当前位置: 仪器信息网 > 行业主题 > >

气液物性估算手册

仪器信息网气液物性估算手册专题为您提供2024年最新气液物性估算手册价格报价、厂家品牌的相关信息, 包括气液物性估算手册参数、型号等,不管是国产,还是进口品牌的气液物性估算手册您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气液物性估算手册相关的耗材配件、试剂标物,还有气液物性估算手册相关的最新资讯、资料,以及气液物性估算手册相关的解决方案。

气液物性估算手册相关的耗材

  • 浆液滴捕集器
    技术参数:1、除雾器出口浆液滴允许排放量:75mg/m3(标干);可估算需采样体积;2、液滴捕集器自重:65g;根据高精度天平的量程确定采集的浆液滴重量;3、连接螺纹规格:1#滤筒M38x1.5;2#滤筒M34x1.5;3#滤筒M34x1.5;螺纹规格: 1#滤筒 M38x1.5 2#滤筒 M34x1.5 3#滤筒 M34x1.5 (常用) 安装方式: 包装运输:本包装含:6个液滴捕集器(玻璃GG17) 2个连接托架;其中液滴捕集器、连接托架可以单独购买;购买时请说明所用的连接螺纹规格,如果您需要的连接方式特殊,请致电经销商或设计人员。
  • 动物性食品中糖皮质激素类药物多残留检测 样品处理推荐固相萃取小柱 GH-Cleanext-SPE-SL
    动物性食品中糖皮质激素类药物多残留检测 样品处理推荐固相萃取小柱 GH-Cleanext-SPE-SL 将处理好的肌肉组织样品和牛奶、鸡蛋样品,采用固相萃取小柱净化,得到纯净的样品,供高效液相色谱-串联质谱法测定。 需要详细的信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • Accell Plus离子交换填料和制备柱
    Accell Plus离子交换填料和制备柱沃特世Accell Plus离子交换填料是40 μm、300聚合物覆膜的硅胶填料,既可用于实验室规模的色谱分析,也可用于生产规模。Accell Plus,有QMA强阴离子交换剂和弱阳离子交换剂CM两种,易于填充,尤其适用于蛋白质、酶和免疫球蛋白的纯化。坚硬的硅胶基质填料可耐受清洗和再平衡过程中的极高流速。上样和洗脱过程使用正常流速,以获得可能最佳的分辨率。Accell Plus散装材料可填充至我们的Advanced Purification(AP)玻璃柱内。预填充型0.7 mL Sep-Pak 柱芯可用于快速筛选方法或固相萃取应用。当已知Accell Plus量时,估算柱床的填充体积:Accell Plus用量(g) x 2 = 柱床的填充体积(mL)Accell Plus的蛋白结合量*Accell Plus QMA** 200 mg BSA/g填料Accell Plus CM*** 175 mg细胞色素c/g填料*为达到最佳分辨率,请不要超过蛋白结合量的20%。** BSA于20 mM Tris/Cl pH 7.0,用于测量Accell Plus QMA的蛋白结合量。*** 细胞色素c于20 mM磷酸钠pH 6.3,用于测量Accell Plus CM的蛋白结合量。
  • 基于HPLC的 Pico• Tag氨基酸分析
    基于HPLC的Pico Tag氨基酸分析HPLC氨基酸分析的一种广泛使用技术就是沃特世的Pico Tag方法。基于优化的系统配置、预包装的试剂和详尽的资料,Pico Tag方法为通往现代HPLC氨基酸分析提供了即用、可靠的途径。柱前衍生反应根据著名的Edman降解偶联反应的第一步,也就是异硫氰酸苯酯(PITC: phenylisothiocyanate)同时与伯胺类和仲胺类氨基酸反应形成苯基硫脲(PTC: phenylthiocarbamyl)衍生物。PTC-氨基酸加合物稳定,并易于被反相HPLC分离。每种氨基酸只形成一种产物。大多数反应副产物和所有衍生化试剂都具有挥发性,所以可通过真空干燥而从样品中除去。该方法适用于任何样品,包括蛋白水解产物、生理液体、饲料、食品和药物制剂。如需更详细的信息与资料,请联系沃特世化学品部门查询。Pico?Tag氨基酸分析,用于蛋白水解物色谱柱和消耗品 规格/数量 部件号Pico?Tag化学品套装包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册,和柱加热器内插管 — WAT007360Pico?Tag色谱柱 3.9 x 150 mm WAT088131试剂包(包括PITC,TEA,和标准品) — WAT088123Pico?Tag洗脱液A 4 x 1升 WAT088108Pico?Tag洗脱液B 4 x 1升 WAT088112Pico?Tag稀释剂 100mL瓶装 WAT088119Pico?Tag氨基酸分析,用于生理氨基酸色谱柱和消耗品 规格/数量 部件号Pico?Tag游离氨基酸检测化学品套装包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册、柱加热器内插管,和样品管 — WAT091681Pico?Tag游离氨基酸分析色谱柱 3.9 x 300 mm WAT010950试剂包(包括PITC,TEA,和标准品A/N和B) — WAT010947Pico?Tag洗脱液1 4 x 1升 WAT010960Pico?Tag洗脱液2 4 x 1升 WAT010965Pico?Tag稀释剂 100mL瓶装 WAT088119
  • Waters GPC氨基酸分析色谱柱
    氨基酸分析 沃特世公司在用于氨基酸分析的HPLC方法开发方面一直处于业界领先地位。首先是用于伯胺分析的Auto&bull TagTM OPA(邻苯二甲醛)方法,继而开发出用于HPLC的第一个完整的氨基酸分析包&mdash 基于PITC(异硫氰酸苯酯)反应的Pico&bull Tag® 氨基酸分析方法,该方法广泛用于各种基质的氨基酸分析应用。 1993年,沃特世公司开发出的AccQ&bull Tag® 方法基于简单而迅速反应的柱前衍生化学品,衍生后的样品可以直接进样,甚至含有盐和清洁剂的样品液可毫无困难的分析而不影 响精确度。AccQ&bull Tag方法广泛用于食品、饲料、生化、制药、临床等分析领域,满足不同需求的氨基酸分析。 订购信息 色谱柱及附件 规格/数量 部件号 Pico&bull Tag® 分析蛋白水解氨基酸 方法包(色谱柱、试剂包、洗脱液、稀释剂、手册) WAT007360 色谱柱 3.9mm× 150mm WAT088131 试剂包(包括:PITC、TEA、标本) WAT088123 洗脱液A 4× 1L WAT088108 洗脱液B 4× 1L WAT088112 稀释剂 100ml WAT088119 Pico&bull Tag® 分析体液氨基酸 方法包(色谱柱、试剂包、洗脱液、稀释剂、手册) WAT091681 氨基酸分析色谱柱 3.9mmx300mm WAT010950 试剂包(包括:PITC、TEA、标本A/N和B) WAT010947 洗脱液1 4× 1L WAT010960 洗脱液2 4× 1L WAT010965 稀释剂 100ml WAT088119 AccQ&bull TagTM分析蛋白水解氨基酸 方法包包括 WAT052875 色谱柱 试剂包 AccQ&bull FlourTM试剂1 5× 6ml AccQ&bull FlourTM试剂2A 5× 3mg AccQ&bull FlourTM试剂2B 5× 3ml 洗脱液(浓缩液) 2× 1L 衍生管 4× 72/包 WAT007571 水解氨基酸标样 10× 1ml针剂 WAT088122 用户使用指南 色谱柱 3.9mm× 150mm WAT052885 试剂包(包括:试剂、2A、2B) WAT052880 洗脱液 A(浓缩渡) 1× 1L WAT052890 洗脱液 B(高压梯度系统用) 1× 1L WAT052895 衍生管 72/包 WAT007571 水解氨基酸标样 10× 1ml针剂 WAT088122
  • 沃特世 基于HPLC的Pico Tag氨基酸分析 其他色谱配件
    基于HPLC的Pico Tag氨基酸分析HPLC氨基酸分析的一种广泛使用技术就是沃特世的Pico Tag方法。基于优化的系统配置、预包装的试剂和详尽的资料,Pico Tag方法为通往现代HPLC氨基酸分析提供了即用、可靠的途径。柱前衍生反应根据著名的Edman降解偶联反应的第一步,也就是异硫氰酸苯酯(PITC:phenylisothiocyanate)同时与伯胺类和仲胺类氨基酸反应形成苯基硫脲(PTC: phenylthiocarbamyl)衍生物。PTC-氨基酸加合物稳定,并易于被反相HPLC分离。每种氨基酸只形成一种产物。大多数反应副产物和所有衍生化试剂都具有挥发性,所以可通过真空干燥而从样品中除去。该方法适用于任何样品,包括蛋白水解产物、生理液体、饲料、食品和药物制剂。Pico Tag氨基酸分析,用于蛋白水解物订货信息:色谱柱和消耗品规格/数量部件编号Pico Tag化学品套装 包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册,和柱加热器内插管—WAT007360Pico Tag色谱柱3.9 x 150 mmWAT088131试剂包(包括PITC,TEA,和标准品)—WAT088123Pico Tag洗脱液A4 x 1升WAT088108Pico Tag洗脱液B4 x 1升WAT088112Pico Tag洗脱液B1升WAT010983Pico Tag稀释剂100mL瓶装WAT088119Pico Tag氨基酸分析,用于生理氨基酸色谱柱和消耗品规格/数量部件编号Pico Tag游离氨基酸检测化学品套装 包括:色谱柱、试剂包、洗脱液、稀释剂、应用指导手册、柱加热器内插管,和样品管—WAT091681Pico Tag游离氨基酸分析色谱柱3.9 x 300 mmWAT010950试剂包 (包括PITC,TEA,和标准品A/N和B)—WAT010947Pico Tag洗脱液14 x 1升WAT010960Pico Tag洗脱液24 x 1升WAT010965Pico Tag洗脱液21升WAT010985Pico Tag稀释剂100mL瓶装WAT0881191水解氨基酸标准品 WAT088122混标含18个氨基酸(17个水解氨基酸 2.5mM/每个,和胱氨酸 1.25mM)2AccQ Tag Ultra衍生化试剂包 186003836可分析250次样品,包含:AccQ Tag Ultra硼酸盐缓冲溶液 5 x 6mLAccQ Tag Ultra衍生化试剂粉末 5 x 3mgAccQ Tag Ultra稀释液 5 x 4mL
  • 氨基酸分析专用色谱柱
    ACQUITY UPLC 生物分离色谱柱 氨基酸分析专用色谱柱 &bull 氨基酸分析的整体解决方案,专门针对需要精确结果,稳定方法的和高灵敏度的分析需求而设计 &bull 10分钟内可完成近20种氨基酸的分析 &bull 已经证明在蛋白质定性、细胞培养液监控和食品及饲料检测方面性能稳定 氨基酸分析专用色谱柱 产品描述   部件号 UPLC AAA应用功能拓展套件   176001279 配合标准ACQUITY UPLC系统用于氨基酸分析, 包括AccQ· Tag Ultra试剂包、色谱柱、洗脱液、 应用手册和所需要的配件     AccQ· Tag Ultra ACQUITY UPLC氨基酸分析方法包   176001235 此方法包包括: AccQ· Tag Ultra衍生试剂,可进行250次分析 186003836 AccQ· Tag Ultra色谱柱,2.1× 100mm,1.7µ m 186003837 AccQ· Tag Ultra洗脱液A(浓缩液),950 mL 186003838 AccQ· Tag Ultra洗脱液B,950 mL 186003839 衍生管,4× 72/包 WAT007571 水解氨基酸标样,10× 1 mL安瓿管 WAT088122 全回收样品瓶,100个样品瓶/包,共三包   186000384C
  • 基于HPLC的AccQ• Tag氨基酸分析
    基于HPLC的AccQ Tag氨基酸分析HPLC AccQ Tag方法使用柱前衍生试剂,可产生容易被检测到的荧光加合物。其所使用的AccQ Fluor试剂—— 6-氨基喹啉-N-羟基琥珀酰亚胺氨基甲酸酯(AQC)——能够通过一个简单反应同时衍生伯胺和仲胺,产生高度稳定的、具有荧光性的加合物。我们将AccQ Tag方法作为一个套装产品提供,其中包括预包装的试剂和全面的文件资料。AccQ Tag化学产品套装所含产品,能够满足您250次以上蛋白和肽水解物氨基酸分析所需。AccQ Fluor试剂盒(每盒5瓶)1、AccQ Fluor硼酸盐缓冲液2、AccQ Fluor试剂稀释液3、AccQ Fluor试剂粉末AccQ Tag氨基酸分析色谱柱分离AccQ Fluor衍生反应所得到的氨基酸衍生物。 AccQ Tag色谱柱是经过专门质控验证可用于AccQ Tag方法的高效色谱柱。该色谱柱的保养和使用方法在“沃特世AccQ Tag氨基酸分析色谱柱保养和使用手册”中加以说明。AccQ Tag洗脱浓缩液A预混合的浓缩型水相缓冲液。氨基酸水解物标准品十个装有氨基酸水解物标准品的1mL安瓿瓶。每个安瓿瓶装有浓度为2.5mM的17种氨基酸(其中胱氨酸浓度为1.25mM)混合标准品。6 x 50 mm样品管用于制备样品和标准品。AccQ Tag化学产品包的使用手册介绍AccQ Tag氨基酸分析方法。AccQ Tag分析蛋白水解物氨基酸进样体积指导AccQ Tag HPLC柱及消耗品产品描述 规格/数量 部件号AccQ Tag化学品包,可进行250次分析 — WAT052875该产品包包括:AccQ Fluor试剂 1 5 x 6 mL vials —AccQ Fluor试剂2A 5 x 3 mg vials —AccQ Fluor试剂2B 5 x 3 mL vials —AccQ Tag色谱柱 3.9 x 150 mm —AccQ Tag洗脱液A,浓缩液 2 x 1 liter —样品衍生管 4 x 72/pk氨基酸标准品,水解物 10 x 1 mL ampules WAT088122AccQ Tag用户指南 — WAT052874AccQ Fluor试剂包,包括:AccQ Fluor试剂 1,5x6mL样品瓶AccQ Fluor试剂2A,5x3mg样品瓶 — WAT052880AccQ Fluor试剂2B,5x4mL样品瓶AccQ Tag色谱柱 3.9 x 150 mm WAT052885AccQ Tag洗脱液A,浓缩液 1 x 1 liter WAT052890AccQ Tag洗脱液B(配用高压梯度泵) 1 x 1 liter WAT052895
  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • ProElut QuE 2ml Tube - 50mg PLR 100/pk
    ProElut® QuE 2ml Tube - 50mg PLR 100/pk(除脂专用的2ml净化管)产品描述:ProElut® QuE 2ml Tube - 50mg PLR 100/pk除脂型QuECHERS净化管,主要用于风险监测工作手册中动物性食品中阿奇霉素测定项目。货号:64739
  • 氨基酸分析色谱柱
    氨基酸分析色谱柱 沃特世公司在用于氨基酸分析的HPLC方法开发方面一直处于业界领先地位。首先是用于伯胺分析的AutoTagTM OPA(邻苯二甲醛)方法,继而开发出用于HPLC的第一个完整的氨基酸分析包—基于PITC(异硫氰酸苯酯)反应的PicoTag氨基酸分析方法,该方法广泛用于各种基质的氨基酸分析应用。 1993年,沃特世公司开发出的AccQTag方法基于简单而迅速反应的柱前衍生化学品,衍生后的样品可以直接进样,甚至含有盐和清洁剂的样品液可毫无困难的分析而不影 响精确度。AccQTag方法广泛用于食品、饲料、生化、制药、临床等分析领域,满足不同需求的氨基酸分析。色谱柱及附件规格/数量部件号PicoTag分析蛋白水解氨基酸方法包(色谱柱、试剂包、洗脱液、稀释剂、手册)WAT007360色谱柱3.9mm×150mmWAT088131试剂包(包括:PITC、TEA、标本)WAT088123洗脱液A4×1LWAT088108洗脱液B4×1LWAT088112稀释剂100mlWAT088119PicoTag分析体液氨基酸方法包(色谱柱、试剂包、洗脱液、稀释剂、手册)WAT091681氨基酸分析色谱柱3.9mmx300mmWAT010950试剂包(包括:PITC、TEA、标本A/N和B)WAT010947洗脱液14×1LWAT010960洗脱液24×1LWAT010965稀释剂100mlWAT088119AccQTagTM分析蛋白水解氨基酸方法包包括WAT052875色谱柱试剂包AccQFlourTM试剂1?5×6ml AccQFlourTM试剂2A?5×3mg AccQFlourTM试剂2B5×3ml 洗脱液(浓缩液)2×1L 衍生管4×72/包WAT007571水解氨基酸标样10×1ml针剂WAT088122用户使用指南色谱柱3.9mm×150mmWAT052885试剂包(包括:试剂、2A、2B)WAT052880洗脱液?A(浓缩渡)1×1LWAT052890洗脱液?B(高压梯度系统用)1×1LWAT052895衍生管72/包WAT007571水解氨基酸标样10×1ml针剂WAT088122
  • 沃特世 UPLC AAA(氨基酸分析)应用包 其他色谱配件
    UPLC氨基酸分析解决方案沃特世公司进入氨基酸分析领域已经超过25年,所提供的应用方案一直处于业界领先地位。首先是基于OPA(邻苯二甲醛)反应、用于伯胺分析的Auto?Tag?方法,继而开发出基于PITC(异硫氰酸苯酯)反应的第一个完整氨基酸分析Pico?Tag?方法包,至1993年沃特世公司又开发出基于专利衍生试剂AQC的AccQ?Tag?方法。今天,沃特世通过整合最具突破性和最受欢迎的技术而继续保持领先,这就是第二代AccQ?Tag? Ultra方法包的UPLC氨基酸分析解决方案。UPLC氨基酸分析解决方案专为氨基酸分析而进行了全面设计和优化。衍生后氨基酸在ACQUITY UPLC系统上获得分离,提高的分辨率能确保定性和定量结果的精准性。同样重要的是,我们的解决方案提供了满足分析性能要求的方法学,方法被设计具有耐用性与可靠性,从而确保在日与日间、不同仪器之间、不同实验室之间、甚至全球各地的不同分部,化学家们都能在沃特世的专业支持下获得可重现的结果。UPLC氨基酸分析解决方案充分运用了沃特世在分离科学、衍生化学和信息管理方面的经验。这是一个经过优化的总体应用解决方案,可提供准确、可靠、重现性好的氨基酸分析结果。基于沃特世AccQ?TagUltra化学产品并结合我们优秀的ACQUITY UPLC分离技术,分析工作者可对其在蛋白质鉴定、细胞培养监测以及食品和饲料营养分析方面的可靠性能充满信心。UPLC氨基酸分析解决方案包括:??沃特世ACQUITY UPLC系统和双波长紫外可见检测器(也完全支持选配的荧光检测器和PDA检测器) AccQ Tag Ultra衍生化学产品包括色谱柱、试剂和洗脱液(所有产品均经过了质控测试)?? Empower 预配置项目、方法和报告模板??包括安装和应用培训以及技术支持??特定应用的性能确认??接口INSIGHT智能服务UPLC AAA(氨基酸分析)应用包,配用于ACQUITY UPLC系统订货信息:产品描述数量部件编号UPLC AAA应用包,包括如下:—176001279氨基酸标准品,1 mL x 101WAT0881221样品衍生管,72/pk4WAT007571全回收样品瓶,带盖,100/pk3186000384C配件包,柱稳定器,150mm1205000494AccQ Tag Ultra衍生化试剂包11860038362AccQ Tag Ultra C18 1.7um, 2.1x100mm柱1186003837AccQ Tag Ultra洗脱液A(浓缩),950 mL1186003838AccQ Tag Ultra洗脱液B,950 mL1186003839Assy. Tube Inlet .0025 ID PEEK Nut PDA(柱后连接检测器所用管路,体积最小化)14300017832 μL Sample Loop1430001264柱在线过滤器1205000343信息包,UPLC AAA解决方案1716002024初始测试,UPLC AAA应用解决方案1741000299* 此应用包用于既有的ACQUITY UPLC系统用于氨基酸分析。初次进行氨基酸分析时,购买此应用包,包含应用所需的管路配件以及指导手册等。之后常规消耗所需,可购买“氨基酸分析化学品补充包”。UPLC AAA(氨基酸分析)应用包,配用于ACQUITY UPLC H-Class系统订货信息:产品描述数量部件编号UPLC AAA H-Class应用包,包括如下:—176002983氨基酸标准品,1 mL x 101WAT0881221样品衍生管,72/pk4WAT007571全回收样品瓶,带盖,100/pk3186000384CAccQ Tag Ultra衍生化试剂包11860038362AccQ Tag Ultra C18 1.7um, 2.1x100mm柱1186003837AccQ Tag Ultra洗脱液(浓缩),950 mL1186003838AccQ Tag Ultra洗脱液B,950 mL1186003839Assy. Tube Inlet .0025 ID PEEK Nut PDA(柱后连接检测器所用管路,体积最小化)1430001783柱在线过滤器1205000343信息包,UPLC AAA H-Class解决方案1716003230初始测试,UPLC AAA H-Class应用解决方案1741000299* 此应用包用于既有的ACQUITY UPLC H-Class系统用于氨基酸分析。初次进行氨基酸分析时,购买此应用包,包含应用所需的管路配件以及指导手册等。之后常规消耗所需,可购买“氨基酸分析化学品补充包”。
  • 铵测试
    一般描述方法: 比色法,使用试纸条和试剂 10 - 30 - 60 - 100 - 200 - 400 mg/l NH₄ ⁺ MQuant® 该测试适用于检测地表水和地下水中由铵化合物导致的潜在的有害污染。随着pH值的变化会形成氨,这是对于鱼类的一种强力毒素。在农业上,样品制备后,MQuant试纸可用于测定各种类型的肥料和堆肥中的铵态氮的含量。使用这些试纸,可通过肉眼观察将试纸上的反应区与比色卡进行比较,从而半定量地测量铵浓度。该测试所需的所有必需试剂已包括在内,以便快速、轻松地进行分析。试纸非常适合以经济、快速的方式对样品进行预测试,以便在使用定量方法(例如Reflectoquant 和Spectroquant测试)之前对铵浓度和可能的稀释因子进行估算。包装100 pkg100, 100 tests所有产品、耗材配件均原厂,公司拥有完善的质量管理体系和专业的技术团队,在全国多个城市设立服务机构,覆盖率广,高效率、响应速度快!除销售仪器、配件耗材外,还可提供维修、维保、培训等一站式产品和服务解决方案!
  • 沃特世OBD色谱柱设计
    沃特世OBD色谱柱设计沃特世已将高压匀浆填充与经过仔细计算的轴向压缩因素相结合,应对于柱头装填密度较小的部分。按照制备柱OBD设计理念,并按每种填料类型和每种柱规格的立体几何学加以精心微调的实际操作工艺,就可以获得可预测的、对整个柱床长度都均匀一致的装填密度。在装填结束后的封柱过程中,沃特世柱装填操作依从仔细严格的操作流程,从而确保不会以任何不均匀的方式过度压缩或扰动柱端部分。OBD制备柱硬件设计包括一对精心设计的分流板和化学惰性密封圈,以防止在高压操作下出现漏液情况。OBD制备柱装配件图解OBD空柱部件分解图优化的OBD制备柱技术确保柱效更高OBD制备柱计算器设计用于简化常规制备计算:1、柱/管路背压2、样品载量放大3、梯度流程放大4、梯度设计可直接放大—准确可靠的表现分析柱的分离效果纯化工作者大都遇到这样的情况;即使使用和分析柱完全相同的填料颗粒,色谱分离往往也不能“直接放大”,总是会出现分离度降低或上样量下降的问题。OBD制备柱的柱床密度与分析柱相当,具有优异的稳定性、重现性和柱效,能够保证分离的直接放大,并避免在制备分离时重新开发方法。更长和可预测的制备柱寿命采用反相技术进行分离,组成复杂的待分离粗品经常需要用强溶剂如DMSO进行溶解,由于粗品在流动相中的溶解度低,加上大体积纯有机溶剂进样对制备柱产生的压力冲击,是导致制备柱过早失效和柱床塌陷的主要因素。OBD制备柱具有极佳的柱床稳定性,根本不会塌陷,而且柱与柱间性能完全一致,使用寿命大大延长,从而降低了使用成本。来自药物开发实验室的数据:在一根XBridge C 18 ,5μm 19×50mm OBD制备柱上进样7000次的结果从分析柱到制备柱直接放大,常用计算公式:流速可用于计算与分析柱应用时完全相当的线性流速条件下对应于更大色谱柱的体积流速。但是,合理的流速将取决于柱规格。当柱长增加、粒径减小时,柱背压会相应增加,会受到液相系统耐压性的限制。梯度持续时间估算:制备柱上样量预估对于OBD制备柱的大概上样量(毫克),梯度洗脱模式时:1 合理流速取决于柱内径。随柱长增加及填料粒径减少,柱背压增大,使用时会受到液相设备的耐压性的限制。在制备柱上的梯度持续时间,应按照与分析柱应用时相等的梯度洗脱体积与柱体积之比的倍数因子计算(计算公式见“梯度持续时间估算”公式)。2 此处进样体积数值基于50mm柱长并使用较强溶剂溶解样品时。如增加柱长,进样体积亦可增加,但并不成正比。使用较弱强度的溶剂溶解样品,能显著提高进样体积量。制备柱的样品载量受制于许多因素。以上所列数据仅为“平均状况下”的预估值。通常规律有:1、强保留的目标物载量较大2、样品简单时载量较大3、需要高分辨时载量降低4、样品载量受上样条件影响很大:(1)受限于样品体积(2)受限于样品溶剂的强度5、对于肽样品,其载量主要取决于目标肽序列以及肽样品的溶解性,建议按所列值的5-20%预估。
  • 氨基酸专用分析方法包
    博纳艾杰尔科技推出的Venusil AA 氨基酸分析方法是基于目前广泛使用的PITC( 异硫氰酸苯酯) 衍生剂的HPLC 氨基酸分析方法。简化了衍生方法,衍生方便、快速,衍生物单一、稳定,-20 可贮存数月;4 水溶液3 天;分析时间短;结果准确,试剂、副产物、溶剂等多种干扰因素可通过快速蒸发去除;紫外检测(254nm) 灵敏度高,可达到1 pmol;一、二级氨基酸均可检测。是目前氨基酸分析中最具吸引力的分析方法。本法已拓展至磷酸氨基酸、硫酸氨基酸等修饰氨基酸与不同组织氨基酸分析。Venusil AA氨基酸分析方法包中提供的试剂量和相应的包装,均经过准确计算,仅需按照说明书操作,加入相应量的溶剂即可得到所需浓度的试剂,省却了繁琐的计算过程。Venusil AA 氨基酸分析方法包提供:Venusil AA 氨基酸分析专用柱(4.6×250,5μm),1支;氨基酸标准溶液,2瓶,1mL/瓶(含17种氨基酸,其中天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、酪氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸为2.5μmol/mL,胱氨酸1.25μmol/mL);内标物正亮氨酸(Nle),一瓶,100mg/瓶;异硫氰酸苯酯(PITC),10 瓶,25μL/瓶;三乙胺(TEA),2瓶,1.4mL/瓶;Venusil AA 氨基酸分析专用柱分析方法手册;
  • Accell Plus离子交换填料和制备柱
    Accell Plus离子交换填料和制备柱沃特世Accell Plus离子交换填料是40 μm、300?聚合物覆膜的硅胶填料,既可用于实验室规模的色谱分析,也可用于生产规模。AccellPlus,有QMA强阴离子交换剂和弱阳离子交换剂CM两种,易于填充,尤其适用于蛋白质、酶和免疫球蛋白的纯化。坚硬的硅胶基质填料可耐受清洗和再平衡过程中的极高流速。上样和洗脱过程使用正常流速,以获得可能最佳的分辨率。Accell Plus散装材料可填充至我们的Advanced Purification(AP)玻璃柱内。预填充型0.7 mL Sep-Pak?柱芯可用于快速筛选方法或固相萃取应用。当已知Accell Plus量时,估算柱床的填充体积:Accell Plus用量(g) x 2 = 柱床的填充体积(mL)Accell Plus的蛋白结合量*Accell Plus QMA**Accell Plus CM***200 mg BSA/g填料175 mg细胞色素c/g填料 *为达到最佳分辨率,请不要超过蛋白结合量的20%。** BSA于20 mM Tris/Cl pH 7.0,用于测量Accell Plus QMA的蛋白结合量。*** 细胞色素c于20 mM磷酸钠pH 6.3,用于测量Accell Plus CM的蛋白结合量。Accell Plus离子交换散装填料适用于所有基于离子相互作用的制备型分离,特别如蛋白质、酶和免疫球蛋白。产品描述粒径孔径规格部件编号Part No.Accell Plus QMA40 μm300A100 gWAT010742强阴离子交换剂——500 gWAT010741Accell Plus CM40 μm300A100 gWAT010740弱阳离子交换剂——500 gWAT010739
  • 丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家
    丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家 混悬液 分散是至少两种互不相溶或者难以相溶且不发生化学反应的物质的混合过程。工业分散的目标是在连续相中实现“令人满意的”精细分布。 当固体颗粒分散到一种液体中时,形成一种悬浮液。当一种液体分散到另一种液体中时,形成一种乳浊液。在一种乳浊液的两个液相间的界面处,表面张力开始发生作用。新表面的产生需要能量。在没有外部影响的情况下,每个液相体系均企图以较少的能量达到乳浊液状态。因此,总是会有产生较小界面的倾向,这阻碍任何乳浊液的形成。 为了实现互不相溶相的分散,必须强力粉碎并混合其粒子。粉碎意味着必须克服表面张力的阻力来形成新表面。分散过程传递所需的能量,并保证两相均质混合。分散的长期稳定性会受到确切粒度分布及乳化剂和稳定剂使用的影响。 现在分散机的应用不仅仅局限于“分散”,由于其独特的剪切作用,对粉粒体在液体中的粉碎撞击终细化到理想的粒径,从而使固体质充分掺混到液体中并形成相对稳定的悬浮液,这种过程也就是“分散”。当然与乳化剂一样,添加了分散剂后,悬浮液的稳定性就能得到增强。当某种固体物质通过一定时间与液体的接触能够被液体彻底溶解,那么经剪切撞击而形成的小颗料将更快地被液体所溶解,因为其比表面积增大了好多倍了。从设备角度分析影响分散乳化效果的因素:1、分散机的结构。分散机一般分为间歇式分散机和管线式分散机,管线式分散机分散效果更好,物料可以充分分散乳化,效率高。IKN高剪切分散机采用的是管线式的分散乳化方式。2、分散机的剪切速率。分散设备核心参数就是剪切速率,一般情况下,剪切速率越高,分散乳化效果越好,当然也需要根据具体物料工艺来定;IKN分散机通过皮带加速,转速达9000rpm,是普通分散机转速的3倍,高转速可达21,000rpm。3、处理时间。物料在腔体里面停留时间越长,相对应的分散乳化效果越好,处理次数越多,一般来说分散乳化效果越好。IKN分散机结构设计采用的是立式分体结构,运行时间短。 4、分散头的加工精度。传统分散乳化机采用单层分散乳化头,加工粗糙,而IKN纳米分散乳化机采用三分散乳化头,间隙更小,精密程度更高,分散乳化效果也会更好。设备的选型要点:1、明确使用设备所需达到的效果和目的2、详细了解并掌握研究物料的性质(包括物理、化学性质)3、根据物料对设备的搅拌机进行选型4、再次确定设备的操作参数及结构设计5、综合考虑设备的成本 上海依肯自主研发生产的分体式三分散乳化机,具有高转速、低能耗、低噪音、高寿命等优势,市场上正常用的分散乳化机由于定转子精度以及机械密封的原因,转速高只能达到2910转,而如此低转速以及跟不上市场上对物料分散乳化均质效果 的高要求。IKN特别研立式分体式分散乳化机解决了此难题,将转速提高到了9000转,外加变频器,高可21000rpm,成功解决了市场需求...更多详情请致电上海依肯机械设备有限公司 销售工程师 徐工 182-0189-1183,公司有样机可以免费实验。丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家
  • 寡核苷酸分离技术
    寡核苷酸分离技术合成寡核苷酸和DNA片段被应用于迅速发展的应用领域,包括作为主体或杂交探针用于治疗性制剂。沃特世寡核苷酸分离技术(OST:Oligonucleotide Separation Technology)基于BEH杂化颗粒的反相色谱柱,以及Gen-Pak离子交换柱,应对各种高分辨分析与实验室规模分离挑战所需,包括涉及各种DNA和RNA品种。沃特世OST色谱柱装有键合了C 18 的第二代杂化技术BEH颗粒。对去三苯甲基(detritylated,或称脱保护)的合成寡核苷酸样品的分离,基于成熟的离子对反相色谱法。沃特世提供1.7 μm UPLC颗粒或2.5 μm HPLC颗粒,装填以各种不同色谱柱规格,从而灵活满足各种实验室规模分离或分析的不同需求,并能实现异乎寻常的样品分辨率和卓越的色谱柱使用寿命。此外,沃特世的制造和质控测试程序,有助于确保批次之间与柱之间的性能的一致性,而无论应用的难度有多高。1、分离效率相当于或优于PAGE、CGE、或离子交换HPLC方法2、可从去三苯甲基(脱保护)的全长产物中分辨出失败序列3、可放大的柱规格,满足实验室规模的分离需求4、超长的色谱柱使用寿命,降低单次分析或分离成本5、经MassPREP OST标准品质控测试,帮助确保性能稳定对寡核苷酸混合物具有异乎寻常的高分辨率ACQUITY UPLC OST C 18 ,1.7 μm色谱柱(设计专用于ACQUITY UPLC系统)和XBridge OST C 18 ,2.5 μm色谱柱,能完全适用于离子对反相色谱法分析和纯化去三苯甲基寡核苷酸的需求。如图所示(右图),使用沃特世UPLC技术所进行的分离,具有与毛细管凝胶电泳(CGE)相媲美的组分分辨率,而且分析时间显著缩短。由于使用亚2 μm BEH技术颗粒提高了分辨力,因而有可能对大寡核苷酸序列进行分离(如将N与N-1分开)。此外,使用沃特世OST色谱柱配合质谱联用技术以及对质谱兼容的洗脱剂,有可能对与失败序列的色谱分离开的目标寡核苷酸产物的分子量特征进行定量分析。分离15-60mer去三苯甲基寡脱氧胸苷序列组(Detritylated Oligodeoxythymidine Ladder)分离去三苯甲基寡脱氧胸苷序列组,比较毛细管凝胶电泳(CGE)与离子对反相色谱方法的分离效果纯化单链RNA干扰RNA寡核苷酸的UPLC/MS分析RNA干扰(RNAi)机制的发现现在被广泛用于静默目标基因表达,这推动了对小分子干扰RNA(siRNA)分析的需求。为满足对20-25个核苷酸的小分子干扰RNA(siRNA)进行耐用的、快速的、灵敏的分析的需求,沃特世开发了一个UPLC/MS方法,运用了UPLC OST色谱柱和Synapt HDMS质谱仪。采集准确质量可对5’-截断寡聚体(寡核苷酸合成过程所产生的失败序列)以及其它一些杂质峰进行分配。质谱图中的质量的每个峰均使用MaxEnt 1软件进行去卷积化。图2给出了推测性的5’-端失败产物。对寡核苷酸母体的几乎完整序列均进行了解释。质谱分析还显示除了目标21-mer RNAi序列以外,还存在一个额外的尿苷单核苷酸。对一个21mer的RNA进行LC/MS分析不同离子对试剂对不同寡核苷酸序列分离的影响杰出的柱寿命在这些苛刻的分离条件下,填充以BEH技术颗粒的沃特世OST色谱柱显示出引人注目的柱寿命,同时还具有并保持卓越的分离性能。而在相同的苛刻分离条件下,传统硅胶基质色谱柱的使用寿命显著缩短。分离5-25mer去三甲苯基(脱保护)寡脱氧胸苷序列——进样1000针柱分辨率没有任何变化寡核苷酸分离技术(OST)柱产品一览表产品描述 粒径 孔径 柱规格 部件号ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 50 mm 186003949ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 100 mm 186003950ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 150 mm 186005516ACQUITY UPLC OST C 18 方法验证包** 1.7 μm 135 2.1x 100 mm 186004898ACQUITY UPLC OST C 18 定制柱* 1.7 μm 135 定制 186003951XBridge OST C 18 2.5 μm 135 2.1 x 50 mm 186003952XBridge OST C 18 2.5 μm 135 4.6 x 50 mm 186003953XBridge OST C 18 2.5 μm 135 10 x 50 mm 186003954XBridge OST C 18 方法验证包** 2.5 μm 135 4.6 x 50 mm 186004906XBridge OST C 18 定制柱 2.5 μm 135 定制 186003955* 用于配合沃特世UPLC系统使用**来自于不同批次填料所装填的三根色谱柱可放大的DNA与RNAi分离,良好的产品回收率研究基因静默、或用于基因敲除时,需要高纯度寡核苷酸。XBridge OST C 18 色谱柱,具有极高分辨率,其柱规格设计用于满足实验室规模的分离需求,是纯化去三苯甲基(脱保护)寡核苷酸的首选色谱柱。如下表所示,XBridge OST C 18 色谱柱规格和操作流速的选择,主要取决于合成反应混合物的规模大小。我们建议根据寡核苷酸样品的载量选择适当的色谱柱规格,这样可使组分分辨率最大化,使目标产物与不要的失败序列分离开得到最大回收率。柱规格 大概样品载量** mg*** 流速2.1 x 50 mm 0.04 μmoles 0.2 mg 0.2 mL/min4.6 x 50 mm 0.20 μmoles 1.0 mg 1.0 mL/min10 x 50 mm 1.00 μmoles 4.5 mg 4.5 mL/min19 x 50 mm* 4.00 μmoles 16.0 mg 16.0 mL/min30 x 50 mm* 9.00 μmoles 40.0 mg 40.0 mL/min50 x 50 mm* 25.00 μmoles 110.0 mg 110.0 mL/min* OST订制柱** 所列数值仅为约值,且取决于寡核苷酸的长度、碱基组成、以及所采用的“切取中心”的馏分收集方法。*** 按平均寡核苷酸分子量及合成产率估算将siRNA Duplex与其相关杂质分离开
  • UPLC氨基酸分析解决方案
    UPLC氨基酸分析解决方案沃特世公司进入氨基酸分析领域已经超过25年,所提供的应用方案一直处于业界领先地位。首先是基于OPA(邻苯二甲醛)反应、用于伯胺分析的Auto Tag方法,继而开发出基于PITC(异硫氰酸苯酯)反应的第一个完整氨基酸分析Pico Tag方法包,至1993年沃特世公司又开发出基于专利衍生试剂AQC的AccQ Tag方法。今天,沃特世通过整合最具突破性和最受欢迎的技术而继续保持领先,这就是第二代AccQTag Ultra方法包的UPLC氨基酸分析解决方案。UPLC 氨基酸分析解决方案专为氨基酸分析而进行了全面设计和优化。衍生后氨基酸在ACQUITY UPLC系统上获得分离,提高的分辨率能确保定性和定量结果的精准性。同样重要的是,我们的解决方案提供了满足分析性能要求的方法学,方法被设计具有耐用性与可靠性,从而确保在日与日间、不同仪器之间、不同实验室之间、甚至全球各地的不同分部,化学家们都能在沃特世的专业支持下获得可重现的结果。UPLC氨基酸分析解决方案充分运用了沃特世在分离科学、衍生化学和信息管理方面的经验。这是一个经过优化的总体应用解决方案,可提供准确、可靠、重现性好的氨基酸分析结果。基于沃特世AccQ Tag Ultra化学产品并结合我们优秀的ACQUITY UPLC分离技术,分析工作者可对其在蛋白质鉴定、细胞培养监测以及食品和饲料营养分析方面的可靠性能充满信心。UPLC氨基酸分析解决方案包括:1、ACQUITY UPLC系统和双波长紫外可见检测器(也完全支持选配的荧光检测器和PDA检测器)2、AccQ Tag Ultra 衍生化学产品包括色谱柱、试剂和洗脱液(所有产品均经过了质控测试)3、Empower 预配置项目、方法和报告模板4、包括安装和应用培训以及技术支持 5、特定应用的性能确认 6、接口INSIGHT智能服务ACQUITY UPC 2 色谱柱 (*需配合ACQUITY UPC 2 系统使用)规格 BEH 2-EP1.7 μm BEH1.7 μm CSH氟苯基1.7 μm HSS C 18 SB1.8 μm2.1 x 50 mm 186006576 186006558 186006567 1860066172.1 x 75 mm 186006577 186006559 186006568 1860066182.1 x 100 mm 186006578 186006560 186006569 1860066192.1 x 150 mm 186006579 186006561 186006570 1860066203.0 x 50 mm 186006580 186006562 186006571 1860066213.0 x 75 mm 186006581 186006563 186006572 1860066223.0 x 100 mm 186006582 186006564 186006573 1860066233.0 x 150 mm 186006688 186006686 186006687 186006685VanGuard 186006575 186006557 186006566 186006616保护柱,2.1 x 5 mm,3/pk规格 BEH 2-EP3.5 μm BEH3.5 μm CSH氟苯基3.5 μm HSS C 18 SB3.5 μm2.1 x 50 mm 186006652 186006634 186006643 1860066252.1 x 75 mm 186006653 186006635 186006644 1860066262.1 x 100 mm 186006654 186006636 186006645 1860066272.1 x 150 mm 186006655 186006637 186006646 1860066283.0 x 50 mm 186006656 186006638 186006647 1860066293.0 x 75 mm 186006657 186006639 186006648 1860066303.0 x 100 mm 186006658 186006640 186006649 1860066313.0 x 150 mm 186006659 186006641 186006650 186006632VanGuard 186006651 186006633 186006642 186006624保护柱,2.1 x 5 mm,3/pkUPLC AAA(氨基酸分析)应用包,配用于ACQUITY UPLC系统产品描述 数量 部件号UPLC AAA应用包 — 176001279氨基酸标准品 1 WAT088122样品衍生管,72/pk 4 WAT007571全回收样品瓶,带盖 3 186000384C配件包,柱稳定器,150mm 1 205000494AccQ?Tag Ultra衍生化试剂包 1 186003836AccQ?Tag Ultra C 18 1.7um, 2.1x100mm柱 1 186003837AccQ?Tag Ultra洗脱液A,1L瓶 1 186003838AccQ?Tag Ultra洗脱液B,1L瓶 1 186003839Assy. Tube Inlet .0025 ID PEEK Nut PDA(柱后连接检测器所用管路,体积最小化) 1 4300017832uL Sample Loop 1 430001264柱在线过滤器 1 205000343信息包,UPLC AAA解决方案 1 716002024初始测试,UPLC AAA应用解决方案 1 741000299* 此应用包用于既有的ACQUITY UPLC系统用于氨基酸分析。初次进行氨基酸分析时,购买此应用包,包含应用所需的管路配件以及指导手册等。之后常规消耗所需,可购买“氨基酸分析化学品补充包”。UPLC AAA(氨基酸分析)应用包,配用于ACQUITY UPLC H-Class系统产品描述 数量 部件号UPLC AAA H-Class应用包 — 176002983氨基酸标准品 1 WAT088122样品衍生管,72/pk 4 WAT007571全回收样品瓶,带盖 3 186000384CAccQ?Tag Ultra衍生化试剂包 1 186003836AccQ?Tag Ultra C 18 1.7um, 2.1x100mm柱 1 186003837AccQ?Tag Ultra洗脱液A,1L瓶 1 186003838AccQ?Tag Ultra洗脱液B,1L瓶 1 186003839Assy. Tube Inlet .0025 ID PEEK Nut PDA(柱后连接检测器所用管路,体积最小化) 1 430001783柱在线过滤器 1 205000343信息包,UPLC AAA H-Class解决方案 1 716003230初始测试,UPLC AAA H-Class应用解决方案 1 741000299
  • 快速大肠菌群测试片(美国3M)
    5.Petrifilm&trade 快速大肠菌群测试片-美国3M &bull 培养基中含有特定的pH指示剂 &bull 6-14小时培养可估计大肠菌群数 &bull 24小时培养可获得准确的大肠菌群数 AOAC OMA标准:2000.15 编号:6412 规格:20片/包,20包/箱 一、操作方法 二、判读手册 Petrifilm ColiformTM Coliform测试片含有VRB培养剂 (Violet Red Bile),一种冷水可溶性的凝胶剂和四唑翁(tetrazollium)指示剂,可增强菌落计数效果。表面覆盖的胶膜,可留住发酵乳糖的大肠菌群产生的气体。 AOAC和FDA细菌学分析手册(RAM)规定大肠菌群为革兰氏阴性杆菌,发酵乳糖产酸产气。大肠菌群菌落在Petrifilm CC测试片上生长产酸,PH指示剂使培养基颜色变深,在红色菌落周围有气泡者,为大肠菌群细菌。 (贮藏) 1. 未开封时,冷藏于&le 8℃(&le 46℉),并在保存期内用完,高温度时,凝固水可以排除,包装物最好于室温启开。 2. 已开封的,将封口以胶带封紧。 3. 已启开的包装袋不要冷藏并于一个月内使用完。 (样品制备) 4. 制备食物样品稀释液,称取或吸取食物样品,置入适宜的无菌容器内,如均质袋、稀释瓶、WhirlPak bag或者其他灭菌容器内. 5. 加入适量的无菌稀释液,包括Buffered peptone Buffer(IDF phopsphate buffer ,用0.0425g/L的KH2PO4调PH7.2) 、0.1%的旦白胶水(ISO方法6887) 、缓冲旦白胶水(ISO方法6579) 、盐溶液(0.85-0.90%)、bisulfite-free letheen broth或蒸馏水. 但不可用含有枸橼酸盐、bisulfite or thiosulfate的缓冲液. 因为它能抑止菌生长。 6、搅拌或均质样品. 样品的稀释液调PH6.6-7.2对酸性样用IN NaOH、碱性样用INHCI调PH。 (接种)
  • WGLabs 固相萃取柱 混合型强阳离子交换SPE柱MCX
    MCX 混合型阳离子交换固相萃取柱萃取强碱性化合物 MCX是将磺酸基键合在高度交联的PS/DVB表面得到的混合型强阳离子交换吸附剂,具有反相和阳离子交换双重保留性能,对碱性化合物有良好的保留能力。特点: 对碱性化合物保留高 比表面积大,离子交换容量高 pH耐受范围广(pH 1-14),在有机溶液中稳定参数: 比表面积:600 m2/g 平均粒径:40 μm 平均孔径:60 ?应用: 检测食品中的农药和兽药残留,如瘦肉精和孔雀石绿 分析生物基质中的药物及其代谢物,如抗雌激素药物、苯二氮卓类相关标准: GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法 GB 29694-2013 食品安全国家标准 动物性食品中13种磺胺类药物多残留的测定 高效液相色谱法 GB/T 22286-2008 动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法 GB/T 21313-2007 动物源性食品中β-受体激动剂残留检测方法 液相色谱-质谱-质谱法 MCX固相萃取柱产品规格 货号规格包装WGMCX36060mg/3ml 50支/盒WGMCX3200200mg/3ml50支/盒WGMCX3500500mg/3ml50支/盒WGMCX6150150mg/6ml30支/盒WGMCX6200200mg/6ml30支/盒WGMCX6500500mg/6ml30支/盒 附注:相当于Waters Oasis MCX。典型应用:原料乳与乳制品中三聚氰胺检测方法(GB/T 22388-2008)萃取柱:SSMCX, 60mg/3mL样品制备: 2 g 奶粉(或液态奶、冰淇淋、酸奶、奶糖等)样品中加入15 mL 1% 三氯乙酸溶液和 5 mL 乙腈,超声振荡提取后离心。上清液经三氯乙酸溶液润湿的滤纸过滤后,用三氯乙酸溶液定容至 25 mL,吸取 5 mL 滤液,加 5 mL 水混匀后做待净化液。 SPE 柱活化:依次用3 mL 甲醇、3 mL 水活化 上样:将上述待净化液移至活化后的SPE 柱 淋洗:依次用 3 mL 水、3 mL甲醇淋洗,弃去全部流出液。 洗脱:用 6 mL 5%氨化甲醇洗脱 收集洗脱液于 40 ℃ 氮吹至干,用流动相定容,供 HPLC-UV 测定。Column:C18, 5 mm, 300, 4.6×250 mmMobile phase:ACN: Buffer (10 mM Citric acid, 10 mM Sodium heptanesulfonate) =10: 90 (v/v)Flow rate:1.0 mL/minTemp.:AmbientDetection:240 nmInj. Volume:20 μLSample:A: Milk powderB: Spiked with 5 ppm melamine1: Melamine 欢迎您来电咨询 !
  • Brand Transferpette® 单道数字可调移液器704190
    商品描述:应用领域   广泛用于生物、化学、临床、食品分析、免疫检测等实验中溶液的移取操作。 主要特点  1.Transferpette® 独特的侧置移液控制键减轻了操作时手部的疲劳,在连续移液时效果更为明显。   2.纤细的移液杆易于伸入更细颈的容器。   3.具有凹纹的外壳保证您抓握更牢固,外壳材料可抗紫外辐射。   4.十种规格可选,移液精度高,涵盖0.1ul-5ml的容量范围。   5.移液器可半只高温灭菌。   6.可快速校准。 标准配置  1.Transferpette® 移液器 1支   2.出厂校验合格证书 1份   3.操作手册 1本 技术参数与订货信息容量精度≦误差系数≦最小分度适用吸头订货号ul%ul%ulul 0.1-1 2 0.02 1.2 0.012 0.005 N 704101 0.5-10 1.0 0.1 0.8 0.08 0.05 A,N,F 704102 2-20 0.8 0.16 0.4 0.08 0.1 A,N,F* 704103 2-20 0.8 0.16 0.4 0.08 0.1 B.C.G.H 704104 5-50 0.8 0.4 0.4 0.2 0.1 B,C,G*,H 704172 10-100 0.6 0.6 0.2 0.2 0.1 B,C,G*,H 704174 20-200 0.6 1.2 0.2 0.4 1 B,C,G*,H*,I 704178 25-250 0.6 1.5 0.2 0.5 1 D,U 704176 100-1000 0.6 6 0.2 2 1 D,U,J 704180 500-5000 0.6 30 0.2 10 10 E 704182 *:吸头的容量可能小于移液器的容量 以上数据均在仪器最大容量处,环境及水的温度处于20℃的条件下,经平稳操作所得。 单道移液器套装订货号规格 704190 3支单道移液器(0.5-10ul、10-100ul、100-1000ul) 1个移液器支架 三盒吸头(分别对应三支移液器的量程)配件订货号规格 703203 移液器桌面支架(3支) 703208 移液器桌面支架(6支) 703210 移液器墙架(3支)
  • 保偏光纤跳线,FC/PC接头
    保偏光纤跳线,FC/PC接头特性窄键(2.0 mm)和慢轴对准典型的回波损耗50 分贝(zui低40分贝)陶瓷圆角插芯(UPC)?3 mm外部保护层提供定制跳线(请看上述标签)这些光纤跳线的两端都是高质量、窄插销的陶瓷FC接头。由我们的设备生产,每根跳线都经过单独测试,以在光纤和光纤连接时保证消光比和低背反射(回波损耗)。这些跳线有库存,具有高质量的抛光,可以保证超过50 dB的典型回波损耗。每条跳线都带有两个罩在终端的保护帽,防止灰尘或者其它污染物落入插芯端面。我们也单独销售保护FC/PC终端CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。熊猫保偏光纤横截面PM Fiber Patch Cable Selection GuideFC/PC to FC/PCFC/APC to FC/APCFC/PC to FC/APC HybridAR-Coated FC/PC and HybridHR-Coated FC/PC and FC/APC 规格Item #P1-405BPM-FCP1-488PM-FCP1-630PM-FCP1-780PM-FCP1-980PM-FCTest Wavelength405 nm488 nm630 nm780 nm980 nmOperating Wavelength400-680 nm460-700 nm620-850 nm770-1100 nm970-1550 nmFiber TypePM-S405-XP(Panda)PM460-HP(Panda)PM630-HP(Panda)PM780-HP(Panda)PM980-XP(Panda)Max Insertion Lossb1.5 dB1.5 dB1.2 dB1.0 dB0.7 dBMin Extinction Ratiob15 dB18 dB20 dB20 dB22 dBMode Field Diameterc3.6 ± 0.5 μm @ 405 nm3.4 μm @ 488 nm4.2 μm @ 630 nm4.9 μm @ 780 nm6.6 ± 0.5 μm @ 980 nmNumerical Aperturea0.120.120.120.120.12Optical Return Lossb50 dB TypicalConnector TypeFC/PCKey Width2.00 ± 0.02 mmKey Alignment TypeNarrow Key Aligned to Slow Axis or as SpecifiedCable Length1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -510.0 +0.075/-0 m for Item Numbers Ending in -10Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C数值孔径(NA)为定值。在测试波长处测得。模场直径(MFD)为定值。它是相邻模场的1/e2功率水平位置的直径。Item #P1-1064PM-FCP1-1310PM-FCP1-1550PM-FCP1-2000PM-FCTest Wavelength1064 nm1310 nm1550 nm2000 nmOperating Wavelength970-1550 nm1270 - 1625 nm1440 - 1625 nm1850 - 2200 nmFiber TypePM980-XP(Panda)PM1300-XP(Panda)PM1550-XP(Panda)PM2000(Panda)Max Insertion Lossb0.7 dB0.5 dB0.5 dB0.5 dBMin Extinction Ratiob22 dB23 dB23 dB23 dBMode Field Diameterc7.7 μm @ 1064 nm9.3± 0.5 μm @ 1300 nm10.1 ± 0.4 μm @ 1550 nm8.6 μm @ 2000 nmNumerical Aperturea0.120.120.1250.20Optical Return Lossb50 dB TypicalConnector TypeFC/PCKey Width2.00 mm ± 0.02Key Alignment TypeNarrow Key Aligned to Slow Axis or as SpecifiedFiber Length2.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -5Jacket TypeFT030-BLUEOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C 数值孔径(NA)为定值。在测试波长处测得。模场直径(MFD)为定值。它是相邻模场的1/e2功率水平位置的直径。 键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。 宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配 窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。 Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。 损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2 SMF-28 UltraFiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 Ultra Fiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。 插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。405纳米保偏FC/PC光纤跳线:熊猫型Fiber Type
  • CE 系统的启动和测试用具盒
    订货信息: CE 系统的启动和测试用具盒 说明     部件号 Agilent CE 毛细管电泳系统启动用具盒: 包括一根扩展光程的毛细管(长64.5 cm,内径50 &mu m), 一根标准毛细管 (长56 cm,内径50 &mu m),一根测试毛细管(长48.5,有效长40 cm,内径50 &mu m), 一个标准毛细管用准直接口(内径50 &mu m), 和一个为安捷伦扩展光程毛细管(内径50 &mu m)用直准接口 G1600-68706 CE 安装验证(IQ) 试剂盒 包括缓冲溶液(20 mM 硼酸盐,pH 9.3, 100 mL),测试样品(4-(羟基)乙酰苯,2 mL), 冲洗毛细管用溶液(0.1 N 氢氧化钠,100 mL) 5063-6514 CE 操作认证/性能验证(OQ/PV) 化学试剂盒包括缓冲液(20 mM 硼酸盐,pH 9.3,100 ml)和测试样品(0.1、0.5、1.0 和 5.0 mM 4-(羟基-乙酰苯,各2 ml)、毛细管再生溶液(0.1 N 氢氧化钠,100 ml)、 测试毛细管(L=48.5 cm,I=40 cm,ID=50 &mu m)以及附有方法、序列、光谱库和 说明手册的磁盘 5063-6515 仅用于CE 的OQ/PV 化学试剂盒 包括缓冲液(20 mM 硼酸盐,pH 9.3,100 ml)和测试样品(0.1、0.5、1.0 和 5.0 mM 4-[羟基]-乙酰苯,各2 ml) 5063-6520
  • 艾杰尔agela-氨基酸专用分析柱
    Venusil AA氨基酸分析方法包 Venusil AA氨基酸分析的原理为目前广泛使用的PITC(异硫氰酸苯酯)衍生法。经过简化后的衍生方法有很多优点:方便、快捷,只需室温反应30min;衍生物单一、稳定,-20℃可贮存数月;分析时间短;结果准确;试剂、副产物、溶剂等多种干扰因素可通过快速萃取去除;紫外检测(254nm)灵敏度高,可达1pmol;一、二级氨基酸均可检测,是目前氨基酸分析法中最具有吸引力的一种。本法已拓展至磷酸氨基酸、硫酸氨基酸等修饰氨基酸与不同组织氨基酸分析。 Venusil AA氨基酸分析方法包中提供的实际量和相应的包装,均经过准确计算,仅需按照说明书操作,加入相应量的溶剂即可得到所需浓度的试剂,省却了繁琐的计算过程。 Venusil AA氨基酸分析方法包提供: Venusil AA氨基酸分析专用柱(4.6*250,5um),1支; 氨基酸标准溶剂,2瓶,1ml/瓶(含17种氨基酸,其中天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、络氨酸、缬氨酸、蛋氨酸、异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸为2.5umol/mL,胖氨酸1.25umol/mL); 内标物正亮氨酸(Nle),一瓶,100mg/瓶; 异硫氰酸苯酯(PITC),10瓶,25uL/瓶; 三乙胺(TEA),2瓶,1.4mL/瓶; Venusil AA氨基酸分析专用柱分析方法手册(咨询客服); 此色谱柱的适用情况或产品详情,请咨询客服400-0717-168.
  • 德国BRAND电子移液器
    电子移液器是Brand最新研发出来的产品,目前已推出单道电子移液器。 Ø 独特的设计符合人体工程学原理。 Ø 多种移液模式,可以由客户根据实验的要求来选择。 l 移液模式 (PIP Mode)l 样品混匀模式,(PIPmix Mode) l 反向吸液模式(revPIP Mode)该模式专为吸高黏度,高蒸汽压或发泡液体所设计 特点  符合人体工程学 &ndash 多功能、符合人体工程学的外形设计 &ndash 独立可调节指托  操作简单 &ndash 直观的菜单结构 &ndash 详尽的用户手册  创新 &ndash 显著减小装载、脱卸各类吸头时的用力。  耐腐蚀 &ndash 耐腐蚀活塞和吸头脱卸装置。  五项实用操作程序 &ndash pipetting (移液模式) &ndash reverse pipetting (反相移液模式) &ndash mixing (混合模式) &ndash GEL-Electrophoresis(胶电泳模式) &ndash dispensing (连续分液模式)  随时投入使用 &ndash 一次充电可用于4000次移液 &ndash 电池再生功能 &ndash 充电模式下亦可使用
  • 氢氟酸制备小试PFA冷凝回流装置带减雾器气液分离器250ml
    制备与分馏装置反应: 浓硫酸+Na3AlF6 温度 200 – 300度,产生HF气体冰晶石(又名六氣铝酸钠,Na3AIF2 )是白色固体,微溶于水,常用作电解铝工业的助熔剂。工业上用萤石(主要成分是CaF,)、浓硫酸、氢氧化铝和碳酸钠溶液通过湿法制备冰晶石,某化学实验小组模拟工业上制取Nà,AIF,的装置图如下(该装置均由聚四氣乙烯仪器组装而成)。已知:CaF,+H,SO:ACaSO4+2HFHF制备与分馏装置反应: 浓硫酸+Na3AlF6 温度 200 – 300度,产生HF气体
  • 普瑞邦 贻贝组织中的软骨藻酸
    1、产品简介产品名称:Pribolab® 贻贝组织中的软骨藻酸英文名称:Pribolab® Domoic Acid in Mussel Tissue产品编号:MRM-DA Pribolab可提供80多种真菌毒素固体/液体标准品,以满足不同检测方法(HOLC/GC/TLC)的需求,同时可根据客户需求提供更大包装。且每批次产品都经过NMR,HPLC,LC-MS/MS等不同技术验证,确保所提供的标准品的品质和纯度。 2、普瑞邦产品:产品名称Pribolab® 贻贝组织中的软骨藻酸Pribolab® Domoic Acid in Mussel TissuePribolab® 贻贝组织中的原多甲藻酸Pribolab® Azaspiracid in Mussel TissuePribolab® 贻贝组织中的腹泻性贝类毒素Pribolab® Diarrhetic Shellfish Poison in Mussel TissuePribolab® OA-412.62 µ g/kg,DTX1-362.42 µ g/kg 贻贝组织中腹泻型贝类毒素质控样Pribolab® OA-412.62 µ g/kg,DTX1-362.42 µ g/kg Diarrhetic Shellfish Poison in Mussel TissuePribolab® 紫贻贝组织中大田软海绵酸和鳍藻毒素1质控样Pribolab® OA-451.75 µ g/kg,DTX1-517.54 µ g/kg Diarrhetic Shellfish Poison in Mussel TissuePribolab® 长牡蛎肉中大田软海绵酸和鳍藻毒素1质控样Pribolab® Domoic Acid, Dinophysistoxin 1 (DTX1), in Oyster Tissue可提供任一浓度规格的定制服务 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!
  • 德国BRAND单道可调移液器
    应用领域   广泛用于生物、化学、临床、食品分析、免疫检测等实验中溶液的移取操作。 主要特点  1.单指操作,调节量程   只需一根大拇指即可完成容积的设置与锁定--无论左右手,同样容易。   2.数字放大,清晰可视   四位数字显示,透明量程具有放大功能,始终面向操作者,完全实现移液量的精确调节,即使在操作过程中,移液量亦随时可见。   3.可整支进行高压灭菌,无需拆分   完全实现整支高压灭菌,最大限度地避免了细菌污染。   4.校准简单,无需工具   Easy Calibration技术使您实现方便快捷的校准。   5.广泛的移液范围   8种型号,充分涵盖微量(0.1ul)到大容量(10ml)的移液范围。   标准配置  1.Transferpette? S数字可调式移液器 1支   2.出厂校验合格证书 1份   3.移液器托架 1个   4.操作手册 1本   5.少量吸头 ≦5个
  • 叶酸免疫亲和柱
    IAC-SEP® 叶酸免疫亲和柱 (产品编号:IAC322) 使用对象IAC-SEP® 叶酸亲和柱能够特异性的纯化样品中的叶酸,它采用了柱状琼脂糖凝胶作为固相载体,琼脂糖凝胶与叶酸抗体偶联形成免疫吸附剂,装柱制成免疫亲和柱。它能够特异性的纯化样品中的叶酸。叶酸亲和柱广泛地应用于饮料、牛奶和谷物等样品的提取,该方法速度快、操作简单、准确性高,对提高食品的质量和安全性起到十分重要的作用。 原理叶酸免疫亲和柱能够特异性的纯化样品中的叶酸,将样品与提取液混合、提取、过滤,然后将滤液通过免疫亲和柱。此时,叶酸物质键合在亲和柱中的抗体上。用蒸馏水将免疫亲合柱上的杂质除去。用洗脱液通过分离柱,将叶酸从抗体上分离下来。最后,将洗脱液注入HPLC或LC-MS进行测定。储存条件该亲和柱保存在2-8 °C条件下,绝对不能冷冻,保质期为18个月。建议在室温(18-30°C)下使用。实验溶液制备 pH7.4 PBS溶液:8.0 克NaCl + 2.90克Na2HPO4 12H2O + 0.24 克 KH2PO4 + 0.2克KCl 加990mL纯水溶解,加纯水至1升。 10%抗坏血酸钠:称取10g L-抗坏血酸钠100mL容量瓶中,加水溶解混匀。 洗脱液(30%乙腈+0.2%三氟乙酸): 准确量取30mL乙腈加入到100mL容量瓶中,然后再加入0.2mL 三氟乙酸,最后用纯水定容至100mL。 所需其他试剂:胰酶(sigma P1750) 液相色谱条件色谱柱: Agilent-C18,4.6×150mm(5um)流动相:0.1%三氟乙酸:乙腈=85:15(v/v)流速:0.5 mL/min检测器:紫外检测器,280nm进样体积:50uL 分析步骤1) 样品提取及稀释:婴儿配方食品、婴儿即食食品、牛奶、奶粉、谷物、能量棒等样品的操作步骤:称取 1-10g样品(根据需要的检测范围确定称量多少),置于250 mL锥形瓶中。将50mL pH7.4 PBS溶液加入到锥形瓶中,混匀。加入4g 胰酶,摇床震荡10分钟。加入6mL 10%抗坏血酸钠,摇床震荡5分钟。将锥形瓶置于37℃的水浴摇床震荡2 h。然后将锥形瓶置于100℃的水浴中静置20min。取出锥形瓶冷却至室温;用pH7.4 PBS溶液定容至100mL,摇匀。将提取液4000 RPM离心10 min。准确移取吸取上层液10 mL,备用。2) 样品的净化 叶酸免疫亲和柱的柱容量(最大吸附叶酸)为450ng,当样品中叶酸超过测定范围时,请适当减小上柱体积,使其在检测范围内,计算出准确含量。将免疫亲和柱连接于玻璃注射器下。将上述样品提取液注入(或分次注入)玻璃注射器中,将空气压力泵与玻璃注射器连接,调节压力使溶液以约2mL/min(1-2滴/秒)流速缓慢通过免疫亲和柱,直至液面下降到亲和柱管体(未完全流干)。以2-3mL/min(1-2滴/秒)流速用10.0mL水淋洗,弃去全部流出液,并使2mL~3mL空气通过柱体。准确加入1.0mL洗脱液(30%乙腈+0.2%三氟乙酸)洗脱,流速为1 mL/min ~2mL/min(1滴/秒),收集洗脱液于玻璃试管中,然后再加入1.0mL纯水洗脱,流速为1 mL/min ~2mL/min(1滴/秒),收集全部洗脱液于同一玻璃试管中,混匀。供HPLC或LC-MS分析。 注意事项1) 不要随便更改操作说明书中的操作步骤,如需更改要和本公司技术部联系,确认更改是否合理。2) 操作步骤中,样品过柱,淋洗,洗脱时,一定要控制好流速,不能太快,否则会使检测结果偏低。3) 试验中使用的玻璃仪器等,一定要清洗干净,尤其是用次氯酸等处理过的仪器。 需要准备的设备及试剂(中检维康提供)C/N编号物品21022Clover六位泵流操作架(配有1台空气泵,6个10mL针筒)IAC322叶酸免疫亲和柱(25支/盒)叶酸标准品31955美国vicam微纤维滤纸(1.5um,100张/盒)31240折叠式槽纹滤纸(100张/盒),或中速定性滤纸36010一次性塑料烧杯(25/包)34000一次性测试管(250支/包)36020塑料漏斗(10 个/包)35016色谱纯级的甲醇(4升/瓶)C546150-UCloversil C18 反相色谱柱4.6*150mm(5um)C546250-UCloversil C18 反相色谱柱4.6*250mm(5um)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制