当前位置: 仪器信息网 > 行业主题 > >

热解析仪相关标准

仪器信息网热解析仪相关标准专题为您提供2024年最新热解析仪相关标准价格报价、厂家品牌的相关信息, 包括热解析仪相关标准参数、型号等,不管是国产,还是进口品牌的热解析仪相关标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热解析仪相关标准相关的耗材配件、试剂标物,还有热解析仪相关标准相关的最新资讯、资料,以及热解析仪相关标准相关的解决方案。

热解析仪相关标准相关的资讯

  • 高阶课程 | ISO和GB接触角测量标准的解析及如何制定企业相关SOP
    活动背景接触角作为研发和质控的关键性指标已经被越来越广泛地应用于各个行业中,如电子、涂料、日化、半导体、新能源、油田石化等行业。在此次高阶培训课程中,您不仅会了解到接触角测量技术发展背景、多达六十多项国际国内标准制定的背景以及各参数设置的原因,还将获得我们技术专家系统性的讲解KRÜ SS是如何帮助诸多国际知名企业制定接触角测量的企业标准、设置标准化的操作流程和参数、成功用于稳定和提高产品质量的宝贵经验。此外,我们也将提供实际的操作环节,让您亲自感受,不同变量对实际操作结果的影响,进而深入了解标准化操作的重要性。本次培训完成后,您还将会获得本次课程的相关书面资料,包括接触角测量技术的理论知识和实践应用。通过考核后,您还将获得培训合格证书。“ISO和GB接触角测量标准的解析及如何制定企业相关SOP”主题的高阶课程将于2023年12月7日上午9点在上海举办,欢迎新老用户踊跃报名参加!课程安排时间:12月7日(周四)9:00至17:00地点:上海市闵行区春东路508号E幢518室费用和注册:费用1,580元/人(含培训资料和午餐),培训为期一天,差旅和其他食宿需自理,2023年12月7日 上午8:30-9:00 签到。报名截止日期为2023年12月1日。课程内容:静态接触角常用测量标准分析(ISO,ASTM,国标,行标等)亲水性,疏水性,渗透性等多种类型样品接触角的标准测量方法常见固体表面能的测量标准动态接触角(增减液和倾斜法)常见应用场景和标准解析对接触角测量影响的关键因素和企业标准的制定操作演示:按照标准规定的要点演示常见样品静态和动态接触角的测量过程……报名方法:关注公众微信号“克吕士科学仪器”,找到最新活动。联系方式:customercare@krusschina.cn。
  • 4019 标准解析 药典玻璃容器热冲击测定仪
    4019 药典玻璃容器热冲击测定仪 标准解析热冲击,又称热震性,是指玻璃容器在短时间内经受一定温度冲击的能力。这一性能对于需要进行高温灭菌的酿酒、饮料和制药行业至关重要。玻璃容器的耐热冲击性能直接关系到其在使用过程中的安全性和可靠性。为了科学有效地评估和测定药用玻璃容器的热冲击及热冲击强度,国家药典委发布了“4019玻璃容器热冲击和热冲击强度测定法”,此标准将在2025版中国药典的药包材部分体现。一、测试原理:通过设定玻璃瓶耐热冲击试验仪的高温槽和低温槽温度,达到预先设定的温差。将一定数量的玻璃瓶试样在高温槽中加热后,迅速转移到低温槽中。取出后,观察试样经过冷热冲击后的破损率。二、仪器装置特点:三泉中石生产的玻璃瓶耐热冲击试验仪,适用于各种啤酒瓶、酒瓶、饮料瓶、输液瓶、抗生素瓶等各类玻璃瓶进行热冲击热震试验。且具备自动调节浸水深度的功能,满足不同式样要求,并且可以随意设置冷热水温度及冷热水槽的停留时间,以满足不同标准要求。采用漏电保护装置,确保试验过程的安全可靠。三、制修订的目的意义:玻璃容器的热冲击及热冲击强度测定是评估其耐热性能的重要指标。不合格的耐热冲击性能可能导致供试品在高温灭菌或温度变化时发生破裂,进而导致药品污染和损坏。因此,对玻璃容器进行热冲击及热冲击强度的测定是非常必要的。形成科学有效的“玻璃容器热冲击和热冲击强度测定法”方法标准,以指导玻璃容器耐热冲击强度的测定。四、标准修订说明:本标准是在2015版YBB药包材标准基础上修订而来,同时参考了国标GB/T 4547-2007和ISO标准。修订后的测试时间有所缩短,提高了测试效率。例如,热水槽中的浸泡时间由原来的至少15分钟修订为至少5分钟,冷水槽中的浸没时间由原来的至少8秒至不超过2分钟修订为保持30秒。实际上大大缩短了测试时间,提高了测试效率。而玻璃瓶耐热冲击试验仪可随意设置冷热水温度,以及冷热水槽的停留时间。可以满足不同标准要求。五、测试方法:第一法冷热水槽法适用于试验温差低于100℃的各类药用玻璃容器。具体操作包括将供试品在热水槽中浸泡5分钟后迅速转移到冷水槽中,保持30秒后取出,并立即检验供试品是否破损。需要注意的是,冷水槽容量至少是一次试验的供试品总体积的五倍,这一点很多设备是做不到的,水槽应包含水循环器、温度控制组件、恒温控制器,虽然冷水槽要求温度控制在水温为0~27℃,普通自来水刚开始能够达到要求,但是做过一次试验后温度必然上升,如果靠自然降温,测试周期会非常长,三泉中石建议还是要配置一个低温控制装置。六、结果判定:热冲击:按规定的温差进行热冲击试验后,破裂的供试品数量低于规定数,则判定为合格。热冲击强度:以供试品有50%破裂时的温差表示,温差满足规定要求,则判定为合格。作为专业从事药品包装玻璃容器检测仪器的供应商,我们紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国标体系的建立添砖加瓦。七、结果判定:热冲击:按规定的温差进行热冲击试验后,破裂的供试品数量低于规定数,则判定为合格。热冲击强度:以供试品有50%破裂时的温差表示,温差满足规定要求,则判定为合格。作为专业从事药品包装玻璃容器检测仪器的供应商,济南三泉中石实验仪器紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国标体系的建立添砖加瓦。
  • 日程发布 | 高阶课程:ISO和GB接触角测量标准的解析及如何制定企业相关SOP
    课程安排“ISO和GB接触角测量标准的解析及如何制定企业相关SOP”主题的高阶课程将于2023年12月7日上午9点在上海举办,欢迎新老用户踊跃报名参加!时间:12月7日(周四)9:00至17:00地点:上海市闵行区春东路508号E幢518室日程安排:您将掌握:通过我们的专家团队系统性的了解多达六十多项国际国内标准制定的背景以及各参数设置的原因了解到接触角测量技术发展背景及标准中测量方法的详细解读和重要步骤解析掌握如何设置标准化的操作流程和参数、成功用于稳定和提高产品质量的宝贵经验KRÜ SS是如何帮助诸多国际知名企业制定接触角测量的企业标准的现实案例您将获得:本次课程的相关书面资料理论知识和实践应用培训证书(通过考核后)答题奖品(通过考核后)部分标准列表:ASTM D5946-2017 用水接触角测量电晕处理聚合物膜的标准试验方法;BS ISO 19403‑ 2 2017 颜料和清漆的润湿性 第二部分:固体表面自由能的测定(接触角法);BS ISO 19403-7 2017 颜料和清漆的润湿性 第七部分:倾斜台上接触角的测量(滚动角);ASTM D 724-1999(R2004) 纸的表面润湿性的标准方法(接触角法);GB 24622-2009 绝缘子表面润湿性测量导则;GB_T 42694-2023 纺织品 表面抗润湿性能的检测和评价 接触角和滚动角法;……费用和注册:费用1,580元/人(含培训资料和午餐),培训为期一天,差旅和其他食宿需自理,2023年12月7日 上午8:30-9:00 签到。报名截止日期为2023年12月1日。报名方法:关注公众微信号“克吕士科学仪器”,找到最新活动。联系方式:customercare@krusschina.cn。
  • 【标准解读】车用汽油硅含量测定相关标准解析
    本文由标准由国家石油石化产品质量监督检验中心(广东) 闻环著,文章禁止任何形式的转载、摘录,违者必究。1、研究背景硅并非汽油的天然组分。车用汽油中即使含有低含量的硅,也可引起氧传感器失灵,含硅汽油经燃烧后生成二氧化硅,在发动机火花塞、三元催化转化器等形成沉积物,致使汽车发动机发生故障,出现抖动、熄火等问题。2007年,英国东南部数千辆汽车陷入“瘫痪”状态,后经英国贸易标准协会调查后确认,汽油中含有的硅元素是汽车抛锚的罪魁祸首。在国内,例如2010年5月岳阳中石化“问题汽油”致上千辆汽油火花塞堵塞事件,事故原因分析可能与硅含量异常有关。2015年3月贵州省黔东南市岑巩县苗冲和羊桥两个加油站同时发生“问题汽油”事件,问题汽油导致上百辆汽车熄火,火花塞布满灰白色沉积物、三元催化器受损。2020年7月黑龙江省哈尔滨市淮南加油站“问题汽油”原因追溯再次证明与硅有关。汽油硅来源追溯分为两种来源,一是来自炼油工艺,炼油厂焦化装置中使用的脱泡剂可能带来硅污染。2014至2015年我们实验室监测某炼厂多批次焦化汽油硅在1~5 mg/kg,焦化柴油和焦化蜡油中也存在低含量的硅。另一种来源则是采用含硅的废弃溶剂作为原料调和成品汽油,这种风险多发生在小型炼油企业或者社会调油企业。2、标准状况分析2013年世界燃油规范第五版中规定二类燃油要求硅含量不可察觉(石油产品中硅含量的测定通常分为两种,重质石油产品多采用干法灰化消解或微波消解前处理,再经ICP-OES或AA检测无机硅含量。例如IP 501-05和SH/T 0706检测重质燃料油中硅,采用铂金坩埚24小时熔融灰化前处理。轻质石油产品多采用ICP-OES或XRF直接进样法检测,主要用于检测有机硅化合物,减少和避免了样品的挥发损失,且试验操作简便快速。目前主要用于汽油硅含量的检测方法有ICP-OES法和WD-XRF法,相关的方法标准有GB/T 33647、GB/T 33465、ASTM D 7111和NB/SH/T 0993.其中GB/T 33647-2017方法是采用配有加氧装置的ICP-OES,雾化室冷却温度为-10℃。汽油样品经异辛烷稀释4倍后直接进入ICP-OES检测,推荐以六甲基二硅氧烷作为标准物质用异辛烷稀释配制硅标准溶液,外标法定量分析。适用于检测硅含量为(1~50)mg/kg的汽油样品。GB/T 33465-2016也是采用配有加氧装置的ICP-OES。汽油样品经煤油稀释4倍后直接进样分析,推荐以苯基三乙氧基硅烷作为标准物质用煤油稀释配制硅标准溶液,内标法定量分析。适用于检测硅含量为(1~1000)mg/kg的汽油样品。ASTM D 7111-16也是采用配有加氧装置的ICP-OES,直接进样分析,推荐以市售混合标准溶液(例如CANOSTAN公司S21+K标液)用煤油稀释配制硅标准溶液,内标法定量分析,适用于检测硅含量为(0.1~2.0)mg/kg的中间馏分油样品。NB/SH/T 0993-2019则是采用MWD-XRF法,汽油样品直接进样,推荐以八甲基环四硅氧烷作为标准物质,用异辛烷和甲苯混合溶剂稀释,外标法定量分析,适用于检测硅含量为(3~100)mg/kg的汽油样品。XRF仪器性能稳定,无需每次开机时做标准曲线,操作简单便捷,但是其灵敏度不及ICP-OES,不适合检测硅含量低于3mg/kg的汽油样品。2018年吴志鹏等报道采用ICP-OES法(GB/T33647)和MDW-XRF法进行汽油硅含量对比分析,结果表明硅含量低于50mg/kg情况下,MWD-XDF结果高于ICP-OES法,受仪器灵敏度,方法差异性影响。随着硅浓度增大,两种方法结果差异也越来越小。2020年章然等报道采用ICP-OES法(GB/T33465)和HF-XRF法进行对比分析,研究不同形态硅有机化合物对汽油硅结果影响。结果表明,对于硅含量为(1~1200)mg/kg的汽油样品,HF-XRF硅结果与理论值相差不大,而GB/T33465对六甲基硅醚等5种硅有机化合物的响应值明显高于理论值。HF-XRF不受硅化合物形态影响,在定量分析未知形态有机硅时更具优势。
  • 解析影响水质检测仪的因素国家标准
    解析影响水质检测仪的因素国家标准 影响因素在使用多参数水质检测仪检测水质过程中,能够影响水质检测的因素主要有来源因素和类别因素。首先是来源因素,在平时的工作中,有时候工作人员会将需要检测的水质样品的来源弄错,这样就会导致无法正确的进行水质结果分析,从而导致无法提供解决问题的方法。其次针对不同的水质样品,应该在多参数水质检测仪上选择不同的参数检测方法。比如地面水质与地下水质所使用的检测方法就大不同。通过对水体的水位、流速和流向的变化及沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等可对地面的水质进行初步的采样。但是地下水质的采集就不适用于这种方法,它需要根据水质区域内的城市发展、工业分布情况、土地利用率等情况来进行水样收集。假如没有正确认识到各类水质的差别,就会影响水到质检测的结果的正确性。水资源可利用量是有限的,水资源并不是取之不尽、用之不竭的,因此要重视节约用水和开发利用的关系,节流要抓,开源也要抓。中国已经提出了建设节约型社会的总体要求,《节约用水管理条例》也正在紧张的起草当中,应当以此为契机,积极推广节水技术,积极推进节水意识,大力提高水资源的利用效率,同时严格控制用水总量,实行用水定额控制管理。根据水资源的分布范围和承载能力,正确引导工业产业聚集方式,在节流的同时,加强水资源保护工作,大力改善水环境以及水资源质量,增加可利用水资源总量,在水质问题日益突出,水量相对丰富的地区推行有效的开源措施。将多参数水质检测仪应用到日常加工生产过程中去 国家标准国家标准规定:总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。色度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05; 氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。 [2]氯化消毒自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,有关方面专家也提出了许多改进措施。世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,还没有一个确切的概念。所以只有少数的发达国家才使用这种处理方法
  • 生态环境部征求4项大气颗粒物源解析标准意见 涉及离子色谱等仪器
    p   我国环境空气颗粒物污染具有污染范围大、污染程度深、多种污染类型并存、污染来源复杂等特点,这给大气颗粒物防治工作带来了极大的挑战。大气颗粒物防治工作首先需要开展环境空气颗粒物来源解析工作,弄清颗粒物污染的来源问题,因地制宜地提出大气污染防治措施。大气颗粒物来源解析( 简称“源解析”) 是基于环境受体( 即环境空气) 和污染源的颗粒物化学组成信息,利用源解析模型对不同类型的颗粒物排放源类进行定性识别并定量解析其对颗粒物贡献的技术方法。大气颗粒物来源解析研究工作是科学、有效开展大气污染防治工作的基 础和前提,是制定环境空气质量达标规划和重污染天气应急预案的重要依据,是开展大气污染防治措施效果评估的重要手段。 /p p   为促进大气颗粒物源解析研究工作的业务化,受生态环境部大气环境司委托,中国环境监测总站承担了“大气颗粒物源解析监测技术体系构建及业务化技术支持”项目,组织开展编制相应标准规范。 /p p   目前,标准编制单位已完成上述相应标准的征求意见稿,并且生态环境部于近日发布关于征求《开放源扬尘颗粒物采样技术规范(试行)(征求意见稿)》等4项标准意见的函,其中包括《开放源扬尘颗粒物采样技术规范(试行)》、《颗粒物滤膜自动称量技术规范(试行)》、《环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 离子色谱法(试行)》、《环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 衍生化/气相色谱—质谱法(试行)》。 /p p   该4个标准规范属于环境空气颗粒物来源解析系列标准之一,适用于环境空气颗粒物来源解析工作中相关的监测活动。 /p p   相关单位如有意见可于2019年5月10日前反馈至生态环境部。逾期未反馈,将按无意见处理。 /p p   联系人:生态环境部大气司毕方 /p p   通讯地址:北京市西城区西直门南小街115号 /p p   邮政编码:100035 /p p   电话:(010)66556278 /p p   联系人:中国环境监测总站王超 /p p   通讯地址:北京市朝阳区安外大羊坊8号(乙) /p p   邮政编码:100012 /p p   电话:(010)84943198 /p p   电子邮箱:wangchao@cnemc.cn /p p   附件: /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201904/attachment/fa0f1947-a387-4a11-ad1a-8372705b7787.pdf" target=" _self" title=" 1.pdf" textvalue=" 1.开放源扬尘颗粒物采样技术规范(试行)(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 1.开放源扬尘颗粒物采样技术规范(试行)(征求意见稿).pdf /span /a /p p   本标准规定了环境空气颗粒物来源解析工作中对土壤扬尘、 道路扬尘、 施工扬尘、 堆场扬尘、 二次扬尘等采样方法。本标准的附录A为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201904/attachment/e338edf3-7cd6-43bb-838d-49d13391a95d.pdf" target=" _self" title=" 2.pdf" textvalue=" 2.颗粒物滤膜自动称量技术规范(试行)(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 2.颗粒物滤膜自动称量技术规范(试行)(征求意见稿).pdf /span /a /p p   本标准规定了滤膜自动称量的设备要求、 操作过程、 技术要求、 质量保证和质量控制等方面的要求。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201904/attachment/aff9140b-6b71-4c0f-bc42-1c9bed161cf0.pdf" target=" _self" title=" 3.pdf" textvalue=" 3.环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 离子色谱法(试行)(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 3.环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 离子色谱法(试行)(征求意见稿).pdf /span /a /p p   本标准规定了测定环境空气和废气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的离子色谱法。本标准的附录A和附录B为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201904/attachment/1445ee08-cac4-46d9-b285-bff01bfd4f9f.pdf" target=" _self" title=" 4.pdf" textvalue=" 4.环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 衍生化/气相色谱-质谱法(试行)(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 4.环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 衍生化/气相色谱-质谱法(试行)(征求意见稿).pdf /span /a /p p   本标准规定了环境空气和废气颗粒物中左旋葡聚糖、 甘露聚糖和半乳聚糖的衍生化/气相色谱-质谱法。本标准的附录A和附录B为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / span style=" text-decoration: underline color: rgb(0, 112, 192) " a href=" https://img1.17img.cn/17img/files/201904/attachment/f65bb7b5-8c3b-44da-a44b-c18072c700f3.pdf" target=" _self" title=" 5.pdf" textvalue=" 5.《开放源扬尘颗粒物采样技术规范(试行)(征求意见稿)》等4项标准征求意见稿的编制说明.pdf" style=" text-decoration: underline " 5.《开放源扬尘颗粒物采样技术规范(试行)(征求意见稿)》等4项标准征求意见稿的编制说明.pdf /a /span span style=" color: rgb(0, 112, 192) "    /span /p
  • 药包材检测仪器|药用软膏管尾热封试验仪全面解析
    在制药行业中,药用软膏的质量和包装安全性是至关重要的。药用软膏管尾热封试验仪作为一种专用设备,广泛应用于药物包装的质量检测。本文将对该仪器的原理、功能、使用注意事项以及其在制药行业中的重要性进行全面解析。一、原理药用软膏管尾热封试验仪主要通过模拟软膏管的封口过程,评估封口的密封性和牢固性。该仪器利用热封技术,在特定的温度和压力下,对封口部分进行处理。仪器配备了温度控制系统和压力调节装置,能够精准地调节热封参数,以确保封口质量符合相关标准。二、主要功能密封性能测试:评估软膏管封口的密封性,避免因封口不良导致药物泄漏或变质。热封温度和时间调整:用户可以根据不同材料和产品要求,自由调节热封的温度和时间,确保最佳的封口效果。自动记录功能:设备通常会配备数据记录功能,能够实时记录每次试验的参数,方便后期分析与追溯。强度测试:通过一定的拉力或压力测试,评估封口的抗拉强度和承受能力。符合标准检测:仪器可设定标准测试条件,确保测试结果满足国家和国际药品包装标准。三、使用注意事项设备校准:定期对仪器进行校准,以确保测试结果的准确性。环境条件:在使用前应尽量保持实验环境的稳定,包括温度、湿度等,以避免外部因素对测试结果的影响。操作规范:操作员需经过专业培训,熟知仪器的操作流程和应急处置方法,减少操作失误。材料选择:不同材料的软膏管需使用适合的热封温度和时间,以免造成封口不良或材料损坏。记录与分析:每次试验后,务必认真记录测试数据,定期进行分析,以便发现潜在问题并及时改进。四、在制药行业中的重要性药用软膏管尾热封试验仪在制药行业的应用,直接关系到药物的质量和消费者的安全。随着市场对药品安全和有效性要求的提高,确保包装的密封性和稳定性变得尤为重要。该仪器不仅能够提高生产效率,减少因封口问题造成的经济损失,同时也为药品追溯和质量管理提供了有效的保障。结论药用软膏管尾热封试验仪是保证药品包装质量不可或缺的重要设备。通过对其原理、功能和使用注意事项的全面解析,我们可以更加清晰地认识到此设备在制药行业中的巨大价值。随着科技的进步,该仪器也必将在智能化、自动化方面不断发展,以满足更高标准的包装要求。在未来的生产中,优化封口技术,确保药品质量,将是我们共同的目标。
  • 精准医疗露荷尖:基因检测及相关上市公司解析(下)
    五.A股上市公司比较  继精准医疗露荷尖-基因检测及相关上市公司解析(上)详解精准医疗、基因测序产业链之后,下篇主要对比相关上市公司。在介绍A股基因测序上市公司之前罗列几个美国基因测序公司。  启迪(即Illumina):上篇已经提到,上游测序仪龙头,收入20亿美元,市值250亿美元。  23andMe:初创型公司,总收入不足2亿美元,大量收集基因组数据,进军药物研发领域,志存高远。  美国大型的测序服务公司有: Sequenom, CardioDx 和 Foundation Medicine 等,其中罗氏集团15年初出资10.4亿美元收购Foundation Medicine56%的股份,公司当前估值20亿美元以上。  A股上市公司:  1.建立基因测序股票池  每一个概念题材都会有很多公司沾边,但其中不少公司大股东都是抱着打酱油、讲故事的心态跟风投资,真正具有战略眼光、值得我们重点关注的并不多,基因测序也一样。  打开同花顺,查找基因测序板块,可以看到A股涉及基因测序概念的有21家,(如下图),但其中不少只是轻微涉猎基因测序,比如共进股份,隶属通信行业,现在积极转型大健康,前期3000万增投小海龟科技,持有小海龟科技15%的股权。小海龟科技宣称已自主研发成功半导体高通量基因测序仪(2.5代),并启动预研新一代的基因测序技术,本人也十分看好共进股份,但基于上述判断决定不纳入基因测序概念股票池。  在综合考虑主业相关性、介入基因测序力度、成功可能性之后,从中筛选了12家+华大基因(即将上市)合计13家,予以比较分析,如下。  2.13家公司综合比较  下表统计了这13家公司的收入、利润和市值,并简单统计了2015年上半年基因测序业务对总体收入利润贡献情况。  可以看出,即便已经筛选,绝对数值看,基因业务贡献利润都没过亿,相对数值看,基因业务对业绩贡献较高的公司凤毛麟角,华大基因、达安基因、迪安诊断、千山药机较高,超过30%,前三家是因为产前筛检做得好,千山药机主做高血压基因芯片,但增长乏力,关于千山药机的非议比较多,可以百度自行了解。其他占比不高或因所收购公司尚未并表,或因基因业务刚处于起步阶段,这是行业发展现状决定的。  如果我们按照市值排序:  行业老大华大基因即将创业板上市,15年净利润2个亿上下,预计市值500亿以上,华大因为前些年重点放在科研,做产业起步晚,目前收入并没有展现出大哥气质,随着未来登陆资本市场,会展现王者归来的气概,市值千亿不是梦 行业老二达安基因216亿,还有很大成长空间 荣之联也排名靠前,但其主要收入来源于政府跟电信单位,而非基因业务 中源协和收入排名11,市值排名第3,二者不对等,主要是因中源协和以细胞检测制备及存储为主,这块业务毛利率达到惊人的80%,因此在资本市场享有较高溢价,理所当然 市值最小的仟源医药仅仅40亿。  3.每个公司业务看点  达安基因:通过参控股子公司,逐渐实现了在国内精准医疗行业的全产业链布局,分子诊断+基因检测双核心,收入30%来自产前筛检,一半来自分子诊断,背靠中山大学,技术雄厚,国内唯一可以跟华大比肩的基因公司   迪安诊断:2.5亿收购博圣生物进入基因测序领域,探索肿瘤诊断与治疗。产前筛检是当前主要收入,但多元化经营战略明显,携手阿里,与泰格共建实验室,收购美生,最近又新疆元鼎,资本运作频频,值得期待   安科生物:4.5亿元收购法医DNA检测龙头中德美联25%股权:产品被应用于公安、司法和医学DNA检测分析领域,中德美联还储备有肿瘤分子诊断技术,目前其相应临床产品已进入报批阶段,当前主要收入来源于生物制品   仟源医药:收购恩氏基因,进入基因保存领域,基因保存技术难度不高,为以后提供样本,为未来基因测序和基因治疗提供样本和依据(一个婴儿基因保存收费3600元,期限100年,很划算),当前主营化学制药,这个行业当前都不景气,市值最小   中源协和:细胞检测制备及存储业务占当前收入的57%,利润的67%,毛利率超过80%,投资5000万元,筹建基因检测相关技术研究公司,近期1亿元对碳云智能进行增资,目标公司主营业务涉及生命大数据、人工智能和互联网领域,而其创始人更是大名鼎鼎的华大基因前CEO王俊,“细胞+基因”双核心战略看好   千山药机:控股宏灏基因79.7%,主打高血压基因芯片,宏灏基因使用第一代基因检测技术,技术上无疑是相对落后的。但优势是成本低,检测周期短,因而市场应用也不错,未来竞争力如何只能留给市场判断,另外千山药机控股上海申友51%进军基因测序   昌红科技:基因存储板、分子筛、基因扩增板和微细胞过滤网等基因测序耗,为华大和Thermo Fisher Scient的基因存储板供应商,传统业务占比过大   新开源:收购武汉呵尔医疗、三济生物、晶能生物三家公司100%股权进军肿瘤筛查、基因检测试剂、测序服务,其中武汉呵尔医疗是国内肿瘤细胞学检测龙头,而且三家公司大股东都与新开源现有股东关系密切。另出资3亿参与设立20亿并购基金,由传统PVP业务转型精准医疗,态度坚决。  荣之联:最了解生物行业的IT公司,与华大基因关系密切,合作超过十年,为其提供数据技术服务,持有华大基因90多万股,本质上还是一家IT公司,看点在车联网。  紫鑫药业:与中科院合作,生产出号称具备完全自主知识产权的测序仪,不看好市场前景   北陆药业:收购南京世和20%股权,主要从事与癌症用药有关的基因检测业务,正协助世和尽快取得基因测序试点资格   东富龙:伯豪生物34%股权,进军基因测序、生物芯片、生物标志物技术服务   六.总结  先说几点看法:  1.基因检测是精准医疗的基础,而基因组样本量则是基因检测的根基,由于发展时间较短,基因组样本量不够大是行业发展瓶颈:对于相同的个体,不同公司给出的检测结果也可能不一样,这主要是由其所依赖的数据样本差异决定的,基因组样本量越丰富,分析结果越准确。华大和23andMe已经意识到这一问题,在大量收集人类基因组数据,这类公司未来一定会成为伟大的公司。  2.成本仍需下降,人类基因组启动之时,测一个人基因组花了几亿美金,现在已经下降到只需几千美金,但这还不够,当前除了产前筛检比较廉价之外,其他项目价格偏高,有待于成本的继续下降,打开市场成长空间。  3.技术仍需进步,人类有30亿个DNA碱基对,当前只有少得可怜的3%左右能被准确解释,未来需要借助各种科学手段寻找这些密码与各类疾病之间的确定性关系。解读这些数据,一方面需要高性能计算平台和分析软件(人的基因组有1.3G,为保证准确度测序量必须是这个数据的好几倍,这么大的数据在 windows下无法操作,只能在linux等系统下使用C++,perl等编程语言进行处理) 一方面还需要更大的样本量,华大和23andME等正在干的事。  4.政策扶植,其中涉及伦理学,医疗风险,都少不了政策的引导与支持,国家对精准医疗的投入也必不可少。  5.篇幅所限,要深入对比这十几家上市公司难度不小,未来有机会再择重点公司进行剖析。  长远看,基因检测无疑市场空间无限,但当前唯有产前筛检技术较为成熟,价格水平大众已可接受,市场增长迅速,渗透率还不足3%,未来超过10倍空间,受益个股如迪安诊断、达安基因、华大基因等,其他中下游肿瘤诊断、个性化治疗、遗传病评估、辅助生殖都处于技术积累和孕育期,未来有赖于成本的持续下降,技术的不断进步,和政策的大力扶植,将会迎来爆发期,短期内无法对业绩形成贡献。  综合,从技术研发实力,主营业务协同性,战略布局角度,看好华大基因、达安基因、迪安诊断、中源协和、新开源、安科生物、北陆药业的长期成长性,而昌红科技、荣之联、千山药机,股性较活,遇到行业利好消息刺激的时候也具备交易性机会。
  • TUV将举办“不锈钢制品卫生标准解析”研讨会
    上海2012年3月12日电 /美通社亚洲/ -- TUV南德意志集团(TUV SUD )将于2012年3月16日在上海举办主题为“不锈钢制品卫生标准解析”的技术研讨会。通过此次技术交流,希望为国内不锈钢制品企业及用户带去国际国内最新技术标准发展信息。   TUV SUD 实验室专业人员在进行相关产品检测   近日,对于不锈钢制品“锰含量”的讨论引起了社会公众极大的关注,也为不锈钢厨具、用具行业造成了一定的影响。围绕“产品质量”、“检测标准”展开的讨论持续进行着。   TUV南德意志集团(TUV SUD)将于2012年3月16日在上海举办主题为“不锈钢制品卫生标准解析”的技术研讨会。   然而,“标准”对于普通消费者来说太过专业与遥远,大部分人没有机会真正的通过科学的理论和实验对标准进行系统、深入的研究。事实上,每个标准在制定阶段都会根据既定的目标和适用范围,构建在科学的理论和大量实验数据的基础上,在广泛听取专家、企业和社会意见后建立相关的技术指标,进而经过一系列严格的程序,获得批准后发布实施。但是,由于不同的国家、不同地区对于某种产品的评估有所不同,因此,会产生对于相同产品的国内外标准在检测指标、限量要求、测试方法方面有所不同的情况。例如,中国在最新发布实施的《GB 9684-2011食品安全国家标准-不锈钢制品》中并未对锰元素的迁移量做出限定,而意大利在2010年公布的第258号法令中建立了对于锰的迁移量的限量要求。   那么从不锈钢制品的安全角度上来讲,国内外的标准究竟有哪些区别呢?国内企业在内销和出口的过程中如何符合不同的标准要求呢?如何看待及应对不同的标准所带来的挑战呢?TUV SUD 将通过此次技术研讨会为相关企业及产品用户现场答疑解惑。关于此次研讨会具体信息,请至TUV SUD大中华集团官方网站进行查询。
  • 标准解析 | 崂应参与起草的便携式β 射线法山东地标正式发布!
    2021年6月15日,由青岛崂应环境科技有限公司参与起草的山东省地方标准《环境空气 颗粒物的测定 便携式β射线法》(DB37/T 4378—2021)正式发布,并将于7月15日起实施。(文末附标准全文) 崂应2092型 环境空气质量监测仪参与了该标准的实验验证等工作,为便携式β射线法在环境空气颗粒物测定方面的应用提供了数据支持。现将标准解读如下:01、范围本文件规定了测定环境空气中颗粒物的便携式β射线法。本文件适用于环境空气中颗粒物(TSP、PM10、PM2.5)的测定,也适用于无组织排放中颗粒物的测定。本文件检出限为1 μg/m3,测定下限为4 μg/m3。(标准原文)解析:按照HJ 168的有关规定,使用高效过滤器在洁净的室内以标准规定程序,选择检出限最高者为本标准方法的检出限,本方法的检出限为1μg/m3,测定下限为4μg/m3。 02、方法原理样品空气通过切割器以恒定的流量经过进样管,颗粒物截留在滤膜上。用β射线照射滤膜,根据采样前后单位面积的滤膜上β射线衰减量得出滤膜上捕集的颗粒物质量和同时抽取的气体体积,计算出颗粒物的浓度。β射线衰减量与颗粒物的质量遵循以下吸收定律:N = N0∙e-km式中:N ——单位时间内通过滤膜的β射线量;N0 ——单位时间内发射的β射线量;k ——单位质量吸收系数,cm2/mg;m ——颗粒物单位面积质量,mg/cm2。(标准原文)解析:参照ISO 10473:2000,其核心原理是根据采样前后单位面积的滤膜上β射线衰减量得出滤膜上捕集的颗粒物量。β射线仪器分为同位采样测量滤带类型、顺序采样测量滤带类型、顺序采样测量滤膜类型。崂应2092型环境空气质量监测仪为同位采样滤带测量类型,从根本上解决了移动纸带所带来的测量误差。 03、干扰和消除空气相对湿度过大会对测量结果产生影响,当相对湿度大于40%时,可通过动态加热的方式消除影响,同时需要控制加热功率和加热温度。(标准原文)解析:根据试验表明当空气湿度超过40%时,其对测量结果的影响不可忽略,可通过动态加热的方式消除影响。崂应2092型环境空气质量监测仪采用 DHS(动态加热系统)加热采样入口气体并具有动态温湿度补偿功能,加热温度在(10~60)℃范围内任意设置,控温精度±1℃,符合HJ 1100-2020要求。04、试剂和原料6.3 标准膜片由聚碳酸酯等惰性材料制成,应避光存放,使用前应检查膜片是否存在破损等情况。(标准原文)解析:参照ISO 10473:2000的要求,使用惰性材料标准膜对仪器校准,使数据更加准确。崂应2092型环境空气质量监测仪具有标准膜片校准功能,选用的标准膜片为聚碳酸酯,可溯源至重量法,保证标准膜片数值的准确可靠。05、仪器和设备7.1.2 仪器性能便携式β射线法颗粒物测定仪应符合以下要求:a) 满足HJ 93 中采样器技术要求;b) 具有自动记录仪器的系统设置参数功能;c) 具有自动存储测量期间测定结果功能;d) 具有污染物名称、化学式和浓度值显示功能;e) 具有测量或输入及保存测量期间气象参数功能(大气压、温度、湿度等)。(标准原文)解析:崂应2092型环境空气质量监测仪满足HJ93、HJ653和HJ1100标准要求,可以连续自动监测,且采样数据自动记忆,停电后自动保存当前数据,来电后仪器能够继续采样。7.2 辅助设备7.2.1 便携式电源:持续供电时间大于2 h,输出电压220 V。7.2.2 温度计:测量环境温度,测量范围-30 ℃~50 ℃,示值误差不超过±2 ℃。7.2.3 大气压计:测量环境大气压,测量范围80 kPa~106 kPa,示值误差不超过±1 kPa。7.2.4 湿度计:测量环境湿度,测量范围0 %RH~100 %RH,示值误差不超过±5 %。(标准原文)解析:崂应2092型环境空气质量监测仪具有温度、湿度和大气压传感器,其技术参数优于标准中对辅助设备的要求,现场可不用携带辅助设备。如需辅助设备“便携式电源”,推荐使用06、校准8.3 校准8.3.1 零点校准校准时泵停止工作,安装滤带(膜)或零膜片,进行零点校准。8.3.2 质量校准在空白滤带(膜)上方放置标准膜片进行测定,测定结果与标准膜片的标称值误差应在±2%范围内,否则应按仪器说明书要求对仪器进行校准。8.4 样品采集和测定8.4.1 按照HJ 194、HJ/T 55 相关要求,做好采样准备。8.4.2 正确连接好采样系统,采样器入口距地面高度不应低于1.5 m。如果测定交通枢纽处颗粒物,采样点应布置在距人行道边缘外侧1m 处。8.4.3 根据监测目的,设置采样周期等参数。小时均值应至少有45min 的采样时间,日均值应至少有20 个小时平均浓度值或采样时间。8.4.4 启动采样器进行测定并记录颗粒物的质量浓度。(标准原文)解析:按照ISO 10473:2000要求,监测开始前使用标准膜片进行校准,测定结果与标准膜片的标称值误差应在±2%范围内,否则应重新对仪器进行校准。样品采集的布点参照HJ/T 55要求,采样有效时间参照GB 3095中有关规定。07、结果与计算9.1 结果计算颗粒物浓度按照公式(2)进行计算:ρ =m/v × 106式中:ρ——颗粒物的浓度,μg/m3;m ——截留在滤膜的颗粒物质量,mg;v ——采样体积,L。环境空气为实测体积,无组织排放为标况体积。9.2 结果表示测定结果应保留整数位,最多不超过三位有效数字。(标准原文)解析:2018年8月13日印发《环境空气质量标准》(GB3095—2012)修改单(生态环境部公告2018年第29号),将环境空气中颗粒物状态由标况状态(273.15K,101.325kPa)更改为实际状态(监测时的实际大气温度和压力),并于2019年1月1日实施。因此对于环境空气中颗粒物采样,采样体积为实测体积(即实际状态下的采样体积);对于无组织排放中颗粒物采样,采样体积为标况体积(即273.15K,101.325kPa状态下的采样体积)。崂应2092型环境空气质量监测仪同时显示实际体积(工况体积)和标况体积,在计算颗粒物浓度时,应根据监测情况,正确选择采样体积。08、注意事项12.1 使用的β射线源应符合放射性安全标准。12.2 仪器报废后应按照有关规定处置β射线放射源。(标准原文)解析:崂应已取得辐射安全许可证,崂应2092型环境空气质量监测仪所使用的β射线符合放射性安全标准,可放心使用。
  • 成都科林发布成都科林分析AutoTD 20A自动热脱附解析仪新品
    AutoTD20A 热脱附-解吸仪技术参数一、技术要求:*1、运行模式:二级解吸(一级解吸到冷阱聚焦后再由冷阱快速二级解吸)。2、样品管活化功能,采用国际标准样品管。*3、一级分流和二级分流功能。4、吸附聚焦方式 定点聚焦。*5、解吸方式:反吹解吸、一级360℃加热解吸、冷阱二级热气流瞬时解吸6、自动泄漏测试 7、一键式操控自动完成分析*8、触摸屏操作、密码保护,可保存5个方法。9、具有通用的接口,可与任何气相色谱连接。10、显示中英文可选。11、故障报警、自诊断功能。二、技术参数*1、样品容量:20管2、一级脱附:温度范围:50-390℃,步长为1.0℃脱附时间:1.0-999min,步长为:0.1min
  • 世界最大的热解析管生产商camsco即将来华进行市场推广
    Camsco 一家美国军工企业Camsco是一家美国军工企业。她只生产热解析管,也是全世界最大的热解析管生产商,产量比其它所有牌子的加起来都多。 自1991年至2008年专给美国军方提供热解析管。她是以下军方单位的指定供应商:U.S. Air Force Dog Training Center/ U.S. Army Technical Escort Unit /U.S. Army Environmental Command/U.S. Customs/U.S. Navy/U.S. Special Operations Command 。2008年开始推出商用热解析管,因其优异的表现,日前客户已遍布政府部门、工业界、学术界等多个领域,如:BASF/GE/Department of Toxic Substances Control/Siemens/Environmental Protection Agency/Purdue University 等。Camsco热解析管性价比超高Camsco通过AS 9100, NATO AQAP-110, ISO 9001, ISO 14001和OHSAS 18001认证,并拥有多项技术专利。CAMSCO管子100%美国制造,质量从内到外都是业界最好的, 而价格却是最便宜的。管材: √ 不锈钢管:耐腐蚀316L钢 √ 玻璃管:德国进口的Schott-Duran高精度玻璃管内: 1. 所有管内金属部件全部经过表面惰性化处理2. 吸附剂全部经过预筛选、均一化和预老化处理管外: √ 不锈钢管:高精度600 dpi激光蚀刻,每根管子都完美无暇√ 玻璃管:专利的高温彩色烧陶工艺,精度达到400 dpiCamsco品种齐全可定制Camsco可以提供各种材质的热解析管,如玻璃,石英,不锈钢和特富龙。同时,不论客户使用PE,Gerstel,Dani,Tekmar,Markes,岛津还是CDS的热解析仪,Camsco都能为客户提供和仪器完全兼容的热解析管,并且保证同样优异的品质和更具有市场竞争力的价格。 此外,Camsco可提供几十种填料的热解析管以及各种接头配件等。当然Camsco也可为您提供定制服务。Camsco 提供优质服务保证您满意若您不知道什么样的管子适合自己,可以直接与我们联系,我们提供免费技术咨询。如果您有特殊的要求,我们可以量身定制,制造非标准管直至您使用满意为止。任何有质量问题的产品,我们保证免费更换如果更换后还有问题,我们允许退货及退款。 Camsco 与上海安谱Camsco在中国地区的独家代理上海安谱公司,全面负责Camsco热解析管在中国的市场推广以及销售。若您想了解更多产品信息,欢迎来电来函垂询:021-54890099 shanpel@anpel.com.cn2010年慕尼黑生化分析展(analytica China)将于9月15日至17日在上海新国际展览中心举行,届时Camsco公司总裁Robert,副总裁Yingtong Gao和商务部经理Jesse将来中国参加展会,上海安谱公司展台号W2.2442,欢迎对热解析管感兴趣的相关人员前来交流。下载:camsco热解吸管.pdf如果您想了解更多产品,请进入安谱网站: www.anpel.com.cn
  • 2012年美国CAMSCO热解析管讲座成功举办——广州站
    2012年美国CAMSCO热解析管北上广巡回讲座广州站于2012年9月17日成功举办。来自广东省环境监测中心站、中国广州分析测试中心、广东省职业病防治院、深圳市建筑科学研究院有限公司、广州市质量监督检测研究院等20多家单位华南地区的第一代热解析领域的科研人员参加了此次会议交流。 会议上气氛十分热烈,大家争先恐后地与此次主讲人美国CAMSCO公司首席科学家高映彤博士一起探讨了热解析领域的热点应用与技术,与会者就CAMSCO热解析管的填料选择、热解析管老化、采样方式等技术细节与高博士进行了深入的交流与探讨。 珠海市建设工程监督检测站的江伟武高工就GB50325-2010《民用建筑工程室内环境污染控制规范》&ldquo 附录F 室内空气中苯的测定&rdquo 做了《测量空气中苯活性炭吸附法标样溶剂对标准曲线的影响探讨》的报告并且就使用CAMSCO热解析管的心得体会与大家进行了交流。 至此2012年美国CAMSCO热解析管系列讲座上海站、北京站、广州站都得到了圆满结束,此次巡回讲座得到了客户的强烈反响,纷纷表达了对CAMSCO热解析管的肯定。上海安谱公司也为在中国热解析领域的发展尽了一些绵薄之力感到欣慰与鼓舞。 上海安谱科学仪器有限公司 市场技术部 陈龙 于2012年9月17日报导 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 2012年美国CAMSCO热解析管讲座成功举办——北京站
    由上海安谱科学仪器有限公司联合美国CAMSCO公司共同举办的2012年美国CAMSCO热解析管北上广巡回讲座北京站于2012年9月13日成功举办。 此次北京站讲座邀请到了北京劳保所、清华大学、北京林业大学、中国科学院植物研究所、国家档案局档案科学技术研究所、中科院大气物理研究所、北京市海淀区疾病预防控制中心、北京市地质实验测试中心等20多家单位的热解析领域的专家及科研人员参加此次会议交流。 由美国CAMSCO公司首席科学家高映彤博士,重点介绍了CAMSCO热解析管在GB 50325-2010、HJT 400-2007、HJ 583-2010等标准中的应用。很多有CAMSCO热解析管使用经验的与会人员与高博士和上海安谱市场技术部人员进行了深入的交流,会场气氛热烈。从CAMSCO热解析管的历史,到全面检测解决方案,CAMSCO热解析管得到与会者的充分肯定。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 莱创应用发布LAB-ASP自动热解析管标样制备器新品
    空气中VOC分析是全球都非常关注的热点话题,目前国内外有一系列VOC检测标准,如环境标准HJ734-2014、HJ644-2013,室内空气标准GB/T18883-2002、GB50325-2010,以及车内挥发性有机物标准HJ/T400-2007等; 而标样制备是这些标准中最重要的一个步骤。ASP作为目前市场上一款热脱附管全自动标样制备装置,是莱创应用多年来与实验室一线人员深度沟通,不断实验测试,历时两年多时间研发出的,解决热脱附标样制备的自动化仪器。该设备可以解决手动配制标样造成的人为因素偏差,并节省操作时间。目前针对不同应用有如下三个型号:研究级:ASP660(应用于汽车行业、研究机构等,可以同时制备高低沸点样品)标准型:ASP570(应用于环境、职业卫生、纺织品等国家标准要求的标样制备)专用型:ASP350(建筑检测行业专用)产品特点:●可一次配置5根或6根热脱附管;●可配置梯度标样或同浓度平行样;●配备标样流程完全符合国家标准;●设计小巧,触摸屏设计,操作简单;●苯重现性RSD0.999(5点线性);●无需专业人员即可完成标样制备;●配6根标样管最快20min以内完成技术优势:●专利微流路控制,流路独立调节;●流量范围:0~500ml/min;●专利的取样设计,保证最少标样损失;●自动完成洗针、量取标液和吹扫;●只需连接氮气、可放置通风柜;●各路流量不受吸附管压差影响;●24V低压供电电路,更加安全;●配标完成后自动声音提示;详细技术参数参考样本创新点:1、对5根或6根热脱附管实现全自动标样制备,无需人工参与; 2、对标样制备实现全自动配置,整个过程无需人员参与;目前市面上仪器都是人员打标,整个过程需要人为操作; 3、因为取样是自动进样器取样,重复性和准确性更高,而人为取样相对容易产生偏差; 4、苯系物线性可以达到0.999以上,而且不受人员操作水平限制;而手动打样手操作人员熟练程度影响; 5、整个操作简单,对操作人员无化学背景的技术要求。 6、本产品目前是国内首家,国际上也是没有相关报导。 LAB-ASP自动热解析管标样制备器
  • 危险区域防爆法规与标准解析
    危险区域防爆法规与标准解析 防爆的概念随着我国工业化进程的不断发展,越来越多的电气设备被广泛应用于工业生产的各个领域,极大的促进了生产力的提高;然而在石油、化工、粮食、医药等可能出现爆炸性危险场所的行业,随着其生产规模的日益扩大,自动化程度的不断提高,如何防止事故性爆炸的发生已成为十分迫切的需求。 爆炸和爆炸三要素爆炸必须具备的三个要素: 爆炸性物质 空气(氧气)点燃源典型的爆炸性物质有:丙烷、柴油、乙烯、焦炉煤气、氢气和乙炔等典型的点燃源有:机械火花、静电、电磁辐射、超声波和热表面电火花等 爆炸性物质分类 我国将爆炸性物质分为以下三类:Ⅰ类:矿井甲烷Ⅱ类:爆炸性气体混合物Ⅲ类:可燃性粉尘/纤维其中,Ⅱ类爆炸性气体混合物依据点燃能量的不同,又可以进一步划分为:ⅡA、ⅡB和ⅡC三个等级,其点燃特性和典型气体如下: 爆炸性物质温度组别划分:根据爆炸性物质的自动点燃温度将爆炸性物质的点燃温度划分为六个组别 危险场所的区域划分 气体环境:根据爆炸性气体环境出现的频率和持续时间把危险场所分为三个区域:0区、1区和2区。粉尘环境:根据可燃性粉尘/空气混合物出现的频率和持续时间及粉尘层厚度进行划分为三个区域:20区、21区和22区。 防爆危险区域划分的主要标准依据:GB3836.14 爆炸性气体环境用电气设备 第14部分 危险场所分类GB12476.3 可燃性粉尘环境用电气设备 第3部分 存在或可能存在可燃性粉尘的场所分类 具有潜在爆炸性危险的工业领域:石油/天然气开采炼油和化工企业燃油/燃气充装站制药业气体管线和输配站分析实验室表面喷涂工业印刷工业电子器件制造业地下煤矿工业污水处理厂医院手术室等 防爆的基本方法危险区的电气设备的火花和热效应是引起火灾和爆炸的主要因素,因此防止产生火花,控制电气设备最高表面温度就成为电气设备防爆的重点。此外,控制爆炸性物质中的氧气含量,使其低于爆炸极限,也能有效规避石化罐区和管线的爆炸风险。 梅特勒托利多过程分析部提供用于危险区域的气体和液体分析设备,并获得世界等级的认可,如IECEx、ATEX和FM认证。这些认证适用于大多数国家。
  • 【会议预告】“肉及肉制品安全标准及检测技术解析”网络主题研讨会
    p & nbsp & nbsp 近年来,我国人民生活水平不断提高,肉类食品消费能力不断增加,肉类食品已经成为人民生活必需品。然而,在养殖、生产、销售环节存在诸多问题,致使我国肉类食品安全形势不容乐观,出现了诸如口蹄疫、禽流感等动物疫情和“瘦肉精”、违禁药物等养殖制作环节的问题。 /p p & nbsp & nbsp 为更好的了解肉及肉制品安全检测的相关标准及检测技术,网络讲堂将于2016年4月27日举办“肉及肉制品安全标准及检测技术解析”网络主题研讨会,欢迎大家报名参与。 br/ /p p strong 会议时间:2016年4月27日 9:30-16:10 /strong br/ /p p strong 报告日程: /strong br/ /p p strong 1)“速生鸡”中滥用药物的检测技术进展——朱坚(上海出入境检验检疫局) /strong br/ /p p & nbsp & nbsp 肯德基与麦当劳的大供货商于2012年11月底被爆出养殖的一只鸡从孵出到端上餐桌,只需要45天,是用饲料和药物喂养的。从报道上看有禁用的药物金刚烷胺,利巴韦林,地塞米松,并检出氯霉素,呋喃类等抗生素等物质检出。为此,本次讲座议题为《“速生鸡”中滥用药物的检测技术进展》。主要是围绕着滥用药物主要涉及:抗病毒、激素类药物及未知滥用药物的筛查技术。 /p p strong 2)SCIEX 181种多兽药残留的高通量筛查和定量LC-MS/MS方法——贾彦波(SCIEX) /strong br/ /p p 概要:主要介绍使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法。该方法共包含181个常见兽药,覆盖18大类兽药。前处理采用一步溶剂超声萃取法,样品的分析时间仅为13.5分钟,整个样品分析过程简单、快速、通用、灵敏,结合QTRAP仪器特有的MRM-IDA-EPI扫描功能和兽药数据库检索使筛查结果更加可信。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析。 br/ /p p strong 3)赛默飞色谱及痕量元素分析在肉类食品安全分析中的应用——崔晓亮(赛默飞) /strong br/ /p p 概要:主要介绍赛默飞色谱及痕量元素分析产品液相色谱、气相色谱、离子色谱、原子吸收等分析肉类食品中兽药、农药、重金属残留等污染物分析。 br/ /p p strong 4)安捷伦关于肉制品中药物多残留快速筛查的解决方案——郭启雷(安捷伦) /strong br/ /p p 概要:介绍安捷伦关于肉制品中药物多残留快速筛查的解决方案。首先介绍了基于安捷伦QuEChERS和最新的增强型脂质去除产品EMR-lipid的药物多残留样品前处理方案;同时介绍了All ions MS/MS技术,这是一种基于安捷伦高分辨质谱的快速筛查技术,可用来快速筛查、鉴定和定量肉制品中的药物残留。& nbsp br/ /p p strong 5)福斯分析解决方案在肉制品行业的应用——付全意(福斯华) /strong br/ /p p 概要:高速精确的常规分析是现代肉类生产的重要工具。以脂肪分析为例。产品中的脂肪含量过低,会有利润损失的风险。脂肪含量过高不但可能引发顾客不满,而且还有可能会收到监管部门的黄牌警告。但是,如果脂肪含量适中,既可以完全满足产成品的符合声明,又能实现利润最大化。 br/ /p p & nbsp & nbsp 除了进行脂肪检测之外,用户还可以快速检查蛋白质、水分、胶原蛋白、含盐量等,并通过扫描发现异物。福斯分析仪器可安装在生产线、实验室或直接联网在线,既坚固耐用又易于操作,任何人均可使用。安全可靠的福斯解决方案还可以快速准确地为您提供参考性分析结果,高效指导生产、配方和品控。 br/ /p p strong 6)肉类食品中瘦肉精(克伦特罗)的检测——牛增元(山东省检验检疫科学技术研究院) /strong br/ /p p strong style=" color: rgb(112, 48, 160) " 报名方式: /strong br/ /p p strong style=" color: rgb(112, 48, 160) " 仪器信息网注册用户均可报名。通过审核后即可参会。 /strong br/ /p p strong style=" color: rgb(112, 48, 160) " 请点击下方链接或扫描二维码进行报名! /strong br/ /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1900" _src=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1900" style=" color: rgb(112, 48, 160) " strong http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1900 /strong /a br/ /p p img src=" http://img1.17img.cn/17img/images/201603/insimg/4a71176f-e2ca-471b-9162-aad7a06e0171.jpg" title=" 报名二维码" / br/ /p
  • 2012年美国CAMSCO热解析管讲座成功举办——上海站
    2012年9月10日上海安谱科学仪器有限公司联合美国CAMSCO公司于上海科学会堂共同举办了2012年美国CAMSCO热解析管讲座上海站的讲座。本次讲座邀请到了美国CAMSCO公司副总裁、首席科学家高映彤博士来华。本次讲座旨在增进中国用户对CAMSCO热解析管的了解与认识。 本次讲座得到了相关行业用户如环境监测中心、汽车及汽车零部件厂商、第三方检测、建筑、疾控等的支持和热烈响应。 讲座期间,美国CAMSCO公司副总裁、首席科学家高映彤博士以PPT形式,对美国CAMSCO热解析管的独特设计和优越的性能进行了简要介绍,让大家对美国CAMSCO热解析管有了进一步认识。 本次上海站的讲座取得了圆满成功。美国CAMSCO热解析管赢得了在场用户的一致好评,用户纷纷表示在本次活动中收获颇丰。 上海安谱科学仪器有限公司 地址:上海市斜土路2897弄50号海文商务楼5层 [200030] 电话:86-21-54890099 传真:86-21-54248311 网址:www.anpel.com.cn 联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 关于热脱附解吸仪二级解吸“热气流瞬时解吸技术”的说明
    热脱附解吸仪是分析空气中挥发性有机物的重要前处理设备,其中二级解吸时的解吸速度和效率直接决定仪器的性能。图1 AutoTD系列自动热脱附解吸仪我公司使用了“热气流瞬时解吸技术”,在传统加热丝加热的基础上,使用了高温热气流辅助加热,在二级解吸开始的瞬间,高温热气流打开,冷阱中填料的温度瞬间达到设定值,消除了热量传递带来的影响,冷阱升温速度趋近于无穷大,样品解吸速度快,峰形好,残留少。图2 “热气流瞬时解吸技术”示意图
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 2025年版《中国药典》4019公示稿解析 | 药典玻璃制品抗热震性试验机
    2025年版《中国药典》4019公示稿解析 | 药典玻璃制品抗热震性试验机热冲击,或称热震性,是衡量玻璃容器在短时间内承受急剧温度变化能力的重要指标。这一特性在酿酒、饮料及制药等需经历高温灭菌工艺的行业中扮演着至关重要的角色。它直接关系到玻璃容器在使用过程中的安全稳定性,是确保产品质量与消费者安全不可或缺的一环。为了科学且精准评估药用玻璃容器的热冲击耐受能力,国家药典委员会发布了“4019玻璃容器热冲击及热冲击强度测定法”,该标准预计将在2025年版中国药典的药品包装材料部分中得到正式体现。这一举措旨在通过标准化流程,为行业提供科学、有效的测试指导。测试原理与操作细节在这一条件背景下,三泉中石研发的玻璃制品抗热震性试验机RCY-05符合新老标准试验要求。测试原理:该测试通过预设高温槽与低温槽之间的温差,模拟实际使用中的极端温度变化。将待测玻璃瓶在高温槽中充分加热后,迅速转移至低温槽中,随后观察并记录其在经历冷热交替后的破损情况。仪器特点:三泉中石生产的玻璃制品抗热震性试验机,专为各类玻璃瓶设计,包括但不限于啤酒瓶、酒瓶、饮料瓶、医疗输液瓶及抗生素瓶等。该仪器具备自动调节浸水深度功能,可灵活设置冷热水温度及停留时间,满足不同测试标准需求。同时,内置的漏电保护装置确保了测试过程的安全无忧。标准修订的意义与亮点修订此标准的目的在于提升对玻璃容器热冲击性能的评估精度与效率。不合格的耐热冲击性能可能引发高温处理过程中的破裂,进而污染或损坏内容物,特别是药品,其后果不堪设想。因此,建立一套科学、高效的测定方法显得尤为重要。本次修订基于2015版YBB药包材标准,并参考了GB/T 4547-2007及ISO国际标准,对测试时间进行了优化,如热水槽浸泡时间缩短至至少5分钟,冷水槽浸没时间固定为30秒,显著提升了测试效率。同时,仪器允许用户根据具体标准自由设置温度与停留时间,增强了测试的灵活性与适用性。测试方法与注意事项对于温差小于100℃的玻璃容器,推荐使用冷热水槽法进行测试。测试过程中,需确保冷水槽容量充足,至少为待测样品总体积的五倍,并配备水循环器、温度控制组件及恒温控制器,以维持水温在指定范围内。特别注意的是,尽管自来水初始温度可能符合要求,但测试过程中水温易上升,自然降温将极大延长测试周期,因此建议配备低温控制装置以确保测试准确性。 结果判定标准测试完成后,根据规定的温差条件下,若破裂样品数量低于限定值,则判定为热冲击性能合格。热冲击强度的评估则以导致50%样品破裂的温差为基准,若该温差满足标准要求,则视为合格。作为药品包装玻璃容器检测领域的专业供应商,济南三泉中石实验仪器紧跟国家标准动态,积极参与相关标准的制定工作,依托丰富的技术积累与行业经验,为标准的完善提供坚实的数据与理论支持,助力国家药品包装标准体系的持续优化与提升。
  • 两项关于环境空气 颗粒物来源解析的国家生态环境标准征求意见稿发布
    为规范环境空气颗粒物来源解析工作,生态环境部组织编制了《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则》等两项国家生态环境标准,现公开征求意见,征求意见于2024年2月29日截止。一、环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)本标准为首次发布。本标准属于环境空气颗粒物来源解析系列标准之一,规定了固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样的方法,规定了环境空气颗粒物来源解析工作中使用稀释通道采样设备采集固定污染源废气PM2.5和PM10的方法,包括采样原理及技术要求、设备与材料、点位布设、采样程序质量保证和质量控制等内容。本标准起草单位:中国环境监测总站、西安市环境监测站、上海市环境监测中心、南开大学。编制组主要成员:王超 张霖琳 宋文斌 裴冰 杨乃旺 袁懋 冯银厂等。本标准适用于在环境空气颗粒物来源解析中,为构建固定污染源排放颗粒物源谱而进行的固定污染源PM2.5和PM10采样活动。本标准不适用于工况不稳定的固定污染源采样。二、环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)本标准为首次发布。本标准规定了环境空气颗粒物来源解析中扬尘颗粒物(PM2.5和PM10)的再悬浮采样技术要求,规定了环境空气颗粒物来源解析工作中使用再悬浮采样设备采集扬尘颗粒物(PM2.5和PM10)样品的方法,包括再悬浮采样原理、采样设备、扬尘样品采集和制备、采样步骤、质量保证和质量控制等方面的技术要求。本标准属于环境空气颗粒物来源解析系列标准之一。本标准起草单位:中国环境监测总站、西安市环境监测站、陕西省环境监测中心站。编制组主要成员:张霖琳、王超、宋文斌、杨乃旺、杨震、刘焕武、张鹏、曹磊、袁懋、郭峰、冯银厂本标准适用于开展环境空气颗粒物来源解析工作中对土壤扬尘、施工扬尘、道路扬尘城市扬尘、堆场扬尘等扬尘颗粒物样品(PM2.5和PM10)的再悬浮采样。其他矿物尘(如粉煤灰、尾矿尘、除尘器下载灰等)等亦可参照执行。附:1.征求意见单位名单.pdf2.环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿).pdf3.《环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿)》编制说明.pdf4.环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿).pdf5.《环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿)》编制说明.pdf
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。
  • 事件、标准、解决方案,3分钟“镉大米”全解析
    p style=" text-indent: 2em text-align: justify " 近日,“镉大米”再度出现!湖南省益阳市委宣传部发布消息,针对“云南昭通市镇雄县销毁一批来自湖南益阳的重金属超标大米”的报道,益阳市通过调查核实相关情况,决定对7家涉事企业予以立案调查。此前,镇雄县市场监督管理局反馈,本次共销毁大米99,425公斤,涉及15起案件,其中重金属超标案(主要是镉超标)13起。 /p p style=" text-indent: 2em text-align: justify " 镉作为一种有害重金属,进入人体可引起骨痛等症状,严重时将导致“痛痛病”。 /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2002年 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,农业部稻米及制品质量监督检验测试中心对全国市场稻米进行安全性抽检,镉超标率10.3%; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2007年 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,南京农业大学研究团队,在全国六个地区市场随机采购大米样品91个,结果同样表明:10%左右的市售大米镉超标; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2008年 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 南京农大团队从全国多省农贸市场随机取样63份,实验结果证实60%以上大米镉含量超过国家限值,南方诸省大米的镉污染问题仍然异常严峻; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2013年5月 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,广州市食品药品监管局对18个批次的大米及米制品抽检后,发现有8个批次被发现镉含量超标,比例高达44.4%。而在以种植水稻为主的广西思的村,不少村民已具有疑似“骨痛病”初期症状; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2013年5月 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,湖南省攸县3家大米厂生产的大米在广州市被查出镉超标事件经媒体披露。广东佛山市顺德区通报了顺德市场大米检测结果,在销售终端发现了6家店里售卖的6批次大米镉含量超标;在生产环节,发现3家公司生产的3批次大米镉含量超标;在流通环节抽检了湖南产地的大米。在抽检的27家杂货铺、食品店、购物中心中,共有6家店里的大米镉超标。这6家店里的镉超标大米都是湖南大米。另外,在生产环节,顺德市监局还查出了一批原料来自江西、广东乐昌,而在顺德加工的镉超标大米。在6家被公布的大米生产厂家中,有3家来自湖南攸县。攸县历来是湘东粮仓,农业大县。此次事件引起轩然大波,“镉大米”从此进入公众视野; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2013年5月16日 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,广州市食品药品监督管理局在其网站公布了第一季度抽检结果。此次抽检的18批次中只有10批次合格,合格率为55.56%。不合格的8批次原因都是镉含量超标; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2013年从5月19日 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 开始,攸县已经召集农业、环保等多个政府部门组成调查组对此展开调查。3家被曝大米镉超标的生产厂家被要求停产待查; /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 2013年5月29日 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " 湖南省对曝光的生产企业首次回应了”镉大米”事件,表示对加工单位进行了专门检查,对库存粮食加强了监测,强调湖南省绝大部分粮食及加工产品是安全的,尤其是畜禽水产品、蔬菜、水果等农产品质量合格率多年稳居全国前列。 /span /p p style=" text-indent: 2em text-align: justify " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " “镉大米”事件爆发后 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai font-size: 16px " ,一度造成北方粳米销量增价格涨,东北大米“一夜爆红”,销量大增。越南米、泰国米和巴基斯坦白米的销量也相应有所增长。 /span /p p style=" text-indent: 2em text-align: justify " 近年来随着国家监管力度的加大, “优质粮食工程”和“中国好粮油”等项目的全国实施,“镉大米”已几乎被杜绝,此次“镉大米”的出现,再次引起了公众对粮食安全的重视。 /p p style=" text-indent: 2em text-align: justify " 基于此, strong 仪器信息网推出“镉大米再来袭,粮食安全解决方案”专题,以加强用户与仪器企业之间的信息交流,向用户提供粮食重金属检测的产品以及更丰富、专业的解决方案。 /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/gedami2020" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/dc8cf4d2-242f-46e9-ba26-ba512d8364c5.jpg" title=" w1920h420gedami.jpg" alt=" w1920h420gedami.jpg" / /a /p p style=" text-indent: 2em text-align: justify " strong 对于“镉大米”的检测,国家早已出台了相应的国家标准及行业标准, /strong /p p style=" text-indent: 2em text-align: justify " strong 相关标准如下: /strong /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/37229860-233e-4187-b010-bf2556d64f5d.pdf" title=" GB 2762-2017 食品安全国家标准 食品中污染物限量.pdf" GB 2762-2017 食品安全国家标准 食品中污染物限量.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/22d93d16-6513-4485-9175-efb8602eae66.pdf" title=" GB 5009.268-2016 食品安全国家标准 食品中多元素的测定.pdf" GB 5009.268-2016 食品安全国家标准 食品中多元素的测定.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/5add1e20-6502-407d-8a06-7d8bb9a30266.pdf" title=" GB5009.15-2014 食品安全国家标准 食品中镉的测定.pdf" GB5009.15-2014 食品安全国家标准 食品中镉的测定.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/e739f2fd-b6c3-4872-af30-a0a73a583555.pdf" title=" LST 6134-2018 粮油检验 粮食中镉的快速测定 稀酸提取-石墨炉原子吸收光谱法.pdf" LST 6134-2018 粮油检验 粮食中镉的快速测定 稀酸提取-石墨炉原子吸收光谱法.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/73a84364-b9ac-4ba7-9962-c75734d38723.pdf" title=" LST 6136-2019 粮油检测 大米中锰、铜、锌、铷、锶、镉、铅的测定 快速提取-电感耦合等离子体质谱法.pdf" LST 6136-2019 粮油检测 大米中锰、铜、锌、铷、锶、镉、铅的测定 快速提取-电感耦合等离子体质谱法.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/2f0e884e-debd-45bc-81d0-af49026c33e6.pdf" title=" LST 6125-2017 粮油检验 稻米中镉的快速检测 固体进样原子荧光法.pdf" LST 6125-2017 粮油检验 稻米中镉的快速检测 固体进样原子荧光法.pdf /a /p p style=" line-height: 16px text-indent: 2em text-align: justify " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202005/attachment/36a820ae-afed-49f5-b46a-459522f2ad49.pdf" title=" LST 6115-2016 粮油检验 稻谷中镉含量快速测定 X射线荧光光谱法.pdf" LST 6115-2016 粮油检验 稻谷中镉含量快速测定 X射线荧光光谱法.pdf /a /p p style=" text-indent: 2em text-align: justify " 标准中涉及的仪器包括: strong 微波消解仪(国标)、石墨炉原子吸收分光光度计(国标)/(行标)、电感耦合等离子体质谱法(ICP-MS) (国标)/(行标)、电感耦合等离子体发射光谱法(ICP-OES) (国标)、X射线荧光光谱仪(行标)、原子荧光光度计(行标)等。 /strong /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/398.html" target=" _blank" span style=" font-size: 18px color: rgb(84, 141, 212) " strong 微波消解仪(国标): /strong /span /a /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/202005/uepic/8487c9f8-d666-4c52-9440-8692868e79cb.jpg" title=" 086fcba9-8502-46b9-b0c3-f19ddf6ed855.jpg!w300x300.jpg" alt=" 086fcba9-8502-46b9-b0c3-f19ddf6ed855.jpg!w300x300.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C242338.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 上海元析 MWD-700型微波消解仪 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/6c78c296-1e39-428a-af9d-4aecf7043b5a.jpg" title=" 0ac215ad-4353-4933-bc5d-2805dded3e3f.jpg!w300x300.jpg" alt=" 0ac215ad-4353-4933-bc5d-2805dded3e3f.jpg!w300x300.jpg" / /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(84, 141, 212) " a href=" https://www.instrument.com.cn/netshow/C369467.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 安东帕Multiwave 5000高性能微波消解系统 /span /a /span /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" span style=" font-size: 18px color: rgb(84, 141, 212) " strong 石墨炉原子吸收分光光度计(国标)/(行标): /strong /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/47486bb8-b4af-4323-95a5-4a6611021cda.jpg" title=" C99485.jpg!w300x300.jpg" alt=" C99485.jpg!w300x300.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C99485.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 耶拿ZEEnit& reg 700P火焰石墨炉原子吸收光谱仪 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8224c0d3-4deb-439a-8051-d0315a498b1f.jpg" title=" 7cf50b28-9284-49d6-9f19-a7fc5ecfcc0c.jpg!w300x300.jpg" alt=" 7cf50b28-9284-49d6-9f19-a7fc5ecfcc0c.jpg!w300x300.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C97611.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 上海光谱SP-3803全自动火焰石墨炉原子吸收一体机 /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" span style=" font-size: 18px color: rgb(84, 141, 212) " strong 电感耦合等离子体质谱法(ICP-MS) (国标)/(行标): /strong /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C238824.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/2ff83fca-c5f0-4055-aa6a-fdfb5e0fd8d5.jpg" title=" 54891f11-2181-496a-9bed-b2d0c9059642.jpg!w300x300.jpg" alt=" 54891f11-2181-496a-9bed-b2d0c9059642.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C238824.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 钢研纳克 PlasmaMS 300 电感耦合等离子体质谱仪 /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C200671.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/856ab8da-50c9-4942-80eb-1b7a7e9fd59f.jpg" title=" 8c24b00b-b051-476c-8b3d-71c999f91c08.jpg!w300x300.jpg" alt=" 8c24b00b-b051-476c-8b3d-71c999f91c08.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C200671.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " Agilent 7900 电感耦合等离子体质谱仪 /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" span style=" font-size: 18px color: rgb(84, 141, 212) " strong 电感耦合等离子体发射光谱法(ICP-OES) (国标): /strong /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C189859.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/73de165b-fa98-4ced-99f5-ae4e0ffa7678.jpg" title=" 20131029121022.jpg!w300x300.jpg" alt=" 20131029121022.jpg!w300x300.jpg" / /a /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C189859.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 耶拿PQ9000 高分辨率ICP-OES /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C366594.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/39e9d173-ea6d-484d-b662-1fd20736bc66.jpg" title=" 3077d657-a331-404b-b59b-100800535b8d.jpg!w300x300.jpg" alt=" 3077d657-a331-404b-b59b-100800535b8d.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C366594.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 斯派克SPECTROGREEN电感耦合等离子体发射光谱仪 /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/75.html" target=" _blank" span style=" font-size: 18px color: rgb(84, 141, 212) " strong span style=" font-size: 18px text-indent: 2em " X射线荧光光谱仪(行标): /span /strong /span /a br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C198968.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/55e37d4f-beba-4956-9ebd-a6ebd83d58aa.jpg" title=" 147abee2-41f8-41be-9fb6-981d31d83116.jpg!w300x300.jpg" alt=" 147abee2-41f8-41be-9fb6-981d31d83116.jpg!w300x300.jpg" / /a /p p style=" text-indent: 0em text-align: center " a href=" https://www.instrument.com.cn/netshow/C198968.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 钢研纳克NX-100食品重金属检测仪 /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C113896.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/21eb5dd5-e07d-4999-9b97-24c067b332df.jpg" title=" C113896.jpg!w300x300.jpg" alt=" C113896.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C113896.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 天瑞仪器EDX1800BSX荧光光谱仪 /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/36.html" target=" _blank" span style=" color: rgb(84, 141, 212) font-size: 18px " strong span style=" color: rgb(84, 141, 212) text-indent: 2em " 原子荧光光度计(行标): /span /strong /span /a br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C276522.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/4632de7c-48f9-47b3-8094-2994cc2c1c85.jpg" title=" ecf59a99-c76a-4373-9667-78e607b584f9.jpg!w300x300.jpg" alt=" ecf59a99-c76a-4373-9667-78e607b584f9.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C276522.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 宝德仪器 BAF-4000 四道同测 原子荧光光度计 /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C367263.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/ea9a6acf-2f40-4426-bb26-347b34f7c014.jpg" title=" 5686ba06-2205-4c6e-ae70-011768663e7e.jpg!w300x300.jpg" alt=" 5686ba06-2205-4c6e-ae70-011768663e7e.jpg!w300x300.jpg" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/C367263.htm" target=" _blank" span style=" color: rgb(84, 141, 212) " 海光 V9 原子荧光光度计 /span /a /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/gedami2020" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/ed18d7d2-2671-40ad-8dbb-556f0ec3652c.jpg" title=" w1920h420gedami.jpg" alt=" w1920h420gedami.jpg" / span style=" color: rgb(84, 141, 212) " strong span style=" text-indent: 0em " (更多相关仪器点击进入“镉大米再来袭,粮食安全解决方案”专题) /span /strong /span /a /p p style=" text-indent: 2em text-align: justify " & nbsp /p p style=" text-indent: 2em text-align: justify " span style=" font-size: 18px " strong 解决方案: /strong /span /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/netshow/SH100191/s927213.htm" target=" _blank" span style=" font-size: 16px color: rgb(84, 141, 212) " 德国耶拿: span style=" font-size: 16px background-color: rgb(255, 255, 255) font-family: & quot Microsoft YaHei& quot " 原子吸收光谱法测定大米中的Cd和Cu /span /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-912669.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 海能:稻米中镉检测产品配置单(微波消解仪) /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-240518.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 东西分析:大米中铅、镉、汞检测产品配置单 /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-830564.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 南京科捷:大米中镉含量检测产品配置单(原子吸收光谱) /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-822135.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 大米中镉元素含量检测产品配置单(原子吸收光谱) /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-903259.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 吉天仪器:稻米中镉含量检测产品配置单(原子荧光光谱) /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/application/Solution-234900.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 帕纳科:大米中镉检测产品配置单 /span /a /p p style=" text-indent: 2em text-align: justify " br/ /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/zt/gedami2020" target=" _blank" style=" text-align: center white-space: normal " img src=" https://img1.17img.cn/17img/images/202005/uepic/ed18d7d2-2671-40ad-8dbb-556f0ec3652c.jpg" title=" w1920h420gedami.jpg" alt=" w1920h420gedami.jpg" style=" max-width: 100% max-height: 100% " / span style=" color: rgb(84, 141, 212) " strong span style=" text-indent: 0em " (更多相关仪器点击进入“镉大米再来袭,粮食安全解决方案”专题) /span /strong /span /a /p
  • 工信部新批425项标准 110项与仪器分析相关
    近日工信部最新批准了425项行业标准,涉及机械、化工、冶金、建材、有色金属、石化、稀土、轻工等行业,其中110项行业标准明确与ICP-MS、气相色谱仪、原子吸收光谱仪、核磁共振波谱仪、试验机、表界面测试仪器、热分析仪器等分析测试方法相关。并且该批标准将于明年1月1日实施。110项与仪器分析相关的行业标准标准编号 标准名称 标准主要内容 JB/T 12726-2016无损检测仪器 试样 通用技术条件本标准规定了无损检测仪器用试样的通用技术条件,包括试样原材料的选用、人工缺陷类型、表面粗糙度及试样加工方法等。 本标准适用于无损检测仪器用试样。JB/T 12727.3-2016无损检测仪器 试样 第3部分:电磁(涡流)检测试样本部分规定了涡流检测试样的类型、尺寸、技术要求、试验方法、标志、包装、运输和贮存等内容。 本部分适用于校验涡流检测系统试样的制作,其它探伤用途可参考本部分设定灵敏度。JB/T12727.4-2016无损检测仪器试样第4部分:磁粉检测用试样本部分规定了磁粉检测用试样的类型、尺寸、技术要求、试验方法、标志、包装、运输和贮存等内容。 本部分适用于校验磁粉检测系统试样的制作,试样用于评价磁粉检测系统的裂纹显示性能。JB/T12727.5-2016无损检测仪器试样第5部分:渗透检测试样本部分规定了渗透检测试样的类型、尺寸、技术要求、试验方法和标志、包装、运输、贮存等内容。 本部分适用于渗透检测试样的制作。HG/T4994-2016休闲胶鞋本标准规定了休闲胶鞋的要求、试验方法、检验规则以及标志、包装、运输和贮存。 本标准适用于以橡胶为鞋底主材料,用热硫化方法生产的供日常生活穿用的休闲鞋。HG/T4990-2016胶鞋扭转性能试验方法本标准规定了胶鞋扭转性能的试验方法。 本标准适用于胶鞋扭转性能的测试,其他鞋类的扭转性能可参照使用。HG/T4991-2016胶鞋漆膜伸长率试验方法本标准规定了胶面胶鞋(靴)鞋面漆膜伸长率的试验方法。 本标准适用于胶面胶鞋(靴)鞋面漆膜伸长率的测定。HG/T4993-2016鞋用微孔材料回弹性试验方法本标准规定了鞋用微孔材料回弹性的试验方法。 本标准适用于鞋用微孔材料的测试。HG/T4997-2016鞋眼拔出力试验方法本标准规定了鞋眼从附着材料拔出力的试验方法,本标准规定了A法和B法两种试验方法,A法为圆锥棒顶出法,B法为鞋带拉出法。 本标准适用于一般穿用鞋的鞋眼拔出力(特殊鞋眼或鞋眼饰件可参照使用)。HG/T5013-2016废弃化学品中铜的测定本标准规定了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定废弃化学品中铜含量的原理、试剂、仪器、样品处理、分析步骤和结果计算。 本标准适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中铜含量的测定。本方法检出限6.9μ g/L,检测范围5μ g/mL~500μ g/mL。HG/T5014-2016废弃化学品中铬的测定本标准规定了废弃化学品中总铬的测定、六价铬的测定。 本标准适用于废弃化学品中铬含量的测定。HG/T5016-2016含氟废气中氟含量的测定方法本标准规定了含氟废气中氟含量测定的术语和定义、警告、一般规定、方法提要、试剂和材料、仪器设备、试样的采集和制备、分析步骤及结果计算。 本标准适用于磷肥生产过程中产生的含氟废气中无机氟含量的测定(离子选择性电极法)。当采样体积为150L时,检出限为0.05mg/m3;测定范围为0.5mg/m3~500mg/m3。HG/T5017-2016化学镀铜废液中乙二胺四乙酸二钠(EDTA)和铜含量测定方法本标准规定了容量法测定化学镀铜废液中乙二胺四乙酸二钠(EDTA)含量和铜含量的原理、试剂、分析步骤和结果计算。 本标准适用于化学镀铜废液中乙二胺四乙酸二钠(EDTA)含量和铜含量的测定,测定范围为乙二胺四乙酸二钠(EDTA)含量0.1g/L~12.0g/L,铜含量0.05g/L~3.0g/L。HG/T5018-2016含铜蚀刻废液主要成分和微量金属元素分析方法本标准规定了含铜蚀刻废液主要成分和微量金属元素分析方法的酸度、碱度(游离氨)、总氨、铵离子、氯离子、铜的测定,以及镉、铬、铁、锰、镍、铅、锌、砷等微量元素的测定。 本标准适用于含铜蚀刻废液的分析检测。YB/T4547-2016焦炭在线自动采样、制样、粒度分析及机械强度测定技术规范本标准规定了焦炭机械采样、制样、在线粒度分析及机械强度测定的技术要求。 本标准适用于干熄焦生产线,湿熄焦生产线可参照使用。对于焦炭机械采制样、粒度分析及机械强度测定的集成系统只要符合本规范所述的基本原则,其系统的具体构成、工艺流程、采用形式可以多种多样。YB/T5082-2016粗酚灼烧残渣的测定方法本标准规定了重量法测定灼烧残渣量。本标准适用于从煤焦油、含酚污水制取的粗酚灼烧残渣的测定。YB/T5154-2016工业甲基萘甲基萘和萘含量的测定气相色谱法本标准规定了气相色谱法测定甲基萘和萘含量。 本标准适用于煤焦油经分馏所得的工业甲基萘中甲基萘和萘含量的测定。YB/T5156-2016高纯石墨制品中硅的测定硅-钼蓝分光光度法本标准规定了硅-钼蓝分光光度法测定高纯石墨制品中硅含量的原理、试剂及材料、仪器和设备、试样制取、校准曲线、分析步骤、结果计算、精密度及试验报告。 本标准适用于高纯石墨制品中硅含量的测定,测定范围(质量分数)≤ 0.01%。YB/T5157-2016高纯石墨制品中铁的测定邻二氮菲分光光度法本标准规定了邻二氮菲分光光度法测定高纯石墨制品中铁含量的方法原理、试剂及材料、仪器和设备、试样制取、校准曲线、分析步骤、结果计算、精密度及试验报告。 本标准适用于高纯石墨制品中铁含量的测定,测定范围(质量分数)≤ 0.01%。YB/T5171-2016木材防腐油试验方法40℃结晶物测定方法本标准规定了木材防腐油40℃结晶物测定方法的原理、仪器、试样的处理、试验步骤和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油40℃结晶物的测定。YB/T5172-2016木材防腐油试验方法闪点测定方法本标准规定了木材防腐油闪点测定方法的试验原理、试剂、仪器和设备、准备工作、试验步骤、温度补正和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油闪点的测定。YB/T5173-2016木材防腐油试验方法流动性测定方法本标准规定了木材防腐油流动性测定方法的方法要点、仪器和设备、试剂、试样的处理、试验步骤和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油流动性的测定。YB/T5284-2016工业喹啉折射率测定方法本标准规定了工业喹啉折射率测定的仪器和设备、试剂和材料、试样脱水、试验步骤、结果计算和精密度。 本标准适用于从炼焦生产中回收的工业喹啉折射率的测定方法。JC/T2373-2016玻璃管材弹性模量和弯曲强度试验方法缺口环法本标准规定了采用缺口环法测试玻璃管材弹性模量和弯曲强度的术语和定义、符号及其物理意义、方法、设备、试样、试验步骤、计算公式和试验报告。 本标准适用于内外径比值在0.8-1范围内的玻璃和微晶玻璃管材弹性模量和弯曲强度的测试。YS/T1115.1-2016铜原矿和尾矿化学分析方法第1部分:铜量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中铜量的测定方法。 本部分适用于铜原矿和尾矿中铜量的测定。测定范围:0.010%~2.50%。YS/T1115.2-2016铜原矿和尾矿化学分析方法第2部分:铅量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中铅量的测定方法。 本部分适用于铜原矿和尾矿中铅量的测定。测定范围:0.050%~1.00%。YS/T1115.3-2016铜原矿和尾矿化学分析方法第3部分:锌量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中锌量的测定方法。 本部分适用于铜原矿和尾矿中锌量的测定。测定范围:0.0050%~1.00%。YS/T1115.4-2016铜原矿和尾矿化学分析方法第4部分:镍量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镍量的测定方法。 本部分适用于铜原矿和尾矿中镍量的测定。测定范围:0.0050%~0.050%。YS/T1115.5-2016铜原矿和尾矿化学分析方法第5部分:钴量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中钴量的测定方法。 本部分适用于铜原矿和尾矿中钴量的测定。测定范围:0.0050%~0.050%。YS/T1115.6-2016铜原矿和尾矿化学分析方法第6部分:镉量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镉量的测定方法。 本部分适用于铜原矿和尾矿中镉量的测定。测定范围:0.0005%~0.010%。YS/T1115.7-2016铜原矿和尾矿化学分析方法第7部分:锰量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中锰量的测定方法。 本部分适用于铜原矿和尾矿中锰量的测定。测定范围:0.0050%~0.50%。YS/T1115.8-2016铜原矿和尾矿化学分析方法第8部分:镁量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镁量的测定方法。 本部分适用于铜原矿和尾矿中镁量的测定。测定范围:0.010%~2.00%。YS/T1115.9-2016铜原矿和尾矿化学分析方法第9部分:硫量的测定高频红外吸收法和燃烧-碘酸钾滴定法本部分规定了铜原矿和尾矿中硫量的测定方法。 本部分适用于铜原矿和尾矿中硫量的测定,测定范围:高频红外吸收法0.10%~18.0%;燃烧-碘酸钾滴定法0.10%~40.0%。YS/T1115.10-2016铜原矿和尾矿化学分析方法第10部分:磷量的测定钼蓝分光光度法本部分规定了铜原矿和尾矿中磷量的测定方法。 本部分适用于铜原矿和尾矿中磷量的测定,测定范围:0.010%~0.10%。YS/T1115.11-2016铜原矿和尾矿化学分析方法第11部分:钼量的测定硫氰酸盐分光光度法本部分规定了铜原矿和尾矿中钼量的测定方法。 本部分适用于铜原矿和尾矿中钼量的测定。测定范围:0.0030%~0.040%。YS/T1115.12-2016铜原矿和尾矿化学分析方法第12部分:铜、铅、锌、镍、钴、镉、镁和锰量的测定电感耦合等离子体原子发射光谱法本部分规定了铜原矿和尾矿中铜、铅、锌、镍、钴、镉、镁和锰量的测定方法。 本部分适用于铜原矿和尾矿中铜、铅、锌、镍、钴、镉、镁和锰量的测定。YS/T1115.13-2016铜原矿和尾矿化学分析方法第13部分:氟量的测定离子选择电极法和离子色谱法本部分规定了铜原矿和尾矿中氟量的测定方法。 本部分适用于铜原矿和尾矿中氟量的测定。测定范围:离子选择电极法0.025%~1.00%,离子色谱法0.010%~1.00%。YS/T1115.14-2016铜原矿和尾矿化学分析方法第14部分:砷量的测定氢化物发生原子荧光光谱法和溴酸钾滴定法本部分规定了铜原矿和尾矿中砷量的测定方法。 本部分适用于铜原矿和尾矿中砷量的测定。测定范围:氢化物发生原子荧光光谱法0.0020%~0.20%;溴酸钾滴定法>0.20%~1.00%。YS/T1116.1-2016锡阳极泥化学分析方法第1部分:锡量的测定碘酸钾滴定法本部分规定了锡阳极泥中锡量的测定方法。 本部分适用于锡阳极泥中锡量的测定。测定范围:20.00%~50.00%。YS/T1116.2-2016锡阳极泥化学分析方法第2部分:铋量的测定Na2EDTA滴定法本部分规定了锡阳极泥中铋量的测定方法。 本部分适用于锡阳极泥中铋量的测定。测定范围:5.00%~20.00%。YS/T1116.3-2016锡阳极泥化学分析方法第3部分:铜量、铅量和铋量的测定火焰原子吸收光谱法本部分规定了锡阳极泥中铜量、铅量和铋量的测定方法。 本部分适用于锡阳极泥中铜量、铅量和铋量的测定。YS/T1116.4-2016锡阳极泥化学分析方法第4部分:砷量的测定碘滴定法本部分规定了锡阳极泥中砷量的测定方法。 本部分适用于锡阳极泥中砷量的测定。测定范围:0.10%~8.00%。YS/T1116.5-2016锡阳极泥化学分析方法第5部分:铟量的测定火焰原子吸收光谱法本部分规定了锡阳极泥中铟量的测定方法。 本部分适用于锡阳极泥中铟量的测定。测定范围:0.0500%~0.600%。YS/T1116.6-2016锡阳极泥化学分析方法第6部分:金量和银量的测定火试金法本部分规定了锡阳极泥中金量和银量的测定方法。 本部分适用于锡阳极泥中金量和银量的测定。测定范围:金10.0g/t~500.0g/t;银1500g/t~100000g/t。YS/T1116.7-2016锡阳极泥化学分析方法第7部分:锑量的测定硫酸铈滴定法本部分规定了锡阳极泥中锑量的测定方法。 本部分适用于锡阳极泥中锑量的测定。测定范围:3.00%~20.00%。YS/T716.7-2016黑铜化学分析方法第7部分:铂量和钯量的测定火试金富集-电感耦合等离子体原子发射光谱法和火焰原子吸收光谱法本部分规定了黑铜中铂量和钯量的测定方法。 本部分适用于黑铜中铂量和钯量的测定。测定范围:方法1:铂2.0g/t~40.0g/t;钯2.0g/t~180.0g/t。方法2:钯5.0g/t~180.0g/t。 本部分方法1为仲裁方法。YS/T745.2-2016铜阳极泥化学分析方法第2部分:金量和银量的测定火试金重量法本部分规定了铜阳极泥中金量和银量的测定方法。 本部分适用于铜阳极泥中金量和银量的测定。测定范围:金0.100kg/t~20.000kg/t,银20.00kg/t~300.00kg/t。 当试样中含有影响此方法测量准确性的干扰元素(如铑、铱、锇、钌等),本部分将不适用。YS/T341.4-2016镍精矿化学分析方法第4部分:锌量的测定火焰原子吸收光谱法本部分规定了镍精矿中锌量的测定方法。 本部分适用于镍精矿中锌量的测定。测定范围:0.0050%~1.00%。YS/T461.12-2016混合铅锌精矿化学分析方法第12部分:铊量的测定电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法本部分规定了混合铅锌精矿中铊量的测定方法。 本部分适用于混合铅锌精矿中铊量的测定。方法1测定范围:0.000050%~0.010%;方法2测定范围:0.0050%~0.10%。本部分范围交叉部分方法1为仲裁方法。YS/T1050.10-2016铅锑精矿化学分析方法第10部分铊量的测定电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法本部分规定了铅锑精矿中铊量的测定方法。 本部分适用于铅锑精矿中铊量测定,测定范围:方法一:0.0001%~0.010%,方法二:>0.010%~0.10%。YS/T1119-2016海绵钯化学分析方法镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定电感耦合等离子体质谱法本标准规定了海绵钯中镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定方法。 本标准适用于海绵钯中镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定。YS/T1120.1-2016金锡合金化学分析方法第1部分:金量的测定火试金重量法本部分规定了金锡合金中金量的测定方法。 本部分适用于金锡合金中金含量的测定。测定范围:5%~85%。YS/T1120.2-2016金锡合金化学分析方法第2部分:锡量的测定氟化物析出EDTA络合滴定法本部分规定了金锡合金中锡量的测定方法。 本部分适用于金锡合金中锡量的测定。测定范围:15%~95%。YS/T1120.3-2016金锡合金化学分析方法第3部分:铁、铜、银、铅、钯、镉、锌量的测定电感耦合等离子体原子发射光谱法本部分规定了金锡合金中铁、铜、银、铅、钯、镉、锌量的测定方法。 本部分适用于金锡合金中铁、铜、银、铅、钯、镉、锌量的测定。YS/T1121.1-2016氯化钯化学分析方法第1部分:钯量的测定丁二酮肟重量法本部分规定了氯化钯中钯量的测定方法。 本部分适用于氯化钯中钯量的测定,测定范围59.0%~60.5%。YS/T1121.2-2016氯化钯化学分析方法第2部分:镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定电感耦合等离子体质谱法本部分规定了氯化钯中镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定方法。 本部分适用于氯化钯中镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定。YS/T1122.1-2016氯铂酸化学分析方法第1部分:铂量的测定氯化铵沉淀重量法本部分规定了氯铂酸中铂量的测定方法。 本部分适用于氯铂酸中铂量的测定,测定范围37.0%~40.5%。YS/T1122.2-2016氯铂酸化学分析方法第2部分:钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量的测定电感耦合等离子体质谱法本部分规定了氯铂酸中钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量的测定方法。 本部分适用于氯铂酸中钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量测定。YS/T1130-2016烧结金属多孔材料焊接裂纹检测方法本标准规定了烧结金属多孔材料焊接裂纹的检测方法。 本标准适用于通过轧制-烧结、粉末压制-烧结法生产的用于过滤与分离的烧结金属多孔材料焊接裂纹的检测。YS/T1131-2016烧结金属多孔材料抗弯性能的测定本标准规定了烧结金属多孔材料抗弯性能的检测方法。 本标准适用于粉末冶金方法生产的片状或板状烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适用于烧结金属多孔管材和致密金属材料。YS/T1132-2016烧结金属多孔材料压缩性能的测定本标准规定了烧结金属多孔材料压缩性能的测定方法。 本标准适用于粉末冶金方法生产的烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适用于致密金属材料。YS/T1133-2016烧结金属多孔材料拉伸性能的测定本标准规定了烧结金属多孔材料拉伸性能的检测方法。 本标准适用于粉末冶金方法生产的烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适宜致密金属材料。YS/T1147-2016超弹性镍钛合金拉伸测试方法本标准规定了超弹性镍钛合金拉伸测试方法。 本标准适用于超弹性镍钛合金拉伸上平台强度、下平台强度、残余应变、抗拉强度和均匀应变等指标的表征和测试。YS/T1148-2016钨基高比重合金本标准规定了钨基高比重合金的要求、试验方法、检验规则、标志、包装、运输、贮存、质量证明书和合同(或订货单)内容。 本标准适用于以粉末冶金方法生产的非形变态钨基高比重合金。产品可应用于射线屏蔽防护、配重、惯性元件、模具、砧块等。YS/T1149.1-2016锌精矿焙砂化学分析方法第1部分:锌量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中锌量的测定方法。 本部分适用于锌精矿焙砂中锌量的测定。测定范围:30.00%~70.00%。YS/T1149.2-2016锌精矿焙砂化学分析方法第2部分:酸溶锌量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中酸溶锌量的测定方法。 本部分适用于锌精矿焙砂中酸溶锌量的测定。测定范围:20.00%~61.00%。当Co≥ 0.05%、Ni≥ 0.4%时,本方法不适用。YS/T1149.3-2016锌精矿焙砂化学分析方法第3部分:硫量的测定燃烧中和滴定法本部分规定了锌精矿焙砂中硫量的测定方法。 本部分适用于氟含量0.1%的锌精矿焙砂中硫量的测定。测定范围:1.00%~5.00%。YS/T1149.4-2016锌精矿焙砂化学分析方法第4部分:可溶硫量的测定硫酸钡重量法本部分规定了锌精矿焙砂中可溶硫量的测定方法。 本部分适用于锌精矿焙砂可溶硫量的测定。测定范围0.10%~5.00%。YS/T1149.5-2016锌精矿焙砂化学分析方法第5部分:铁量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中铁量的测定方法。 本部分适用于锡量0.40%的锌精矿焙砂中铁量的测定。测定范围:2.00%~20.00%。YS/T1149.6-2016锌精矿焙砂化学分析方法第6部分:酸溶铁量的测定火焰原子吸收光谱法和Na2EDTA滴定法本部分规定了锌精矿焙砂中酸溶铁量的测定方法。 本部分适用于锌精矿焙砂中酸溶铁量的测定。方法1:测定范围0.50%~3.00%。方法2:测定范围≥ 3.00%~6.00%。YS/T1149.7-2016锌精矿焙砂化学分析方法第7部分:二氧化硅量的测定钼蓝分光光度法本部分规定了锌精矿焙砂中二氧化硅量的测定方法。 本部分适用于锌精矿焙砂中二氧化硅量的测定。测定范围在0.50%~4.00%。YS/T1149.8-2016锌精矿焙砂化学分析方法第8部分:酸溶二氧化硅量的测定钼蓝分光光度法本部分规定了锌精矿焙砂中酸溶二氧化硅量的测定方法。 本部分适用于锌精矿焙砂中酸溶二氧化硅量的测定。测定范围0.20%~4.00%。YS/T1157.1-2016粗氢氧化钴化学分析方法第1部分:钴量的测定电位滴定法本部分规定了粗氢氧化钴中钴量的测定方法。 本部分适用于粗氢氧化钴中钴量的测定。测定范围:20.00%~55.00%。YS/T1157.2-2016粗氢氧化钴化学分析方法第2部分:镍、铜、四乙酸盐和羧甲基纤维钠不干扰。 注2:存在非离子表面活性剂时,需视各特殊情况估计其影响。 注3:洗涤剂配方中的典型无机组分,如氯化钠、硫酸钠、硼酸钠、三聚磷酸钠、过硼酸钠、硅酸钠等不干扰,但过硼酸钠以外的漂白剂在分析前应予破坏,且样品应完全溶于水。
  • 深度解析“中国临床肿瘤类器官标准化建设” ——国家癌症中心/中国医学科学院肿瘤医院马飞教授
    3月31日,在2024肿瘤健康管理大会暨分子肿瘤学全国重点实验室年会上,备受瞩目的《中国临床肿瘤类器官标准化实验室及样本库建设》专场活动顺利召开,继1月6日全国项目启动会召开后,本次大会上又重磅发布了《中国临床肿瘤类器官标准操作及样本管理质控标准及推荐建设方案》以及《中国临床肿瘤类器官标准化操作及应用能力提升项目》两项重要内容,为中国临床肿瘤类器官标准化建设推进迈出重要一步。为此,特别邀请国家癌症中心/中国医学科学院肿瘤医院马飞教授就中国临床肿瘤类器官的应用现状及该项目对推动中国临床肿瘤精准诊疗发展的重大意义进行权威解析。Q1:近年来,3D类器官技术如热浪席卷科研界,肿瘤类器官被誉为“试药替身” ,请您谈谈肿瘤类器官在优化肿瘤临床生态的应用前景及价值。马飞教授:当前肿瘤研究领域面临两大共性问题——异质性及肿瘤进化,相关临床诊疗及科研活动主要围绕这两方面开展。类器官是利用组织样本或多能干细胞进行体外3D培养而形成的具有一定空间结构的组织类似物,能够在结构和功能上模拟真实器官,具有组织器官功能,并可以稳定传代,因此也称为“微型器官”。肿瘤类器官是将类器官和肿瘤结合起来的概念,由患者的肿瘤样本直接构建的肿瘤类器官,高度还原人源肿瘤的组织结构和基因谱系,可以保持肿瘤的异质性。肿瘤类器官为肿瘤研究和体外高通量筛选药物提供了比传统2D细胞系或小鼠模型更有效的检测模型,同时其精准度、周期、准确率以及成本等,相较于传统NGS等间接手段,也具有巨大优势。目前,肿瘤类器官技术在肿瘤精准治疗、基础医学研究、新药开发三个应用领域价值越来越凸显,例如更快更精准地为肿瘤患者制定治疗方案,同时对临床用药方案进行疗效评估;构建更精准地肿瘤疾病模型;创造更高效的新药研发的实验工具,而这三方面的应用正是精准医学时代最重要的三个价值领域。当然,随着生物技术的快速发展,肿瘤类器官技术不仅可以作为当前循证医学的重要手段补充,甚至在药物经济学、临床和科研应用转化等方面有着无可替代的优势。Q2:目前,与国际相比,中国类器官技术正处于什么阶段?主要挑战是什么?马飞教授:目前,我国类器官培养技术正处于技术爆发和科研成果井喷的阶段。从发表的论文数量来看,2022年我国发表文章占比达到了14%,仅次于美国,处于全球领先水平。再加之,近年来国家政策的大力支持,为我国肿瘤类器官事业的发展吹响了时代的号角。2021年,类器官技术纳入首批“十四五”重点专项加强重大难治性疾病类器官模型研究。国务院发布《医疗器械管理条例》明确医疗机构可自行研制、使用有临床需要的检测项目(LDT模式)。2023年国家药监局药品审批中心发布《人源干细胞产品非临床研究技术指导原则(征求意见稿)》明确类器官模型可作为非临床研究替代性模型应用。尽管类器官是一种革命性的体外疾病模型,在干细胞与发育、再生医学、肿瘤研究、药物开发和精准医疗等领域的应用发展迅猛,但由于国内对肿瘤类器官构建、鉴定、保存及应用尚无质量控制标准,同时也缺乏针对肿瘤类器官技术标准统一的操作流程及平台建设方案,很大程度上间接制约了肿瘤类器官技术转化及产业化进程。回归到临床和科研转化上,无论是在临床常规药敏检测服务还是临床科研(尤其是多中心临床科研研究)的开展过程中,临床肿瘤类器官(Clinical Patient-derived organoids,CPDOs) 培养的稳定性、培养周期、通量、成本等方面的要求均远高于常规实验室基础研究所需的培养要求,堪比军工级别和民用级别的差别。因此,临床肿瘤类器官(CPDOs)技术要想实现普及和更充分的价值转化,标准化建设势在必行。基于此,今年1月6日,我们在北京正式启动了《中国临床肿瘤类器官标准化实验室及样本库建设项目》;同时在本次肿瘤健康管理大会上,隆重发布了全国首个通用的临床肿瘤类器官标准化实验室及样本库建设方案及质控标准,这将为肿瘤类器官技术的临床规模化普及应用提供引领性指导,开启我国临床肿瘤类器官(CPDOs)标准化、规范化、规模化新纪元。Q3:如您前面提及,我们也观察到从1月6日《中国临床肿瘤类器官标准化实验室及样本库建设项目》全国启动以来,在全国肿瘤临床诊疗及科研领域反响巨大,能否请您再详细介绍下该项目阶段性目标和主要内容?马飞教授:《中国临床标准化实验室及样本库建设项目》是由国家癌症中心分子肿瘤学全国重点实验室、博鳌肿瘤创新研究院联合开展,该项目本着同质互助原则,汲取当前国内外最新前沿类器官技术,竭力帮助所有项目参与单位熟练掌握相关技术操作及科研能力。在国家癌症中心的牵头指导下,分子肿瘤学全国重点实验室及博鳌肿瘤创新研究院联合发起,邀请国内各省市权威医疗中心临床、科研专家团队参与,同时得到包括嘉士腾等企业单位支持,从理论基础到技术应用全流程帮助参与中心提升相关技术能力。该项目主要目标是统一技术标准、建设规范平台、凝聚行业共识和实现价值转化。第一阶段目标是通过1年左右建设时间多维度实现:1)建立一组科学、规范的符合项目专家委员会认证的肿瘤类器官标准实验室及样本库建设标准(人员技能、设备配置、流程规范、质控体系);2)制定一系列关于类器官技术开展及应用转化的专家共识、质控标准、指导手册、培训及验收体系;3)建设若干国际水准的高素质类器官实验室科研团队;4)建设若干国家或区域级肿瘤类器官标准样本库。同时,在全国率先建立至少15家以上符合项目建设标准的肿瘤类器官标准实验室和样本库,包括京津冀、长三角、川渝、华中华南等多个区域的权威医疗中心,同心协力,带动区域普及。此外,2024年项目关键文件成果产出,例如《中国临床肿瘤类器官标准实验室及样本库建设方案》操作手册(2024第一版)、《恶性肿瘤类器官标准化建设与应用》专著(清华大学出版社)、《中国临床肿瘤类器官标准化操作及样本管理质控标准》(2024第一版),以统一标准促进技术广泛普及。在完成关键的第一阶段建设后,在2025年将会进入全面建设期,届时会进行全国第二批更大规模的标准化中心建设,实现该技术在临床的全面普及。当然,我们期待全国更多优秀中心和科研团队能从现在开始就积极报名参与第一阶段的技术引进和平台建设,共同推动肿瘤类器官技术标准化和规范化建设。Q4:近年来,国内涉足推广类器官技术的企业不断增加,但当前国内仍缺乏相对统一的技术及质控标准,培养体系及试剂耗材繁杂,不同体系及试剂可靠性、稳定性参差不齐。对此,在临床肿瘤类器官(CPDOs)类器官标准化培训上是否有一些探索?马飞教授:随着我国越来越多临床科研转化成果的产出,临床及科研人员对类器官技术的关注愈发强烈,国内临床医疗机构对临床肿瘤类器官(CPDOs)技术的学习需求日趋增加。基于“中国临床肿瘤类器官标准化实验室和样本库建设项目”,建立了“临床肿瘤类器官标准化实验室建立和应用的培训体系”。通过线上线下一体化模式,开展“临床肿瘤类器官(CPDOs)类器官标准化培训”,内容包括全国直播课、线下实操培训、线下科研培训等,以促进广大临床和科研团队了解肿瘤类器官的原理和方法,掌握临床主流癌种类器官的标准化培养操作、样本管理及相关科研开展能力,进而推动国家级标准化肿瘤类器官样本库建设、临床精准化诊疗应用及相关技术科研成果转化。最后,结合本次中国肿瘤健康管理大会上发布的《中国临床肿瘤类器官标准化操作及样本库管理质控标准及推荐建设方案》,计划于在4月6日(周六),由博鳌肿瘤创新研究院牵头,在20余家医学媒体及相关单位的支持下,以线上形式,召开《中国临床肿瘤类器官标准化操作及应用能力提升项目》暨中国临床肿瘤类器官标准化操作技术引进及科研培训合作沟通交流会。在此也邀请国内所有目前正在开展细胞生物相关科研技术活动的实验室机构、团队、专家同道们共同参与本次线上沟通会及后续相关技术引进与科研培训合作开展,共同推动我国临床肿瘤类器官(CPDOs)技术标准化、规范化发展,共同迎接中国肿瘤精准诊疗拐点的到来。2024年4月6日(星期六)上午9:00云端相见,不见不散!
  • Nature亮点 | Phenoptics™ 组织微环境分析方案深度解析肿瘤免疫细胞分型
    最近数十年以来肿瘤的免疫治疗相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点抑制剂的治疗方案表现尤为突出。但是即便如此,肿瘤的免疫治疗领域仍然面临巨大的挑战,比如治疗效果的不确定性、患者反应的不可预估性、免疫治疗耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的精准有效治疗。Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫治疗障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及治疗耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤精准治疗的基础,也是在精准医学时代背景下亟需解决的难题。独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记、Vectra多光谱成像和inForm智能组织定量分析技术,可以实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。2019年6月26日,Nature杂志在线发表了巴黎大学Jér?me Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发生发展进行调控和精准治疗,为提高肿瘤免疫治疗的有效率提供了新的技术思路和方法。Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0该研究工作的领导者Jér?me Galon教授利用PhenopticsTM组织微环境分析方案进行肿瘤免疫治疗研究和新的免疫治疗组合策略方案开发。附图来自Jér?me Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和精准治疗提供重要的参考依据。来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和精准治疗提供可靠依据。Phenoptics™ 组织微环境分析方案—Opal 9色荧光标记示例图关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 解析VOCs走航标准,看双通道走航质谱如何实现“快速+准确”兼得
    2021年6月1日,由上海市环境监测中心、江苏省环境监测中心、浙江省生态环境监测中心、浙江省生态环境科学设计研究院等单位联合起草的首个走航标准《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》(DB31/T 310002-2021、DB32/T 310002-2021、DB33/T 310002-2021)开始正式执行。谱育科技有幸参与了标准的验证工作。该标准规定了挥发性有机物走航监测的方法概述、试剂或材料、仪器和设备、监测方法、结果计算与表示、质量保证与质量控制及安全防护要求。标准内容解读 01. 走航监测定义●图片来源:标准第1页标准中首次明确了走航监测的定义,即为“利用车载式快速监测设备在行进中连续自动监测,结合定点监测,对污染物进行定性和定量分析,并基于地理位置信息显示沿行进路线污染物空间连续分布”。从标准中“走航监测定义”可以看出:走航监测不只是实现对污染的 “快速发现”,还要结合定点监测实现对污染物的“定性定量”;走航监测既要满足“快”的要求,也要满足“准“的要求,这样其结果才能为走航溯源分析及排污管控提供有效的数据支撑。 02. 走航监测设备●图片来源:标准第4页标准中分8.1.1和8.1.2两节对走航监测设备的“离子源”做了说明,单光子电离(SPI)、质子转移反应(PTR)、电子轰击电离(EI)都可以作为走航监测的离子源;不同离子源既可以通过“分子离子、准分子离子的质荷比“定性,也可以通过“特征离子和丰度比“定性。标准中也提出了气相色谱-质谱联用模式和直接进样质谱法模式共用,即双通道走航质谱模式。该类走航质谱不仅有直接进样质谱通道,还有气相色谱质谱联用通道(GC-MS);双通道走航质谱不仅可以获取“离子信息“,还可以获取“保留时间信息“,同时还有“标准谱库检索”作为支撑,可以为客户提供更全面,更可靠的走航监测方案。 03. 走航监测溯源●图片来源:标准第4页走航监测溯源一直是环境管理部门重点关注的问题,此次标准对于溯源分析也给出了明确的实施方法,“对污染点位进行复测,可利用其他挥发性有机物监测设备进行现场测定或手工采样带回实验室分析,具体方法应满足相关的国家、地方或行业标准。”该标准强调了要对污染点位进行复测,同时方法应满足相关的标准。对于搭载了双通道走航质谱的系统来讲,GC-MS通道可以作为“满足标准要求”的监测设备支持在现场直接测定,无需额外的“挥发性有机物监测设备”或“手工采样带回实验室”,复测工作环节快速、高效。双通道走航质谱完美契合标准根据标准要求,走航监测在实际应用中既要能快速污染筛查,又要能现场准确定性定量;由于“样品不经过色谱柱的监测设备”受干扰的因素较多, “快速”和“准确”同时达标的要求很难实现,鱼和熊掌不可兼得。谱育科技走航监测车搭载完全自主研发的高性能双通道走航质谱分析仪,快速直接进样质谱通道和快速气相色谱-质谱联用通道结合,实现污染物的快筛与复测,现场得出污染物准确的定性和定量结果,解决了走航监测中要求的“快速”和“准确”需要兼顾这一难题,在利用直接进样质谱秒级响应和实时质谱分析的同时,结合气质联用这一VOCs检测的标准方法,现场对未知污染物进行准确判别。谱育科技双通道走航质谱分析仪的工作模式完美契合了新的标准,车辆在行进过程中环境气体样品通过车载式大气采样装置及保温过滤装置后进入双通道质谱分析仪:1)样品经过直接进样质谱通道,实现连续快速分析,根据标准谱库的特征离子和丰度比,提供物质参考类别与浓度范围;2)当样品经过气相色谱-质谱联用通道(GC-MS)时,根据保留时间、离子碎片质量和相对丰度,与国际标准谱库对照匹配相应结果,可实现现场未知污染物的准确定性定量分析。从环境管理角度出发,谱育科技在走航监测溯源分析过程中,注重证据链的确定,即“直接进样质谱通道”快速发现污染物,“快速GC-MS通道”对污染物成分进行精准复测,同时结合气象条件及周边企业排污信息或污染源谱数据进行污染溯源,形成厂界-无组织-有组织污染因子统一证据链条,从而对排污企业进行精准管控。谱育科技走航监测车还可以搭配:常规空气八参数分析仪、便携式非甲烷总烃分析仪、便携式红外热成像分析仪等,构建全维度的监测网络。各类选配设备均为谱育品牌,能做到更全面的技术整合和软件接入,提供更优的售后技术和运维服务保障。
  • 智能仪器仪表等相关26项拟立项标准公示
    p   近日,国家标准委公示26项拟立项推荐性国家标准,包括《生产过程质量控制 全生命周期管理》等。 br/ /p p   该批次公示的标准均为拟新制定标准,涉及智能制造、智能工厂、重要产品追溯等,其中仪器仪表相关标准共三项,分别为《智能仪器仪表的数据描述 定位器》、《智能仪器仪表的数据描述 属性数据库通用要求》、《智能仪器仪表的数据描述 执行机构》。 /p p   依据公示内容,此次意见征集截至到12月5日。具体项目如下。 /p p style=" text-align: center " strong 26项拟立项推荐性国家标准项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 7%" p style=" text-align:center " strong 序号 /strong strong /strong /p /td td width=" 65%" p style=" text-align:center " strong 标准名称 /strong strong /strong /p /td td width=" 17%" p style=" text-align:center " strong 公示截止日期 /strong strong /strong /p /td td width=" 10%" p style=" text-align:center " strong 操作 /strong strong /strong /p /td /tr tr td width=" 7%" p style=" text-align:center " 1 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 工业自动化和控制系统安全 第2-4部分:IACS服务提供商的安全程序要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 2 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 生产过程质量控制 全生命周期管理 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 3 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 生产过程质量控制 设备状态监测 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 4 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 过程工业能源管控系统技术要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 5 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 批控制 批生产记录 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 6 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 批控制 通用和现场处方模型及表述 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 7 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业控制异常监测工具技术要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 8 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业自动化系统工程描述类库 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 9 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 安全监测有效性评估方法 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 10 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 安全控制要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 11 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 属性数据库通用要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 12 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 定位器 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 13 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 执行机构 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 14 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业自动化系统时钟同步、管理与测量通用规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 15 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造能力等级要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 16 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂建设导则 第1部分: 物理工厂智能化系统 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 17 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造能力等级评价方法 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 18 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造 制造对象标识解析体系应用指南 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 19 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造 系统架构 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 20 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯术语 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 21 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯体系设计通则 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 22 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯码编码规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 23 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 核心元数据 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 24 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 产品追溯系统基本要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 25 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 产品追溯信息管理平台建设规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 26 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 交易记录格式总体要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr /tbody /table p br/ /p
  • 美国Camsco热解析管(热脱附管)讲座
    下载邀请函: 美国Camsco热解析管讲座邀请函.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制