构解析六十年来大事件   在1958年,英国科学家John Kendrew和Max Perutz首先发表了用X射线衍射得到的高分辨率的肌红蛋白Myoglobin的三维结构,然后是更加复杂的血红蛋白Hemoglobin。因此,这两个科学家分享了1962年的诺贝尔化学奖。事实上,这项工作在早在1937年就开始了。   然后在1960年代,蛋白质结构解析方法不断进步,获得了更高的解析精度。这个时期,蛋白质序列和DNA序列间关系也被发现,中心法则被Francis Crick提出,然后科学界见证了分子生物学的崛起。分子生物学(Molecular Biology)的名称在1962年开始被广泛接受和使用,并逐渐演变出一些支派,如结构生物学。然后在1964年,Aaron Klug提出了一种基于X射线衍射原理发展而来的全新的方法电子晶体学显微镜(crystallographic electron microscopy ),可以解析更大蛋白质或者蛋白质核酸复合体结构。因为这项研究,他获得了1982诺贝尔化学奖。1969年,Benno P. Schoenborn 提出可以用中子散射和原子核散射来确定大分子中固定位置的氢原子坐标。   进入1970年代,很多新的方法开始发展。存储蛋白质三维结构的Protein Data Bank(1971年) 开始出现,这对于规范化和积累蛋白质数据有着重要意义。1975年新的一种仪器叫做多丝区域检测器,让X-ray的检测和数据收集更加快速高效。次年,Robert Langride将X-ray衍射数据可视化,并在加州大学圣地亚哥分校成立了一个计算机图形实验室。同年,KeithHodgson和同事首次证明了可以使用同步加速器获得的X射线并对单个晶体进行照射,并取得了很好的实验效果。然后在1978年,核磁共振NMR首次被用于蛋白质结构的解析 同年首个高精度病毒(西红柿丛矮病毒)衣壳蛋白结构被解析。   在1980年代,更多蛋白质结构被解析,蛋白质三维结构的描述越来越成熟,而且蛋白质结构解析也被公认成为药物研发的关键步骤。在1983年,冷冻蚀刻的烟草花叶病毒结构在电子显微镜结构下得到描述。两年后德国科学家John Deisenhofer等解析出了细菌光合反应中心,因此他们共享了1988年的诺贝尔化学奖。次年,两个课题组解析了HIV与复制相关的蛋白酶结构,对针对HIV的药物研发提供了理论基础。   下一个十年,因为大量同步加速器辅助的X射线衍射的使用,数千个蛋白质结构得到解析,迎来了蛋白质结构组的曙光。1990年多波长反常散射方法(MAD)方法用于X射线衍射晶体成像,与同步辐射加速器一起,成为了近二十多年来的最常用的的方法。Rod MacKinnon在199年发表了第一个高精度的钾离子通道蛋白结构,对加深神经科学的理解起了重要作用,因此他分享了2003年的诺贝尔化学奖。Ada Yonath等领导的课题组在1999年首次解析了核糖体结构(一种巨大的RNA蛋白质复合体)。  进入新千年,更多的技术细节被加入到蛋白质解析研究领域。2001年,Roger Kornberg和同事们描述了第一个高精度的RNA聚合酶三维结构,正因此五年后他们共享了诺贝尔化学奖。2007年,首个G蛋白偶联受体结构的解析更是对药物研究带了新的希望。近些年来,越来越多的大的蛋白质结构得到解析。Cryo-EM超低温电子显微镜成像用于超大蛋白质结构成像的研究日益成熟,并开始广泛用于蛋白质结构的解析。   蛋白质结构解析的常用实验方法   1.X-ray衍射晶体学成像   X射线衍射晶体学是最早用于结构解析的实验方法之一。X射线是一种高能短波长的电磁波(本质上属于光子束),被德国科学家伦琴发现,故又被称为伦琴射线。理论和实验都证明了,当X射线打击在分子晶体颗粒上的时候,X射线会发生衍射效应,通过探测器收集这些衍射信号,可以了解晶体中电子密度的分布,再据此析获得粒子的位置信息。利用这种特点,布拉格父子研制出了X射线分光计并测定了一些盐晶体的结构和金刚石结构。首个DNA结构的解析便是利用X射线衍射晶体学获得的。   后来,获得X射线来源的技术得到了改进,如今更多地使用同步辐射的X射线源。来自同步辐射的X射线源可以调节射线的波长和很高的亮度,结合多波长反常散射技术,可以获得更高精度的晶体结构数据,也成为了当今主流的X射线晶体成像学方法。由X射线衍射晶体学解析的结构在RCSB Protein Data Bank中占到了88%。   X射线衍射成像虽然得到了长足的发展,仍然有着一定的缺点。X射线对晶体样本有着很大的损伤,因此常用低温液氮环境来保护生物大分子晶体,但是这种情况下的晶体周围环境非常恶劣,可能会对晶体产生不良影响。而且,X射线衍射方法不能用来解析较大的蛋白质。   上海同步辐射加速器外景(图片来源 上海同步辐射光源网站)   2.NMR核磁共振成像   核磁共振成像NMR全称Nuclear magnetic resonance,最早在1938被Isidor Rabi (1946年诺贝尔奖)描述,在上世纪的后半叶得到了长足发展。其基本理论是,带有孤对电子的原子核(自选量子数为1)在外界磁场影响下,会导致原子核的能级发生塞曼分裂,吸收并释放电磁辐射,即产生共振频谱。这种共振电磁辐射的频率与所处磁场强度成一定比例。利用这种特性,通过分析特定原子释放的电磁辐射结合外加磁场分别,可以用于生物大分子的成像或者其他领域的成像。有些时候,NMR也可以结合其他的实验方法,比如液相色谱或者质谱等。   RCSB Protein Data Bank数据库中存在大约11000个用NMR解析的生物大分子结构,占到总数大约10%的结构。NMR结构解析多是在溶液状态下的蛋白质结构,一般认为比起晶体结构能够描述生物大分子在细胞内真实结构。而且,NMR结构解析能够获得氢原子的结构位置。然而,NMR也并非万能,有时候也会因为蛋白质在溶液中结构不稳定能难得获取稳定的信号,因此,往往借助计算机建模或者其他方法完善结构解析流程。   使用NMR解析的血红蛋白结构建模(图片来源RCSB PDB)   3.Cryo-EM超低温电子显微镜成像   电子显微镜最早出现在1931年,从设计之初就是为了试图获得高分辨率的病毒图像。通过电子束打击样本获得电子的反射而获取样本的图像。而图像的分辨率与电子束的速度和入射角度相关。通过加速的电子束照射特殊处理过的样品表明,电子束反射,并被探测器接收,并成像从而获得图像信息。具体做法是,将样品迅速至于超低温(液氮环境)下并固定在很薄的乙烷(或者水中),并置于样品池,在电子显微镜下成像。图像获得后,通过分析图像中数量众多的同一种蛋白质在不同角度的形状,进行多次的计算机建模从而可以获得近原子级别的精度(最低可以到2.0埃)。   Cyro-EM解析TRPV1离子通道蛋白(图片来源Structure of the TRPV1 ion channel )   将电子显微镜和计算机建模成像结合在一起的大量实践还是在新世纪之后开始流行的。随着捕捉电子的探测器技术(CCD技术,以及后来的高精度电子捕捉、电子计数electron counting设备)的提升,更多的信息和更低的噪音保证了高分辨率的图像。   近些年来,Cryo-EM被用来解析很多结构非常大(无法用X-ray解析)的蛋白质(或者蛋白质复合体),取得了非常好的结果。同时,单电子捕捉技术取代之前的光电转换成像的CCD摄像设备,减少了图像中的噪音和信号衰减,同时并增强了信号。计算机成像技术的成熟和进步,也赋予了Cryo-EM更多的进步空间。然而,Cyro-EM与X-ray不同,该方法不需要蛋白质成为晶体,相同的是都需要低温环境来减少粒子束对样品的损害。   除去介绍的这三种方法以外,计算机建模技术也越来越多地被用在了蛋白质结构解析中。而且新解析的结构也会提高计算机建模的精确度。未来,我们或许能够用计算机构建原子级别的细胞模型,构建在芯片上的细胞。   蛋白质结构对了解生命体的生化反应、有针对性的药物研发有着重要意义。从1958到如今已经接近60年,蛋白质结构解析得到了较快的发展。然而,在如今DNA测序如此高效廉价的时代,蛋白质和DNA结构解析并没有进入真正高速发展阶段,这也导致了在如此多的DNA序列数据非常的今天,结构数据却相对少的可怜。大数据时代的基因组、蛋白质组、代谢组、脂类组等飞速发展的时候,蛋白质结构组也得到了更加广泛的重视。发展高精度、高效的结构解析技术也一直都有着重要意义。未来,蛋白质结构解析,对针对蛋白质的药物筛选,和计算机辅助的药物研究研究不应被低估。未来说不定在蛋白质结构领域有着更多惊喜,让我们拭目以待。 第一届电镜网络会议部分视频回放
  • Nature Methods:冷冻电镜解析高分辨率RNA结构
    作为强大的结构解析工具,冷冻电镜在解析蛋白质结构中具有超强能力。RNA作为另外一种生物大分子,在生命活动中发挥着与蛋白质同等关键的作用,解析它们的三维结构也是科学家们持久探索的问题。但RNA由于分子量小,柔性大等因素,无论是依靠冷冻电镜还是其他结构解析手段,这一目的在往日很难实现。近日,哈佛大学廖茂富博士和尹鹏博士合作,利用ROCK技术改造RNA,赋能冷冻电镜技术,解析了多种RNA的高分辨结构,进一步扩展了冷冻电镜技术的应用场景,也为揭示RNA参与的生命活动,以及围绕RNA的药物开发,打开了全新局面。作为遗传分子DNA的姊妹,RNA支持着我们生活的世界。进化生物学家曾提出假设,认为在DNA和它所编码的蛋白质出现之前,RNA就已经存在并具有自我复制功能。而现代科学发现,只有不到3%的人类基因组被转录成信使RNA(mRNA)分子,并在后续被翻译成蛋白质。相比之下,82%的基因组被转录成具有其他未知功能的RNA分子。为了了解单个RNA分子的功能,在原子和分子键的层面上对其三维结构进行解析是极其必要的。通过对DNA和蛋白质分子进行结晶处理,研究人员已经可以通过X射线晶体学方法或核磁共振方法进行常规的结构研究。然而,由于RNA的分子构成和结构柔性特点,它们往往难以结晶,因此这些需要结晶的方法并不适用于解析RNA分子的结构。 近日,哈佛大学韦斯生物启发工程研究所(Wyss)的尹鹏博士和哈佛大学医学院(HMS)的廖茂富博士合作完成了一项研究,报告了一种对RNA分子进行结构研究的新技术"ROCK"。该技术可以将多个相同的RNA分子组装成一个高度组织化的结构,大大降低单个RNA分子的灵活性,并使其分子量成倍增加。应用于具有不同大小和功能的知名模型RNA作为基准,该团队表明ROCK技术能够将冷冻电镜 (cryo-EM) 方法应用在包含RNA亚基的生物大分子的结构解析上。他们的研究结果发表在《自然-方法》上。 与廖茂富博士一起领导这项研究的尹鹏博士说:「ROCK技术正在打破目前针对RNA进行结构研究的限制,使RNA分子的近原子级分辨率结构得以揭示,这一过程往往难以甚至无法用传统的方法实现。我们期望这一进展能为基础研究和药物开发的许多领域注入活力,包括正在蓬勃发展的RNA疗法。」获得对RNA的控制权 尹鹏博士的研究团队开发了多种方法,包括DNA砖块和DNA折纸术,这些方法使DNA和RNA分子能够根据不同的规则和需求进行自我组装,从而形成超大分子。他们假设,这种策略也能够将自然存在的RNA分子组装成高度有序的环形复合物,通过将特定分子连接在一起的方式,对柔性进行限制。许多RNA以复杂但可预测的方式折叠,在小片段之间进行碱基配对交互。其结果往往会将稳定的 "核心 "和 "茎环 "向圆环外侧凸出。 在ROCK技术(通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)中,目的RNA被设计成通过吻式发夹序列(红色)自组装成一个封闭的同源环,这些序列定位在在功能非必要的外周螺旋上(蓝色)。在确定了可编辑的非必要外周螺旋后,连接吻式发夹模体和目的RNA核心的螺旋的长度被计算优化。带有目的RNA的多个单独亚基的RNA构建体被转录、组装,通过凝胶电泳纯化,并通过冷冻电镜进行结构解析。 「在我们的方法中,我们构建了吻式发夹,可以将同一RNA两个拷贝的不同外围茎环连接起来,使之形成一个整体稳定的环,其中包含了目的RNA的多个拷贝。我们推测,这些高阶环可以通过冷冻电镜进行高分辨率结构解析,该技术已首次成功应用于RNA分子的结构解析。」 —刘迪,第一作者 描绘稳定的RNA 在冷冻电镜方法中,许多生物大分子的单一颗粒在低温下被瞬间冻结,以阻止它们的运动。随后,在电子显微镜和计算算法的帮助下,对颗粒各个方向的二维表面投影进行比较,以重建其三维结构,实现生物大分子的可视化。彭和刘与廖和他的前研究生弗朗索瓦塞洛(François Thélot)博士合作进行了该工作,后者是该研究的另一位第一作者。廖和他的团队在冷冻电镜领域、以及对特定蛋白质形成的单颗粒的实验和计算分析中做出了重要贡献。 廖茂富说:「与传统方法相比,冷冻电镜在解析包括蛋白质、DNA和RNA在内的生物分子的高分辨率结构细节方面有很大的优势,但是大多数RNA的小分子量和高柔性使其结构难以解析。我们组装RNA多聚体的新方法同时解决了这两个问题,通过增加RNA的分子量,并降低其柔性,我们的方法为基于冷冻电镜方法解析RNA结构这一领域打开了大门。」由于整合了RNA纳米技术和冷冻电镜方法,该团队将这一复合技术命名为"ROCK" (RNA oligomerization-enabled cryo-EM via installing kissing loops, 通过吻式发夹实现RNA寡聚化后冷冻电镜结构解析)。 为了证实ROCK技术的可行性,该团队将研究聚焦于四膜虫(一种单细胞生物)的大内含子RNA和固氮弧菌(一种固氮细菌)的小内含子RNA,以及FMN核糖开关。内含子RNA是散布在新转录RNA序列中的非编码RNA序列,必须被 "剪接"出来才能形成成熟RNA。FMN核糖开关存在于一些细菌RNA中,这些细菌会参与由维生素B2衍生的黄素代谢物的生物合成。在与RNA结合后,黄素单核苷酸(FMN)将切换其三维构象,并抑制其母RNA的合成。 在对四膜虫 I 组内含子的结构解析过程中,研究人员收集了约十万张ROCK技术处理的单颗粒冷冻电镜图像,通过一系列计算分析步骤重建了其结构,整体分辨率达到了2.98Å,结构核心的分辨率达到了2.85Å。最终的模型提供了四膜虫 I 组内含子的详细视图,包括之前未知的外围结构域(以土黄色和紫色显示),它们构成了围绕核心的条带。 研究小组称,他们将四膜虫 I 组内含子组装成一个环状结构,使样品更加均匀,并能够利用组装结构的对称性来进行计算。虽然数据采集两的规模并不大,但ROCK技术的优势使研究小组能够以前所未有的分辨率解析该结构。RNA的核心结构以2.85Å的分辨率解析,揭示了核苷酸碱基和糖骨架结构的详细特征。研究小组还称如果没有ROCK技术加持,在当前的资源条件下,他们不可能做到这一点。 冷冻电镜还能够捕捉不同构象的分子。研究小组通过将ROCK方法应用于固氮弧菌内含子RNA和FMN核糖开关结构解析中,确定了固氮弧菌内含子在其自我剪切过程中的不同构象,揭示了FMN核糖开关配体结合部位的相对刚性的构象。 这项研究生动演示了RNA纳米技术如何推动着其他学科的发展。将天然状态的RNA分子结构进行可视化,对理解不同细胞类型、组织和生物体的生物及病理过程产生巨大的影响,甚至能够实现新的药物开发方法。 相关文献摘要高分辨率的结构研究对于理解各种RNA的折叠和功能至关重要。在此,我们提出了一种纳米结构工程策略,利用单颗粒冷冻电镜(cryo-EM)对纯RNA结构进行高效的结构测定。即ROCK技术(通过安装吻式发夹实现RNA寡聚化的冷冻电镜技术): 将吻式发夹序列安装到RNA的非必要功能茎上,使其自组装成具有多倍分子量和降低结构柔性的同源封闭环。ROCK技术能够以2.98 Å的整体分辨率(核心部分为2.85 Å)对四膜虫 I 组内含子进行冷冻电镜三维重构,以建立完整的RNA模型,包括以前未知的外围域。ROCK技术被进一步地应用于两个较小的RNA: 固氮弧菌 I 组内含子和FMN核糖开关,揭示了前者的构象变化和后者的结合配体。ROCK技术有望大大促进冷冻电镜在RNA结构研究中的应用。评论来源:Science Dailyhttps://www.news-medical.net/news/20220503/New-method-enables-the-structural-analysis-of-RNA-molecules.aspx文献来源:Nature Methodshttps://www.nature.com/articles/s41592-022-01455-w#citeas水木未来视界丨iss. 18
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 国科大&新加坡国立联合发表ACSnano: easyXAFS助力电池材料精细结构解析
    可充电锌-空气电池被认为是很有潜力的下一代能量储存器件,然而其不尽人意的循环寿命制约着其大规模的发展和应用。提升可充电锌-空气电池循环寿命的关键挑战之一在于提升空气电极的稳定性。由于电池的充电过程(氧析出反应,OER)与放电过程(氧还原反应, ORR)具有不同的微环境需求,导致空气电极的双功能催化剂在充放电循环过程中不稳定,使电池性能逐渐衰减。针对于此,中国科学院大学联合新加坡国立大学等多家单位,设计出一种“自解耦”的空气电极,极大地提升了空气电极的稳定性及锌-空气电池的循环寿命。同时,作者使用美国easyXAFS公司的台式X射线吸收精细结构谱仪-XAFS/XES对电池材料的精细结构进行了分析。该设备无需同步辐射光源,可在常规实验室环境中测量X射线吸收精细结构谱和X射线发射谱,得到可以媲美同步辐射水平的谱图,实现对元素的定性和定量分析、价态分析、配位结构解析等。台式X射线吸收精细结构谱仪-XAFS/XES “自解耦”空气电极的设计原理如图1所示。图1a展示了传统空气电极的微观结构,双功能催化剂被直接负载在碳纸电极上,在充电过程的高电压下,OER过程会伴随着催化剂本身的电化学氧化。图1b展示了“自解耦”空气电极的微观结构,其中加入了磺酸掺杂聚苯胺(S-PANI)中间层,其电导率可随充放电电位切换,从而将OER和ORR反应分离开来。具体来说,当电池充电时,OER部分的催化剂助力氧析出反应,而ORR部分催化剂由于S-PANI中间层的绝缘而保持惰性,从而避免被电化学氧化。而在放电过程中,S-PANI中间层变得导电,ORR部分的催化剂可促进氧还原反应。图1. (a) 传统空气电极结构示意图。(b)自解耦空气电极结构示意图。 图2展示了空气电极的双功能催化剂ZnCoP/NC的合成过程(图2a)及表征结果(图2b-2g)。作者利用台式X射线吸收精细结构谱仪-XAFS/XES,在室温条件下,使用Si (533) 单色器,测试了Co元素K-边的X-射线吸收谱。图2f展示了X-射线吸收近边结构谱(XANES), ZnCoP/NC与Co箔相似。图2g展示了X-射线吸收扩展边精细结构谱的傅里叶变换图(FT-EXAFS), 其中1.6 和 2.5 &angst 分别指向Co-P键和Co-Co键,证明ZnCo-P/NC的主相是磷化钴。该实验从材料价态与局域配位环境的角度,解析了双功能催化剂ZnCoP/NC的精细结构。图2 (a) ZnCo-P/NC的合成过程。ZnCo-P/NC的(b)SEM图,(c)TEM图,(d)高分辨TEM图,(e)EDS-mapping图,(f)Co-K边 XANES, (g) FT-EXAFS。 该项成果以“Self-Decoupled Oxygen Electrocatalysis for Ultrastable Rechargeable Zn-Air Batteries with Mild-Acidic Electrolyte“为题目,发表于国际期刊ACS Nano。原文链接:https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsnano.3c05845&ref=pdf台式X射线吸收精细结构谱仪-XAFS/XES测试数据展示: 近期,QD北京样机实验室测试了低质量含量的Pt、Cu样品,结果表明,台式X射线吸收精细结构谱仪在测试1 wt%级别的低含量元素时也可获得与同步辐射光源数据高度吻合的优质谱图,可为单原子催化剂等领域的研究提供有力支持。1 wt% Pt@Al2O30.9 wt% Cu@CBN
  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challengein the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.
  • 又一篇nature!Panta助力精子特异性溶质载体SLC9C1的结构解析
    01研究背景SLC9C1是精子中特异的溶质载体,属于阳离子/质子逆向转运蛋白SLC9超家族,其表达与精子数量和活力直接相关。SLC9C1包含运输结构域(TD),电压感应结构域 (VSD)和环核苷酸结合结构域 (CNBD)。VSD感知的膜电压如何激活转运体中的离子交换机制一直不清楚。来自海德堡大学的Cristina Paulino课题组在Nature上发表了题为“Structures of a sperm-specific solute carrier gated by voltage and cAMP”的文章,解析海胆SLC9C1的结构,并揭示了三个功能域是如何耦合。文中使用NanoTemper Panta分析配体对SLC9C1的构象的影响。02案例解读https://doi.org/10.1038/s41586-023-06629-wSpSLC9C1以同二聚体的形式组装,通过结构解析,作者明确识别SpSLC9C1不同的结构域:TD、VSD和CTD(包括CNBS和CH1-9)。图1:SpSLC9C1在序列水平上的结构域排列环核苷酸可以使得SLC9C1在静息电位激活,cAMP的激活效果比cGMP高。作者又解析了SLC9C1在cAMP与cGMP存在的情况下的结构(图2A)。发现结合cAMP的SLC9C1结构有很高的构象异质性,特别是CTD。分析发现cAMP破坏了β-CTD之间的二聚体相互作用,导致CTD偏离对称轴。为了进一步表征cGMP和cAMP结合对SpSLC9C1的影响,作者分析分离的CTD (S946-E1193, CNBD和β-CTD) 在加入cAMP和cGMP后Tm的变化。从结构信息来看,cGMP的加入未引起SLC9C1构象上明显改变,对应的ΔTm变化可能很小。因此,需要一种高精度和重复性的方法进行检测。nanoDSF技术检测Tm精度为±0.1℃,避免重复性差造成的假阴性问题。实验时,无需加入染料,也不存在染料分子造成的不兼容或者对蛋白的其他影响。nanoDSF检测显示,环核苷酸诱导CTD的热稳定性增加,其中cAMP产生6°C的位移,而cGMP仅观察到2°C,结果证实了cAMP对SpSLC9C1有较高的增强作用。图2:A.加入cGMP和cAMP后SpSLC9C1 -CTD结构;B.Panta nanoDSF模块检测SpSLC9C1 -CTD(蓝色)以及加入cGMP(紫色)和cAMP(橙色)后Tm综上,cAMP结合在CNBD结构域后也可以破坏β-CTD的相互作用,使其可以在更接近静息电位下被激活,进而进行钠/氢交换,揭示了SLC9C1电压调节与cAMP调节的钠/氢交换机制。03产品技术优势Panta nanoDSF模块具有极高数据重复性和准确性,确保您获得准确的Tm值。实验时无需加入染料,操作简单的同时,保证了实验结果。此外,Panta整合了DLS、SLS、背反射和nanoDSF四大检测模块,只需一份样品,便可以获得多种稳定性参数。PR Panta蛋白稳定性分析仪
  • Angew成果|离子淌度调制提升空间脂质组分析的结构解析能力
    离子淌度调制提升空间脂质组分析的结构解析能力空间脂质组分析可揭示脂质在生物组织或器官中的含量及空间分布,是基础生物学和疾病研究的重要技术。空间脂质组分析的底层技术一般为质谱成像,其具有免标记、高空间分辨率和高灵敏度等优势,可同时表征大量脂质分子在生物组织中的空间分布。然而,脂质和代谢物的质谱成像主要依赖于质量测定,对分子结构的表征能力不足,常由于脂质和代谢物异构体的存在而导致分析偏差乃至错误。在质谱成像过程中,单个像素点的样品量和分析时间极为有限,对逐个离子串联分析会导致分析时间长和灵敏度降低等问题,因此如何在质谱成像的同时实现分子的结构解析一直是分析科学的挑战。此外,在成像过程中丰度、离子化效率各异的待分析离子同时进入质谱,存在显著离子抑制等问题,给中低丰度离子的检测和结构鉴定造成困难。近日,清华大学精密仪器系的欧阳证、马潇潇教授团队开发了一种多目标脂质结构质谱成像技术,通过离子淌度技术对待分析离子的快速时空聚焦和分离,在不增加质谱成像时间的情况下,显著提升了空间脂质组分析的结构解析能力。该技术采用数据非依赖采集方法,利用离子淌度分离对单像素点的母离子强度进行“调制”,将淌度分离后的母离子不经质量隔离而完全碎裂 (Mobility modulated sequential dissociation, MMSD)。根据母离子及相应子离子组成随淌度时间不断变化的特点,发展了智能谱图解卷积算法,实现40多种脂质的结构解析和20种脂质在组织上的空间可视化,包括磷脂酰胆碱、磷脂酰乙醇胺等。具备结构解析功能的质谱成像可实现传统空间脂质组分析难以实现的脂质异构体结构鉴定和空间可视化。在鼠脑组织中,该技术揭示了多种脂质异构体的差异性乃至互补性空间分布,如 PE O-18:2_20:4、PE O-16:0_22:6 和 PE 16:1_22:4、PE 16:0_22:5等。在对人肝癌的组织切片分析中,该方法揭示了磷脂酰乙醇胺 PE 36:2的一组异构体(PE 18:1_18:1、PE 18:0_18:2)在癌组织和癌旁组织中的特异性分布,并且PE 18:1_18:1集中分布于癌组织,可用于精准划分肿瘤组织边界,表明该技术可在更深层结构维度上揭示脂质癌症生物标志物。这项工作所提出的多目标脂质结构解析及空间成像方法,从原理上同样适用于多肽、代谢物等生物分子的空间可视化及结构解析。结构解析赋能的脂质质谱成像,是空间脂质组学技术发展的题中之义,也是精准脂质组分析和功能脂质组研究必不可少的技术基础。该技术的提出,为空间结构脂质组分析提出了一种解决方案,也有望促进质谱成像实现从质量测定到结构鉴定的研究范式转换。 论文作者:论文第一作者是清华大学博士研究生钱耀,通讯作者是清华大学精密仪器系欧阳证、马潇潇教授。清华大学郭翔宇博士和清华大学长庚医院王韫芳研究员对技术建立和生物医学应用做出了重要贡献。清华大学精仪系、清华大学精密测试技术与仪器国家重点实验室为第一作者单位。本项目得到国家自然科学基金委重点、面上项目及重点研发计划(前沿生物技术)青年科学家项目(2022YFC3401900)资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202312275
  • 重要成果!1000 mA/cm²高活性OER,easyXAFS台式X射线吸收精细结构谱仪解析电催化剂
    电化学分解水是一种将间歇性能源(如风能,太阳能)转化为氢能的有效途径,有利于推动碳中和。开发廉价高活性的氧析出(OER)电催化剂是该技术走向实际应用的关键之一。研究表明,过渡金属催化剂在OER过程中可重构形成具有更高活性的羟基氧化物,且杂原子的加入可促进这一表面重构反应。基于此,太原理工大学与新南威尔士大学合作提出一种原位重构策略,以FeB包覆的NiMoO作为预催化剂进行表面重构,获得了高活性的OER催化剂。作者利用美国easyXAFS公司研发的台式X射线吸收光谱仪XES150解析了催化剂的精细结构,并结合多种其他表征技术及理论计算,证明重构过程形成的稳定高价态Ni4+物种可促进晶格氧活化进而提升OER反应。该项工作揭示了催化活性的提升机理,并实现了1000mA/cm2级别的超高反应电流,以“Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities”为题发表于期刊Applied Catalysis B: Environmental。 本文中使用的台式X射线吸收光谱仪XES150无需同步辐射光源,可以在实验室内测试XAFS和XES数据,谱图数据与同步辐射光源谱图数据完全一致。仪器推出至今,已在全球拥有100+用户群体,市场份额遥遥领先,久经时间考验,细节打磨更完善,稳定性可靠性更高。设备还可实现图1. 台式X射线吸收精细结构谱仪-XAFS/XES 图一展示了催化剂的合成示意图,NiMoO/FeB 预催化剂通过原位重构形成NiFeOOH,其中的准金属硼诱导形成纳米片/纳米棒结构。所得的催化剂的OER活性高于纯NiOOH和贵金属RuO2(图2a)。该催化剂仅需1.545 V vs. RHE即可驱动1000 mA/cm2电流,性能优于其他文献报道(图2b)。作者利用台式XES150 system (Easy XAFS LLC, USA)测试了样品X射线吸收谱。通过Ni-K边 X射线吸收近边结构 (XANES) 光谱分析Ni的电子态。白线峰与 1 s 到 4p 跃迁相关。在 NiFeOOH 的 XANES 光谱中白线峰峰值位于 8352.66 eV,高于 NiOOH(图 2c),这表明NiFeOOH中Ni的平均氧化态高于NiOOH中的平均氧化态,并且NiFeOOH中形成了更多的Ni4+物种。 同时,由于金属 4p 轨道的离域,NiFeOOH吸收边向较低能量移动,峰展宽且边缘跃迁强度增加(即 1 s→4p),这些对配体-金属共价性敏感的特征性变化表明Ni-O 共价键增加(图 2d)。作者进一步分析拟合了Ni K-边的傅立叶变换扩展X射线吸收精细结构(EXAFS)的k3χ数据,以探究局部原子结构(图2e-2h)。与NiOOH 相比,NiFeOOH 的 Ni-O 散射路径原子间距离从 1.98 &angst 减小到 1.85 &angst ,证明 Ni-O 键的共价性质的增加。 Ni-O 散射路径的偏移归因于NiOOH 和 NiFeOOH 中不同的局部配位环境,这是由于其中NiOOH 和 NiO2物相的比例不同。 上述结果表明,NiFeOOH 中的稳定态物种主要是 Fe 掺杂的 NiO2 物质,这是由 Fe 掺杂和重构过程(即中等高电位下的电化学极化)引起的。 Ni4+生成量的增加导致Ni-O共价性增大,从而促进晶格氧的活化,提升OER催化反应活性。图1. NiMoO/FeB 预催化剂与NiFeOOH 催化剂的合成示意图。图2. (a) 催化剂的LSV曲线。(b)本文催化剂过电势与其他文献报道对比图。(c)(d)Ni-K边XANES谱图。(e)Ni-K边EXAFS谱图。(f)NiO, (g) NiOOH,及 (h) NiFeOOH的EXAFS拟合结果。参考文献:[1]. Yijie Zhang et al., Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities, Applied Catalysis B: Environmental, Volume 341, February 2024, 123297.相关产品1、台式X射线吸收精细结构谱仪-XAFS/XEShttps://www.instrument.com.cn/netshow/SH100980/C327753.htm
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5.北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • Nature子刊:结合三代测序和Illumina二代测序解析肠道菌群结构变异和功能
    近十年来,肠道微生物组已成为生命科学研究领域的热点,但目前大部分研究都集中在使用二代测序技术进行物种和功能的解析,宏基因组的拼接质量不高并且很难实现菌株水平的功能差异分析。有鉴于此,中科院微生物研究所王军课题组和动物研究所宋默识课题组合作,建立了ONT三代测序和Illumina二代测序数据混合组装和后续分析流程。在mock community上的验证表明,三代和二代测序数据的混合组装从完整度、准确程度以及编码密度方面均比单纯二代或者三代测序组装更有优势。图1本研究的技术路线(a),利用三代测序进行SV的深度解析,以及横断面/时间序列中SV的组成、动态分析,最终进行SV对代谢功能的影响判定。(b)混合组装能够有效提高N50,并组装出大量的基因组(c),其中发现更多的insertion、deletion和inversion。图2肠道微生物中与SVs相关的功能研究结果。(a,b,c) SV影响基因富集结果 (d-i) SV影响单菌种内不同菌株与代谢产物以及血糖的关联。图3肠道菌群汇中与病毒和CRISPR相关的研究结果该研究基于三代ONT序列,提高了宏基因组装的质量、SV的发现能力,发现了大量包括插入突变和基因倒位在内的结构变异对于菌株水平上基因功能的影响,以及噬菌体、CRISPR-spacer等系统的深度挖掘。这项研究是课题组利用三代Nanopore测序技术解析肠道病毒组(Cao et al., Medicine in Microecology, 2020,4:100012 Cao et al. Gut Microbes, 2021, 13),近期发表的真菌组分析方法(Lu et al, Molecular Ecology, doi:10.1111/mec.16534)和靶向RNA检测病原微生物(Zhao et al., Advanced Science, 2021, 8, 2102593)之后,在利用三代Nanopore测序技术探索肠道微生物研究领域的新进展。这一发现,对未来更精细的精准医学领域的发展提供了理论启发。中国科学院微生物研究所王军研究员、中科院动物研究所宋默识研究员为本文的共同通讯作者。中国微生物研究所助理研究员陈亮、赵娜、博士生曹佳宝、硕士研究生刘小林、助理研究员徐嘉悦为该论文的共同第一作者。该研究得到了国家重点研发计划项目、国家自然科学基金项目、中国科学院战略性先导科技专项、北京市自然科学基金项目等多项资金的资助。文章链接:https://www.nature.com/articles/s41467-022-30857-9
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 药包材检测仪器|药用软膏管尾热封试验仪全面解析
    在制药行业中,药用软膏的质量和包装安全性是至关重要的。药用软膏管尾热封试验仪作为一种专用设备,广泛应用于药物包装的质量检测。本文将对该仪器的原理、功能、使用注意事项以及其在制药行业中的重要性进行全面解析。一、原理药用软膏管尾热封试验仪主要通过模拟软膏管的封口过程,评估封口的密封性和牢固性。该仪器利用热封技术,在特定的温度和压力下,对封口部分进行处理。仪器配备了温度控制系统和压力调节装置,能够精准地调节热封参数,以确保封口质量符合相关标准。二、主要功能密封性能测试:评估软膏管封口的密封性,避免因封口不良导致药物泄漏或变质。热封温度和时间调整:用户可以根据不同材料和产品要求,自由调节热封的温度和时间,确保最佳的封口效果。自动记录功能:设备通常会配备数据记录功能,能够实时记录每次试验的参数,方便后期分析与追溯。强度测试:通过一定的拉力或压力测试,评估封口的抗拉强度和承受能力。符合标准检测:仪器可设定标准测试条件,确保测试结果满足国家和国际药品包装标准。三、使用注意事项设备校准:定期对仪器进行校准,以确保测试结果的准确性。环境条件:在使用前应尽量保持实验环境的稳定,包括温度、湿度等,以避免外部因素对测试结果的影响。操作规范:操作员需经过专业培训,熟知仪器的操作流程和应急处置方法,减少操作失误。材料选择:不同材料的软膏管需使用适合的热封温度和时间,以免造成封口不良或材料损坏。记录与分析:每次试验后,务必认真记录测试数据,定期进行分析,以便发现潜在问题并及时改进。四、在制药行业中的重要性药用软膏管尾热封试验仪在制药行业的应用,直接关系到药物的质量和消费者的安全。随着市场对药品安全和有效性要求的提高,确保包装的密封性和稳定性变得尤为重要。该仪器不仅能够提高生产效率,减少因封口问题造成的经济损失,同时也为药品追溯和质量管理提供了有效的保障。结论药用软膏管尾热封试验仪是保证药品包装质量不可或缺的重要设备。通过对其原理、功能和使用注意事项的全面解析,我们可以更加清晰地认识到此设备在制药行业中的巨大价值。随着科技的进步,该仪器也必将在智能化、自动化方面不断发展,以满足更高标准的包装要求。在未来的生产中,优化封口技术,确保药品质量,将是我们共同的目标。
  • 甲型肝炎病毒全颗粒晶体结构被解析
    来自中国科学院生物物理研究所、牛津大学等单位的科学研究人员经过多年紧密合作于2014年10月19日在Nature杂志上在线发表题为Hepatitis A virus and the origins of picornaviruses的论文,详细阐述了甲型肝炎病毒的独有的结构特性、极强的稳定性、特殊的脱衣壳机制和进化关系。。HAV病毒属于小RNA病毒科肝炎病毒属,科学家对这一病毒的研究也已经持续了很长时间。此次,中国科学院生物物理研究所饶子和院士研究组与牛津大学 David Stuart 教授研究组、中国食品药品检定研究院王军志教授和胡忠玉教授以及北京科兴控股生物有限公司尹卫东和高强等专家共同合作,解析了HAV成熟病毒和空心病毒两种状态的全颗粒高分辨率的晶体结构,结果显示这两种病毒颗粒的结构具有很大的不同。在这一论文中,科学家第一次证明HAV成熟病毒具有衣壳蛋白vp4,而空心病毒颗粒含有的是未被剪切的衣壳蛋白vp0前体。与目前已经解析的小RNA病毒科成员三维结构比较,HAV病毒结构最大的不同在于其衣壳蛋白vp2的N端进行了180度偏移,转向了病毒二次轴处,增强了病毒五聚体与五聚体之间的相互作用力,部分解释HAV病毒具有的极强稳定性。HAV病毒这一独特的构象是在小RNA病毒科中第一次被发现,然而这一构象在昆虫病毒成员中却普遍存在。与昆虫病毒类似,HAV病毒也能够进行细胞之间的传递。这一系列相似的特性,不难想到HAV病毒与昆虫病毒之间的关系。基于全病毒衣壳蛋白三维结构开展的进化关系分析表明,HAV病毒不断进化时,逐渐脱离昆虫病毒方向,衍生出小RNA病毒的结构特征,在HAV病毒的基础上又逐渐进化出更多更高级的小RNA病毒成员。病毒入侵宿主细胞的第一步是与其功能性受体结合,而甲型肝炎病毒与其功能性受体TIM1的结合模式和脱衣壳机制与其它小RNA病毒成员不同。结构分析表明HAV病毒颗粒因较短的vp1 BC loop和vp2 EF loop,使其不具备肠道病毒典型的“峡谷”结构特征,也意味着HAV病毒的受体结合方式与之不同。同时,HAV病毒衣壳蛋白也没有典型的疏水口袋,自然也不含有口袋因子,这暗示着HAV病毒采用不同的脱衣壳机制。HAV病毒具有极强的稳定性,耐酸耐碱耐高温,能在绝大多数有机溶液中存活,在自然环境中可存活几个月之久。热稳定性实验结果表明HAV病毒能够在pH 1-10保持着极好的稳定性,在弱酸环境下,HAV病毒能够忍受的裂解温度可高达81摄氏度。该研究对于进一步解析HAV灭活病毒疫苗的免疫原性和保护机理具有重要意义,对于抗肝炎病毒药物的研发提供理论指导和新方向中文名称:人外核苷酸焦磷酸酶/磷酸二酯酶2(ENPP2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ectonucleotide 中文名称:人卵磷脂胆固醇脂酰转移酶(LCAT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Lecithin Cholesterol Acyltransferase (LCAT) 中文名称:人白介素19(IL19)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 19 (IL19) 中文名称:人C-型凝集素域家族3成员B(CLEC3B)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for C-Type Lectin Domain Family 3, Member B 中文名称:人神经元正五聚蛋白Ⅱ(NPTX2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neuronal Pentraxin II (NPTX2) 中文名称:人骨成型蛋白10(BMP10)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Bone Morphogenetic Protein 10 (BMP10) 中文名称:人自身免疫调节因子(AIRE)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Autoimmune Regulator (AIRE) 中文名称:人5羟色胺转运蛋白(SERT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serotonin Transporter (SERT) 中文名称:人补体成分9(C9)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Complement Component 9 (C9) 中文名称:人肾连蛋白(NPNT)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Nephronectin (NPNT) 中文名称:人白介素1受体辅助蛋白(IL1RAP)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interleukin 1 Receptor Accessory Protein 中文名称:人髓细胞触发受体2(TREM2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Triggering Receptor Expressed On Myeloid Cells 2 中文名称:人泛素羧基端酯酶L1(UCHL1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Ubiquitin Carboxyl Terminal Hydrolase L1 (UCHL1) 中文名称:人HtrA丝氨酸肽酶1(HTRA1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for HtrA Serine Peptidase 1 (HTRA1) 中文名称:人丝氨酸肽酶抑制因子Kazal型1(SPINK1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Serine Peptidase Inhibitor Kazal Type 1 中文名称:人脯氨酰4-羟化酶α多肽Ⅲ(P4Hα3)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Prolyl-4-Hydroxylase Alpha Polypeptide III 中文名称:人干扰素γ诱导蛋白30(IFI30)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Interferon Gamma Inducible Protein 30 (IFI30) 中文名称:人轻肽神经丝蛋白(NEFL)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Neurofilament, Light Polypeptide (NEFL) 中文名称:人视黄醇结合蛋白1(RBP1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Retinol Binding Protein 1, Cellular (RBP1) 中文名称:人转化生长因子β受体Ⅱ(TGFβR2)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Transforming Growth Factor Beta Receptor II 中文名称:人死骨片1(SQSTM1)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Sequestosome 1 (SQSTM1) 中文名称:人胃内因子(GIF)ELISA试剂盒价格96t/48t 英文名称:ELISA Kit for Gastric Intrinsic Factor (GIF)
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 大连化物所微型固态吸附棒萃取器和热解吸装置通过项目验收
    日前,大连化物所承担的“十五”科技攻关项目专题“微型固态吸附棒萃取器和热解吸装置”通过科技部组织的专家验收。专家组认为:该课题主要针对茶叶、烟草、乳制品、软饮料和水样等样品中农药残留分析的样品处理,攻关目标明确,立项合理,具有广阔的应用前景;微型固态吸附棒采用溶胶-凝胶法制备吸附涂层,耐温高,使用寿命长。   大连化物所于2001年开始进行该专题攻关,从实验室原理样机开始,尝试了多种技术路线,在两年的时间里完成了整套微型固态吸附棒和热解吸装置的研制与开发工作。本项目所研究的萃取棒萃取相的制作工艺及原理与其它商品化的萃取棒有着很大的区别,本项目中采用的制膜技术为溶胶凝胶法,制得的萃取相耐溶剂冲洗且在高温下不发生热解吸。微搅拌吸附棒可以实现批量生产。热解吸装置设计巧妙,体积小,容易与气相色谱仪联用,与国外同类仪器相比,本装置借助气相色谱进样口完成样品传输线加热,在分析过程中采用保留间隙技术而避免了由于使用冷阱需对样品聚焦,因此设备简化、可靠并大大降低制造成本。所制得的萃取棒耐用、成本较低,解吸器设计合理,结构简单,适合大规模工业化生产,设备适合我国的国情。   该装置可广泛应用于芳香烃、多环芳烃、多氯联苯、农药、香味物质、酚类等挥发性半挥发性物质的分析,同时实现对非挥发性物质的分析检测。我国有1万多个农科所/站、卫生防疫站、产品质量监督检验所/站,进出口商品检验检疫局,其中的绝大多数需要对农产品和食品的农残进行分析,所以在这些领域推广应用该项技术,对提高我国农副产品的进出口监测水平有重要意义。
  • 上海交大曹骎团队成功解析额颞叶变性病人脑组织冷冻电镜结构
    近日,《Nature》以“Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43”为题在线发表了上海交通大学Bio-X研究院长聘教轨副教授曹骎与美国加州大学洛杉矶分校David Eisenberg课题组等的合作研究成果,解析了额颞叶变性病人脑组织中提取的淀粉样纤维的高分辨率结构,为该疾病的病理机制研究提供了重要信息。图1 Nature文章封面淀粉样纤维(amyloid fibrils)是由蛋白质发生液-固相变生成的聚集产物,与人类疾病,尤其是神经退行性疾病有着紧密的联系,如Aβ和tau纤维之于阿尔兹海默症,α-synuclein纤维之于帕金森氏症等。额颞叶变性(frontotemporal lobar degeneration, FTLD)是仅次于阿尔兹海默症及帕金森氏症的第三大神经退行性疾病,早先的研究指出FTLD病人脑组织中也存在淀粉样纤维,然而这一结论并未得到分子层面的证实,同时形成这些纤维的蛋白也未得到鉴定。图2 TMEM106B纤维结构解析(a)本研究中FTLD病人的脑切片免疫用诊断(上)及提取的淀粉样纤维的负染电镜照片(下)。(b)纤维冷冻电镜数据处理,包括二维分类(左)和三维重构(右)。(c)解析的纤维结构。为揭示FTLD与淀粉样纤维的关联,此项工作尝试从40个患有FTLD-TDP(一种FTLD的主要亚型)的捐献者脑组织中提取淀粉样纤维,最终在其中38个患者中发现了纤维,成功从其中4个患者中提取了纤维,并使用冷冻电镜三维螺旋重构的技术解析了这些纤维的近原子分辨率的结构(最高分辨率为0.29纳米)。出人意料的是,纤维的结构显示,这些纤维来自于一种从未被报道可以发生淀粉样聚集的蛋白—TMEM106B。此工作证实了FTLD是一种淀粉样纤维相关疾病,为淀粉样纤维蛋白家族拓展了一个全新的成员,同时为FTLD的病理机制提出了一个全新的假说,即TMEM106B的纤维化参与了FTLD的发病过程,并可能通过抑制TMEM106B的纤维化治疗这一疾病。曹骎博士为论文的共同第一作者,另一位第一作者是Eisenberg课题组博士研究生江逸潇。论文的合作单位有美国加州大学洛杉矶分校、霍华德-休斯研究所、上海交通大学以及美国Mayo Clinic研究所。曹骎博士2008年毕业于上海交通大学生物工程专业,获工学学士学位;2013年毕业于北京大学生物化学与分子生物学专业,获理学博士学位;2013年至2021年在加州大学洛杉矶分校从事科学研究,任博士后及助理研究员;2021年5月全职回国工作,加入上海交通大学Bio-X研究院,任长聘教轨副教授、课题组长、博士生导师。主要研究方向为蛋白相分离相变的分子机理研究及抑制剂设计,代表性论著包括Nature Chemistry (2018), Nature Structural & Molecular Biology (2018, 2019, 2020, 2021)等。论文链接:https://www.nature.com/articles/s41586-022-04670-9
  • 首次!冷冻电镜解析人类疱疹病毒6B型近原子分辨率结构
    p style=" text-align: justify text-indent: 2em " 近日,中国科学技术大学合肥微尺度物质科学国家研究中心、生命科学学院教授毕国强课题组、美国加州大学洛杉矶分校教授周正洪课题组与华东师范大学研究员梅晔合作,利用高分辨冷冻电镜单颗粒分析技术首次解析了人类疱疹病毒6B型的近原子分辨率结构。相关研究成果以Atomic structure of the human herpesvirus 6B capsid and capsid-associated tegument complexes& nbsp 为题,于11月25日在线发表在国际期刊《自然-通讯》(Nature Communications)上。 /p p style=" text-align: justify text-indent: 2em " 人类疱疹病毒6型(HHV-6)属于疱疹病毒家族β疱疹病毒亚家族,根据其表面抗原不同,又被分为HHV-6A和HHV-6B两类密切相关的病毒类型。很多幼儿都会被HHV-6病毒感染,并可能产生发烧、腹泻、红疹等临床症状;HHV-6病毒能够在人体中终身潜伏,并在免疫力低下的人群中引发严重疾病,它在脑组织中的二次爆发将导致患者认知紊乱、残废或者死亡;研究显示,HHV-6病毒甚至还与阿兹海默症和癫痫有关。HHV-6病毒的感染造成了广泛的危害,但目前尚没有其病毒高分辨结构,以及基于结构的药物或者疫苗抗病毒方案。由于与宿主细胞高度黏合,HHV-6B很难实现体外增殖培养,这成为其原子分辨率结构解析的一大难题。 /p p style=" text-align: justify text-indent: 2em " 在本研究中,课题组使用先进的冷冻电镜直接电子计数技术和亚颗粒局部重建方法,用少量低纯度的HHV-6B病毒样品,解析了HHV-6B第一个近原子分辨率结构。在此基础上,合作团队搭建了HHV-6B病毒4种衣壳蛋白和1种衣壳结合间层蛋白pU11的原子模型,共计包括59个构象体。进一步,通过比较HHV-6B、人类巨细胞病毒(HCMV)和小鼠巨细胞病毒(MCMV)核衣壳结构的异同,发现HHV-6B间层蛋白pU11具有独特的病毒衣壳结合模式。这一研究结果,在原子水平揭示不同疱疹病毒中CATC复合物(capsid-associated tegument complexes)协助病毒衣壳应对不同基因组大小产生的内部压力的机理。有助于更好地理解β疱疹病毒基因组的包装和病毒核衣壳稳定机制,完善了对疱疹病毒家族结构的认知,丰富和加深了对β疱疹病毒甚至整个疱疹病毒家族CATC复合物功能机制的理解。 /p p style=" text-align: justify text-indent: 2em " 中国科大合肥微尺度物质科学国际研究中心博士生张翼博和博士后柳维为该论文的第一作者。该研究得到科技部重点研发计划、中国留学基金委等资助。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.nature.com/articles/s41467-019-13064-x" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 论文链接 /span /a /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/9a9f5894-7145-4491-beb9-fc74424b1b3c.jpg" title=" 图:CryoEM成像技术解析HHV-6B病毒的三维结构以及pU11四聚体.jpg" alt=" 图:CryoEM成像技术解析HHV-6B病毒的三维结构以及pU11四聚体.jpg" / /p
  • 基于冷冻电镜的新技术MicroED解析1.4埃晶体结构
    p   Alpha-突触核蛋白(Alpha-synuclein)是路易小体(Lewy body)的主要成分,与帕金森病和其他神经退行性病变密切相关。日前,科学家们使用尖端技术MicroED(micro-electron diffraction)解析了Alpha-突触核蛋白的毒性核心,获得了分辨率超高的晶体结构。程亦凡博士在九月九日的Nature杂志上发表文章,探讨了这一重大进展在结构生物学中的意义。 /p p   程亦凡博士是加州大学旧金山分校的副教授,他原本是物理学博士,后来改用物理学方法研究生物问题。 近来程博士在冷冻电镜方面陆续发表了多项重要成果,受到了广泛的关注。2015年,程亦凡博士成为了霍华德· 休斯医学研究所的研究员。 /p p   Alpha-突触核蛋白的毒性核心由11个残基组成,被称为NACore。NACore可以形成有序的三维晶体,但这种晶体实在太小,光学显微镜观察不到,也难以进行X射线衍射。于是研究人员采用了以冷冻电镜(cryo-EM)为基础的新技术,MicroED。 /p p   用冷冻电镜进行结构分析时,需要在液氮温度下瞬间冷冻蛋白质悬液,让蛋白质分子周围的水分保持类似液体的状态,然后再通过成像解析蛋白分子的三维结构。随着硬件设备和软件算法等方面的突破,不依赖结晶的冷冻电镜技术越来越受到结构生物家的重视。 /p p   MicroED主要通过电子衍射来确定微小晶体的3D结构。这种技术最初发表在2013年底的eLife杂志上,并被《Nature Methods》杂志评为2015年最值得关注的技术之一。令人惊叹的是,MicroED在这项研究中的分辨率高达1.4埃。 /p p   程亦凡博士指出,这是人们首次用MicroED确定未知的分子结构,而1.4埃是迄今为止冷冻电镜达到的最高分辨率。这项研究展示了MicroED在结构生物学领域的巨大应用潜力。不过MicroED也有自己的局限,比如晶体结构解析中的相位问题(phase problem)。此外,MicroED很可能对晶体大小也有限制,强散射会令大晶体难以被电子束穿过。尽管如此,MicroED为结构生物学家提供了一个前景广阔的新工具,可以弥补现有技术的不足。 /p p br/ /p
  • 4019 标准解析 药典玻璃容器热冲击测定仪
    4019 药典玻璃容器热冲击测定仪 标准解析热冲击,又称热震性,是指玻璃容器在短时间内经受一定温度冲击的能力。这一性能对于需要进行高温灭菌的酿酒、饮料和制药行业至关重要。玻璃容器的耐热冲击性能直接关系到其在使用过程中的安全性和可靠性。为了科学有效地评估和测定药用玻璃容器的热冲击及热冲击强度,国家药典委发布了“4019玻璃容器热冲击和热冲击强度测定法”,此标准将在2025版中国药典的药包材部分体现。一、测试原理:通过设定玻璃瓶耐热冲击试验仪的高温槽和低温槽温度,达到预先设定的温差。将一定数量的玻璃瓶试样在高温槽中加热后,迅速转移到低温槽中。取出后,观察试样经过冷热冲击后的破损率。二、仪器装置特点:三泉中石生产的玻璃瓶耐热冲击试验仪,适用于各种啤酒瓶、酒瓶、饮料瓶、输液瓶、抗生素瓶等各类玻璃瓶进行热冲击热震试验。且具备自动调节浸水深度的功能,满足不同式样要求,并且可以随意设置冷热水温度及冷热水槽的停留时间,以满足不同标准要求。采用漏电保护装置,确保试验过程的安全可靠。三、制修订的目的意义:玻璃容器的热冲击及热冲击强度测定是评估其耐热性能的重要指标。不合格的耐热冲击性能可能导致供试品在高温灭菌或温度变化时发生破裂,进而导致药品污染和损坏。因此,对玻璃容器进行热冲击及热冲击强度的测定是非常必要的。形成科学有效的“玻璃容器热冲击和热冲击强度测定法”方法标准,以指导玻璃容器耐热冲击强度的测定。四、标准修订说明:本标准是在2015版YBB药包材标准基础上修订而来,同时参考了国标GB/T 4547-2007和ISO标准。修订后的测试时间有所缩短,提高了测试效率。例如,热水槽中的浸泡时间由原来的至少15分钟修订为至少5分钟,冷水槽中的浸没时间由原来的至少8秒至不超过2分钟修订为保持30秒。实际上大大缩短了测试时间,提高了测试效率。而玻璃瓶耐热冲击试验仪可随意设置冷热水温度,以及冷热水槽的停留时间。可以满足不同标准要求。五、测试方法:第一法冷热水槽法适用于试验温差低于100℃的各类药用玻璃容器。具体操作包括将供试品在热水槽中浸泡5分钟后迅速转移到冷水槽中,保持30秒后取出,并立即检验供试品是否破损。需要注意的是,冷水槽容量至少是一次试验的供试品总体积的五倍,这一点很多设备是做不到的,水槽应包含水循环器、温度控制组件、恒温控制器,虽然冷水槽要求温度控制在水温为0~27℃,普通自来水刚开始能够达到要求,但是做过一次试验后温度必然上升,如果靠自然降温,测试周期会非常长,三泉中石建议还是要配置一个低温控制装置。六、结果判定:热冲击:按规定的温差进行热冲击试验后,破裂的供试品数量低于规定数,则判定为合格。热冲击强度:以供试品有50%破裂时的温差表示,温差满足规定要求,则判定为合格。作为专业从事药品包装玻璃容器检测仪器的供应商,我们紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国标体系的建立添砖加瓦。七、结果判定:热冲击:按规定的温差进行热冲击试验后,破裂的供试品数量低于规定数,则判定为合格。热冲击强度:以供试品有50%破裂时的温差表示,温差满足规定要求,则判定为合格。作为专业从事药品包装玻璃容器检测仪器的供应商,济南三泉中石实验仪器紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国标体系的建立添砖加瓦。
  • AI助力解析无序蛋白结构,新锐获4000万美元助力
    日前,Peptone公司宣布完成4000万美元的A轮融资。这项融资将用于支持Peptone以人工智能(AI)方式大规模解析那些悬而未解、复杂、极具挑战的内在无序蛋白(intrinsically disordered protein,IDP)结构。在人体内大约有一半的蛋白质,其序列中的一部分无法折叠成固定的结构,因此这部分结构无法通过已知的基因序列准确地预测出来。在这类蛋白质中,有许多在维持健康与疾病起源上扮演重要的角色。而缺少精确蛋白质结构信息的结果也导致了许多药物开发上的困难。自2018年创立以来,Peptone借助原子级的蛋白质分析技术,来准确地了解无序蛋白与蛋白质结构域在生理条件下的结构。这些信息能够有助于以更好的方式来预测靶向这类蛋白质的药物。Peptone的分析技术包含核磁共振(NMR)、氢氘交换质谱(HDX-MS)与机器学习(ML)、超级计算(supercomputing)等。其已经与诺华等大型药企合作建立开发管线,以改进那些靶向含部分无序结构的靶标蛋白质的药物。这项投资会使Peptone能够在瑞士建立顶尖的研究机构,协助将他们专有的原子级实验与超级计算科技进行结合。借此Peptone也将能够开启一系列针对炎症、癌症、糖尿病等疾病中独特靶标的开发管线。此项投资还会被运用在维护Peptone超级计算机运算的算法上。“无序蛋白存在于物理学转变成生物学的交界,”Peptone的共同创始人与首席执行官Kamil Tamiola博士说道,“借由使用严谨并由计算机所驱动的物理实验方式来分析蛋白质,我们能够超越传统药物发现方式,观察到那些像是AlphaFold所观察不到的蛋白质行为。这项投资会让我们能够更进一步地改善我们的平台,并支持我们对无序蛋白领域的研究。这些研究将会支持未来的药物开发。”
  • 球差校正技术助力材料微结构与性能关系解析
    2021年10月30日,科学服务领域的世界领导者赛默飞世尔科技与中国分析测试协会高校分析测试分会合作,首次冠名设立的“赛默飞高校分析测试优秀青年人才奖”在线揭晓获奖名单。作为微纳结构分析室负责人和重庆大学分析测试中心的助理研究员,张斌博士凭借优秀的技术成果荣获赛默飞高校分析测试优秀青年人才奖二等奖。对此,仪器信息网走进重庆大学分析测试中心并特别视频采访了张斌。电子显微镜发明于上世纪30年代,距今已90年,电子显微镜有两大特点:第一是超强的空间分辨能力,可以达到纳米甚至原子尺度;第二个是强大的分析能力,可以分析一些化学成分、电子结构等。张斌从研究生起便开始了电子显微学的研究,主要从事相变存储材料、热电材料等功能材料的微结构研究。在此基础上,为了解决一些问题,投身开发一些新的显微学分析方法。这一路走来,丰富的研究经历奠定了他今后在电子显微学的研究方向:电子显微学方法的开发和应用,以及材料微结构与性能关系的解析。当谈及这次的获奖技术成果“基于透射电子显微分析的材料微结构定性/定量研究”时,张斌谦虚地表示,“获奖核心技术不能说是太好的一些成果,就是有一点点小的进步而已。”其中,图像分析、数据处理分析的技术最早被用于相变存储材料微结构研究中空位分布的解析,其主要利用图像上点阵的位置和强度来描绘空位可能的占据以及定量化的动态演变过程。去年张斌团队将这套方法加以改进,首次应用在原子尺度的构型解析实践上,并取得突破。另一个核心技术成果经典案例就是制样,在做显微学分析时,观测100纳米及以上的Cu5FeS4颗粒存在尺度太大的问题,通过超薄切片和引入酸刻蚀腐蚀等方法,张斌团队将其内部结构解析得更加清楚。正是通过这种制样方法,张斌团队发现了二十面体、五次孪晶结构和独到的核壳结构等一系列丰富的结构信息,对热电材料的性能提升带来很大帮助。科研技术的发展离不开仪器技术的发展。张斌表示,这些成果的取得离不开球差校正技术的突破和发展,因为大部分实验图像来源于赛默飞的球差校正电镜,所有的图像分析都是基于球差校正获得的HAADF图像,正是有了这些清晰的照片和先进的技术,才能获得更多的实验结果。采访最后,张斌向我们展示了他的“收藏品”——上万片承载研究观察样品的小铜环。这里的每一片铜环都代表着一个人一次研究的样品,张斌从电镜装好的那一天就开始把这些铜环收集到玻璃皿中,近4年的积累,如今铜环数量已达上万片。关于重庆大学分析测试中心重庆大学分析测试中心,于2014年正式挂牌成立,是面向学校和社会开放的校级仪器共享机构和学科交叉融合平台。2018年3月通过国家级实验资质认定,具备为社会提供公正、科学、准确数据的条件和资格,成为可提供具有法律效力检验检测报告的第三方检测基地。中心遵从源于需求、重在统筹、共建共享、优化资源、科学管理、高效运行的建设原则,致力于为校内科研工作的顺利开展提供高水平测试服务,同时也为重庆市高校、企业及科研院所自主创新能力的提升提供服务与支持。
  • 中科院NMR技术新进展:首次发现并解析自我动态组装的三聚G-四链体结构
    近日,中国科学院合肥物质科学研究院强磁场科学中心研究员张钠课题组利用稳态强磁场实验装置所属的超导磁体SM3及配套NMR系统,运用液体核磁共振技术解析出由三聚形成的非对称G-四链体折叠新方式。相关研究成果以NMR structural study on the self-trimerization of d(GTTAGG) into a dynamic trimolecular G-quadruplex assembly preferentially in Na+ solution with a moderate K+ tolerance为题在线发表在Nucleic Acids Research上。端粒DNA形成的G-四链体结构与抑制癌症密切相关,是优良抗癌靶点。目前被公开报道的分子间G-四链体主要为二聚或四聚结构,而经自我三聚所形成的三分子G-四链体结构还未被报道过。这项研究中,课题组首次解析了DNA序列d(GTTAGG)在Na+溶液中形成的三聚G-四链体液体核磁结构,该序列可以看作是人类或家蚕端粒序列的一部分。NMR清楚地证明了该G-四链体结构由3条碱基序列相同但各自又采用不对称构象的DNA链构成,含有2个边缘型loop,1个5' 端悬垂。在G-四链体核心部分中,3根G-column由常见的完整GG重复序列构成,而第4根G-column由其中两条链的5' 端单一G1碱基要经过回折,头对头拼接构成,两个G1之间形成了缺口界面。缺口界面上两个G1的糖苷键构型采用anti,而不参与核心结构形成的5' 端悬垂G1其糖苷键构型则采用syn。此外,该研究还首次应用核磁共振中的ROESY实验验证了该三分子G-四链体结构与未折叠的单链组分之间存在秒级别的动态交换现象,证明了G-四链体的动态组装性质。结构多态性一直被认为是G-四链体折叠的固有特征,该工作的发现将使G-四链体结构种类更加多样化,为潜在的功能应用提供了基础。合肥研究院博士研究生景海涛和付文强为论文第一作者,张钠为论文通讯作者。该研究获得了国家自然科学基金、国家重点研发计划项目等多个项目的支持。文章链接:https://academic.oup.com/nar/article/49/4/2306/6125663图:动态组装的三聚G-四链体结构其3条构成链与未折叠链之间在NMR实验中呈现化学交换现象
  • 我国学者解析DNA复制起点识别复合物高分辨冷冻电镜结构
    p & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201807/insimg/859a4489-caf9-42a5-8abc-7feca5114b48.jpg" title=" 20180720.jpg" / /p p style=" text-align: center " & nbsp & nbsp & nbsp 图 & nbsp ORC通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的过程模式图 /p p & nbsp & nbsp 在国家自然科学基金项目(项目批准号:31761163004、31725007、31630087)等资助下,北京大学生命科学学院高宁教授课题组与香港科技大学戴碧瓘教授课题组合作,解析了酿酒酵母ORC结合DNA复制起始位点3-Å 分辨率的冷冻电镜结构。研究成果以 “Structure of the Origin Recognition Complex Bound to DNA Replication Origin”(结合有复制起点DNA的起点识别复合物结构)为题,于2018年7月4日以长文(Article)形式在Nature(《自然》)上发表。北京大学高宁教授和香港科技大学戴碧瓘教授、翟元樑博士为共同通讯作者。高宁课题组博士后李宁宁、博士生程稼萱以及戴碧瓘组博士后林伟熙、翟元樑为共同第一作者。 /p p & nbsp & nbsp DNA复制起始在真核生物细胞中受到严格而精密的调控。DNA复制启动因子(ORC,Origin Recognition Complex)首先结合到DNA复制起点,以加载DNA复制解旋酶MCM2-7复合物到DNA上,随后MCM2-7被激活,DNA双链被解螺旋,从而启动DNA复制。所有真核生物都是利用由6个亚基组成的ORC来标记DNA复制起始的位点,在维持基因组稳定性过程中的重要作用,其功能缺失突变与肿瘤的发生发展也密切相关。 /p p & nbsp & nbsp 虽然在不同的真核生物中,ORC的蛋白质序列高度保守,但是ORC对DNA复制起点序列的选择性在不同物种间差别很大。酿酒酵母的ORC可以识别特异的DNA复制起点,而人源细胞ORC结合的DNA序列却没有序列特异性,主要依赖染色体结构识别复制起点。而由于一直缺少ORC结合DNA状态的高分辨结构,ORC序列识别差异背后的分子机制长期以来难以解释。 /p p & nbsp & nbsp 高宁研究员课题组解析的3-Å 分辨率ORC-ARS305 DNA复合物结构发现,ARS305包含一段ARS高度保守序列(ARS Consensus Sequence, ACS)和一段B1元件序列,长度为72 bp。在这个结构中,ORC的六个亚基通过与磷酸骨架的非特异性以及与碱基的特异性相互作用环绕DNA,并在ACS和B1位点使DNA发生弯曲。该结构的一个关键特征是Orc1的保守碱性氨基酸区域(Orc1-BP,basic patch)深深地插入ACS的小沟中进行序列特异的碱基识别。另外,酵母特有的具有物种特异性的位于Orc4 Wing Helix结构域(WHD)中的Helix Insertion(Orc4-IH)嵌入ACS的大沟中,与相应的碱基形成疏水相互作用。更重要的是,在ACS区域形成的这些碱基特异的相互作用的碱基都非常保守。此外,在B1区域中,也有类似的来自Orc2和Orc5的碱性氨基酸区域插入到大沟和小沟中,与碱基相互作用,并使DNA弯曲。因此,酿酒酵母ORC高度序列特异性主要是通过ORC亚基的大沟、小沟插入基序与ACS保守碱基之间的特异性相互作用实现的。序列比对分析显示,所有真核生物Orc1的N端都具有类似酿酒酵母的Orc1-BP 然而Orc4-IH却只在酿酒酵母中存在。这些发现,很大程度上解释了不同物种ORC识别起始DNA特异性差异背后的原因。 /p p & nbsp & nbsp 此高分辨率结构不仅为理解酵母ORC如何识别和结合序列特异性的DNA复制起点提供了分子基础,同时也从分子机制角度阐明了ORC如何通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的过程。 /p
  • 有机结构解析难?RISE显微镜给你新方法
    《RISE大招》有机材料分析篇来了!上期小编带大家了解了TESCAN RISE拉曼-电镜一体化系统在碳材料中的新应用,收获了很多老师们的关注。今天,继续带大家走进RISE有机材料分析,阅读完记得右上角点击分享喔?在扫描电镜分析中,有机物的分析一直是一个难题。现在随着电镜低电压的能力越来越强,已经能解决有机物的荷电以及电子束辐照损伤问题,对形貌的表征不再是难事。但是对有机物除形貌之外的分析依然是个难题,因为能谱的元素分析功能对有机物的表征起不了太大作用。而拉曼光谱是除了红外光谱以外,另一个可以很好地进行有机结构解析的表征手段。因此RISE拉曼-电镜一体化系统相比一般的SEM系统,对有机物的分析能力就有了极大的拓展。有机物的结构分析主要是碳骨架结构和特殊官能团的解析。碳结构的表征在上期已经详述,是拉曼最为优势的领域之一;而特殊官能团也可通过其对应的拉曼指纹峰来进行指示。不同特殊官能团对应不同拉曼指纹峰有机材料的分析如下图,试样为聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的共混膜。如果是用传统电镜观察,可以凭借经验,根据形貌来大致区分两者,但是这仅仅是依靠经验判断,并无有效的证据。除此之外,EDS等附件并不能确切的给出区分两相的有力数据。而用RISE分析却有了明显的进步,在观察到的区域可以进行拉曼光谱面扫描。PMMA和PS虽然都是有机材料,不过碳骨架结构和部分官能团的结构却有着较大的差异。PMMA化学式是-[CH2C(CH3)(COOCH3)]n-,PS为(C8H8) n。聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的化学结构式PMMA有特征的C=O结构、CH3伸缩振动,而PS有特征的苯环的环呼吸振动、苯环内碳原子的非对称振动、苯环C-H的伸缩振动。这些振动对应的拉曼峰分别位于1727cm-1、2951cm-1、1000cm-1、1600cm-1、3052cm-1,这些峰即可作为两项的特征峰轻易的将两项进行区分。通过拉曼特征峰轻易区分PMMA和PS此外,很多有机物都有特征性的骨架结构和官能团,这些均可作为拉曼光谱的特征峰用RISE进行分析。有机物中特征骨架结构和官能团对应特征拉曼峰再比如,RISE也可轻易区分下图有机物中的聚羟基丁酸酯(红色)和聚乳酸(蓝色)。通过拉曼特征峰区分聚羟基丁酸酯(红色)和聚乳酸(蓝色)生命科学的分析在生命科学研究领域中也经常需要用到扫描电镜,尤其是染色的细胞切片组织通过扫描电镜观察,可以通过形貌衬度判断细胞内部结构。然而除了形貌照片之外,没有更多的分析数据也困扰着这一类方向的研究。然而RISE技术仍可以在此基础上进行进一步的拓展,很多生命试样的特征结构也都有特征的物质组成,比如特征的蛋白、脂类等等,还是可以由特征的有机物及其对应的特征拉曼光谱作为指纹标记。如下图,可以将细胞切片组织在形貌的基础上进行RISE表征,进一步区分出细胞核、细胞间隙和高浓度磷脂。通过RISE技术表征细胞切片组织中不同物质再比如下图,试样为眼虫细胞。在获得SEM图像之后再通过拉曼光谱获得RISE图像,可以进一步分析出其中的叶绿体、蛋白质、细胞核、副淀粉等物质。眼虫细胞中不同物质的RISE表征分析医工交叉目前学科交叉是科学研究的发展趋势,其中医工交叉也是备受关注的方向。医工交叉的科学研究中有大量的新材料和仿生材料,这也是仅靠传统SEM系统无法完全表征清楚的。而RISE系统在这方面就大有了用武之地。如下图,某仿生材料,用户除了关心其形貌特征外,也关心其中的胶原和矿化胶原的分布。其特征峰主要在627cm-1、1601cm-1,其特征峰强度分布如图,除此之外还有420-460cm-1、2938-2941cm-1等其他特征峰,可以进行更加细微结构的判断。最终得到了胶原和矿化胶原,以及细微结构不同的(矿化)胶原的分布图和电镜形貌混合的RISE图像。仿生材料中胶原及不同细微结构的矿化胶原分布分析 食品安全食品安全及其相关领域已经成为大众非常关心的问题以及检测领域遇到的新问题,比如三聚氰胺奶粉、苏丹红等问题。然后可惜的是在食品安全及相关领域,用户更关系的是化学结构分析而非形貌和元素成分,因此扫描电镜很难在此领域的检测上发挥作用。如下图,某品牌婴儿奶粉,对其中部分区域进行RISE成像,发现其中的空气液泡、脂类、磷酸、胡萝卜素、蛋白质、胆固醇、甘油三酯等物质的分别。婴儿奶粉中不同物质的RISE表征分析RISE拉曼-电镜一体化系统相比一般的扫描电镜系统,对有机物的分析能力有了极大的拓展,通过有机物的碳骨架结构和特殊官能团对应的拉曼指纹峰来进行指示,结合形貌表征,从而实现对于有机材料的结构解析。更多应用案例,请继续关注我们的专题分享。《RISE大招》系列下期将带大家开启RISE二维材料分析 关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信“TESCAN公司”,更多精彩资讯↓ 观看RISE分析全系列,请戳:“拉曼-电镜-能谱 +”,SEM Plus带你玩转无机材料分析“高碳材料带来低碳生活,TESCAN带你了解 “神器”的神奇
  • 30纳米染色质高精度三维冷冻电镜结构成功解析
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp DNA如何包装成染色体,是科学家们一直努力破解的重要科学问题。近30年来,由于缺乏系统、合适的研究手段,作为染色质包装过程中承上启下的关键部分,30纳米染色质高级结构研究一直是现代分子生物学领域面临的最大挑战之一。 /p p style=" line-height: 1.5em "   科学家已经发现,染色质包装分4步完成,对应了染色质的四级结构:第一级结构是核小体 第二级结构是核小体螺旋化形成30纳米染色质纤维 第三级结构是30纳米染色质再折叠成更为复杂的染色质高级结构,即超螺旋体 第四级结构是超螺旋体进一步折叠形成在光学显微镜下可以看到的染色体。 /p p style=" line-height: 1.5em "   为解析30纳米染色质的高精度三维冷冻电镜结构,中科院生物物理所研究员李国红课题组及其合作者(朱平课题组和许瑞明课题组)在基金委重大研究计划“细胞编程与重编程的表观遗传学机制”支持下,自主建立了染色质体外组装和冷冻电镜技术(11埃)。利用这一技术,研究人员在国际上首次发现30纳米染色质纤维是以4个核小体为结构单元形成的左手双螺旋结构。同时,连接组蛋白H1在单个核小体内部及核小体单元之间的不对称分布及相互作用促成30纳米高级结构的形成,从而明确了H1在30纳米染色质纤维形成过程中的重要作用。 /p p style=" line-height: 1.5em "   2014年4月25日,在DNA双螺旋结构发现61周年的纪念日,《科学》杂志以Double Helix,Doubled(《双螺旋,无独有偶》)为题介绍了这项重要成果,并同期刊发英国剑桥大学教授Andrew Travers撰写的题为The 30-nm Fiber Redux(《30纳米纤维的归来》)的评论。该评论指出:(本文)结果明确地界定了染色质纤维中DNA的走向,解决了染色质到底是单股纤维还是双股纤维这个根本性的问题。本来似乎已经陷入困境的30纳米染色质纤维结构研究,又会重新成为生物学家们继续关注的焦点。该成果发表后受到国内外学术界的广泛关注,被多部世界知名最新版本教科书收录(《生物化学》《结构生物学》等)。 /p p style=" line-height: 1.5em "   据李国红介绍,在30纳米染色质纤维结构解析的基础上,他们通过与中科院物理所李明课题组合作,利用单分子磁镊技术对30纳米染色质纤维建立和维持的动力学过程进行了深入的探讨。在后续研究中,研究人员正在建立和完善描绘全基因组染色质结构的MNase-seq技术——gMNase-seq(细胞核内染色质结构分析方法),通过蛋白质融合或不同大小的金颗粒修饰和改造MNase,提高MNase-seq的空间分辨率,进一步描绘了细胞核内染色质纤维三维结构的动态调控及其分子机制。 /p p style=" line-height: 1.5em "   “30纳米染色质纤维结构”先后入选“十八大以来中国科学院重大创新成果”和“中国科学院‘十二五’标志性重大进展核心成果”。该研究成果表明我国科学家在攻克30纳米染色质纤维高级结构这一30多年悬而未决的重大科学问题上取得了重要突破,这使我国在染色质结构研究领域达到国际领先水平。同时,也为预测体内染色质结构建立的分子基础以及各种表观遗传因素对染色质结构调控的可能机理提供了结构基础。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制