当前位置: 仪器信息网 > 行业主题 > >

测糖仪的检测原理

仪器信息网测糖仪的检测原理专题为您提供2024年最新测糖仪的检测原理价格报价、厂家品牌的相关信息, 包括测糖仪的检测原理参数、型号等,不管是国产,还是进口品牌的测糖仪的检测原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测糖仪的检测原理相关的耗材配件、试剂标物,还有测糖仪的检测原理相关的最新资讯、资料,以及测糖仪的检测原理相关的解决方案。

测糖仪的检测原理相关的论坛

  • 牛奶中乳糖的检测原理

    [align=center][font='calibri light'][size=18px]牛奶中乳糖的检测原理[/size][/font][/align][size=16px]检测牛奶的仪器技术主要有两类,一类是近红外技术,一类是超声波技术。近红外技术测试更加准确,但是仪器很贵,不适合中小型牧场使用。所以很多牧场都是使用超声波原理的仪器来测牛奶。那今天我们就来谈一谈牛奶中乳糖检测的超声波原理。[/size][size=16px]超声波测量的原理是利用超声波在物质中的传播速度和衰减特性来推断物质的性质和浓度。超声波是指频率超过20kHz的声波,通常利用压电晶体产生和接收超声波。[/size][size=16px]在检测牛奶时,仪器通过进样口将奶样吸入到超声波传感器中,这个时候超声波传感器通过[/size][size=16px]发射超声波脉冲并接收反射的超声波信号,从而测量乳糖的含量[/size][size=16px]。[/size][size=16px]乳糖的检测就算建立在这个基础上,当超声波通过液体中的溶质时,会发生声阻抗的突变,从而使超声波发生反射、散射和衰减。根据超声波在液体中传播的速度和衰减程度的变化,可以推断液体中溶质的浓度。[/size][size=16px]具体到乳糖测量中,乳糖是一种溶解在牛奶中的溶质,当超声波通过牛奶的乳糖时,会与乳糖相互作用,导致超声波的传播速度和衰减程度发生变化,然后间接地推断乳糖的含量。[/size][size=16px]超声波测量乳糖的过程中,需要注意以下几点。首先,超声波的频率需要选择合适的范围,通常在1MHz 到100MHZ 之间。其次超声波的传感器应该与牛奶充分接触,以确保超声波的传播路径在牛奶中。另外,检测的牛奶中一定不能有气泡,不然会影响检测。[/size][size=16px]超声波测量乳糖的优点很多。首先,超声波测量是一种非侵入式的方法,不需要破坏样品或加入任何试剂。其次,超声波测量是一种实时的方法,可以在短时间内获取乳糖含量的信息。此外超声波测量具有较高的灵敏度和准确性,可以满足牛奶工业对乳糖含量的严格要求.[/size][size=16px]总结起来,超声波测量乳糖的原理是利用超声波在[/size][size=16px]牛奶[/size][size=16px]中的传播速度和衰减特性来推断乳糖的含量。通过测量超声波在[/size][size=16px]牛奶[/size][size=16px]中的传播速度和衰减程度的变化,可以间接地推断乳糖的含量。超声波[/size][size=16px]技术可以[/size][size=16px]用于[/size][size=16px]牛奶[/size][size=16px]质量控制和鉴别乳糖不耐症。[/size]

  • 氨基柱在正相条件下不能检测还原糖是什么原理?

    2010版药典中要求使用氨基柱检测乳糖,但是后来看见一个资料,说氨基柱不能用于检测还原糖,后来仔细看,是在正相条件下不能使用还原糖,有几个问题请教:1、那氨基柱在正相条件下不能检测还原糖是什么原理呢?2、是会损伤键合相上面的什么呢?3、还原糖在氨基柱中使用乙腈水溶液的分离机理?非常感谢

  • 食用油油品质量检测仪检测原理介绍

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  食用油油品质量检测仪检测原理介绍,食用油油品质量检测仪的检测原理主要基于现代物理、化学和生物技术,以下是几种常见的检测原理:  [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术:利用近红外光在分子间的吸收和反射特性,对油脂中的蛋白质、脂肪酸等成分进行光谱分析。通过建立光谱数据库和模型,可以快速、准确地检测出食用油中的糖分、蛋白质、水分、色泽、酸度、过氧化值等关键指标。  极性物质与非极性物质的导电能力差异:食用油品质检测仪通过测量两极的电压差,精确判断极性物质与非极性物质的百分比,从而准确计算极性物质的含量。这种原理使得检测过程操作简单快速,具有非破坏性和不使用溶剂等优点。  分光光度法:主要用于检测植物油中的过氧化值指标。通过测量样品在特定波长下的吸光度,与标准曲线进行比较,得出过氧化值的大小。这种原理可以直观地了解植物油的氧化程度,从而判断其品质。  此外,食用油品质检测仪还可能配备高精度传感器和数据分析系统,能够自动完成样品的采集、处理和数据分析,确保检测结果的准确性和可靠性。  请注意,不同的食用油品质检测仪可能采用不同的检测原理和技术,具体取决于仪器的设计和应用需求。在选择和使用食用油品质检测仪时,建议根据实际需求选择合适的仪器,并遵循相关的操作规程和标准。[/size][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405141009330289_7070_6098850_3.jpg!w690x690.jpg[/img][/color][/font]

  • 【云唐仪器】虾塘水质检测仪好用吗

    【云唐仪器】虾塘水质检测仪好用吗

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401290935584440_2946_5604214_3.jpg!w690x690.jpg[/img]  在当今的养殖业中,水质的好坏直接关系到养殖的成败。虾塘水质检测仪作为一种先进的检测设备,被广泛应用于虾养殖业中。那么,虾塘水质检测仪是否好用呢?本文将从多个方面进行分析和探讨。  首先,让我们了解一下虾塘水质检测仪的基本原理。虾塘水质检测仪采用电化学、光学、电学等原理,能够快速准确地检测水体中的溶解氧、pH值、氨氮、亚硝酸盐等关键指标。这些指标对于虾的生长和健康至关重要,因此及时准确地掌握水质状况对于养殖户来说至关重要。  接下来,我们来探讨虾塘水质检测仪的优点。首先,使用虾塘水质检测仪可以大大提高检测的准确性和可靠性。相比于传统的人工检测方法,水质检测仪采用先进的传感器技术,能够更准确地反映水质状况,避免了人工检测的主观误差和不确定性。其次,使用虾塘水质检测仪可以节省大量时间和人力成本。人工检测需要耗费大量时间和人力,而水质检测仪可以快速准确地完成检测,减轻了养殖户的工作负担。此外,通过实时监测水质状况,养殖户可以及时发现异常情况,避免水质恶化对虾生长造成不利影响。这有助于提高虾的产量和质量,增加养殖效益。  然而,虾塘水质检测仪也存在一些不足之处。首先,水质检测仪的成本较高,对于一些小型养殖户来说可能是一笔较大的投资。此外,虽然水质检测仪的准确性较高,但仍有可能出现误差或故障,因此需要定期进行校准和维护。同时,养殖户在使用过程中需要注意操作规范,避免人为因素导致误差或误判。  综上所述,虾塘水质检测仪在提高检测准确性、节省时间和人力成本、提高养殖效益等方面具有显著优势。因此,对于养殖户来说,选择一款合适的水质检测仪是十分必要的。

  • ATP荧光检测仪工作原理

    ATP荧光检测仪工作原理

    云唐ATP荧光检测仪工作原理:该设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041718145953_7240_5604214_3.jpg!w690x690.jpg[/img]

  • 农产品检测仪检测原理

    [size=18px]  农产品检测仪检测原理  农产品检测仪的检测原理主要可以归纳为以下几种:  一、光学原理  测量光在物质中的传输特性:农产品检测仪中的光学系统通过测量光在物质中的传输特性来检测农产品中的农药残留。这个过程包括光源照射农产品表面,样品吸收部分光线并反射部分光线。  光电转换:经过透镜聚焦后的光线进入检测器,被检测器转化为电信号。  信号处理:电信号经过处理,由计算机系统转化为数字信号。  结果分析:通过比对和分析这些数字信号,可以得出农产品中农药残留的含量。  二、化学原理  样品前处理:涉及样品分散、去杂、分储等步骤,目的是为后续的化学分析做好准备。  农药提取:将农产品中的化学成分(如农药)提取出来。  蒸发浓缩:将提取得到的溶液浓缩至一定体积,便于后续分析。  色谱分析:依据成分的物理化学特性分离并检测成分。通过色谱分析,可以准确检测出农产品中的农药残留。  三、酶抑制率法  抑制原理:基于有机磷和氨基甲酸酯类农药可以抑制昆虫神经中枢和四周神经系统中乙酰胆碱酯酶的活性。这种抑制率与农药浓度呈正相关。  反应过程:在正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物与显色剂反应,产生黄色物质。当存在农药残留时,酶的活性受到抑制,导致产生的黄色物质减少。  结果判定:通过测量吸光度随时间的变化值,计算出抑制率,从而判断出样品中是否含有有机磷或氨基甲酸酯类农药的残留。  四、光电比色法  光电比色法是在一定条件下,通过测量样品中特定物质的吸光度来定量分析其含量。在农药残留检测中,它主要用于检测有机磷和氨基甲酸酯类农药对胆碱酯酶的抑制程度,从而判断农药残留情况。  总结:农产品检测仪的检测原理主要基于光学原理、化学原理和酶抑制率法等多种方法。通过这些方法的综合运用,可以实现对农产品中农药残留的快速、准确检测,为农产品安全提供有力保障。[/size]

  • 还原糖测定仪是检测什么的

    还原糖测定仪是检测什么的

    [size=16px]  还原糖测定仪是用来检测样品中的还原糖(如葡萄糖、果糖等)含量的仪器。还原糖是一类具有还原性的碳水化合物,它们能够与氧化剂发生反应,使氧化剂还原,并在反应过程中自身被氧化。在还原糖测定中,通常使用一种叫作邻苯二甲酸对氨基苯酚(Fehling's试剂)或伊莫金试剂的化学试剂作为氧化剂,将还原糖氧化为相应的酸。  测定的原理是,还原糖在反应中会将氧化剂还原,而氧化剂的还原程度会导致某种物理或化学变化。这种变化可以通过光学、电化学或色谱等方法进行测量,从而确定样品中的还原糖含量。  云唐还原糖测定在食品、饮料、医药等领域中具有重要应用,因为它能够帮助确定样品中的糖分含量,从而对产品的质量和标签信息进行监控和控制。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308301624340701_9462_6098850_3.png!w690x690.jpg[/img][/size]

  • 【原创大赛】搞懂原理对检测工作的重要性

    [align=center][font=微软雅黑][size=10.5pt][font=微软雅黑]搞懂原理对检测工作的重要性[/font][/size][/font][/align][align=left][font=微软雅黑][size=10.5pt][font=微软雅黑]在实际检测工作中,我们通常是根据标准或者文献进行样品的前处理,对实验原理、仪器原理包括耗材的理解并没有真正的搞懂,[/font][/size][/font][/align][align=left][font=微软雅黑][size=10.5pt][font=微软雅黑]那么理解实验原理、物质属性以及仪器耗材原理会对我们的检测工作有什么作用呢?首先能够将标准中讲解的不清楚的事项进行规范化,[/font][/size][/font][/align][align=left][font=微软雅黑][size=10.5pt][font=微软雅黑]其次能够对检测工作中出现的问题进行判断,最后还能从标准中得到操作的关键步骤,有利于检测工作的进行。[/font][/size][/font][/align][font=微软雅黑][size=10.5pt][font=微软雅黑]首先比如我们在食品添加剂中糖精钠的检测可以看到,食品中糖精钠的薄层色谱检测法中样品前处理标准中提到了要使用[/font]5ml盐酸酸化的水,那么它要怎么配制呢,[/size][/font][font=微软雅黑][size=10.5pt]加入盐酸的量是多少或者应该加到pH为多少,这个是很常见的问题,那么首先我们查看标准,糖精钠的薄层色谱测定原理是在酸性条件下,[/size][/font][font=微软雅黑][size=10.5pt]食品中的糖精钠用乙醚提取、浓缩、薄层色谱分离、显色后与标准比较,那么酸化的目的是什么,是让里面的盐转化为酸并析出完全,[/size][/font][font=微软雅黑][size=10.5pt]所以可以使盐酸过量,最好是小于5.0,如果直观判断不准确,可以使用刚果红试纸,变蓝即可。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]其次比如在检测农残和兽残的时候,我们使用固相萃取小柱的方法可能会有不同,比如一个要进行净化处理时直接进行的是洗脱,[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]另外一个在第一次进行净化时是收集淋洗液,而后才是洗脱,这时候我们要看标准中的实验原理和固相萃取小柱的原理来综合判断。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]以水果和蔬菜中阿维菌素的测定为例,首先提取后转入萃取小柱,去掉淋洗液用甲醇洗脱,收集洗脱液。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]我们可以从标准看到,试样中的阿维菌素使用丙酮提取浓缩后萃取小柱净化,甲醇洗脱,收集的是洗脱液。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]而在[/font]GB23200.8-2016中,是先用乙腈淋洗,而后收集浓缩后进行洗脱。这在标准的原理上并未过多涉及,[/size][/font][font=微软雅黑][size=10.5pt]但是我们可以通过固相萃取小柱的两种用法进行判断,一种是保留杂质,通过淋洗,目标物在淋洗液中,[/size][/font][font=微软雅黑][size=10.5pt]一种是保留目标物,去除杂质,目标物需要通过洗脱。[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]此外,还有一些在实验过程中需要避光操作、低温处理等步骤,我们可以根据目标物的属性进行分析,[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]比如易见光分解、容易吸潮、高温易变质等,知道了这些,在实验中就能很好的控制这些关键点,不会因为目标物的属性影响而导致实验失败。[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]综上,我们在检测过程中不但要对实验步骤熟悉,还要对实验原理、仪器原理包括耗材的使用方法、物质属性等有更深的理解,[/font][/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]才能在检测过程中把握关键点,从而保证我们的检测结果的可靠性。[/font][/size][/font]

  • 电火花检测仪器的主要工作原理介绍

    电火花检测仪用于检测油气管道、电缆、搪瓷、金属贮罐、内衬防腐、 船体等金属表面防腐涂层的施工质量和老化腐蚀点。当防腐涂层有微孔、气隙等质量问题时,仪器将发出明亮的火花,同时产生声音报警。该仪器设计新颖,操作简单,广泛应用于石油、化工、橡胶、搪瓷、电厂等行业,是一款必备的检测工具。  二、特点  1、功耗低,体积小, 重量轻;  2、操作简单,直观方便等特点;  3、指针表头指示输出电压和电源电压;  三、主要技术指标  1、测量范围:  A型:0.03-3.5mm(以环氧煤沥青为介质)  B型:3.5-10mm(以石油沥青为介质)  2、输出高压:  A型:0.5-15kv  B型:15-36kv  3、显示:指针式  4、高压控制系统:普通电位器调节  5、直流供电:12v  6、功耗:<5w  7、报警延时:1-2秒  8、高压枪:微电子高压发生器  9、包装:金属箱  10、主机尺寸:165mm ×155mm ×68mm  11、主机重量:1.5kg(含电池)  四、电火花检测仪http://www.dscr.com.cn检测原理及方法  金属表面绝缘防腐层过薄、漏铁及漏电微孔处的电阻值和气隙密度都很小,当有高压经过时就形成气隙击穿而产生火花放电,给报警电路产生一个脉冲信号,报警器发出声光报警,根据这一原理达到防腐层检漏目的。  五、仪器配件  1、主机 1台  2、高压枪 1根  3、板式探刷 1把  4、充电器 1只  5、长接地线 1根  6、短接地线 1根  7、连接磁铁 1只  8、接地棒 2根  9、高压手套 1副  10、随机文件 1套  备注 标配:板式探刷; 可选配:扇形探刷、圆形探刷(检测管道内壁)、环形探刷(检测管道外壁)

  • 紫外检测器与示差检测器原理,用途,优缺点详细比较

    ①紫外检测器与示差检测器原理是什么?紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。示差检测:是通用型检测器,凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统(当然现在糖类elsd很普遍)。紫外:只要具有光吸收的都可以.示差: 存在光的对比差或折射率任意一束光有一种介质射入另一种介质时,由于两种截至的折射率不同而发生折射现象。折射率的大小表明了截至光学密度的高低。介质的折射率随温度升高而降低。一般选用20度时两纳线的平均值589.3nm为检测波长测定溶剂的折射率。示差折光检测器是通过连续测定色谱柱流出液体折射率的变化而对样品浓度进行检测的。检测器的灵敏度与溶剂和溶质的性质都有关系,溶有样品的流动相和流动相本身之间折射率之差反映了样品在流动相中的浓度。紫外检测器的工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比.示差检测器是连续检测样品流路与参比流路间液体折光指数差值的检测器,是根据折射原理设计的,属偏转式类型。光源通过聚光镜和夹缝在光栏前成像,并作为检测池的入射光,出射光照在反射镜上,光被反射,又入射到检测池上,出射光在经过透射镜照到双光敏电阻上形成夹缝像。双光敏电阻是测量电桥的两个桥臂,当参比池和测量池流过相同的溶剂时,使照在双光敏电阻的光量相同,此时桥路平衡,输出为零。当测量池中流过被测样品时,引起折射率变化使照在双光电阻上的光束发生偏转,使双光敏电阻阻值发生变化,此时由电桥输出讯号,即反映了样品浓度的变化情况。示差检测器主要是依据不同溶液的折光率来鉴定的,当浓度不紫外检测器:基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外

  • 【原创大赛】对家用血糖仪用于工业检测的分析

    【原创大赛】对家用血糖仪用于工业检测的分析

    [b]序言:[/b]近几年,POCT仪器(Pointof care testing,即时检验,又称床边检验)雨后春笋般涌现。其中,人群量很大的糖尿病患者使用的血糖仪,市场竞争十分激烈,销售模式基本上是买血糖试纸送血糖仪。一些学者将血糖仪用于含葡萄糖产品的检验。例如:使用血糖仪测定酱油中的葡萄糖[1];血糖仪法快速测定禽蛋中的葡萄糖[2];血糖仪快速测定豆类中葡萄糖含量[3]等。在国外,也有学者研究将血糖仪用于其他方面的检测。下面,从血糖仪及试纸的结构进行分析,看看家用血糖仪用于工业检测的原理及要注意的事项。[b]一、血糖仪类型[/b] 目前,市售血糖仪按照测糖技术可以分为两大类:电化学式、光化学式。 (1)电化学式:通过酶与葡萄糖反应产生电子,经过微电流检测IC,读取电子的数量,再转化成葡萄糖浓度读数。这类血糖仪需血量少,测试结果快(数秒),是目前的主流。 (2)光化学式:通过酶与葡萄糖的反应,产生有色中间物质,运用硅光电池传感器检测试纸表面的反射光强度,将反射光的强度转化成葡萄糖浓度。光化学法血糖仪稳定性,准确性较好。但成本高、采血量稍多,现在销量不如电化学式。本文序言中[1][2][3]用于工业检测的例子,均采用电化学式血糖仪,不受样品颜色的干扰。[b]二、电化学式血糖仪结构原理[/b]1、检测原理 根据电化学法血糖测试条中所采用的酶不同,又分为葡萄糖氧化酶(GOD)法和葡萄糖脱氢酶(GDH)法两种类型。葡萄糖脱氢酶(GDH)在反应中还需联用不同辅酶,分别为吡咯喹啉醌葡萄糖脱氢酶(PQQ-GDH)、黄素腺嘌呤二核苷酸葡萄糖脱氢酶(FAD-GDH)及烟酰胺腺嘌呤二核苷酸葡萄糖脱氢酶(NAD-GDH)三种。本文仅讨论常见的GOD法。 在检测试纸电极表面的试剂涂层中,固化有葡萄糖氧化酶(GOD)。GOD在有氧条件下能专一性地催化β-D-葡萄糖生成葡萄糖酸和过氧化氢。当血液被吸入到电极上时,血液中的葡萄糖会在GOD的作用下发生氧化还原反应。氧化还原反应所产生的电子被导电介质转移给电极,在一定电压(一般为0.4-0.5伏特左右)的作用下,流过电极的电流(微安级)将发生变化,通过检测电流变化与葡萄糖浓度的关系达到检测血糖浓度的目的。GOD对葡萄糖有高度特异性,不能氧化其它糖类,故可测定血液中葡萄糖真实值。GOD氧化血液中β-D-葡萄糖产生葡萄糖内酯和H2O2,同时释放出电子,具体的反应方程式如下: 葡萄糖+FAD-葡萄糖氧化酶→葡萄糖酸内酯+FADH2-葡萄糖氧化酶 ⑴ FADH2-葡萄糖氧化酶+02→FAD-葡萄糖氧化酶+H2O2(过氧化氢) ⑵ H202(过氧化氢)→2H++O2+2e- ⑶2、血糖仪结构 不同品牌电化学式血糖仪,其电路结构都差不多,电路框图见下图,由酶生物传感器(血糖试纸)、信号检测单元(I/V转换,调理电路)、MCU、存储器、显示器、电源、按键等组成。有的血糖仪有USB、红外、WIFI等通迅接口。[img=,650,454]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142302_01_1807987_3.jpg[/img][b]血糖仪工作原理:[/b]指尖毛细血管血(全血)被吸入施加有电压的试纸酶电极(酶生物传感器)后,产生微电流,该电流经集成电路I/V转换器转换为电压信号,再通过放大滤波、输入主控MCU进行A/D转换、内部程序进行分析计算,结果由液晶显示器显示。血糖仪内部有存储器,可以储存一定量的数据,有通迅接口的血糖仪,可以与家庭计算机或云连接,进行数据管理。以市售国产XX牌血糖仪为例,拆机并分析内部电路结构。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_03_1807987_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142143_01_1807987_3.jpg[/img]仪器使用一枚3V一次性锂电池CR2032,大约可检测1000次,十分省电:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_05_1807987_3.jpg[/img]插入血糖试纸后,等待血液检验:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_06_1807987_3.jpg[/img]机器拆开的情况,一块主电路板,一块液晶显示板:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_01_1807987_3.jpg[/img]主电路板上电子元件分布,有前级I/V转换IC、晶振、主控MCU、蜂鸣器、校正芯片插口、电池座等元件:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_02_1807987_3.jpg[/img]主电路板背面,有试纸条插口、液晶显示器接点、微动按钮:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_03_1807987_3.jpg[/img]这是校正芯片插口,旁边的U4是1.2V稳压器,为仪器提供比较基准电压:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_04_1807987_3.jpg[/img]下图中U1是前级电路I/V转换IC,型号MCP6002I,是Microchip Technology公司的1MHz带宽低功耗双运放,构成血糖信号变换及放大电路(将检测试纸微安级的电流信号转换为电压信号):[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_05_1807987_3.jpg[/img]MCP6002I构成的血糖仪前级电路,示意图如下,酶电极(试纸条)采用三电极结构,由WE(工作电极)、CE(辅助电极)、RE(参比电极)组成:[img=,690,540]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_06_1807987_3.jpg[/img]下图中RT1是负温度系数热敏电阻,作为检测环境温度的传感器。由于环境温度对试纸条上的葡萄糖氧化酶(GOD)的活性有影响,需要进行温度补偿。一般情况下,酶在20度以上活性变化不大,在20度以下,温度越低活性越差。活性变差就会在与葡萄糖反应时产生的电流变小,从而使测量结果变低,为了在不同的温度都能测出准确的血糖值,通过热敏电阻根据实时的温度情况来进行补偿,从而尽可能使酶和血液在不同的温度下都能产生和血糖值相匹配的电流,计算出正确的血糖值。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_01_1807987_3.jpg[/img]仪器主控MCU[b] [/b],采用ST公司(意法半导体)的超低功耗型8位单片机,型号ESTM8L052C6T6,内部集成了A/D、32K Flash,2K RAM,256bytes EEPROM,4X28 LCD显示驱动等功能,它的左下方Y1是晶振,为MCU提供时钟基准:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_02_1807987_3.jpg[/img]3、血糖试纸为了防潮,平时装在密封塑料瓶内,开封后,应在3个月内使用:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_03_1807987_3.jpg[/img]试纸条的结构:由PET基板、电信号接插端、碳电极、保护膜、反应区及酶试剂涂层(天蓝色)组成。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_04_1807987_3.jpg[/img]低倍显微镜下观看,反应区内的酶涂层不均匀,说明生产工艺还有待提高:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_05_1807987_3.jpg[/img]电信号接插端采用银浆涂层,比起采用碳膜涂层的成本高一些,导电性能更好[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_06_1807987_3.jpg[/img]试纸条背面,是PET材质的基板:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_01_1807987_3.jpg[/img]将试纸反应区剥开,看见电极采用碳膜电极,虹吸口处的酶涂层也不均匀:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142120_02_1807987_3.jpg[/img]碳电极是三线制,与插口端触点的关系:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142120_03_1807987_3.jpg[/img] 通过拆解,可以看出电化学型血糖仪的电路结构不复杂,其准确性关键在于生化酶试纸的稳定性能和生产工艺水平,以及血糖仪主机MCU软件算法的先进性,适当的使用环境及方法。家用血糖仪为了降低成本,电路比较简化,使得测量值只能作为监控使用,要准确的诊断,还得到医院用大型生化仪器鉴别。[b]三、家用血糖仪用于工业测量常见的方法[/b]根据一些学者发布的实验文章,家用血糖仪用于工业测量常见的方法是:1、选择血糖仪类型。采用电化学式血糖仪,避免了试样颜色对检测的干扰;注意选择数据存储量大、有通迅端口血糖仪,便于与将数据传输,进行分析和管理。2、样前处理。根据血糖仪试纸的测量范围1.1mmol/L~33.3mmol/L,换算为0.02g/100ml~0.6g/100ml。首先估计样品的葡萄糖(类型为β-D-葡萄糖)含量,确定样品处理方案,使其稀释后,葡萄糖含量在试纸的检测范围内。3、实验并进行数据统计分析、验证。4、制定SOP,规范检验人员的操作。[b]四、家用血糖仪用于工业测量应注意问题[/b]1、家用血糖仪是在人体大数据基础上设计的,各个厂家对自己研制的内置程序列为核心商业机密,不会示人。要用于人体外项目,必须全面分析被测对象的性质,以便正确运用。2、各个牌号的血糖仪,因为试纸电极材质不同,化学反应涂层的生化酶及配方不同,内置矫正系统(软件系统)的差异,其准确性、稳定性有较大差异。用作其他项目测量时,必须单个进行验证。3、由于血糖试纸测量范围的限制,通常为1.1mmol/L~33.3mmol/L。被测物质必须进行样前处理,需要事先通过实验确定试样稀释倍数,其测量结果需要人为折算,不能直接显示被测物质的葡萄糖浓度。4、不同配方的血糖试纸,受干扰物质的影响不同。被测量样品中糖类干扰物质[4]的影响见下表:[img=,690,755]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142316_01_1807987_3.jpg[/img] 氧气是血糖仪(GOD法)检测时的干扰物质,高原空气中的氧气比起平原要稀薄,因此血糖试纸的使用环境要注意海拔问题。大气的质量愈近海平面愈密集,大气压及氧分压愈大;海拔越高,大气压及氧分压相应降低。海拔高度为0时,氧分压为159.22毫米汞柱,一个毫米汞柱的氧分压相当于0.13%含氧量。海拔升高100米,大气压下降5.9毫米汞柱,氧分压下降约1.2毫米汞柱,氧含量下降0.16%,与海拔为0米时的氧含量相比,下降0.76%。海拔高度1000米,空气含氧量下降1.6%,空气含氧量19.35%,为零海拔含氧量的92.4%;海拔高度5000米,空气含氧量下降8%,空气含氧量为12.95%。在高海拔地区首次使用时,应用校正液进行标定。5、当被测物质成分比较复杂时(有些化学药品亦有干扰),应选择适当的血糖仪方案(主要是试纸酶的类型,说明书未标明的,可以询问厂家),避开干扰物质。经过比对试验,确定准确度在可以接受范围内,才能将血糖仪用于检测。当更换血糖仪厂家、品牌时,要特别注意,经过验证后,才投入使用。6、血糖试纸的保存。血糖试纸是一种生化酶试纸,要求放置在15-30℃的干燥环境保存。开启后的试纸条要在3个月内用完。不要用过期的试纸条。 [b]五、结束语[/b] 家用血糖仪用于一些工业项目检测,取材方便,成本极低,时间快。尽管测试结果比较粗糙,但作为车间中间体的检验还是不错的。由于影响检测结果因素较多,必须选择适当方案的血糖仪,经过验证,建立SOP,才能投入使用。如果要精确检验,还必须在血糖仪硬件、软件、试纸三个方面进行针对性优化设计,当然,成本会大幅度提高。由于工业项目检测用量远不及糖尿病人群的用量,若要进行专门设计制造,生产厂家不一定会有积极性。参考文献:[1]使用血糖仪测定酱油中的葡萄糖 胡嘉鹏《中国酿造》2007年第5期[2]血糖仪法快速测定禽蛋中的葡萄糖 陈佛兰 《科技风》2013年6月刊(下)[3]血糖仪快速测定豆类中葡萄糖含量方法 朱冠琳等 《安徽农学通报》2014年13期[4]血糖仪注册技术审查指导原则

  • 蜂蜜还原糖检测仪检测蜂蜜的重要性

    蜂蜜还原糖检测仪检测蜂蜜的重要性

    [size=16px]  蜂蜜还原糖检测仪检测蜂蜜的重要性  蜂蜜还原糖检测仪用于测量蜂蜜中的还原糖含量,这对蜂蜜的质量控制和产品标识非常重要。以下是检测蜂蜜中还原糖含量的重要性:  蜂蜜品质控制:蜂蜜的质量直接影响其口感、风味和营养价值。还原糖含量是评估蜂蜜质量的关键指标之一。不同类型的蜂蜜具有不同的还原糖含量,因此通过检测还原糖含量可以确保蜂蜜的质量和一致性。  产品标识和真实性:蜂蜜市场上存在着一些伪劣产品,包括掺假的蜂蜜,其中可能含有过多的加工糖。通过检测蜂蜜中的还原糖含量,可以帮助验证蜂蜜的真实性,防止不正当的产品标识和欺诈行为。  法规合规:在一些国家和地区,法规规定了蜂蜜的质量标准,包括还原糖含量的上限。检测还原糖含量可以确保产品符合法规的要求,避免可能的法律问题。  营养价值:蜂蜜的还原糖含量也与其营养价值有关。不同的还原糖含量可能影响蜂蜜的能量价值和其他营养成分。这对于消费者和特殊饮食需求的人群来说很重要。  生产过程控制:蜂蜜生产过程中,还原糖含量的测量可以帮助生产商调整生产参数,以确保产品质量和一致性。这有助于改进生产效率和减少浪费。  综上所述,检测蜂蜜中的还原糖含量是确保蜂蜜质量、真实性和合规性的关键步骤,对蜂蜜生产商和消费者都至关重要。蜂蜜还原糖检测仪是实现这一目标的重要工具。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310110937563766_1799_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【天研】学校食堂atp快速检测设备 跟病菌检测仪有什么区别

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404221444095509_7672_6238082_3.jpg!w690x690.jpg[/img]  学校食堂中使用的ATP快速检测设备和病菌检测仪在功能和原理上存在显著的区别。  ATP快速检测设备主要用于快速检测食品中的微生物含量。其工作原理基于细菌等微生物体内所含的ATP(腺苷三磷酸)与试剂反应,通过发光值来定量检测ATP的含量,从而判断微生物的多少。这种设备具有检测速度快、准确性高、操作简便以及便于携带等特点,特别适用于现场检测的需求。在食品生产、加工、储存、运输和销售的各个环节中,ATP快速检测设备都可以发挥重要作用,帮助判断食品的卫生状况。  而病菌检测仪,如致病菌检测仪,则主要使用免疫浓缩技术,对待检样品中的致病菌进行抗体捕获、集中释放、纯化分离和自动化检测。这种设备主要用于检测样品中的特定病菌,如沙门氏菌、李斯特氏菌、大肠杆菌O157等。与传统的检测方法相比,病菌检测仪大大缩短了检测时间,提高了检测效率,为进出口贸易提供了方便。  综上所述,ATP快速检测设备和病菌检测仪在学校食堂中的应用各有侧重。ATP快速检测设备更侧重于微生物含量的整体判断,而病菌检测仪则更专注于特定病菌的检测。两者结合使用,可以更全面地保障学校食堂的食品安全。

  • 大米加工精度检测仪检测原理是什么

    [font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#05073b]  大米加工精度检测仪检测原理是什么,大米加工精度检测仪的检测原理主要基于先进的光电传感技术、计算机图像分析技术和图像处理算法。以下是具体的检测原理:  样品准备与图像采集:首先,将待检测的大米样品放入检测仪中。检测仪内置的高分辨率摄像头会捕捉大米的图像,获取大米颗粒的详细视觉信息。  图像预处理:采集到的原始图像可能会受到光照、噪声等因素的干扰,因此需要进行预处理。预处理步骤可能包括去噪、增强对比度、调整亮度等,以提高图像质量,便于后续分析。  图像分析与特征提取:经过预处理后的图像会被送入计算机图像分析系统。该系统运用专业的图像处理软件对每一粒大米进行细致分析,识别并区分出完整米粒、破损米粒和稻谷皮屑等。这个过程中,系统还会提取出大米的形状、大小、颜色等关键特征参数。  数据处理与精度评估:根据提取的特征参数,系统会计算出各项精度参数,如整精米率、碎米率、留皮率等。这些参数反映了大米在加工过程中的处理效果,从而评估大米的加工精度。  结果输出与报告生成:最后,检测仪会将检测结果以数字或图表的形式输出,并生成详细的检测报告。这些报告可以作为大米品质评估和质量控制的重要依据。  总之,大米加工精度检测仪通过先进的光电传感技术、计算机图像分析技术和图像处理算法,实现了对大米加工精度的快速、准确检测。这种检测方式不仅提高了生产效率,而且确保了检测结果的客观性和准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241041170528_5667_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 高效液相色谱(紫外检测器)能检测葡萄糖酸?

    高效液相色谱(紫外检测器)能检测葡萄糖酸?

    [color=#444444]如题:高效液相色谱(紫外检测器)能检测葡萄糖酸?葡萄糖酸有紫外吸收吗?这是什么原理?[/color][color=#444444][img=,600,168]https://ng1.17img.cn/bbsfiles/images/2019/09/201909271442254753_8136_1806906_3.png!w600x168.jpg[/img][/color]

  • 真菌毒素检测仪检测原理是什么

    真菌毒素检测仪检测原理是什么

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]真菌毒素检测仪检测原理是什么,真菌毒素检测仪的检测原理主要基于竞争抑制免疫层析技术。这种技术利用抗原与抗体特异性结合的性质,通过待检测物与抗体竞争结合的方式,对样品中真菌毒素残留进行精确分析。在检测过程中,仪器采用了高灵敏度的检测系统,能够对微量的真菌毒素进行准确的定量分析。同时,为了确保检测结果的准确性,真菌毒素检测仪采用了高品质的抗体和抗原,经过严格的筛选和优化,确保了与待检测真菌毒素的高亲和性和特异性。此外,真菌毒素检测仪还配备了多种检测模式,可以根据不同的需求进行选择,提高了检测的灵活性和准确性。这种设备可以对粮食、饲料、谷物、食用油、调味品等多种食品中的真菌毒素进行快速定量检测,包括T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮等。总的来说,真菌毒素检测仪通过其高效的检测原理和技术,为食品安全和质量控制提供了重要的保障。[/size][size=15px][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404150949345736_3578_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 果蔬肉类检测仪检测原理可靠吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]果蔬肉类检测仪检测原理可靠吗,果蔬肉类检测仪的检测原理是可靠的。首先,果蔬肉类检测仪通常基于光谱学、化学传感或生物传感技术,这些技术都是经过科学验证并被广泛应用的。通过与样品中特定成分的相互作用,这些技术能够产生可测量的信号,从而判断样品是否安全。其次,检测仪内置了多种检测模块,能够针对不同类型的有害物质进行专项检测。这些模块采用了高精度的传感器和检测试剂,能够确保检测结果的准确性。此外,检测仪还具备智能化的操作系统,通过简单的按键操作即可完成检测过程,减少了人为因素对检测结果的影响。同时,检测仪还具有高灵敏度和高分辨率的特点,能够检测到微小的有害物质,从而提高了检测结果的准确性。然而,任何检测工具都不可能达到百分之百的准确率。果蔬肉类检测仪的准确性也会受到一些因素的影响,如样品的准备和保存状态、检测仪的校准和维护情况、操作人员的技能水平等。因此,在使用果蔬肉类检测仪时,需要严格按照操作规程进行,确保样品的准备和保存符合要求,定期对检测仪进行校准和维护,提高操作人员的技能水平,以最大程度地保证检测结果的准确性。总的来说,果蔬肉类检测仪的检测原理是可靠的,但在实际使用中需要注意一些影响准确性的因素。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405201116470283_5725_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 食品TPM检测仪检测原理介绍

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]食品TPM检测仪检测原理介绍[/color][/font]食品TPM检测仪的检测原理主要基于油液的综合介电常数变化来确定油[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]量的变化程度,从而判断油液是否变质。具体来说,TPM检测仪通过测量食用油中的极性化合物组分(TPM)含量来评估油的质量。极性化合物组分是食用油中的一种重要指标,其含量的变化可以反映油的新鲜度和稳定性。当油开始变质时,其极性化合物组分的含量会发生变化,这一变化可以被TPM检测仪所捕捉。检测仪内部配备有先进的传感器,这些传感器可以测量油液的综合介电常数。介电常数是描述物质在电场中电行为的一个物理量,它与物质的组成、结构和状态密切相关。通过测量油液的综合介电常数,TPM检测仪可以获取到油液中的极性化合物组分含量的信息。一旦TPM检测仪测量到极性化合物组分的含量超过了设定的阈值,仪器就会发出相应的提示,提醒用户油液已经变质,需要进行更换或处理。通过这种方式,TPM检测仪能够实现对食用油质量的快速、准确检测,帮助用户及时发现问题并采取相应的措施。此外,TPM检测仪还具有操作简便、测量快速、准确度高等优点。它可以在不同的温度环境下使用,并具备高灵敏度和高分辨率的特点,能够确保检测结果的可靠性和准确性。总的来说,食品TPM检测仪通过测量油液的综合介电常数来评估油的质量,具有广泛的应用前景,在保障食品安全和提高产品质量方面发挥着重要作用。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403211045534338_72_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 细菌检测仪工作原理

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=18px]  细菌检测仪工作原理,细菌检测仪的工作原理主要基于荧光素酶作用的ATP检测试剂,通过检测样品表面的ATP含量来判断细菌的数量。以下是细菌检测仪工作原理的详细解释:  荧光素酶反应:细菌检测仪利用荧光素酶与ATP检测试剂反应,将样品表面的ATP转化为荧光素。这一过程中,荧光素酶起到催化作用,使得ATP与试剂中的荧光素结合。  发光特性测定:转化后的荧光素在荧光素酶的催化下会发光,细菌检测仪通过测量这种发光的强度来判定样品表面的ATP含量。由于ATP是所有活细胞的基本能量单位,因此其含量可以间接反映细菌的数量。  快速、准确测量:这种基于荧光素酶反应的测量方法非常快速且准确。一般来说,整个检测过程不超过30秒,使得细菌检测仪成为一种高效的工具,特别适用于需要快速检测细菌数量的场合。  应用领域广泛:细菌检测仪广泛应用于食品、医药卫生、日化、造纸、工业水处理等多个行业。在食品行业中,它常被用于检测食品表面的微生物污染情况,以确保食品安全。  综上所述,细菌检测仪通过荧光素酶反应的ATP检测技术,能够快速、准确地测量样品表面的细菌数量,为保障公共卫生和食品安全提供了重要的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406250932573396_8825_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 【原创大赛】【仪器说】POCT系列——拆解当下主流血糖检测仪电路结构

    【原创大赛】【仪器说】POCT系列——拆解当下主流血糖检测仪电路结构

    [b]前言:[/b]随着我国经济发展,人民生活水平提高,“三高”疾病的发病率逐年上升。其中,糖尿病人的年龄段从青年到老年,人群庞大。控制好自身血糖值是应该具备的知识,用好家庭血糖检测仪是一种有效的监测手段。下面,对当前主流的一款第四代电型血糖检测仪进行拆解,分析原理,掌握正确使用的方法。[b]一、血糖检测仪的简要知识[/b] 血糖仪的发展经历了近半个世纪,第一台血糖仪诞生于1971年。到目前,血糖仪已经发展到第五代。第一代是水洗式血糖仪;第二代是擦血式血糖仪;第三代是比色法(光电型)血糖仪;第四代是电化学法(电极型)血糖仪;第五代采用无创技术,离子电渗析技术无创型血糖仪已经问世、近红外光技术的无创血糖仪也在开发中。目前,最成熟、使用量最大的是第四代电极型血糖检测仪。 电极型血糖仪的检测原理:利用电化学原理,当微量血液被虹吸到试纸电极上时,电极反应区内的生化酶与血液中葡萄糖反应产生微电流,仪器内部电路将电流转化成葡萄糖浓度读数。市面上,血糖试纸使用的生化酶有好几种类型,最常用的是葡萄糖氧化酶(GOD)、烟酰胺腺嘌呤二核苷酸葡萄糖脱氢酶(NAD-GDH)、黄素腺嘌呤二核苷酸葡萄糖脱氢酶(FDA-GDH)等。这些生化酶对葡萄糖有高度物异性,不能氧化其它糖类,故可测定血液中葡萄糖真实值。[b]二、仪器基本情况及电路原理[/b]这是一款国产语音血糖检测仪GA-3型,电路采用电极检测类型,属于第四代。免调代码设计,其语音提示功能很实用,效果不错。[img=,690,515]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054063497_6475_1807987_3.jpg!w690x515.jpg[/img]背面,有喇叭孔、退试纸条拨杆、电池仓。使用两个7号碱电池,可连续检测1000次:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054069498_7218_1807987_3.jpg!w690x517.jpg[/img]在电池仓内,有6个电触点。它是厂家生产时的检测点,适合专业检测、维修使用:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054074220_3610_1807987_3.jpg!w690x517.jpg[/img]仪器电路原理见下面框图所示, 当血糖试纸酶电极(酶生物传感器)吸入指尖毛细血管的血液后,产生微电流,该电流经I/V转换电路转换为电压信号,送入MCU进行A/D转换、计算分析,结果由液晶屏显示出来、同时语音播报。[img=,593,461]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054078110_5954_1807987_3.jpg!w593x461.jpg[/img][b]三、拆解及主要电子元件[/b]卸下仪器电池仓盖下的2颗固定螺丝:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054081870_6615_1807987_3.jpg!w690x517.jpg[/img]面盖是卡扣结构,用大拇指轻松拨开,看见内部电路板:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054086300_57_1807987_3.jpg!w690x517.jpg[/img]电路板是沉金工艺,液晶显示屏是硬连接,可靠、耐用、故障少,质量还不错:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054091300_8790_1807987_3.jpg!w690x517.jpg[/img]在试纸条插口附近,Rt是温度传感器(测量环境温度的负温度系数电阻),起到仪器电路温度补偿功能(因为酶的活性与温度有关)。Rt旁边的W1是调理电路微调电位器,可以改变仪器前置电路增益,可供校准时使用。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054096340_9026_1807987_3.jpg!w690x517.jpg[/img]将电路板翻面,元件还不少。主要元件标示如下:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171054057210_4127_1807987_3.jpg!w690x517.jpg[/img]喇叭采用电磁动圈式,8欧姆、0.5瓦,声音比较响亮:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059014970_1800_1807987_3.jpg!w690x517.jpg[/img]电路板上,U10是广州九芯公司的语音IC,型号NV065A,直接驱动喇叭发声;U2是前级IC,型号MCP6002I,是美国微芯(MicrochipTechnology)公司的1MHz带宽、低噪声低功耗双运放,构成检测血糖信号的I/V变换及调理电路,许多血糖检测仪都使用这个芯片。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059021950_4555_1807987_3.jpg!w690x517.jpg[/img]U1是MCU,采用美国飞思卡尔公司单片机,型号M9S8LL16C,内部集成有A/D 、LCD显示驱动;U4是微芯公司的E2PROM存储器,型号24LC16BI,容量16K,可以储存大约200组检测数据。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059030720_8723_1807987_3.jpg!w690x517.jpg[/img]电路板上的6个触点,是RE、BKGD、TXD、RXD以及+3V、GND,是生产线工人测试电路板用的。也可作为仪器返修时,快速检测故障使用:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059037905_4983_1807987_3.jpg!w690x517.jpg[/img]下面看看血糖试纸的情况。该试纸采用黄素腺嘌呤二核苷酸葡萄糖脱氢酶(FDA-GDH)涂层。平时,试纸条装在密封的塑料瓶内,开封后,应在3个月内使用完:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059043405_5843_1807987_3.jpg!w690x517.jpg[/img]试纸条与检测仪电路联系采用碳膜电极,成本比较低:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059047100_9458_1807987_3.jpg!w690x517.jpg[/img]背面,基条材质是PET:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059050830_3392_1807987_3.jpg!w690x517.jpg[/img]试纸条前端的血液虹吸口及反应区:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059055600_3079_1807987_3.jpg!w690x517.jpg[/img]在低倍显微镜下观察,试剂酶涂层(土黄色)不够均匀,会影响检测的准确度与批量一致性:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171059001690_6249_1807987_3.jpg!w690x517.jpg[/img]多取两张试纸看看,试剂酶涂层也存在不均匀,国产货的质量还需进一步提高:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171104092440_4439_1807987_3.jpg!w690x517.jpg[/img]撕开塑料保护膜进行观察,黑色塑料膜中间开有一个U形槽,电极及酶涂层在内,上面覆盖透明薄膜,这样就形成窄窄的虹吸槽(高度为黑色塑料膜的厚度):[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171104096511_2374_1807987_3.jpg!w690x517.jpg[/img]撕下塑料保护膜后的情况:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171104100081_426_1807987_3.jpg!w690x517.jpg[/img]再次微距观察,电极上的酶涂层不均匀问题很显眼:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171104104841_7871_1807987_3.jpg!w690x517.jpg[/img]逆光观察试纸结构:[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/10/201910171108004001_9498_1807987_3.jpg!w690x517.jpg[/img][b]四、使用注意事项[/b]由于血糖检测仪是一种生化仪器,对于使用环境有一定要求。除了按照说明书的要求操作外,应注意以下几个问题:1、仪器使用环境选择在室内避风、没有严重化学烟雾气味、电磁场干扰不大的地方。2、若从室内到室外,温差变化大,应等仪器及试纸与外界温度平衡之后再测量(搁置15分钟左右)。3、当测试结果忽高忽低时,再重测量一次,排除掉试纸条质量差异问题。4、试纸条一定要存放在试纸筒内,储存温度适宜(15~30℃干燥环境)。不要吸潮、氧化。过期后,不要继续使用。5、该仪器试纸的生化酶涂层采用黄素腺嘌呤二核苷酸葡萄糖脱氢酶(FDA-GDH),检测结果不受氧气干扰,不受麦芽糖、半乳糖干扰,但受木糖干扰,应予注意。[b]结束语:[/b]从拆机情况看,国产血糖仪的电路结构日趋完善,试纸价格低廉,使用成本不高,可以作为普通监测使用(准确诊断,还是应到医院用大型生化仪器检测)。与国外大品牌差距主要在于根据人群大数据编制的分析处理程序及生物试纸条的质量高低。有糖尿病人的家庭应该有一只血糖仪检测仪,定时监测身体血糖指标,调整服药计划或及时到医院就诊,保障身体健康。

  • 农残检测仪的工作原理是什么

    农残检测仪的工作原理主要基于酶抑制法和光电比色法。以下是对其工作原理的详细解释:  酶抑制法是一种检测有机磷和氨基甲酸酯类农药残留的方法。这两类农药对胆碱酯酶的正常功能有抑制作用。在正常情况下,胆碱酯酶会催化神经传导代谢产物(如乙酰胆碱)的水解过程。然而,当有机磷或氨基甲酸酯类农药存在时,它们会与胆碱酯酶结合,导致酶活性受到抑制,进而减少乙酰胆碱的水解。  农残检测仪利用这一原理,将待检测的农产品样本与特定的酶和底物混合,在一定的条件下反应一段时间后,测定反应液的颜色变化。这种颜色变化与农药对酶的抑制程度成正比。通过光电比色法,仪器可以测量反应液在特定波长下的吸光度,从而计算出农药对酶的抑制率。抑制率越高,说明样本中农药残留量越大。  除了酶抑制法,农残检测仪还可能采用其他检测原理,如免疫分析法、生物传感器法等,这些方法的工作原理略有不同,但都是基于特定的化学反应或生物识别过程来检测农药残留。  农残检测仪通过自动化的操作和数据处理系统,可以快速、准确地得出检测结果。这些仪器通常具有智能操作系统和人性化的操作界面,使得用户能够方便地进行样品检测和数据管理。  总的来说,农残检测仪的工作原理是通过特定的化学反应和信号处理过程,利用农药对特定酶的抑制效应或其他识别机制,来快速、准确地检测农产品中的农药残留量。

  • 餐具洁净度检测仪工作原理

    [size=18px]  餐具洁净度检测仪工作原理  餐具洁净度检测仪的工作原理主要基于ATP(腺苷三磷酸)的生物发光检测方法。以下是详细的工作原理介绍:  检测原理:  餐具洁净度检测仪通过检测餐具表面微生物细胞内的ATP含量来评估其洁净度。ATP是所有生物活细胞中的能量分子,因此,通过检测ATP的残留量,可以间接反映清洁的效果。  ATP拭子含有可以裂解细胞膜的试剂,当拭子与餐具表面接触时,这些试剂能够迅速将细胞内的ATP释放出来。  反应过程:  释放出的ATP与试剂中含有的特异性酶(如荧光素酶)发生反应,产生光(荧光)。这个反应基于萤火虫发光原理,即“荧光素酶—荧光素体系”。  产生的荧光强度与样品中ATP的含量成正比,因此,通过测量荧光的强度,就可以快速准确地评估餐具表面的微生物数量。  数据解读:  仪器配备有大屏幕触摸显示屏,能够实时显示检测结果。同时,根据环境检测需求,可以设定ATP含量的上下限值,实现数据快速评估预警和表面洁净度的快速筛查。  由于ATP是所有生物活细胞中的能量分子,因此ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,从而准确评估餐具的卫生状况。  仪器特性:  灵敏度高:能够检测到极微量的ATP,保证检测的准确性。  速度快:相比传统的培养法需要18-24小时以上,ATP荧光检测仪只需十几秒钟即可完成检测,大大提高了检测效率。  可操作性强:操作简便,只需简单的培训即可由一般工作人员进行现场操作。  应用领域:  餐具洁净度检测仪广泛应用于餐饮器具表面消毒效果的清洁度即时评价、饮用水中细菌微生物的快速测定、人员手部清洁检查、酒店住宿环境卫生监测等领域。  综上所述,餐具洁净度检测仪通过检测餐具表面微生物细胞内的ATP含量来评估其洁净度,具有快速、灵敏、准确等优点,是保障食品安全和公共卫生的重要工具。[/size]

  • 运动粘度测定仪的检测原理

    运动粘度测定仪的检测原理

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]运动粘度测定仪的检测原理[/color][/font]运动粘度测定仪的检测原理主要基于斯托克斯定律,即当一个小球在粘度恒定的液体中沉降时,其沉降速度与液体的粘度和小球的直径有关。具体来说,运动粘度测定仪通过测量一定体积的液体在一定温度下通过加压器的精密空间内流动所需的时间来计算液体的粘度。此外,该仪器还利用了牛顿黏性定律,即在恒定剪切力作用下,液体的剪切变形与时间成正比。因此,运动粘度测定仪也可以通过测量液体的剪切力和时间来计算液体的粘度。在实际应用中,运动粘度测定仪的主要部件包括测量系统、温度控制系统和样品输送系统。测量系统由加压器、传感器和计算机控制单元等组成,可以施加压力打开样品流动通道,检测流量并将其传输到计算机控制单元中进行分析和计算,产生粘度值。温度控制系统可以维持样品的温度在测量过程中保持恒定,以确保测量结果的准确性。样品输送系统则包括样品接收系统和样品输送部分,用于将待测液体输送到测量系统中进行测量。综上所述,运动粘度测定仪的检测原理基于斯托克斯定律和牛顿黏性定律,通过测量液体的流动时间或剪切力和时间来计算液体的粘度。这种仪器在石油、化工、医药、食品等领域中广泛应用,可以快速、准确地测量液体的粘度,为生产和质量控制提供重要的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/02/202402081003295316_9391_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 酶标仪的检测原理

    是电磁波,波长100nm~400nm称为紫外光, 400nm~780nm之间的光可被人眼观察到,大子780nm称为红外光。人们只所以能够看到色彩,是因为光照射到物体上被物体反射回来。绿色植物之所以是绿色,是因为植物吸收了光中的红色光谱。酶标仪测定的原理是在特定波长下,检测被测物的吸光值。   检测单位:  光通过被检测物,前后的能量差异即是被检测物吸收掉的能量,特定波长下,同一种被检测物的浓度与被吸收的能量成定量关系。  检测单位用OD值表示, OD是optical delnsity(光密度)的缩写,表示被检测物吸收掉的光密度, OD=1og(1/trans),其中trans为检测物的透光值。根据Bouger-amberT-beer法则,OD值与光强度成下述关系:E=OD=logΙ0/Ι其中E表示被吸收的光密度, Ι0 为在检测物之前的光强度,Ι为从被检测物出来的光强度。   OD值由下述公式计算:  E=OD=C×D×E  C为检测物的浓度  D为检测物的厚度  E为摩尔因子   在特定波长下测定每一种物质都有其特定的波长,在此波长下,此物质能够吸收最多的光能量。如果选择其它的波长段,就会造成检测结果的不准确。因此,在测定检测物时,我们选择特定的波长进行检测,称为测量波长。  但是每一种物质对光能量还存在一定的非特异性吸收,为了消除这种非特异性吸收,我们再选取一个参照波长,以消除这个不准确性。在参照波长下,检测物光的吸收最小。检测波长和参照波长的吸光值之差可以消除非特异性吸收。   Anthos 酶标仪检测值计算  仪器中的检测器接收透过被检测物的光能量,转换成二进位数字信号,最大为4095。仪器定义没有光源下的透光值为 0%,没有检测物的透光值为100%。则实际检测中,检测物的透光值均在 0%一100%之间。透光值的计算如下:  T=(Meas—Min)/(Max—Min)  其中T为透光值, Meas为检测的二进位数值, Min为在 0%的情况下检测的二进位数值, Max为在100%的情况下检测的二进位数值,举例如下:  MaX=3600 Mn=20 Meas=30  T=(30-20)/3600-20)=0.0028  OD=1og(1/T)=1og(1/0.0028)=2.552   Anthos 酶标仪的中心定位  仪器会自动对酶标孔进行中心定位,中心定位是要消除酶标孔底的凸凹引起的厚薄不均带来检测的不准确。在对每一个酶标仪进行检测时,仪器其实要进行35个点的测量,选取最中间的5个点的均值为本孔的OD值。   光源的参照通道  参照通道是用来校准由于电压不稳或灯泡磨损带来的影响。  酶标仪的用途和其它提示  用于ELISA试剂的测定,广泛用于各种实验室,包括临床实验室。  质量控制  质量控制是试剂检测的重要因素。请按照试剂说明书的要求进行质量控制。  空白校正  有一些试剂盒的说阴书将空白孔设置为空气,其它大多数空白孔的设置是用试剂来设置的,请按照试剂盒的  说明书要求进行。  检测结果的解释  由于有相当多的因素会影响检测的结果,如不同的酶标板,检测试剂的体积,都会造成OD值的不同,因此,  只有使用同一酶标板反应的试剂检测结果才能比较和分析。对结果的临床解释请依照试剂盒的说明书进行。

  • 蜂蜜还原糖检测仪的应用范围

    蜂蜜还原糖检测仪的应用范围

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130931496133_7606_5604214_3.jpg!w690x690.jpg[/img] 蜂蜜还原糖检测仪是一种用于检测蜂蜜中还原糖含量的仪器,其应用范围广泛,适用于食品加工、农业、医药等领域。下面将详细介绍蜂蜜还原糖检测仪的应用范围及特点。  蜂蜜还原糖检测仪的应用范围  1. 食品加工领域  蜂蜜作为一种天然的甜味剂,被广泛应用于食品加工中。蜂蜜还原糖检测仪可以快速准确地检测出蜂蜜中还原糖的含量,对于食品加工企业来说,可以有效地控制产品质量,保证产品的稳定性。  2. 农业领域  在农业领域,蜜蜂对于农作物的授粉和增产具有重要作用。不同品种的蜜蜂采集的花粉和花蜜不同,其还原糖含量也有所不同。使用蜂蜜还原糖检测仪可以快速准确地检测出不同品种的蜜蜂所产蜂蜜的质量,为农民提供可靠的农产品质量评估依据。  3. 医药领域  蜂蜜作为一种天然的保健品,具有消炎、润肺、止咳等功效。在医药领域,蜂蜜还原糖检测仪可以用于蜂蜜药品的质量控制,确保药品的安全性和有效性。

  • 食品重金属检测仪器检测原理

    食品重金属检测仪器检测原理

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]食品重金属检测仪器检测原理[/color][/font][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]食品重金属检测仪的检测原理是采用分光光度法,在一定条件下检测食品成分的相关指标和检测试剂反响的特异性,能够产生不同颜色深度的产品。不同颜色的产品能够产生选择性吸收波长的可见光,颜色深度的上下决议了吸光度与样品中指数成分的浓度成相关性,并在恰当的浓度范围内遵照朗伯-比尔定律。具体操作是先将样品经消化后,各种形态的重金属进入离子型,然后参加相关检测试剂显色后,在一定浓度范围内溶液颜色深度与重金属含量成比例关系,经过仪器测定含量值,与国度农产品平安质量规范无公害蔬菜安全允许限量规范进行比较,判别蔬菜样品中重金属含量是否超标。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/02/202402050947599694_1172_6098850_3.jpg!w690x690.jpg[/img][/color][/font][/size]

  • 近红外光谱无创血糖检测技术的研究

    对现有的一些使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]无创离体和在体测量葡萄糖的研究结论,结合我们的研究结果进行评述。首先介绍建立葡萄糖光谱检测的基本理论。在光谱检测的分析研究中,离体测量表现出良好的结果;在体葡萄糖检测和预测,结果精度较差,离临床和家庭使用还有一些距离。 1 简介 糖尿病是一种内分泌疾病。据报导,1997年全世界的糖尿病患者超过1.2亿,到2010年将会增长到2.2亿以上。现有对糖尿病较有效的治疗手段是通过频繁的检测和胰岛素注射来对血糖浓度进行控制,从而减少或减轻由糖尿病导致的并发症。目前检测血糖的方法主要是从体内抽取血液通过生化检测进行分析,这属于有创伤检测,有创伤检测给患者带来的痛苦和不便。无创性血糖检测已引起人们极大的关注,其意义是:(1)减少患者每天采血测量的痛苦,提高病人的生存质量;(2)可提高测量次数,提高血糖控制精确度,降低糖尿病并发症发生的危险;(3)降低每次测量的成本;(4)有可能形成含有检测器和胰岛素注射的闭环循环系统;(5)其测量方法和原理可以推广应用到其它血液成分的检测。在无创性血糖检测研究中使用较多的是红外光谱分析方法,通过对一束红外光透过人体组织或者由其反射的光谱信号分析,确定组织内葡萄糖的含量。目前较有效的光谱范围是近红外区(波长为0.7μm-2.5μm)。 2 红外光谱检测葡萄糖的原理和方法 2.1 水溶液中葡萄糖的近红外吸收 有机分子在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]区的吸收主要是由于含氢基团的分子振动的倍频与合频吸收造成的[1]。有机分子的倍频和合频光谱能够得到分子结构、组成状态的信息。有机物[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],其特征性强,受分子内外环境的影响小,但倍频和合频比基频吸收带宽得多,使得多组分样品的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]在不同组分的谱带、同一组分中不同基团的谱带以及同一基团不同形式的倍频、合频谱带发生严重的重迭,从而使[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的图谱解析异常困难。在混合物中的化学组分,很难再分离出每种组分单一、无重叠的吸收光谱。在有强烈水的背景吸收情况下的生物混合液,常规方法很难测量出低浓度物质的含量。水是生物组织中的主要成分,不但有单一的红外光谱,还有丰富的扩展到近红外区域的合频和倍频光谱。对水的红外光谱分析可知,水在波长为2.01μm-2.5μm的吸收较小,形成一个被称为水传输窗的区域,所以水溶液物质最好的分析波长为2.0μm-2.5μm。水在3μm以上其吸收率大于6 AU/mm,很难测量其它物质。 2.2 葡萄糖光谱的特异性在葡萄糖固体和葡萄糖溶液中所得的葡萄糖红外吸收的基频早已有报导[2]。葡萄糖伸缩振动能产生很强的合频和倍频吸收带。葡萄糖水溶液的近红外(2.0μm-2.5μm)光谱的测量有吸收峰,葡萄糖的光谱是唯一的,但葡萄糖红外区的合频和倍频光谱与水、脂肪和血红蛋白电子吸收波段的几个合频和倍频频率相互重迭,即被其它成分的光谱所覆盖。这是葡萄糖红外光谱测量的主要干扰。有机混合物对在近红外区吸收谱带的重迭以及漫反射光谱并不是各成分单独存在时光谱的迭加。组织吸收对葡萄糖测量也有影响,在手指这样小的部位中近红外光会削弱3-4个吸收单位,而5mmoL/L的葡萄糖浓度变化,光谱吸收的变化约10-5个吸收单位。组织光散射对葡萄糖测量的影响也很大,组织散射的光强、定位误差和身体各因素的影响是最主要的测量误差,这些都影响[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]学在血糖检测中的应用。 2.3光谱分析方法 在红外光谱分析时化学计量学方法是很有效的。化学计量学(Chemometrics)采用多元分析校正统计学方法与计算技术,解析化学测量数据,由红外光谱算出样品各成分的含量。现在常用的多元分析校正方法中,进行血糖检测光谱分析效果较好的是偏最小二乘法(PLS),它将已知的葡萄糖浓度的光谱组,用主因子分析作定量计算的方法,对光谱矩阵进行特征向量分析,然后使用多元线性回归,找出极小的光谱变化和分析物浓度之间的关系,消除与葡萄糖无关的光谱变数,得出校正光谱,通过校正光谱和样品光谱的内积(即点积)确定葡萄糖浓度。 3 离体检测和在体检测的研究现状 3.1 离体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]混合葡萄糖溶液测量 Jonathon T.Olesberg等使用80个含有葡萄糖、乳酸盐、丙胺酸、抗坏血酸盐、尿素和乙酸甘油酯样品,测量葡萄糖溶液在2.0μm-2.5μm波长带宽范围内的光谱,使用PLS校正光谱预测溶液成分的浓度。结果表明,在0-35mm内葡萄糖溶液的测量预测标准差为0.39mm,乳酸盐为O.12mm,丙胺酸为0.53mm,抗坏血酸盐为0.23mm,尿素为0.11mm,乙酸甘油酯为0.12mm,结果比较满意。目前在成分从简单到复杂的水溶液中是可以预测葡萄糖浓度的,但这些溶液相对血液或血浆还很简单,研究的成分最多是5种,所以还需进一步研究更多成分的水溶液来模拟血浆或血液系统。 3.2 血浆或全血[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]葡萄糖测量 Haahand[3]从人群中获得了4个不同的全血样本,并将葡萄糖加入其中。对每个个体,准备葡萄糖浓度从(3-743)mg/dl变化的20个血液样本,然后在(1.5-2.3)μm范围内收集每个样本的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],再利用参照葡萄糖浓度,用这些光谱去创建PLS定标模型。对所得光谱进行研究之后表明,2.0μm-2.3μm含有很有多的葡萄糖信息。利用这段区域,所得交叉校验的SEP值为30.5mg/dL。这个误差很大,但它可以通过增加定标样本的数量和控制扫描过程中样本的温度而有所减少。Amord等人把数字滤波技术用于牛血浆葡萄糖浓度的测定。将牛血离心以得到血浆,加入不等量的葡萄糖共配制69个样本,并在2.01μm-2.5μm范围内收集这些样本的光谱。通过对这些光谱的观察,发现有些区域含有很高的噪声,他们引人傅立叶滤波以减少噪声和基线偏移。经过PLS定标和预测得出SEP值。结果表明,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可用于测定血浆基质中的葡萄糖浓度,准确度和精度在允许的误差范围内。 我们用磷酸氢二钠和磷酸二氢钠配制不同浓度葡萄糖缓冲水溶液,葡萄糖浓度是18mg/dL-1800mg/dL。共配制20个溶液样本。另外还配制加有牛血清白蛋白(BSA)成分的葡萄糖溶液,配制时在900mg/dL的葡萄糖缓冲溶液中加入了70mg的BSA,制成样本,并在临床采集已知葡萄糖浓度的血样,使用MAGVA-AR560型近红外傅立叶变换光谱仪,在1.61xm-2.51xm段的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]范围进行研究。使用PLS分析也取得了较好的结果[4]。 3.3 在体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]血糖测量 在体[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]血糖测量的关键是建立在体环境下的校正光谱,因为有很多误差来源影响测量,需要通过定标来消除或予以补偿。有些影响测量的误差却不容易合并到定标中,这样的误差来源主要有探测器定位误差、温度和脉搏的影响、检测设备的机械压力、水合作用、出汗、血容量以及血流比容积的变化等。现在主要有两种研究方法,一种是实验方法,在进行口服耐糖检测(OGTT)时从非糖尿病人群和糖尿病患者中无创地收集光谱信号,同时用有创伤的方法测量血糖浓度,最后在所得血糖值和无创性收集的光信号的关系基础上建立模型。这种方法不能测量出其它的代谢物、干扰物、生物噪声或者仪器与身体接触面的变化等信息,但它可计算出这些噪声所带来的影响。另一种方法是物理模型方法,在这种方法中,首先在一组标准葡萄糖溶液中测量葡萄糖的信号。然后逐渐增加标准液的复杂性来模拟人体组织,并描述每一步的精度和准确度,再用数学模型把数据关联起来,用于组织中的光线传播,最后把研究的测量方法和系统应用到人体中。所得的体内信号又与通过化学测量技术的有创伤数据关联起来。这种方法可以鉴别噪声成分,因此利用这种方法在使用化学测量技术之前消除噪声对信号的影响。 手背皮肤的近红外漫反射光谱特性,可知类似水溶液。人体组织在近红外区域也有一个传输窗,所以在2.0μm-2.5μm处有可能测量葡萄糖的浓度。一个含有脂肪和葡萄糖等的理论模型已经在2.0μm-2.5μm范围内用于模拟组织葡萄糖的光吸收[4]。在这些研究中所用的葡萄糖浓度通常要比生理浓度的范围高。但由于目前的几种技术还不能很好地确定所测的信号,对一个血糖浓度正在变化的个体来说,用口服耐糖试验的数据可以建立一个关于血糖浓度的无创性测量响应。在检测过程中产生的数据还可在后来的无创性测量中预测血糖浓度。由于无创性测量响应可能会带有非糖方面的生理影响,所以由口服耐糖试验和无创性测量回应关系所决定的临床定标就会产生一个定标曲线,这个曲线对被测个体来说是唯一的。但这种定标曲线可能需要通过有创伤的检测进行周期性的更新。用于定标的口服耐糖试验和饮食耐量试验会产生时间上连续的一系列测量值,但如果不能进行随机采样,这些由时间决定的数据就会影响多变量定标的结果。这样,光谱信号和噪声的临时分布可能会导致与血糖的不正确关联。在体经皮研究结果显示,到目前为止还不能鉴别直接测得的葡萄糖浓度和数据组内存在的偶然关系[5]。所以现在的研究水平用于家庭血糖监测仪还是不可接受的。 4 检测存在的问题 近红外在体检测葡萄糖浓度的缺点:(1)测量精度较低;(2)需要反复定标;(3)受到服用药物的影响,其它干扰因素较多;(4)水的近红外波段的吸收强度对溶解物

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制