当前位置: 仪器信息网 > 行业主题 > >

智能超声成孔检测

仪器信息网智能超声成孔检测专题为您提供2024年最新智能超声成孔检测价格报价、厂家品牌的相关信息, 包括智能超声成孔检测参数、型号等,不管是国产,还是进口品牌的智能超声成孔检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能超声成孔检测相关的耗材配件、试剂标物,还有智能超声成孔检测相关的最新资讯、资料,以及智能超声成孔检测相关的解决方案。

智能超声成孔检测相关的资讯

  • EVIDENT 72DL PLUS超声测厚仪全新升级!智能操控让检测人员充满信心!
    近日,Evident对其开发的专为工业环境打造的精密超声测厚仪72DL PLUS做出了重大升级。72DL PLUS测厚仪的PC接口应用程序引入了智能工具,用于控制和加快生产车间的精密厚度检测。通过智能监控正在进行的检查质量和进度,确保工作正确完成,从而获得更高的安全性。智能监控,省时省力√ 更快地开始工作:通过遵循自定义零件图上的标准化检测指南,检测人员可以更快、更轻松地完成工作。您知道您正在每个所需的厚度检测位置采集数据,因此充满信心。√ 节省时间和资源培训检查员:只需创建一次自定义零件图和设置,然后将它们推送到您的所有仪器上 所有检查员都遵循相同的流程来一致地评估零件的厚度。√ 通过数据分析提高产品质量:监控厚度趋势,发现质量问题并生成报告,以帮助保持一致的产品质量并改进流程。72DL PLUS超声测厚仪小巧便携、易于使用,可以高速提供精准的厚度测量值。该测厚仪具备快速扫查、高级算法和Evident迄今为止最高的最小可测厚度的能力,可使您充满信心地测量超薄层的厚度,完成具有挑战性的应用。72DL PLUS测厚仪提供标准频率和高频率两种型号。高频率型号可以测量超薄材料,包括多层漆料、塑料、金属和涂层,其多层测量软件可以同时显示最多六个独立层的厚度。所有72DL PLUS型号都具有快速、准确测量厚度的功能,且均可提供内置数据记录功能,数据存储量高达2GB,同时还提供方便的机载文件管理功能。多层测量软件提供多达6层的多层厚度测量功能。多层测量软件提供多达6层的多层厚度测量功能。每层的测量设置,包括材料、声速、目标厚度范围和报警阈值,都可以通过配置工作流程和触摸屏控制轻松访问。Evident的超声测厚仪可准确测量多种类型材料厚度。我们的数字式测厚仪功能齐备,可提供高级测量性能。您可以了解Evident所提供的各种不同的测厚仪(从简单的手持式测厚仪到高级型号测厚仪),找到一款可以满足您应用需求的测厚仪。我们的所有超声波测厚仪超声测厚仪可以对大多数工程材料进行测量,包括塑料、金属、金属复合材料、橡胶及内部腐蚀的材料。Evident也是知名的霍尔效应测厚仪制造商,如果您要对塑料瓶等非铁性薄壁材料进行快速、准确的测量,霍尔效应测厚仪就是您理想的选择。
  • 【新品】钢研纳克推出棒材相控阵超声检测系统
    应用背景超声检测是目前应用最为广泛的无损检测技术,近年来随着电子技术的飞速发展,超声相控阵检测技术成为一个研究热点。与传统的常规超声波探伤设备相比,相控阵检测设备无需探头围绕管棒材进行高速旋转,大大简化探伤设备的机械结构;超声相控阵检测速度快,检测精度高 利用电子扫查和电子聚焦偏转,大大提高了缺陷的检出率和系统的分辨力,实现对棒材表面和内部全截面 壁的整体可靠检测。系统检测对象(1)棒材规格:Φ6~25/Φ20~80/Φ60~180 mm(检测范围可根据需求定制)。(2)长度:6~9m(根据需求定制)。(3)材质:碳钢、合金钢、轴承钢、弹簧钢、冷镦钢等。(4)检测标准和灵敏度:GB/T 4162、ISO 18563等相关标准。(5)凹面环阵探头:每个探头晶片数量128。(6)静态检测能力:Φ0.4/0.8/1.2mm平底孔深度(½, ¼D ),信噪比 12dB(7)动态检测能力:- Φ0.4/0.8/1.2/2.0mm平底孔(根据用户需求和材料确定)。- Φ0.2 ~ 0.5mm × 10mm横孔(100%棒材截面覆盖,无盲区);- 表面纵向刻槽10 × 0.1 × 0.1mm (L × W × H)。(8)盲区端部盲区:<30mm。近表面盲区:无。(9)误/漏报率:0%。(10)检测速度:可根据客户要求设计。扫查类型(1)线扫查:将同一聚焦法则顺次应用于不同单元组。(2)扇扫查:将不同聚焦法则顺次应用于同一晶元组,从而形成一个带有一定空间范围的扇型扫查区域。(3)深度聚焦扫查:不同于以往在单一聚焦深度上进行信号采集, DDF (Dynamic Depth Focusing动态深度聚焦) 通过一整套自动计算法则,同时将接收到的不同深度的声场信号进行拟合,并将所有拟合后的聚焦声场信息进行叠加。系统组成设备主要由传输辊道、压持装置、检测主机、自动控制系统和水循环系统组成。压持装置均为下压式,其下部有V型辊轮,上部为压轮,压轮起落由气缸驱动。压轮的下压和抬起动作由光电开关控制,自动识别棒材端部并执行压下和抬起动作,检测主机可实现侧拉出,便于快速换规格。图1:系统概述图2:设备照片设备特点(1)相控阵检测图形化显示,可同时拥有 A、B、C、S 扫描,缺陷显示直观明确。(2)相控阵电子旋转扫查代替机械运动扫查,结构简单检测稳定可靠。(3)相控阵检测易实现声束的偏转、聚焦和扫查,可配置多种检测模式及聚焦法则,检测灵敏度高。(4)模块式结构多路配置检测速度快,生产效率高的超声探伤系统。(5) 操作便捷、维护简单方便。图3:检测界面目前超声相控阵检测技术适合复杂结构件以及能实时成像等优点,已经适用于航空航天、汽车、石化、核电、轴承、压力容器等工业无损检测领域,如:管材、棒材、板材、车轮、盘环件等。附:钢研纳克无损检测业务介绍(1)无损检测钢研纳克无损检测事业部是经过CNAS认可的第三方实验室,具备特种设备综合检验机构资质和NADCAP资质等。能够提供各类无损检测服务,技术方法涵盖超声、射线、磁粉、渗透、涡流、漏磁等。目前拥有COMET 420KV射线机、工业CT/DR、GE/PAC水浸C扫、PVA超声显微镜、M2M超声相控阵仪器、10000A固定式磁粉探伤机、全自动荧光渗透线等高端无损检测设备,可为客户提供大厚度、高精度检测和内部结构分析。(2)无损校准钢研纳克是经过CNAS认可的第三方校准实验室,是目前国内拥有资质最全、能力范围最广的国家级无损检测校准机构之一,无损校准覆盖所有相关仪器、探头和试块,特别对相控阵仪器、TOFD仪器、在线自动化无损检测仪器等校准领域处于国内领先水平。作为国家冶金工业钢材无损检测中心挂靠单位,钢研纳克还承担对国内企业自动无损检测设备综合性能的测试、评价和认可业务。(3)自动/无损检测设备为冶金、石化、铁道、机械等行业的近200家企业上马建造了无缝钢管、焊管、钢棒、钢板、火车车轮等自动化超声、涡流、漏磁和磁粉探伤检测线或设备近500套。此外,还销售以涡流探伤仪、超声波探伤仪和电磁超声探伤仪为主的各类无损检测仪器1000余台。
  • 多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测
    以碳纤维增强树脂基(Carbon Fiber Reinforced Plastic, CFRP)为代表的先进复合材料,具有高比强度和比刚度、良好的耐疲劳和耐腐蚀、易于大面积成型等优点,正越来越广泛地代替金属材料用作航空/天飞行器主承力构件。受制造工艺复杂、服役环境严苛影响,CFRP容易产生材料退化,甚至分层、纤维褶皱、孔洞等缺陷,威胁结构服役安全。超声无损检测技术是实现制造质量控制和服役性能评估的有效手段,但却面临材料形状复杂、多层结构、弹性各向异性因素共同作用所致超声传播行为复杂的挑战。现有超声检测技术主要是面向声学特性较为简单的各向同性均质材料,直接沿用至CFRP结构时不可避免地存在超声信号混叠、信噪比低、成像质量差等问题。针对以上难题,中国科学院深圳先进技术研究院郭师峰研究员团队开展了系列创新性研究工作,为航空/天复合材料结构无损检测与评估提供了理论和技术支撑,包括:(1)提出了利用相控阵超声和完全非接触激光超声原位测量超声群速度分布的新方法,解决了各向异性复合材料力学性能原位、高精度测量难题,为材料强度及其退化程度定量评估提供技术支撑;(2)建立了定量描述复杂形状、多层结构、弹性各向异性对CFRP声学特性影响规律的理论模型,为复杂超声传播行为理论分析和超声成像算法研究提供可靠的模型基础;(3)提出了基于计算机科学最短路径搜索算法的声线示踪新方法,解决了高分辨率超声成像算法聚焦法则高精度计算难题,大幅提升缺陷检测灵敏度和定位/量精度。上述研究工作为航空/天复合材料结构无损检测与评估提供了理论和技术支撑。2024年9月11-12日,仪器信息网组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,郭师峰研究员团队中的曹欢庆副研究员将作大会报告《多层各向异性复杂型面航空/天复合材料结构相控阵超声成像检测》,介绍上述研究工作。本次会议于线上同步直播,欢迎材料、机械、工程、无损检测等相关科研工作者、工程技术人员、科技企业人士等报名,参会交流!关于第三届无损检测技术进展与应用网络会议无损检测,即在不破坏或不影响被检测对象内部组织与使用性能的前提下,利用射线、超声、电磁、红外、热成像等原理并结合仪器对物体进行缺陷、化学、物理参数检测的一种技术手段,被广泛应用于航空航天、交通运输、石油化工、特种设备、矿山机械、核电、冶金、考古、食品等各个领域。为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家参会交流。会议链接:https://www.instrument.com.cn/webinar/meetings/ndt2024
  • 河工大胡宁教授获批重大仪器项目“多模态相控阵非线性超声检测仪”
    据河北工业大学网站消息,近日,由胡宁教授主持申报的国家重大科研仪器研制项目“多模态相控阵非线性超声检测原理及仪器研制”获得国家自然科学基金委员会批准立项(批准号:12227801),项目直接经费845万元。这是河北工业大学今年获批的又一项重大科研项目,也是河北工业大学近年来第二次获批重大仪器项目。“多模态相控阵非线性超声检测原理及仪器研制”项目面向增材制造航空发动机关键零部件中微裂纹和残余应力的可视化与智能化检测的重大需求,拟开发出高分辨力、高灵敏度、高效的多模态相控阵非线性超声检测仪器。仪器的特色体现在原创的多模态非线性超声相控阵探头上,涵盖多模态相控阵工作模式设计和机理研究、多模态超声探头设计与复合增材制造、多模态相控阵超声大数据获取及验证、基于大数据和深度学习算法的微裂纹与残余应力智能评价软件系统、多模态相控阵非线性超声仪器系统集成等五方面的研究内容与重点突破。包括复杂相控阵声场下微裂纹与残余应力特征评估、复杂微裂纹和残余应力的信号解耦、探头面投影微立体光刻-微滴喷射-电射流复合增材制造等三个关键技术难题。该项目将最终实现仪器在现场和远程两种工作模式下对早期微裂纹和残余应力的高精度检测与评价,确保增材制造航空发动机关键零部件的成形质量,为零部件的疲劳寿命和服役性能评估提供指导,助推我国超声无损检测仪器在基础原理、技术创新方面取得突破性进展,填补世界范围内非线性超声检测仪器空白。仪器系统简图
  • 超声无损检测技术新进展及其应用
    随着社会的发展,超声无损检测技术已经发展了近百年历史。在多种无损检测技术当中,该检测技术具有明显的优势作用,如检测精度以及深度较大、检测成本较低并且在检测过程中不会对设备造成二次伤害。因此,超声无损检测技术在工业领域被广泛应用。为推动超声无损检测技术发展和行业交流,促进新方法、新技术的推广与应用,在即将召开的第二届无损检测技术进展与应用网络会议,特别设置超声检测技术专场,特别邀请了多位业内专家老师围绕超声无损检测技术、设备、应用等展开分享。部分报告预告如下:大连交通大学副教授 赵新玉《超声自动检测和智能监测》(报名听会)赵新玉,大连交通大学副教授。中国机械工程学会焊接学会/协会理事,超声检测专委会委员。从事超声无损检测教学科研工作20余年,主持完成国家重点研发计划子课题、国家自然基金等纵横向课题20余项,发表科技论文60余篇,获批专利和软著20余项,曾获中国中车和中国兵器集团科技进步三等奖各1项,宁波市科技进步一等奖1项,辽宁省教学成果二等奖1项。报告摘要:针对传统超声频率低,难以检测复杂曲面,难以制造过程中实现质量检测等行业痛点。本报告将介绍高精度超声显微成像检测技术,光声联合检测曲面检测技术,和制造过程超声原位监测技术。中北大学副教授 李海洋《表面缺陷的激光超声检测技术研究》(报名听会)李海洋,中北大学副教授,担任中国声学学会检测声学分会委员、中国仪器仪表学会精密机械分会委员。主要从事非线性声学、激光超声等新型检测声学技术开发,在声学理论、算法开发和声信号处理方向共主持国家和省部级项目4项、发表文章28篇、发明专利2项、学术专著1本。研究成果获得了中国职业安全健康协会科学技术奖三等奖、中国特种设备检验协会科学技术奖二等奖、中国特种设备检测研究院青年科技二等奖以及山西省“三晋英才”青年优秀人才省部级人才称号。报告摘要:表面微缺陷往往是大型裂纹产生的开始,若不能被及时检测会对工业生产造成极大威胁。选用激光超声技术成功实现表面微缺陷的定量检测,研究内容涉及声学理论分析、有限元仿真计算以及实验平台搭建等。西安交通大学副教授 裴翠祥《新型柔性电磁超声、导波传感器开发及应用研究》(报名听会)裴翠祥,毕业于日本东京大学核能专业,工学博士,主要从事机械结构的无损检测与完整性评价等方面研究工作,具体包括新型电磁超声传感器及系统、超声导波检测技术、新型激光超声和激光红外热成像检测技术等的开发和应用研究。先后主持国家自然科学基金项目2项、国家重点研发计划子课题、两机专项项目子课题和企业合作项目等近20项,作为核心骨干参与国家自然科学基金委重大科研仪器项目、科技部ITER专项等多项,担任Sensors、Frontiers in Materials、Magnetochemistry等国际知名学术期刊客座编辑,先后发表论文84篇,其中第一/通讯作者SCI期刊论文36篇,申请及授权发明专利和软件著作权20余项。报告摘要:新一代核能等重大装备结构及工作环境日趋复杂和严酷,常规接触式超声检测方法已无法满足其检测需求。电磁超声及导波由于具有非接触、长距离快速检测的优点,有望克服上述难题。但相对于传统接触式压电超声,现有电磁超声由于灵敏度较低、探头体积大、结构刚性等限制,在大量工程现场狭窄空间环境和曲面结构上仍存在不可达、不可检或检测性能不足等问题,是制约其进一步发展和应用的技术瓶颈。因此,进一步提高其检测灵敏度和分辨率,并同时开发具有轻薄、柔性的新机制和新构型电磁超声及导波传感器,建立新型高可达性、高适应性检测方法,是突破重大装备狭窄空间环境、复杂结构有效检测的关键。中国飞机强度研究所副主任 樊俊铃《航空复合材料积木式验证自动化超声检测技术研究》(报名听会)樊俊铃,博士,高级工程师,现任中国飞机强度研究所16室副主任,中国航空研究院一级专家。承担、参与国家科工局、工信部、装发、自然科学基金、航空基金等各类预研课题10余项,主管、参与完成多个型号的结构强度验证工作,承担我国多型军民机结构试验的无损检测与评估任务,在损伤检测和结构强度领域具有较强的技术能力。长期从事业务领域的相关研究工作,发表论文50余篇,申请专利4项,登记软件著作权3项,荣获集团公司航空报国奖个人三等功等多项奖励。报告摘要:以国产大型客机研制为切入点,结合飞机结构完整性大纲、结构强度规范、民用飞机适航标准和无损检测手册等标准规范,分析了航空复合材料结构完整性验证和航空器持续适航对无损检测的相关要求,梳理了复合材料积木式验证体系不同层级的损伤检测需求、特点和侧重点。以碳纤维增强树脂基复合材料损伤检测为例,重点介绍了阵列超声声场仿真与高效换能器设计、复杂型面自适应扫查路径规划及损伤高精度成像等自动化超声检测关键技术,给出了涉及复合材料标准冲击试验件和机身曲面壁板的积木式强度验证自动化阵列超声检测典型应用案例,并对当前存在的瓶颈问题和未来发展趋势进行了总结和展望。北京工业大学讲师 高杰《基于MFC的锂离子电池荷电状态导波检测技术研究》(报名听会)高杰,讲师,硕士生导师。2022年毕业于北京工业大学机械工程专业,获工学博士学位,并留校任教。近年来一直从事声学波动特性理论分析及锂离子电池状态检测方面的研究。迄今为止,共发表学术论文17篇,以第一作者或通讯作者发表论文13篇,其中SCI论文9篇。作为项目负责人,主持国家重点研发计划项目课题子任务、教育部工程研究中心开放课题、北京市博士后基金及企事业委托项目共计5项。在研期间,入选北京市科协2023-2025年度青年人才托举工程,获2022年度中国石油和化工自动化行业科学技术二等奖、2021年Altair Battery Safety Young Researcher Award(优秀青年学者)、北京力学会青年力学工作者优秀学术论文奖及北方七省市区力学学会优秀青年论文等等荣誉奖项。报告摘要:以锂离子电池多区域运行状态的无损检测与评价为需求,提出了一种基于压电纤维复合材料传感器的超声导波检测新技术。采用状态矩阵与勒让德级数联合法,同步联立Biot理论,构建多层多孔锂离子电池声传播特性理论模型。以厚1.9mm软包钴酸锂电池为例,数值分析了荷电状态对多模态频散曲线的影响规律。同时,建立了相同结构特性的锂离子电池频域仿真模型,提取了不同荷电状态下的超声导波频散曲线。此外,以体积小、柔性强的压电纤维复合材料MFC传感器为基础,实验探究了不同SOC对锂离子电池中声学行为的影响。从实验分析,仿真及理论计算等方面,诠释了所提测量分析方法的可行性。随后,以MFC传感器阵列的形式,对商业锂离子电池的多区域荷电状态进行超声检测研究。通过对比分析放电过程中不同区域内的声传播特性,揭示锂离子电池全域运行状态的变化规律,为锂离子电池组运行状态的实时监测提供新的技术方案。第二届无损检测技术进展与应用网络会议为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2023年9月26-27日召开第二届无损检测技术进展与应用网络会议。本届会议开设射线检测技术、超声检测技术、无损检测新技术与新方法(上)、无损检测新技术与新方法(下)四大专场,邀请二十余位无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学三、参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/ndt2023/)进行报名。扫描下方二维码,进入会议官网报名2、报名并审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人高老师(微信:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)周老师(微信:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 2023年“面向人工智能的高速载运设施无损检测监控技术国际研讨会暨研究生无损检测技术学术创新论坛”通知
    关于举办首届“特种设备无损检测新技术论坛”线上分论坛——2023年“面向人工智能的高速载运设施无损检测监控技术国际研讨会暨研究生无损检测技术学术创新论坛”通知检测工委会函[2023]第08号各有关单位及人员:无损检测是保障产品质量和服役安全的关键技术,随着社会经济的发展和科学技术的进步,无损检测的市场规模不断扩大,应用场景也不断拓展,智能化、常态防范和场景高适应性成为当前检测技术发展的重要趋势。“十四五”期间,无损检测将与云计算、大数据、物联网、人工智能、区块链等前沿科技加速碰撞融合,快速检测、智能检测、在线检测、云检测等会形成新的技术增长点,行业发展也会迎来新机遇和新挑战。为更好地贯彻执行习近平总书记有关“建设更高水平的平安中国”的重要指示,促进行业技术交流和技术水平提升,中国特检协会检测评价工委会将于2023年5月25日至26日举办首届 “特种设备无损检测新技术论坛”(福州),同时与南京航空航天大学联合举办2023年“面向人工智能的高速载运设施无损检测监控技术国际研讨会暨研究生无损检测技术学术创新论坛”作为福州论坛的线上分论坛。福州线下主论坛于5月25日上午在福州开幕,南京线上分论坛于5月25日下午开幕。现将首届“特种设备无损检测新技术论坛”线上分论坛——2023年“面向人工智能的高速载运设施无损检测监控技术国际研讨会暨研究生无损检测技术学术创新论坛”有关事项通知如下:一、会议主题无损检测、监控与健康管理领域的新技术、新方法、新应用。二、会议组织主办单位:南京航空航天大学 中国特种设备检验协会检测评价工作委员会承办单位:中国特种设备检验协会 高速载运设施的无损检测监控技术工信部重点实验室 江苏省仪器仪表学会 南京航空航天大学自动化学院协办单位:江苏省计量测试学会 江苏省机械工程学会 文物无损检测与安全溯源江苏省文化和旅游重点实验室 南京市计量测试学会 南京派光高速载运智慧感知研究院有限公司三、会议时间与参会方式会议时间:2023年5月25日至2023年5月26日。参会方式:具体参会信息详见后续通知。 四、会议内容论坛研讨由专家讲坛和研学论坛两部分组成。1、专家讲坛部分邀请了十几位国内外知名专家、学者作大会报告,具体日程安排将通过江苏省仪器仪表学会、高速载运设施的无损检测监控技术工信部重点实验室微信公众号及官方网站予以发布。2、研学论坛部分将围绕相关领域做论文交流和研讨,有关专家针对每篇会议交流报告进行点评。3、会议将围绕但不限于以下领域进行广泛深入的交流和研讨:(1)无损检测与健康监测: ① 电磁无损检测技术; ② 相控阵激光超声、电磁超声技术; ③ 智能结构传感技术及结构健康监测; ④ 其他无损检测技术。(2)光电感知与智能系统: ① 光电传感技术; ② 计算机视觉技术。(3)多维感知与智能健康管理: ① 智能信息处理与自适应系统; ② 环境感知、导航及控制; ③ 航空装备智能感知与健康管理。(4)先进机器人与精密系统: ① 精密驱动与定位; ② 并联机构/机器人。(5)文物无损检测与安全溯源: ① 文物溯源特征; ② 文物无损检测技术; ③ 文物特征提取方法; ④ 文物虚拟呈现。4、本论坛投稿论文与首届“特种设备无损检测新技术论坛”共享,将统一收录到论坛论文集或摘要集中,并择优推荐到《中国特种设备安全》(含增刊)、《数据采集与处理》及相关领域高水平期刊发表;论坛还将评选出优秀论文并发放相关奖项。五、参会人员1、国内外无损检测领域特邀专家、学者。2、与会议研讨内容相关的研究院所、企业代表。3、高校师生。六、征文1、征文范围:与研讨内容相关的理论、方法、技术、标准、管理、应用等方面的内容。应用范围可以涉及无损检测技术在轨道交通,金属/非金属性能检测、材料疲劳及伤损检测,焊缝检测,核电、风电设备检测,天然气、石油、海油管道检测、文物检测等多方面。2、征文投稿截止时间:2023年4月28日。投稿请按照论文模板提交全文或摘要,格式参见 http://jsiacs.cn/index.php?c=msg&id=4108&。请将论文以PDF格式连同投稿回执发至shiyunuaa@nuaa.edu.cn及gejiuhao@nuaa.edu.cn。七、参会费用参加本线上分论坛不收取费用。八、联系方式石玉:13813830869,shiyunuaa@nuaa.edu.cn葛玖浩:15563946792,gejiuhao@nuaa.edu.cn 中国特种设备检验协会检测技术应用与评价工作委员会2023年4月19日
  • 超声无损检/监测技术军事应用领域的发展动向与展望
    超声波是频率高于20 kHz的机械波,具有频率高、指向性好、能量集中,穿透性强等特点,应用领域广泛。近些年来,超声波传感技术发展迅速,在医疗健康领域(健康监测、疾病诊断)、工业领域(设备无损探伤、厚度测量、超声成像等)、交通运输领域(无人机、船舶等定位、追踪、导航和监控等)和军事应用领域(生化战剂的测量、航空检测等)得到普及应用。超声无损检/监测技术由于具有速度快、效率高、检测成本低等优势,且能够在极端条件下(高温高压、低温低压)实现无源感知、无线传播获取物理量,在军事应用领域显示出巨大潜力。本文在梳理超声无损检/监测技术的基础上,重点介绍几个发达国家在无损检/监测技术的布局及研究进展,结合军事应用前景,对无损检/监测技术的发展趋势进行探讨与展望。1 超声无损检/监测技术发展历程超声无损检测始于20世纪30年代。1935年,前苏联科学家SOKOLOV首次对超声检测材料中缺陷的技术申请了保护。1945年,美国Firestone公司研制出第一台脉冲回波式超声检测设备。20世纪60年代,超声检测设备在灵敏度、分辨力和放大器线性等主要性能上取得了突破性进展。20世纪70年代以后,电磁超声检测试验成功。1975年,美国康奈尔大学MAXFIELD和HULBER研究了应用于金属缺陷检测的电磁超声换能器(EMAT)。20世纪90年代,电磁超声进入实际商业应用。1989年,Innerspec公司发明了第一台电磁超声检测设备,并于1994年成为第一个电磁超声设备产业化厂家。1995年,美国约翰霍普金斯大学OURSLER和WAGNER采用剪切波,研制了窄带脉冲激光复合EMAT,应用于高温条件下的超声检测。2004年,日本福冈工业大学MURAYAMA等报道了可交替发射和接收高灵敏度的兰姆波和SH波、且不受焊接部分影响的EMAT,可对储罐和管道进行检测。2010年,日本东北大学URAYAMA等报道了降低噪声和改进信号处理的EMAT/EC(涡流)双探针,能够在高温环境下实现对管壁变薄的监测。2016年,英国华威大学THRING等使用聚焦EMAT,利用新的提高分辨率的方法,产生了2 MHz的瑞利波,可检测毫米级深度的缺陷。超声检/监测技术是超声领域应用极为广泛的一门技术,在军事领域应用广泛,其不但可以保证质量和保障安全,而且还可以节约能源和资源,降低成本,提高成品率,获得显著经济效益。2 超声无损检/监测技术发展动向传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低,在检测大规模设施中的潜在损伤中(尤其在复杂环境下)可行性差且花费巨大。因此,大规模设施生命周期内多缺陷的智能化检测问题对无损检测技术提出了新挑战,一方面推动无损检测技术向高速、多物理场及多技术融合等方向发展;另一方面,也促进了无损检测技术与结构健康监测技术的相互融合。2.1 无损检测与结构健康监测相融合的无源无线声表面波传感技术声表面波(SAW)传感器具有强大的抗辐照能力、较宽的温度工作范围、无源工作以及固有的固态单片结构等优点,且可结合雷达射频收发技术实现无线信号感知,保证其在恶劣空间环境中的多参数压线检测性能。此外,声表面波器件可大批量、低成本制造,可进行RFID(射频识别)编码,并且体积和重量都很小,可广泛应用于航空航天工业领域高温高压高辐射等环境。2020年,NASA资助美国佩加森公司研究开发了首个应用于无损检测和结构健康监测的大型声表面波无线多传感器阵列系统。该工作还对无线声表面波温度传感器系统的基本元素进行分析与研究,包括测试框架和传感器阵列、构建用于声表面波器件实施的新RFID编码理论、实现声表面波器件模拟和新实施案例,以及后处理技术的系统配置分析。在美国国家航空航天局的一系列计划中(包括小型航天器计划),充气式飞行器和降落伞是太空交通工具安全与经济运行所必需的两种系统,这些复杂的系统结构给设计、分析和测试新系统带来了挑战。新的无源无线传感器(无需更换电池)可精确测量降落伞和充气结构的应变,从而使工程师们能够更好地理解这些复杂系统的行为,开发出能满足任务需求的更精确的模拟工具和设计结构。该传感器不但具备足够的安全裕度,而且不会产生不必要的额外重量和成本。可单独识别的无线传感器被部署在柔性结构的多个位置上,并由集中式读取器读取,从而确保在系统部署期间动态测量应变。2020年,NASA资助充气式航天器和降落伞用无源无线应变传感器研究,该研究中SENSANNA公司开发了新型无源无线声表面波应变传感器对降落伞和充气结构进行实时应变测量。这些设备可以由约几十个到一百个可单独识别的设备组成,协同工作,并由数据聚合器同时读取数据,可以保证不会出现传感器间的干扰。根据传输功率限制和环境的不同,可以在几十米或更大范围内无线读取传感器标签。为了满足海军探测推进剂的颗粒裂纹,并通过密封火箭发动机壳体进行无线传输数据的需求,2018年美国国防部资助美国智能感知系统公司开发一种新的推进剂健康(PHEM)监测系统。该系统将超声换能器作为信号发生器与传感器进行创新集成,采用超低功耗元件和电子设计。这种超声波推进剂监测传感器与数据传输链路的独特集成,使PHEM可检测推进剂的颗粒裂纹,并通过密封火箭发动机外壳的金属壁完成传感器数据传输,其中,压电传感器和致动器、低功耗电子器件和超级电容器拥有超过10年的使用寿命。因此,PHEM系统能够为军用飞机上的推进剂驱动装置提供长期可靠的监控。该项目的第一阶段通过设计和制造实验室规模的原型,展示PHEM系统的可行性,并展示其探测密封金属壳内推进剂颗粒裂纹和传输数据的能力;项目的第二阶段,通过改进和优化PHEM系统,开发全功能的原型,并证明其符合海军要求。SAW传感器系统可测量温度、应变、氢气以及磁场的变化,小尺寸的优点使其可插入各种应用系统。2019~2021年,NASA持续资助美国佩加森公司研究一套完全可操作的4.3 GHz无源传感器系统,该系统满足航天航空无线电子内部通信要求,研究人员重点开发以下关键技术组件:声表面波无源温度和应变传感器件、新的传感器天线和芯片级传感器天线集成、提供自适应射场收发器的软件定义无线电(SDR)、SDR控制软件和提取关键传感器信息的后处理软件。初步的研究结果表明,所有关键技术组件都可在4.3 GHz和200 MHz带宽下构建和实施,这将是SAW传感器及其无线无源系统技术的飞跃。2.2 用于船舶、管道、容器、混凝土等裂痕的现场无损超声检测技术几十年来,为了减轻重量和降低船舶重心,5xxx系列铝合金一直用作海洋船舶的材料。铝合金的敏化过程会造成晶间腐蚀损伤和应力腐蚀裂痕。美国海军希望能够开发一种快速获取材料状态及其敏感性的方法。2018年,美国海军资助美国技术数据分析公司(TDA)开发一种紧凑的传感器套件和监控系统,以检测5xxx系列铝合金的敏化程度,从而解决批次间的差异问题。TDA公司利用监测系统预测铝合金在敏化过程中容易出现的晶间腐蚀损伤和应力腐蚀裂痕,减少相同材料之间的脆弱性差异,满足美国海军对实时快速获取材料的状态及其敏感性的需求。在这项研究中,TDA公司采用一种原始方法,利用两种非破坏性技术(基于涡流的电导率和超声衰减)分离出两个独立的成分,即高角度晶界的微观结构及边界上物质的敏化状态。根据这些参数,使用近期建立的模型来计算引起批次间差异的敏化度。通常使用手持式超声波仪器对钢制容器、储罐、墙壁和管道进行腐蚀无损监测(包括钢壁的厚度测量),但这种方法既费时又费力,急需一种适用于密封通道的快速检测技术。2018年美国空军资助国际电子机械公司研发密闭通道区域的腐蚀无损评估技术。国际电子机械公司提出了一种快速腐蚀检测器(RCI),该检测器使用电磁超声传感器,内置机器视觉摄像系统,可自动分类腐蚀类型,绘制腐蚀位置和壁厚图,同时不需要应用耦合剂,也可快速覆盖大面积壁面,并允许用户单手高速扫描壁面。用于乏燃料存储的焊接不锈钢干式储罐出现应力腐蚀裂纹时,极易造成严重的环境危害。2019年,美国能源部资助INNESPEC技术公司开发用于材料结构健康实时监测的EMAT连续监测系统。该研究设计了首个冷喷雾EMAT磁致伸缩传感器原型,用于现场监测干储罐的腐蚀和裂纹扩展,同时将破坏和人为干预降至最低。该项目第一阶段评估具有不同粉末压力推进剂配置的便携式低压冷喷涂仪器的性能,以及使用手动喷枪在平坦、圆形或具有复杂几何形状的部件上产生均匀贴片的可行性,并测试在所述情况下使用EMAT产生超声波的效果,最终确定手动磁致伸缩贴片是否适合应用于干储罐监测。冷喷涂还允许人们使用导波来检测之前技术无法检测的区域。该项目的成果将大大促进核安全,防止和减少放射性泄漏及其对环境和人类健康的危害。混凝土裂纹及损伤的检测技术也取得重要进展。2021年,欧盟INFRASTAR计划资助波兰NeoStrain Spzoo公司和德国联邦材料研究所,提出一种利用新型嵌入式超声波传感器进行多结构损伤检测的主动技术。2.3 用于极端条件下实现物理量测量的超声传感技术飞行器在飞行过程中往往面临着极端环境条件(高温、高旋、高压等),在恶劣环境下原位实时获取系统及环境参数,对飞行器的设计与防护具有重要意义。2020年美国国防部资助Physical Sciences公司研究了一种超声波传感器,研究利用超声脉冲回波技术的非侵入性和远程询问能力,测量高超音速飞行器外壳板温度。开发的重点在于陶瓷/碳纤维基壳体等最具挑战性的表面材料方面,该方法可扩展到其他所有类型的材料,包括金属和烧蚀材料。该项目所开发的传感器能够处理来自不同深度多个界面的信号。项目第一阶段将演示高超声速、超音速冲压发动机应用相关材料及温度的原理证明,第二阶段将致力于实际高超声速试验台和飞行平台的系统加固和自动化。美国空军和航空航天工业迫切需要能够在涡轮发动机环境中提供实时监控的恶劣环境传感器。2015年美国空军资助美国环境技术公司(Environetix)研发可提供实时监测且可靠的恶劣环境传感器。该项目第一阶段验证了在1000 ℃高温环境中无线声表面波硅酸镧镓(LGS)温度传感器原型的稳定性,第二阶段对无线LGS声表面波传感器技术进行了成熟度TRL 4确认,并在涡轮发动机测试单元中进行了TRL 6验证。在该项目设计的恶劣环境下,无线无源小型传感器能够在1000 ℃以上对涡轮发动机进行监测,可对航空航天工业产生重大影响,其优势有:① 可靠运行数千小时甚至更长时间,并且可在测试单元的热区轻松运行最少4000小时;② 通过在其他传感器技术无法工作的位置无线监测发动机状况来验证发动机的建模和运行状况;③ 小尺寸和无线传感器操作,保证了密封、护罩和其他关键发动机位置的完整性;④ 去除用以提供所需传感信息的电线,节省了大量人力成本(传感器安装在涡轮机),减轻了重量,同时提高性能和可靠性;⑤ 通过更可靠的温度监测,降低发动机运行(或飞行)成本的同时,提高燃油效率和增加功率。除此之外,无线SAW传感器技术也有许多商业应用,如在发电、石油/天然气勘探、制造过程控制和其他高温恶劣环境中的应用。辐射条件下的超声传感技术研发也受到关注。在核工业中,受限的接触和高厚度部件通常限制了无损检测技术的应用。商用超声检测传感器的辐射耐受性局限在1~2 mGy的累积剂量,难以满足应用需求。英国创新署部署了由英国创新技术和科学有限公司承担的“耐辐射超声波传感器”研究。该公司主要致力于探索新型辐射弹性探测器的构建和测试,为核工业提供一个可靠的超声检测解决方案,以延长检测和监测时间。该研究成果有两种应用场景:① 在裂变核反应堆附近进行高辐射检测;② 在核废料处理场进行低辐射检测。在核工业中,超声波换能器在放射性环境下响应减弱,难以正常工作。针对该情况,英国精密声学有限公司开展耐辐射超声传感器的开发,建造和测试新型抗辐射超声换能器以及各种探头的装配技术,为核工业提供一种可靠的超声换能器解决方案。该项目开发了一系列原型超声探头,以满足特定的在役检测需求。日本NEDO先导研究项目——具有流量监控功能的实时超声波多相流量计研制(2019~2020年,北海道大学承担)共分为3个子课题,分别是:结合超声信号和多相流体动力学定律的数据同化流量计的研制;使用超声多普勒测量多相流体的脉动特性;使用超声脉冲回波扫描测量流体界面。JSPS的国际联合研究基金项目——联合开发在线超声多普勒测定技术(2018~2021年,北海道大学、瑞士联邦技术学院承担),重点开展3个主题研究,主题1是流速分布测量技术和流变控制方程的数据同化,主题2是通过超声波和光可视化调节空间分布的流变学,主题3是假定使用机器学习的流变大开发数据构建系统。2018年该项目已经开发了一种根据超声波多普勒流速分布仪获得的流速分布来测量不透明流体压力分布的方法。2019年,项目开发出一种通过水、油和气三相流中的超声波脉冲来测量相分布和流量的技术。日本防卫厅资助了MUT(超声换能器)声学超材料的声阻抗研究(2018年,日立制作所),该项目基于声阻抗匹配的物理模型,研发利用MEMS(微机电系统)技术实现主动控制声学特性的声学超材料。2.4 用于爆炸物和弹药的无损超声实时检测技术含能材料方面取得的最新成果为开发了铅的替代品,替代弹药配方中传统的苯甲酸铅和叠氮铅。然而,这些无铅高能材料可能对传统的弹药筒黄铜和其他弹药部件具有意想不到的腐蚀性。因此,在未来的部署中,从弹药生命周期(即从生产时间到使用时间)的角度,对弹药部件进行实地测试对于确保武器系统的有效性至关重要。2020年,美国陆军资助林泰克公司与美国西南研究院传感器系统和无损检测技术部合作研究了一种基于涡流和超声波检测的手持式设备,用于对小型武器弹药部件进行现场快速无损腐蚀检测。该研究分为3个阶段,第一阶段是在实验室条件下确定对现代爆炸物和弹药外壳进行无损检测的有效性和方法;第二阶段根据第一阶段确定的方法,开发手持式测试单元原型,并根据适当的军事标准、规格要求进行认证,并进行实地测试;第三阶段预期将用于现代爆炸物和弹药壳的无损检测,并推广到民用领域。军事应用包括小型武器部件(5.56,7.62 mm口径)、爆炸性弹药(M42、M55和M61启动器)、中等口径(20,25,30,40 mm)和潜在大口径(60,81,105,120 mm)弹药。3 结语与展望超声无损检/监测技术在军事领域应用前景广阔,在航天器、飞机、船舶和运输管道等的无损检测、恶劣环境感知、数据融合支持决策等领域发挥重要作用。超声传感技术可进行非破坏性的结构健康监测,能够快速准确检测裂纹、泄漏、腐蚀等缺陷,防止和减少放射性泄漏,促进核安全。超声传感不依赖于照明条件,能够抵抗雾的干扰,在高温高压等恶劣环境下进行实时快速感知,可应用于航空航天以及海上作业等领域。未来超声无损检/监测技术的发展趋势如下:用于无损检测与结构健康监测相融合的无源无线声表面波传感技术成为新的发展方向。传统无损检测技术由于设备笨重、检测速度慢、可检测范围小及自动化程度低等问题,在检测大规模设施中的潜在损伤,特别是在复杂环境下的损伤时,可行性差且花费巨大。大型设施生命周期内多缺陷的智能化检测需要无损检测与结构健康监测相融合的无源无线声表面波传感技术。极端条件下实现物理量的测量仍是未来超声传感技术的发展重点。飞行器在飞行过程中往往伴随着高温、高旋、高压等恶劣环境,因此,恶劣环境下温度、压力等参数的原位实时获取,仍然是超声传感技术在无损检测领域的发展重点。超声传感器向着集成化、微型化、多功能化的方向发展。为满足各种机载、车载、航载的需求,传感器的应用需与机械或电子系统集成使用,推动声表面波传感器系统向着集成化、微型化、多功能化方向发展,因而各种新型材料以及先进制造技术的进步将给超声传感器的发展带来巨大推动力,超声传感器本身无源无线传输的特性,亦将在集成化微型化多功能化方面发挥重要作用。作者:朱相丽1,2,张敬1,2,刘庚冉3,王文4,刘小平1,2工作单位:1.中国科学院 文献情报中心;2.中国科学院大学 经济与管理学院;3.军事科学院 战略评估咨询中心;4.中科院声学研究所第一作者简介:朱相丽,博士,副研究员,主要从事学科战略情报研究、学科态势评估研究和日本科技政策研究工作。
  • 超声无损检测新技术及其在工业领域的应用
    随着社会的发展,超声无损检测技术已经发展了近百年历史。在多种无损检测技术当中,该检测技术具有明显的优势作用,如检测精度以及深度较大、检测成本较低并且在检测过程中不会对设备造成二次伤害。因此,超声无损检测技术在工业领域被广泛应用。近年来,由于工业上对于设备的性能及质量安全提出了更高的要求,超声无损检测技术也在不断地优化和创新。在即将召开的首届无损检测技术进展与应用网络会议,特别邀请了多位专家进行超声检测新技术相关的分享,部分报告预告如下:北京工业大学 刘增华教授《超声导波阵列成像检测技术》(点击报名)刘增华,北京工业大学教授,博士生导师。《无损检测》《北京工业大学学报》编委,《内燃机学报》编委会特邀编委,中国无损检测学会超声检测专业委员会副主任委员,中国仪器仪表学会设备结构健康监测与预警分会理事、副秘书长,全国设备结构健康监测标准化工作组委员兼副秘书长在国内外学术会议及期刊上发表和录用学术论文160余篇,其中SCI、EI收录100余篇;获批国家发明专利30余项,软件著作权10余项。传感器阵列技术日益广泛应用于超声导波监(检)测方法中,可实现结构的大范围、全面和快速检测,已成为超声无损检测和结构健康监测领域的研究热点和难点之一。刘增华教授将在报告中重点介绍全波场成像检测技术、密集阵列成像检测技术、稀疏阵列成像检测技术、智能阵列成像检测技术等。北京航空航天大学 周正干教授《先进超声检测技术及其应用》(点击报名)周正干,北京航空航天大学机械工程及自动化学院教授,兼任中国机械工程学会无损检测分会副理事长、中国金属学会无损检测分会理事、中国声学学会检测声学分会理事、《无损检测》杂志编委等。从事先进超声无损检测技术及系统等方面的研究工作,开展《测试技术基础》和《现代无损检测技术》等课程的教学工作。作为课题负责人主持国家自然科学基金项目9项、工信部两机专项子课题2项、民机专项子课题2项、总装预研项目4项。曾获航天工业总公司科技进步二等奖1次,在国内外公开发表学术论文200余篇。近年来,随着我国重大科技专项的开展,新材料、新工艺及新结构的开发和应用在先进制造领域不断出现,对超声检测技术提出了新的需求。周正干教授将结合目前国内高科技领域复合材料及钛合金的应用技术特点,介绍超声检测仿真技术、空气耦合超声检测技术、多轴联动超声检测技术及其应用案例。天津大学 刘洋教授《超声导波智能成像技术及应用》(点击报名)刘洋,天津大学精仪学院教授,中国仪器仪表学会地学仪器分会理事、中国声学学会检测分会副主任。主要研究方向为复杂结构声场理论、超声传感器及超高分辨率超声成像技术。美国宾夕法尼亚州立大学工程科学与力学博士。曾任美国斯伦贝谢道尔研究所资深研究员,怀俄明大学副教授、超声实验室主任。主持多项超声传感器、超高分辨率超声成像项目,部分成果已完成产业转化;目前已在国际权威期刊和会刊上发表论文50余篇,申请获批专利20余项;多次担任声学检测相关国际学术会议主席,长期担任20余个国际期刊审稿人。超声导波成像技术在无损检测、结构健康监测及油气勘探中具有广泛而重要得应用。刘洋教授将以墨西哥湾漏油这一重大社会事件为引子,介绍本课题组近年来在超声传感器与多尺度超声成像方面的研究进展。北京科技大学 黎敏教授《高品质钢内部质量高精度检测与三维全息表征》(点击报名)黎敏,北京科技大学钢铁协同创新中心,教授,博导。主要开展先进检测技术、工业大数据分析等研究工作。独立负责7项国家自然科学基金等国家和省部级课题,参与鞍钢、首钢、核动力研究院等10余项科研项目,共发表论文50余篇,专著2本,专利8项,转件著作权3项,获省部级科技奖励2项,2013年入选北京市青年英才计划。报告内容包括利用高频超声显微技术对高品质钢内部质量进行三维扫描检测,并通过超声信号特征提取、深度聚类、点云重构等现代信号处理方法,对高品质钢内部的夹杂、缩孔和裂纹等微观缺陷及凝固组织实现高通量表征等。广东工业大学 袁懋诞副教授《材料力学性能的超声无损评价研究及应用进展》(点击报名)袁懋诞,广东工业大学机电工程学院副教授,硕士生导师。主要从事超声无损检测、超声导波技术、残余应力测量等方面研究。主持国家自然科学基金青年科学基金1项、主持国家重点研发计划子任务1项、主持企业横向项目6项,作为核心成员入选广东省“珠江人才计划”创新创业团队和佛山“蓝海人才计划”创新创业团队,作为技术骨干参与国家自然科学基金面上项目2项、企业横向项目4项。发表论文30余篇,申请发明专利10余项。材料的力学性能是保证结构稳定和服役安全的重要指标。超声检测技术由于其无损、高穿透、设备便携等优势被越来越广泛应用于残余应力、弹性常数、强度等力学性能表征。袁懋诞副教授将重点介绍研究团队近年来在超声力学性能无损评价方面的研究进展,主要包括超声兰姆波应力测量、增材制件弹性常数测量、涂层界面结合强度定量表征等三方面内容。首届无损检测技术进展与应用网络会议为了推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2022年10月13-14日组织召开首届无损检测技术进展与应用网络会议。会议开设射线检测技术、超声检测技术、自动及智能检测技术、无损检测新技术四大专场,邀请无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开报告,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学、钢研纳克三、参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/NDT)进行报名。2、报名开放时间为即日起至2022年10月14日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)
  • 《相控阵超声法检测混凝土结合面缺陷技术规程》团标发布
    近日,中国工程建设标准化协会发布公告,根据中国工程建设标准化协会《关于印发的通知(建标协字〔2018〕015号)的要求,由上海市建筑科学研究院有限公司等单位编制的《相控阵超声法检测混凝土结合面缺陷技术规程》,经协会混凝土结构专业委员会组织审查,现批准发布,编号为T/CECS1056-2022,自2022年8月1日起施行。标准详细信息标准状态现行标准编号T/CECS 1056—2022中文标题 相控阵超声法检测混凝土结合面缺陷技术规程英文标题国际标准分类号91.010.01 建筑工业综合中国标准分类号 国民经济分类E4710 住宅房屋建筑发布日期2022年03月31日实施日期2022年08月01日起草人李向民 高润东 张富文 王卓琳 孙彬 姚利君 许海岩 薄卫彪 龙莉波 张东波 田坤 陈霞 陈宁 宋杰 孙静 许清风 黄科锋 马海英 赵勇 王建 刘华波 薛雨春 武猛 刘辉 李新华 李华良 郑乔文起草单位上海市建筑科学研究院有限公司、中国建筑科学研究院有限公司、中国二十冶集团有限公司、上海建科预应力工程技术有限公司、标龙建设集团有限公司、山东建科特种建筑工程技术中心有限公司、上海建工二建集团有限公司、上海建科工程咨询有限公司、上海中森建筑与工程设计顾问有限公司、上海劳瑞仪器设备有限公司、博势商贸(上海)有限公司、上海星欣科技发展有限公司、上海建科工程项目管理有限公司范围主要技术内容主要内容包括:总则、术语、检测仪器、现场检测、检测报告等。是否包含专利信息否标准文本不公开
  • 2023中国机械工程学会无损检测分会超声检测大会通知
    各有关单位及同行学者、专家:2023’中国机械工程学会无损检测分会超声检测大会定于2023年5月12日-14日在山东省济宁市举行。本次大会将继续坚持往届大会的宗旨,交流超声检测技术的最新思想,展示超声检测领域的最新成果,洞察国际超声检测领域的最新动向,促进超声检测技术的进步与创新。在过去的两年期间,2021超声检测大会因故几经延期,未能举行,各位专家学者始终对大会投入了热诚的关注和支持。本次大会将保持2021超声检测大会的既定日程,邀请知名专家做专题报告,并安排多个分会场进行论文交流,同时举办仪器展览。热烈欢迎国内外超声检测学者、专家、研究人员、技术人员积极投稿和参会,并欢迎超声检测设备器材生产销售企业和研发机构展示仪器产品。一、主办单位中国机械工程学会无损检测分会二、协办单位北京理工大学北京航空航天大学南昌航空大学北京工业大学广东工业大学中国科学院声学研究所中国航发北京航空材料研究院中国航天科技集团有限公司无损检测工艺技术中心内蒙古北方重工业集团有限公司中国铁道科学研究院集团有限公司中国特种设备检测研究院中国宝武上海金艺检测技术有限公司中国船级社实业有限公司武汉中科创新技术股份有限公司汕头市超声仪器研究所股份有限公司ASNT北京分部三、承办单位山东瑞祥模具有限公司硕德(北京)科技有限公司四、会议赞助商山东瑞祥模具有限公司武汉中科创新技术股份有限公司广东汕头超声电子股份有限公司苏州聚友保利检测科技有限公司北京邹展麓城科技有限公司五、大会特邀报告报告题目报告人中国超声检测技术发展路线图卢超教授,南昌航空大学先进超声检测技术及其应用周正干教授,北京航空航天大学低应力制造技术徐春广教授,北京理工大学超声多波聚焦与成像检测技术张碧星研究员,中国科学院声学研究所金属材料热老化磁声复合检测与评估方法研究刘增华教授,北京工业大学六、分会场主题序号分会主题分会主持人1超声波理论卢超、张碧星、宋波2超声传感器与仪器王子成、谢晓宇3超声导波检测刘增华、李卫彬4相控阵超声周正干、纪轩荣、高翌飞5材料性能超声表征潘勤学、林莉6在役状态监测胡斌、香勇7超声检测技术应用陈颖、王海岭、高东海、何方成七、注册与投稿1. 参会人员参与大会学术活动可有3种形式: a. 投递论文全文,稿件审核后制作电子论文集,并在会议期间安排口头报告; b. 仅提交摘要做口头报告,不投递论文全文; c. 仅参会不投稿且不做报告。2. 无论何种形式参会均应首先在超声检测大会网页(http://www.utndt.com)上注册(点击“注册与投稿”)。需投论文或做报告的统一在该网页上提交论文或报告摘要,提交时作者自行选择分会场并注明口头报告的意愿。论文格式见附件1。投稿截止日期为2023年4月10日。提请注意:已经注册过2021超声检测大会的人员,如参加2023超声检测大会,仍需重新注册并重新投稿(可以将原论文或摘要重新提交)。大会注册与投稿也可扫描以下二维码直接进入网页:3. 会议期间,将在会议手册中提供论文摘要。论文全文在超声检测大会网页(http://www.utndt.com)上发布,部分优秀论文将被推荐在《无损检测》杂志发表。口头报告的作者均可得到大会赠与的一份精美纪念品。4. 所投稿件必须通过投稿人所在单位的保密审查,所有投稿论文视为作者已经完成保密审查工作。八、仪器设备展览本次大会设有专门的仪器设备展厅,展厅布置图和展商名录见附件2,欢迎大家前来参观。九、会议收费1. 会务费:1800元/人;学生 1000元/人。食宿费用自理。仪器展览展台费:8000元-12000元。2. 为减少报到注册的时间,建议会务费、展台费、赞助费尽可能预先付款,付款时请注明济宁超声检测大会(会务费、展台费、赞助费)。汇款账号信息如下:名称:清研华测(北京)检测技术有限公司开户银行:中国农业银行股份有限公司北京北苑支行银行账号:11230701040010774也可扫描以下二维码付款:3. 大会将统一开具“会务费”电子普通发票,在大会报到处现场扫码提交发票申请。十、酒店住宿信息本次大会在山东济宁举行,参会人员需提前自行预订酒店,预订方式为在网页(http://www.utndt.com)下载所选酒店的住宿登记表,按其中要求填写信息提交相应酒店邮箱,并付首日房费。会议协议酒店信息如下:1. 济宁富力万达嘉华酒店(主会场)地址:山东省济宁市任城区太白东路59号电话:0537-3208888联系人:杨丹丹18053759520房价:豪华大床房480元/间(含双早)豪华双床房480元/间(含双早)2. 济宁名雅经纬大饭店地址:中国山东济宁市环城北路1号电话:0537-3160888 联系人:张茂龙 13012609578房价:套房398元/间(含双早) 豪华单间278元/间(含双早)豪华标间278元/间(含双早)行政单间180元/间(含双早)行政标间180元/间(含双早)3. 济宁广电精品酒店地址:济宁市任城区常青路9号电话:0537-6565777/6565799联系人:周经理15653728786房价:商务标准房240元/间(含双早)商务大床房220元/间(含双早)十一、会议报到报到时间:2023年5月12日报到地点:济宁富力万达嘉华酒店,济宁市任城区太白东路59号接机接站:会议将根据需要在高铁曲阜东站、济宁北站和济宁机场安排接机接站,有需要的请联系万海涛 (13583708833)。十二、联系方式联系人:潘勤学 13716096968(论文和报告)香 勇 13910787225(参展和缴费)史亦韦 13901075470徐春广 13701099129万海涛 13583708833(会务和接待)
  • 自动与智能无损检测技术及其在工业上的应用
    无损检测技术主要依托于声、光、电、磁等原理内容,从而实现对被检测物体内部缺陷以及不均匀性问题的全过程检测与分析,已成为很多工业生产中用来控制质量的重要方法。近年来,随着新材料、新工艺、新技术等兴起,为了更好地适应时代发展需求,无损检测技术也在不断优化和创新,逐渐朝着自动化、智能化以及图像化等方向发展,并逐步应用到相关行业领域。在即将召开的首届无损检测技术进展与应用网络会议,特别邀请了多位专家进行自动化/智能化无损检测技术相关的分享,部分报告预告如下:吉林大学 张建海副教授《极端工况下材料服役性能原位测试技术》点击报名张建海,吉林大学机械与航空航天工程学院副教授,目前担任吉林省材料服役性能测试国际联合中心副主任,致力于极端工况材料服役性能试验装备与原位测试技术研究,在国家自然科学基金、国防科工局技术基础科研、军委科技委装备预先研究等项目的支持下,重点开展了极端工况材料服役性能试验装备和材料力学性能原位测试技术。开发了超高温双轴材料力学性能试验装备和超声、电磁等原位测试设备等10余套,发表 SCI/EI 检索学术论文20余篇;公开发明专利10余项。耐高温材料及其制品因其优异的力学性能,被广泛应用于航空航天、特种装备、轨道交通装备等重要领域。因其制造或服役环境常伴有高温环境,及复杂载荷的作用,耐高温材料及其制品极易出现性能退化、裂纹萌生与扩展等情况,常常引发恶性事故。张建海副教授将在报告中重点讲述围绕极端工况下材料服役性能和点焊焊接高温熔核成型过程,开展超声无损在线检测技术研究,实现高温制造或服役工况下损伤缺陷与材料力学性能参数与快速精确测试的工作。大连交通大学 赵新玉副教授《曲面叶片几何量测量和缺陷检测》点击报名赵新玉,大连交通大学副教授。中国机械工程学会焊接学会/协会理事,超声检测专委会委员。主持完成国家重点研发计划子课题、国家自然基金、国家重点实验室基金等纵向课题;主持完成中国中车、中国特检等企业科研课题10余项;并以主要完成人身份参与国家重大专项、国家自然基金重点基金、国际合作项目等重点科研任务。曾研发设计多通道超声自动扫描和声场测量系统、高频超声显微系统、64通道超声相控阵系统、双机械手超声检测系统、ITO镀膜高精度激光刻蚀设备等,已在航空航天、汽车制造和军工产品检测中获得应用。报告摘要:航空发动机叶片是典型复杂曲面结构,为实现叶片的自动化超声检测,提出基于曲面点云数据重建的自动化检测轨迹规划方法,在此基础上实现7轴联动复杂曲面自动扫描成像;叶片点云采用线激光轮廓仪配合工件旋转轴自动扫描获取,数据拼接整理后采用数据拟合方法获得曲面轮廓方程,基于曲面上的曲线方程规划加减速扫描轨迹,进一步对各扫描轨迹点进行多轴运动分解,获得包括六轴机械手和工件旋转轴在内的各轴轨迹;实际检测实验表明,轨迹规划算法可以实现叶片自动扫描,获得清晰C扫描图像。中国飞机强度研究所 樊俊铃高级工程师《航空复合材料构件超声自动化检测技术及应用》点击报名樊俊铃,高级工程师,现任中国飞机强度研究所损伤检测与评估技术研究室副主任,中国航空研究院一级专家。承担、参与国家科工局、工信部、装发、自然科学基金、航空基金等各类预研课题10余项,主管、参与完成多个型号的结构强度验证工作,承担我国多型军民机结构试验的无损检测与评估任务,在损伤检测和结构强度领域具有较强的技术能力。长期从事业务领域的相关研究工作,发表论文50余篇,申请专利4项,登记软件著作权3项,荣获集团公司航空报国奖个人三等功等多项奖励。报告摘要:针对航空复合材料结构人工超声检测效率低、成本高、结果可靠性低等技术瓶颈问题,重点开展了超声换能器设计、超声无损检测仿真、超声信号降噪与多模式成像、无损检测自动化系统研制等技术研究,突破了超声仿真分析、专用传感器设计、信号分析等关键技术,研发了多通道、宽带宽阵列传感器,自主开发了复合材料构件阵列超声自动化检测系统,有力的支撑了航空复合材料无损检测,提高了检测效率,缩短检测周期,保证了复合材料无损检测可靠性。北京科技大学 黎敏教授《高品质钢内部质量高精度检测与三维全息表征》(点击报名)黎敏,北京科技大学钢铁协同创新中心,教授,博导。主要开展先进检测技术、工业大数据分析等研究工作。独立负责7项国家自然科学基金等国家和省部级课题,参与鞍钢、首钢、核动力研究院等10余项科研项目,共发表论文50余篇,专著2本,专利8项,转件著作权3项,获省部级科技奖励2项,2013年入选北京市青年英才计划。报告摘要:利用高频超声显微技术对高品质钢内部质量进行三维扫描检测,并通过超声信号特征提取、深度聚类、点云重构等现代信号处理方法,对高品质钢内部的夹杂、缩孔和裂纹等微观缺陷及凝固组织实现高通量表征。钢铁绿色化智能化技术中心 吴少波高级工程师《机器视觉技术及在钢铁生产中的应用》点击报名吴少波,钢铁绿色化智能化技术中心,机器视觉组长,研究方向是钢铁机器视觉,博士,正高级工程师,硕士研究生导师。吴少波同志多年从事钢铁机器视觉智能检测技术研究及工程实践,承担了国家“十二五”、“十三五”、“十四五”等多项科研任务,获得部级科技进步二等奖1项,申请发明专利30余项,申请软件著作权10余项,在国内核心期刊和国际会议上发表相关学术论文10余篇。主持的“铁包自动化热检”课题首次实现了铁包全内衬厚度和全外壳温度的热态在线准确测量,负责了“银亮材直径在线测量和分拣系统”、“喷射锭面及中间包测温系统”、“液固相线检测系统”等项目的研发和应用实施,产生了较好的经济和社会效益。本报告以钢铁智能制造为背景,结合报告人及团组的工业实践,介绍机器视觉图像处理和深度学习技术及在钢铁行业中的典型应用,包括生产质量检测和生产物流检测两大方面,其中生产质量检测包括晶粒度级别、组织类别、表面质量、渣液位、形貌、尺寸、温度等生产质量相关的检测;生产物流检测包括工件/炉包/机车标识、生产工具、关键工况等生产物流相关的检测。钢研纳克 刘光磊高级工程师《管材表面缺陷自动智能检测技术及应用》点击报名刘光磊,钢研纳克检测技术股份有限公司无损检测事业部副总经理,高级工程师。长期从事无损检测方法技术研究及自动化无损检测仪器装备研发等工作。主要参研的国家科研课题5项,参研制修订的标准6项,研发成果获省部级奖3项,获得授权的专利5项。报告摘要:管材表面缺陷自动检测常用超声、涡流、漏磁、磁粉等检测方法。针对采用常规检测方法不能有效检测短小裂纹、凹坑、划伤、结疤、异物碾压等难题,重点开展了CCD视觉检测技术的相机、镜头、光路配置、二维三位成像技术、相机景深自动校准技术及独特的缺陷检测算法,开发具有高性能、高处理速度、高可靠性和高稳定性的视觉检测技术和装备,从而实现管材表面缺陷在线智能检测、分类和记录,有效解决人工目视检测效率低,成本高,精确度低的问题。首届无损检测技术进展与应用网络会议为了推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2022年10月13-14日组织召开首届无损检测技术进展与应用网络会议。会议开设射线检测技术、超声检测技术、自动及智能检测技术、无损检测新技术四大专场,邀请无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开报告,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学、钢研纳克三、参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/NDT)进行报名。2、报名开放时间为即日起至2022年10月14日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)
  • 专家称牛奶添加激素或超20种 目前只能查三成
    王丁棉:乳业激素催奶问题值得警惕   “牛奶添加激素或超20种 目前只能查三成”   近日媒体引用乳业专家王丁棉观点,称化学品二氧化氯被添入牛奶中。昨日,王丁棉在接受羊城晚报记者采访时表示,相关报道存在误解,这一情况是他两年前在广西考察时发现的,目前情况如何并不清楚。王丁棉表示,广东乳业中暂未发现添加二氧化氯的情况,但使用激素催奶的现象值得警惕,据其透露,牛奶中添加的激素目前可能达二十几种,但政府只能检查其中的1/3。   “我是想告诉监管方,这一化学品在牛奶中不能使用。这一问题最近已经引起了相关监管部门的高度关注。”王丁棉说。按照我国目前的食品添加剂标准,二氧化氯只能用于果蔬和部分水产品的防腐保鲜,并不允许直接添加在牛奶内,而乳品厂使用二氧化氯也多用于生产设备和环境的消毒。但对此,国家标准中没有检测要求。   同样,已成业内潜规则的激素催奶现象的存在,也跟国家标准中对激素的检测要求有关。王丁棉称,靠激素催奶的情况确实存在。据其所知,目前业内可能使用的激素已达二十几种,但政府只能检查其中的1/3,部分没有检测的手段和方法。王丁棉称,在圣元“激素门”事件时,相关部门曾经大范围检查过一轮,但检测种类依然偏低,目前激素也未纳入乳品的日常检测。   “目前国内对奶业的标准定得太低了。标准低,政府管理就轻松 标准制定严格,管理力度就大,成本就重。”王丁棉表示,目前对乳制品行业的监管中,政府只能通过偶然的抽检来发现问题。从整个食品安全的整治来看,靠质检部门抽检发现的问题,连1/3都不到。   食品安全国家审评委员会检验方法委员会专家委员、北京市疾病预防控制中心研究员邵兵曾对媒体表示,从技术上说,可以把奶粉激素的检测纳入到日常检测的范围。但这种检测复杂,也需要检测成本,检测方法要求使用同位素,而同位素是比较昂贵的。
  • 一文掌握超声无损检测技术及行业市场现状
    关于超声无损检测技术1929年,前苏联科学家索科夫率先提出利用超声波穿透物体去探测内部缺陷和结构,建立了早期的超声波成像系统。20世纪60年代,超声检测技术已经成为有效而可靠的无损检测手段,并在工业探伤领域得到广泛应用。进入20世纪90年代,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声衍射声时技术(TOFD)和相控阵技术(PA)等科技创新方法不断涌现,使得超声检测结果可以进行数据追溯。从技术原理来看,人们能够听到声音是因为声波传到了我们的耳内,声波的频率在20HZ~20,000HZ,频率低于或超过上述范围时人们无法听到声音,频率低于20HZ的声波称为次声波,频率超过20,000HZ的声波称为超声波。声波、次声波、超声波都是机械波,有声速、频率、波长、声压、声强等参数,在界面也会发生反射、折射。机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射、折射和波形转换。这种现象可被用来进行超声波探伤。 传统超声检测采用脉冲法进行检测,高压发生器发出的电压施加在探头上,由于压电效应的存在探头发射出超声波脉冲,通过声耦合介质(如机油或水等)进入材料并在其中传播;遇到缺陷后,部分反射能量沿原途径返回超声探头,超声探头又将其转变为电脉冲,经仪器放大而显示在显示端的荧光屏上。根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。脉冲回波探伤法通常用于锻件、焊缝等的检测。可发现工件内部较小的裂纹、夹渣、缩孔、未焊透等缺欠。被检测物要求形状较简单,并有一定的表面光洁度。为了成批地快速检查管材、棒材、钢板等型材,可采用配备有机械传送、自动报警、标记和分选装置的超声探伤系统。近年来,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声相控阵技术(PAUT)逐渐成为无损检测行业主要技术发展趋势,应用范围得到了不断推广,传统的常规脉冲回波超声技术正逐渐被超声相控阵技术和全聚焦技术等替代。超声相控阵技术是借鉴相控阵雷达技术的原理发展起来,起先应用于医学领域,最初系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限,随着电子技术和计算机技术的发展,超声相控阵技术逐渐用于工业无损检测,尤其是在核工业与航空航天领域取得了很多技术上的突破,并越来越广泛地应用于锅炉、压力容器、轨道交通、航空航天的无损检测。常规的超声检测通常采用一个压电晶片来产生超声波,一个压电晶片只产生一个固定的声束,其声束传播是预先设定的,在固定材料中不能变更;超声相控阵技术则采用了多个压电晶片,这种晶片排列称为阵列,阵列中的每一个晶片称为阵元,阵列晶片组辐射的总能量形成超声束。通过控制阵列中各阵元的激励(或接受)脉冲的时间延迟,改变由各阵元发射(或接受)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方面的变化,达到检测的目的。关于超声无损检测市场根据市场咨询机构Markets and Markets研究报告显示,2018年全球无损检测市场(NDT)容量约为83亿美元,预计到2024年全球市场规模将达到126亿美元,其中超声检测将占据最大比例的市场份额。2016年超声检测(UT)市场容量为24.4亿美元,预计2022年超声检测市场规模增长至39.3亿美元,2016年至2022年的年复合增长率为8.3%。(数据来源:Markets and Markets)当前美国是超声无损检测市场消费额最高的国家,2015年约占全球无损检测仪器市场的35.6%;其次是欧洲,占据了整个市场容量的26.5%左右。近年来,由于亚太地区基础设施的快速发展和制造业自动化水平的持续提升,中国、印度、日本和韩国等国家已经成为全球无损检测市场的主要增长区域,约占整个市场容量的24.2%。(数据来源:Markets and Markets)随着我国传统产业的转型升级,新兴行业保持高速发展,新材料、新结构和新工业不断涌现,对无损检测行业提供持续发展机遇。与此同时,虽然国内企业总体水平和综合实力有了很大程度的提高,在无损检测基础理论、技术开发、仪器设计和研制及产品应用等方面都已在世界占有重要一席。但在一些高端无损检测仪器制造方面,与欧美等发达国家仍存在一定差距,如在全聚焦相控阵超声检测的应用领域方面,仍然大量采用进口的国际品牌。根据中国海关统计相关数据,2017 年至 2020 年我国进口的无损检测设备(不包含探头和配件)情况如下:从上表可以看出,受超声波探伤检测仪进口额逐年快速上升的影响,我国无损检测设备近年来进口额呈持续上升趋势,其中超声波探伤检测仪进口额占无损检测设备的比例总体逐年上升,2017年至2020年的占比分别为43.68%、45.28%、50.66%和 46.98%。具体从超声无损检测仪来看,根据中国海关统计相关数据,2017年至2020年,我国超声波探伤检测仪(海关编码:90318031, 不包含探头和配件)进口金额分别达48,928.02万元、68,534.43万元、83,382.45万元和 69,819.16万元,进口额总体逐年快速上升,国产进口替代市场空间广阔。关于超声无损检测仪器企业总体而言,目前专门从事超声无损检测仪器研发、生产和销售的公司相对较少,国外主要以奥林巴斯、美国贝克休斯、英国声纳、美国捷特、法国M2M等为主,国内则包括汕超研究所、超声电子、中科创新、多浦乐等。奥林巴斯(Olympus Corporation)成立于1919年,是一家全球性的世界精密光学技术企业,业务领域包括映像领域、医疗领域和生命科学领域等。目前已在日本东京证券交易所、德国慕尼黑证券交易所、柏林证券交易所和美国OTC市场等多地上市,股票代码均为OOPT。奥林巴斯旗下的无损检测子公司(Olympus NDT)可为用户提供品类齐全的超声/涡流探伤设备系列产品,具体包括探伤仪、手持测厚仪、探头、棒材和管材检测系统、NDT系统的仪器设备和工业扫查器。据奥林巴斯2019年4月至2020年3月财年报告,其无损检测设备全球市场占有率为30-40%,竞争对手为贝克休斯。贝克休斯(Baker Hughes)成立于1982年,为全球石油开发和加工工业提供产品和服务的大型企业。贝克休斯系纽约证券交易所上市公司,股票代码为BKR。2016年,通用电气(GE)将其下属油气业务部分(含检测技术公司GE Inspection Technologies)与贝克休斯合并,成为全球第二大油服企业。贝克休斯为无损检测全球领导者,提供优质的无损检测解决方案和服务,其产品包括超声检测设备、涡流检测设备、射线照相系统和高清远程视觉检测等。 英国声纳(Sonatest)成立于1958年,在超声产品无损检测设备及附件的制造和生产都处于全球领先地位,具体产品包含超声波探伤仪、测厚仪、相控阵探伤仪和探头等,主要适用于高衰减材料检测、焊缝、腐蚀检测、大锻件、大铸件、高衰减和非金属材料探伤。英国声纳的下游客户包括波音公司、空中客车、壳牌石油、E.ON电网和网络铁路等国际知名企业。美国捷特(Zetec)始于1968年,是美国罗珀科技公司旗下的子公司,是全球无损检测解决方案的领军企业之一,在加拿大魁北克市设有全球工程和制造中心,并在美国西雅图设有公司总部。美国捷特无损检测产品可以分为超声检测和涡流检测两大系列,具体包括超声检测仪器/软件/检测探头和楔块和涡流检测设备/软件/探头等产品种类,下游客户覆盖电力行业、石油和天然气行业、航空航天、汽车制造、军工、铁路以及重工业和制造业。法国M2M为国际知名数字超声相控阵与涡流设备设计与制造商,由法国原子能委员会(CEA)于2003年设立,总部位于法国巴黎,2008年被Eddyfi Technologies收购。Eddyfi Technologies为世界知名NDT检测科技公司,致力于为航空航天、能源、采矿、发电和运输行业等提供检测设备、软件、传感器等多 元化服务。汕超研究所成立于1982年,位于广东省汕头市。汕超研究所主营业务为医用超声显像诊断系统、医用X射线影像系统、无损检测设备等的研发、生产和销售,是国内医用超声诊断设备领域的知名企业。超声电子成立于1997年,是以电子元器件及超声电子仪器为主要产品的高新技术企业,主要从事印制线路板、液晶显示器及触摸屏、超薄及特种覆铜板、超声电子仪器的研制、生产和销售。超声电子为A股上市公司,股票代码000823,2020年营业收入51.69亿元,其中超声电子仪器的销售额为6,413.85万元。超声电子创建的“汕头”牌系列产品,能够提供丰富多样的医用超声诊断系统和无损检测设备。中科创新成立于2003年,位于湖北武汉市,公司产品主要包括便携式超声波探伤仪和多通道自动化检测设备,并可以为特殊市场用户提供量身定制的个性化服务,一直致力于为钢铁、机械装备制造、特种设备、石油化工、轨道交通、航空航天、船舶制造、电力能源等行业提供超声波无损检测应用解决方案和技术服务。多浦乐成立于2008年,聚焦无损检测设备的研发、生产和销售,致力于为客户提供超声无损检测专业解决方案及检测仪器产品,属国家认定的高新技术企业之一。多浦乐是国内首家推出高性能超声相控阵检测设备的企业,Phascan超声相控阵检测仪于2014年被评为国家重点新产品,并于2017年成为首台中国特检院举办相控阵超声培训所使用的国产检测设备,亦为首台经过中国特检院测试认证的超声相控阵检测设备。多浦乐2020营业收入1.28亿元。
  • 得泰仪器针对不同样品中的抗生素微量残留检测提供高效智能前处理一站式服务
    兽药抗生素可以通过药物生产排放、污水处理排放、处理未使用的或过期的药物、坡面径流、施用投喂过抗生素的牲畜的粪便作为肥料等多个方式进入环境,其中,最主要途径为施用投喂过抗生素的牲畜粪便于农田(图1)研究发现,进入人类和动物体内的抗生素不会被全部吸收,约有30%&minus 90%会随着尿液或粪便排出。因未被完全利用和处理,每年约3800吨抗生素被排放到环境中,其中约46%的抗生素排至水体中,剩余部分则通过农业施肥和污泥回用扩散到土壤环境中。对大多数畜禽来说,在施药两天后能在其排泄物会回收到72%活性成分。四环素,土霉素,磺胺二甲嘧啶,恩诺沙星,泰乐菌素等兽药抗生素在猪粪,牛粪,鸡粪中普遍地被检测到,其中四环素类的排泄率为69%-86%,磺胺类的排泄率为80%-90%,喹诺酮类的排泄率为30%-83.7%,大环内酯类的排泄率为50%-100%。除了过量使用抗生素所造成的的不良反应外,环境抗生素污染的真正危害在于加剧细菌耐药性,会带来生态圈和人体不可逆转的损害。因为当使用某种抗生素时,总有一些细菌,对这种抗生素是耐药的,使用过抗生素以后,对抗菌药敏感的菌被杀死,但耐药菌却“安然无恙”,同时,因为失去了竞争对手,耐药细菌会愉快地生长,直至接近或超过之前的水平,继续在细菌、动物和人类之间传播。而此时再使用之前的抗生素,对这些耐药菌已经没有作用了。由此可见,本来要杀敌的抗生素却使敌人变得更加强大,“超级细菌”由此而生。耐抗生素病原菌的出现,已经成为全球公共卫生危机之一。因此研究这类抗生素的污染处理技术显得尤为重要,本文以四环素为例,针对多种样品中抗生素残留的前处理提供一站式服务,旨在为实验室人员提供更加智能高效的前处理方案。01 提取动物源性食品准确称量1.00 g于MHS-60多样品均质系统均质后的样品于50 mL塑料离心管中,向其中EDTA缓冲液8 mL,用MultiVortex多样品涡旋混合器涡旋1 min,超声20 min,-2℃1000 rpm离心5 min,收集上清液。残渣中加入磷酸盐缓冲液8 mL,重复提取1次,合并两次提取液,混匀备用。植物源性食品称取10.0 g于MultiGrinder高通量智能动植物研磨均质仪切成碎末的新鲜蔬菜样品于具塞三角瓶中,加入20 mL 0.02 mol/L氯化镁-柠檬酸混合溶液于45℃下振荡提取45 min,过滤,残渣再用20 mL甲醇重复提取1次,FlexiVap全自动智能平行浓缩仪挥发除去甲醇,用5 mL 0.02 mol/L氯化镁-柠檬酸混合溶液复溶,与氯化镁-柠檬酸提取液混合后待过柱净化富集。饲料样品准确称取3.0 g样品(准确至0.01 g),置于50 mL具塞锥形瓶中,加入甲醇10 mL,MultiVortex多样品涡旋混合器旋涡混匀1 min,加入盐酸溶液30 mL,MultiVortex多样品涡旋混合器旋涡混匀1 min,超声20 min,移至50 mL离心管中,5 000 rpm离心10 min,取上清液,待净化。土壤样品风干后的土壤样品,粉碎机粉碎后,过60目筛网,准确称取15 g过筛网后的样品,置于iQSE-06智能快速溶剂萃取仪的萃取池中,加20 g硅藻土,以V(甲醇):V(乙腈)=2:1溶剂进行提取;提取完毕后,将提取液置FlexiVap全自动智能平行浓缩仪中氮吹至近干(控制温度45℃),加1.0 mL甲醇溶解残渣,MultiVortex多样品涡旋混合器涡旋1 min后,用0.22 μm滤膜过滤即得,快速溶萃取条件见下表。表1 快速溶剂萃取条件化妆品样品(一般无需净化)准确称取1 g均匀试样(精确至0.01 g),置入50 mL塑料离心管中,加入约20 mL甲醇-草酸溶液(v1:1),MultiVortex多样品涡旋混合器涡旋混匀后,用甲酸或氨水调节pH至7.0,超声提取20 min,以4 000 rpm离心3 min。上清液转移至25 mL容量瓶,用甲醇定容。过0.22 μm滤膜,供高效液相色谱仪测定。02 净化各类样品的净化均可以用iSPE-864全自动智能固相萃取仪来完成,具体方法如下表所示方法参考动物源性食品:GB 31658.17-2021 食品安全国家标准 动物性食品中四环素类、磺胺类和喹诺酮类药物残留量的测定 液相色谱-串联质谱法植物源性食品:贺德春, 吴根义, 许振成,等. 小白菜和白萝卜对四环素类抗生素的吸收累积特征[J]. 农业环境科学学报, 2014, 33(6):5.饲料:DB13/T 1384.2-2011 饲料中土霉素、四环素、金霉素的测定土壤提取:毛娜, 孙志洪, 张丽. HPLC-MS/MS法测定养殖场土壤中6种常见抗生素微量残留[J]. 化学试剂, 2021, 43(7):6.土壤净化:NY/T 3787-2020 土壤中四环素类、氟喹诺酮类、磺胺类、大环内酯类和氯霉素类抗生素含量同步检测方法 高效液相色谱法化妆品:SN/T 3897-2014 化妆品中四环素类抗生素的测定上述处理方案中使用到的仪器MultiVortex多样品涡旋混合器优势&bull 高通量 配置多种规格样品管&bull 高转速应对各种难溶样品&bull 可预存12种涡旋程序MHS-60 多样品均质系统优势&bull 可同时均质6个样品&bull 刀头自动啮合,噪音小,占地面积小&bull 可预存12种均质程序MultiGrider高通量智能动植物研磨均质仪优势&bull 三维立体振荡技术,进行高动能无死角撞击或摩擦&bull 智能安全防护,运行开始后自动锁紧防护罩&bull 可储存32种以上研磨均质方法和程序提取曲线iSPE-864全自动智能固相萃取仪优势&bull 八通道,可批量处理64个样品&bull 自动完成活化、上样、淋洗、氮吹、洗脱等全流程FlexiVap-12/24 全自动智能平行浓缩仪优势&bull 氮吹角度自动调节(0-90°),先斜吹后直吹&bull 同时浓缩12/24个大体积样品,替代传统旋蒸 氮吹模式&bull 各通道独立控制,均配备红外液位传感器实现精确定容FV32Plus全自动高通量智能平行浓缩仪优势&bull 高通量,最多可以同时处理32个样品&bull 集合针追随和针涡旋双模式&bull 各通道独立控制,均配备红外液位传感器实现精确定容
  • “2023 EVIDENT杯超声检测技术优秀论文评选”一等奖:在役井口阀内部阀杆腐蚀的相控阵超声检测
    为追踪无损检测超声领域的最新发展动态,推动无损检测技术的创新与进步,加强同行之间的交流与合作,由《无损检测》编辑部主办,Evident公司冠名的“2023 EVIDENT杯超声检测技术优秀论文评选”活动已经于2023年在沪顺利举行。本次评选中,依旧涌现了诸多精彩论文,我们将选择其中的获奖作品,与大家一同分享。以下为本次活动一等奖获奖论文:
  • 超声操控搬运与筛选技术实现 “隔空探物”或成现实
    记者从中科院深圳先进技术研究院获悉,该院郑海荣课题组携手国内外合作者,实现了利用超声辐射力效应对物体进行非接触的操控、搬运以及筛选。这使得利用声波进行一定距离的&ldquo 隔空探物&rdquo 成为现实。相关成果于6月11日发表于《应用物理评论》杂志。   据了解,声波操控技术利用声场中的颗粒对声波产生的反射、折射、吸收等效应引起的动量在声波与颗粒之间交换,通过颗粒受到的力作用对其进行操控。声子晶体(人工周期结构)是具有声子带隙的人造周期弹性介质结构。利用声波在不同周期结构材料中的传播规律,以及不同材料的组元及其结构对能带结构和带隙的调控机制,可以设计优化声子晶体以对声场形态进行调制,从而控制声波的传播和分布。   在该研究中,郑海荣课题组提出通过设计制造的人工周期结构对换能器发射波束进行再调控,首次利用声子晶体板兰姆波诱发的透射增强机制,产生高度局域化的声辐射力,对同种材料不同尺寸或相同尺寸不同材料的微纳米颗粒成功实现捕获、排列、移动、筛选等操控。   由于组成&ldquo 声筛&rdquo 的声子晶体板共振频率由晶格常数和板厚等结构参数决定,因此可设计优化捕获力的激励频率以及微纳米颗粒的筛选尺寸。又因为颗粒尺寸小于晶格常数,且晶格常数为兰姆波波长,小于同频率声波在水中的波长,所以&ldquo 声筛&rdquo 对微纳米颗粒的操控具有亚波长特征。因此,&ldquo 声筛&rdquo 实现了对亚波长微纳米颗粒的可调控操控,其在生物医学工程、3D打印、催化反应和材料科学等领域具有广泛的应用前景。   据介绍,利用&ldquo 声筛&rdquo 技术可研制出精确可靠、成本低廉的微纳米颗粒控制器件,为研究金属、细胞、蛋白质、DNA等微纳米颗粒及其微纳米结构的装配、基本力学、物理和生化特性提供重要研究手段,为用于细胞、血小板、蛋白质等生物颗粒筛选的新型生化分析仪器研制提供技术支持。   据悉,该成果已被《应用物理评论》杂志推荐为&ldquo 研究亮点&rdquo 和&ldquo 特色研究&rdquo ,并受到国内外同行的广泛关注。
  • 2021中国超声检测大会将于2022年8月13-15日山东济宁举行
    2021中国超声检测大会2022年会议通知各有关单位及同行学者、专家:因新冠疫情一再延期的2021中国超声检测大会将于2022年8月13日-15日在山东省济宁市举行。请各位已注册的超声检测学者、专家、研究人员、技术人员、学生以及超声检测设备展商做好参会准备,并欢迎其他关注本次大会但2021年尚未注册的人员继续注册参会。本次大会将采用线上线下结合的方式举行,会议重要信息如下:主办单位:中国机械工程学会无损检测分会协办单位:北京理工大学北京航空航天大学南昌航空大学北京工业大学广东工业大学中国科学院声学研究所中国航发北京航空材料研究院中国航天科技集团有限公司无损检测工艺技术中心内蒙古北方重工业集团有限公司中国铁道科学研究院集团有限公司中国特种设备检测研究院中国宝武上海金艺检测技术有限公司中国船级社实业有限公司武汉中科创新技术股份有限公司汕头市超声仪器研究所股份有限公司ASNT北京分部承办单位:山东瑞祥模具有限公司硕德(北京)科技有限公司大会特邀报告:报告题目报告人中国超声检测技术发展路线图卢超教授,南昌航空大学先进超声检测技术及其应用周正干教授,北京航空航天大学低应力制造技术徐春广教授,北京理工大学超声多波聚焦与成像检测技术张碧星研究员,中国科学院声学研究所金属材料热老化磁声复合检测与评估方法研究刘增华教授,北京工业大学分会场主题:1、超声波理论 主持人:卢超、张碧星、宋波2、超声传感器与仪器 主持人:王子成、谢晓宇3、超声导波检测 主持人:刘增华、李卫彬4、相控阵超声 主持人:周正干、纪轩荣、高翌飞5、材料性能超声表征 主持人:潘勤学、林莉6、在役状态监测 主持人:胡斌、香勇7、超声检测技术应用 主持人:陈颖、王海岭、高东海、何方成注册与投稿:(1) 参会人均应首先在中国超声检测大会网页(http://www.utndt.com)上注册(点击“注册与投稿”)。需投论文或做报告的统一在该网页上提交论文或报告摘要,提交时作者自行选择分会场并注明口头报告的意愿。大会注册与投稿也可扫描以下二维码直接进入网页:(2) 由于新冠疫情的影响,本次大会采用线上线下结合的方式举行,诚挚邀请各位参会人尽可能前往现场参会,因故不能到场的报告人,可通过腾讯会议线上报告,请线上报告人提前录制15分钟的报告视频发至上述投稿系统。仪器设备展览:本次大会设有专门的仪器设备展厅,30家展商参展,欢迎大家前来参观。会议收费:1. 无论线上与线下参会,均需注册并缴纳会务费。会务费1800元/人,学生1000元/人。食宿费用自理。2. 为减少报到注册的时间,建议会务费、展台费、赞助费尽可能预先付款,付款时请注明济宁超声检测大会(会务费、展台费、赞助费)。(1)汇款账号信息如下:名称:清研华测(北京)检测技术有限公司开户银行:中国农业银行股份有限公司北京北苑支行银行账号:11230701040010774也可扫描以下二维码付款:3. 大会将统一开具“会务费”电子普通发票,在大会报到处现场扫码提交发票申请。酒店住宿信息:本次大会在山东济宁举行,线下参会人员需提前自行预订酒店,预订方式为在网页(http://www.utndt.com)下载所选酒店的住宿登记表,按其中要求填写信息提交相应酒店邮箱,并付首日房费。请注意各酒店的登记时间要求,尽早办理。会议协议酒店信息如下:1、济宁富力万达嘉华酒店(主会场)地址:山东省济宁市任城区太白东路59号电话:0537-3208888联系人:杨丹丹18053759520房价:豪华大床房530元/间(含双早)豪华双床房530元/间(含双早)2、济宁名雅经纬大饭店地址:中国山东济宁市环城北路1号电话:0537-3160888 联系人:张茂龙 13012609578房价:套房398元/间(含双早) 豪华单间278元/间(含双早)豪华标间278元/间(含双早)行政单间180元/间(含双早)行政标间180元/间(含双早)3、济宁广电精品酒店地址:济宁市任城区常青路9号电话:0537-6565777/6565799联系人:周经理15653728786房价:商务标准房240元/间(含双早)商务大床房220元/间(含双早)会议报到时间和地点:报到时间:2022年8月13日报到地点:济宁富力万达嘉华酒店,济宁市任城区太白东路59号联系方式:联系人:潘勤学 13716096968(论文和报告)香勇 13910787225(参展、赞助和缴费)史亦韦 13901075470徐春广 13701099129万海涛 13583708833备注:若因疫情变化不能如期召开,另行通知。2021中国超声检测大会组委会2022年6月30日
  • 车内空气质量检测或强制化 将催生超10亿元检测需求
    摘要   近日,北京、上海等20家消费维权单位联合呼吁将推荐性标准《乘用车内空气质量评价指南》,上升为强制性标准,并在标准中适当增加有机挥发性的检测项目。(详情查看:车内空气标准须强制 20家单位呼吁增加有机物检测) 检测专题:乘用车内空气质量检测 《乘用车内空气质量评价指南》于2012年3月1日起正式实施。之前我国一直没有针对车内环境的污染控制标准,此标准一出,立刻引发厂商和消费者的高度关注。   据了解,环保部于 2011年 10月颁布《乘用车内空气质量评价指南》. GB/T27630-2011),对车内空气中八种有害挥发性化合物浓度做出详细要求。该指南是推荐性国家标准,尚未强制实施,不具备法律约束力。现有车内 VOC检测服务需求来自于汽车制造商内部,是企业自愿性检测需求。 如果现有推荐性标准《乘用车内空气质量评价指南》上升为强制性规定,据估算未来每年汽车 VOC检测市场规模为 12亿元,将会催生超 10亿元的检测需求。   车内空气质量检测强制化或可催生超 10亿元检测需求   尚未出台强制性标准,现有检测服务为企业自愿性需求   环保部于 2007年颁布《车内空气挥发性有机物和醛酮类物质采样测定方法》. HJ/T400-2007),涉及采样环境条件技术要求、采样方法和设备。2011年 10月,环保部颁布《乘用车内空气质量评价指南》。 车内八种有害挥发性化合物浓度限值   《乘用车内空气质量评价指南》是推荐性国家标准,尚未强制实施,不具备法律约束力。现有车内 VOC检测服务需求来自于汽车制造商内部,对相关挥发性物质浓度要求不尽相同。   现有标准若强制化,或可催生超10亿元检测需求   如果现有推荐性标准《乘用车内空气质量评价指南》上升为强制性规定,据估算未来每年汽车 VOC检测市场规模为 12亿元: 据中国汽车工业协会统计数据显示, 2012年我国乘用车产量为 1552万辆,我们假定未来每年乘用车产量为 1600万辆,假定车辆抽检比例为 0.5%,单辆汽车采样费用为 10000元,分析费用为 5000元,则检测市场规模为 12亿元。 我国乘用车产量稳定增长   华测检测、聚光科技等检测机构和仪器厂商或将受益   汽车 VOC检测主要分为采样和分析两大块。采样是将受检车辆置于恒温恒湿环境测试舱中,对不易吸化合物可通过与衍生化试剂(如 DNPH)反应进行化学衍生。苯系化合物物理采样后可用气相色谱质联用议(GC-MS)进行分析 醛酮类化合物与 DNPH液相色谱(HPLC)进行分析。   如果推荐性标准《乘用车内空气质量评价指南》上升为强制性规定,则华测检测、聚光科技等第三方检测机构和仪器厂商将有望受益。   华测检测:汽车 VOC实验室 受到广泛认可   华测检测目前已开展汽车 VOC实验室提供车内VOC测试、汽车部件 VOC测试和汽车材料 VOC测试服务。   公司于 2008年受邀参加《车内空气污染物浓度限值及测试方法》国标工作组,是唯一一家参与该公司汽车 VOC实验室受到国内外知名汽车制造商认可,包括 GM、 FORD、VOLVO、VOLKSWAGEN、TOYOTA、上汽、奇瑞、吉利等。   聚光科技: GC-MS产品或可用于汽车 VOC分析   GC-MS(气相色谱质谱联用仪)将在汽车 VOC检测。聚光科技目前 GC-MS产品主要包括 Mars-400系列和 Mars-6100GC-MS系列产品。 (编辑:萧然)   注:本文部分内容引自东方证券 陶林杰的相关报告,经编辑整理而成。
  • 我国主持的首项ISO超声检测国际标准正式发布
    2023年2月22日,国际标准化组织(ISO)发布《无损检测 机械手超声检测系统 通用要求》(ISO 24647:2023),这是由我国主持制定的首项ISO超声检测领域国际标准,标志着中国超声检测标准国际化工作取得重大突破。新发布的国际标准《无损检测 机械手超声检测系统 通用要求》(ISO 24647:2023)由中国牵头,北京理工大学徐春广教授团队主持制定,上海材料研究所有限公司等单位参与制定。在国家重大科技专项及国防工业重点科研项目支持下,北京理工大学徐春广教授团队经过十余年研究、开发和总结研究成果,在制定国家标准GB/T 34892-2017《无损检测 机械手超声检测方法》的基础上提出国际标准提案。该国际草案于2020年1月通过ISO/TC135/SC3(国际标准化组织无损检测技术委员会超声检测分技术委员会)立项投票。该项目历时3年,先后向ISO/TC135/SC3的31个成员国征求意见,来自德国、美国、英国、法国、巴西等多个国家的专家对标准草案进行了超过20余次的评议和审定,最终全票赞成通过。该国际标准项目团队负责人徐春广教授介绍,机械手与超声检测相结合,可替代人工实现对复杂构件的精确检测,同时提高检测效率和安全性。该标准对机械手超声检测系统构型规则、所需的系统硬件部件、特征、部件要求和应用条件,以及机械手超声波检测系统的一般要求和验收标准进行了规定,为机械手超声检测的应用提供了依据,对规范机械手超声检测系统的设计和应用,将产生深远影响。该国际标准的发布,填补了机械手超声检测国际标准的空白,为丰富世界超声检测技术贡献了中国方案,不仅充分体现了我国超声检测技术的国际先进性,也提升了我国在超声检测国际标准领域的话语权和影响力,对促进我国机械手超声检测系统和装备产品走向国际市场,具有重大的现实意义和价值。
  • 2023年广东省智能检测装备产业创新推进会在广州举行
    9月2日,由广东省工业和信息化厅指导,广州市工业和信息化局、广东省科学院主办的“2023年广东省智能检测装备产业创新推进会”在广州举行,工业和信息化部装备工业一司司长王卫明,广东省工业和信息化厅副厅长陈磊,广州市政府副秘书长、一级巡视员,市工业和信息化局党组书记、局长高裕跃出席会议并致辞。市工业和信息化局一级调研员(市管)粟新辉以及装备工业处负责同志参加会议。  王卫明强调,智能检测装备作为智能制造核心装备,其发展水平关系到我国产业链供应链韧性和安全稳定,希望广东充分发挥制造强省优势,走出一条具有特色的智能检测装备产业创新、融合、协同发展道路,为支撑我国智能检测装备产业以及智能制造高质量发展作出更大贡献。  陈磊指出,智能检测装备对实施制造业当家战略,支撑广东建设制造强省、质量强省和数字广东具有重要意义,省工业和信息化厅将用首台(套)重大技术装备等各类支持政策,加强机械、汽车、电子信息、石化、生物医药等行业专用检测装备研制,提升智能检测装备供给能力。  高裕跃表示,广州作为国家中心城市、粤港澳大湾区核心引擎,产业基础雄厚、市场资源丰富,具有支撑智能检测装备产业发展的完整产业链条。近年来,广州坚定不移推进产业第一、制造业立市,落实制造业当家“一把手”工程,坚持实体优先、创新引领,目前已经形成了较为完整的高端装备产业体系,涵盖高端数控机床、智能装备及系统集成、海洋工程、电力能源、轨道交通等装备领域,其中智能装备制造产业2023年上半年实现增加值260亿元,同比增长4.3%,呈现出良好的上升态势。今年以来,广州开展“四化”赋能专项行动,持续推动制造业数字化转型、网络化协同、智能化改造、绿色化提升,通过系列措施,推动传统制造业产业转型升级,进一步扩大智能检测装备需求,培育一批智能检测装备专精特新企业,壮大广深佛莞智能装备产业集群,为深入推进智能制造贡献更大力量。  大会同期举行智能制造系统解决方案供应商联盟广东分盟成立仪式,由省工业和信息化厅发布第三批广东省智能制造生态合作伙伴名单。
  • 【标准解读】T/CSTM 00214 - 2020《无损检测 超声检测 凸曲面斜入射试块的制作与检验方法》
    【概述】中国材料与试验团体(Chinese Standards for Testing and Materials) (简称 CSTM)标准委员会在2020年9月25日发布了团体标准T/CSTM 00214-2020《无损检测 超声检测 凸曲面斜入射试块的制作与检验方法》,并于2020年12月25日正式实施。本文是对该标准内容进行解读。【标准制定背景】当前锻造、铸造、制管、焊缝及探头等厂家,在进行曲面检测的角度探头校准时,国内外仪器和生产使用单位均不能确认或出具曲面检测斜探头角度校准证书。为了降低生产成本,在符合工业产品生产适用性的前提下,需要简化方法过程,降低各项操作要求。我们通过发明制作了该曲面试块(或称为:3号校准试块—脚跟试块),保证了其具备可追溯性,也确保了工业生产中曲面检测斜探头使用中角度磨损的准确测量。一直以来,对于检测凸曲面工件的标定,在世界各国尚没有统一的校准试块。国内外超声波探头制造厂家和第三方校准实验室均不能出具曲面斜探头的测试报告,原因是没有合适的校准试块。脚跟试块的发明填补了这一空白,对产业发展起引领作用:(a)适用井口及采油树专用件井口及采油树专用件是指在石油、天然气钻井开采过程中,安装在陆上井口,用于控制气、液(油、水等)流体压力和方向,悬挂套管、油管,并密封油管与套管及各层套管环形空间的井口装置中的零部件,包括采油树阀、悬挂器、套管头、油管头、四通、法兰等。(b)适用深海设备专用件深海设备专用件是指用于制造深海油气设备的零部件,由于深海油气设备的安装操作难度高及使用环境恶劣,相较于陆上井口设备,深海油气设备对专用件的承压、抗腐蚀等各项性能指标和可靠性有着更高的要求,包括深海采油树、管汇、阀体等。(c)适用压裂设备专用件压裂设备专用件是开采页岩油气压裂作业设备的核心部件,包括压裂泵缸体、封井器、井口球阀、投球器、活动弯头、油壬、蜡球管汇、压裂管汇等。(d)适用钻采设备专用件钻采设备专用件是指勘探和开采油气的全套机械设备的零部件,包括防喷器壳体、活塞、顶盖、管汇等。【目的和意义】超声波探伤仪和探头的标定工作,目前主要的标准试块为V1(IIW1)船形试块和V2(IIW2)牛角试块,它们的作用主要为水平线性、垂直线性、动态范围、灵敏度余量、分辩力、盲区、探头的入射点、折射角等,探头的检测面为平面。而脚跟试块与船形试块或牛角试块的作用基本相同,但探头的检测面均为凹曲面。工件面的形状通常为平面和曲面,平面作为检测面的探伤工作,其仪器和探头标定为船形试块和牛角试块;曲面作为检测面的探伤工作,其仪器和探头标定全世界范围内没有检测试块。曲面锻件的超声波周向斜探测缺陷精确定位,在国际上一直没有标准试块调试。如何确定曲面锻件检测的角度、扫描速度及零点,成为无损检测领域重大难题。工件周向斜探测缺陷的检测,国际上采用的探伤方法主要是内外径缺口上获得的第一个反射的峰值之间连接一条线,建立振幅的基准线。但对缺陷的精度定位无法保证,现有的对比试块均无法满足角度、速度及零点标定工作。本标准有利于锻造、铸造、制管、焊缝及仪器、探头等厂家,在进行曲面工件检测的校准工作。本标准是基础通用标准,提供了曲面工件斜探头检测方法中的一种检测工艺验证技术,解决了这一检测工艺验证技术标准空缺的问题。因此,研制曲面斜探头的校准试块,精确标定出探头的入射点、折射角和扫描零点,进而实现准确的定位探伤,已经成为超声波检测亟待解决的重要课题。设计者通过长期探伤工作总结和归纳,设计出用于标定曲面斜探头的脚跟试块,并申报了中国国家发明专利和美国发明专利,均获得授权。【标准介绍】本标准是基础通用标准,在凸曲面工件斜探头检测方法中,提供了一种检测工艺验证技术,解决了这一检测工艺验证技术标准空缺的问题。适用范围:本标准的实施主体为厂家、用户及有关的检测机构等。本标准有利于超声波周向斜探测缺陷精确定位,可有效地判定曲面锻件的缺陷位置,利于后道工序是否加工或判废的制造过程,充分发挥探伤检测方法的潜力与优势。本标准有利于锻造、铸造、制管、焊缝及仪器、探头等厂家,在进行曲面工件检测的入射点、折射角、扫描零点和声速等探头校准工作。本标准发布后,有利于把握产品质量,给全球同行业带来良好的社会效益和一定的经济效益。本标准主要内容:范围;规范性引用文件;术语和定义;尺寸;材料;制备;标记;使用方法;证书;附录A(规范性附录)校准试块的特性和用途。探头的入射点通常采用“棱角反射法”进行标定。脚跟试块主要解决的难题是折射角的测定和扫描零点的确定。之所以将脚跟试块设计为半圆体与长方体的组合形状,是因为当探头沿试块的圆周面做周向运动时,折射声束的传播方向发生变化,当垂直于试块底面或矩形槽面时,声波发生全反射,探头接收的回波最大,由此可根据探头入射点处的角度刻度值得到折射角的大小。一般来说,通过调整仪器检测范围和扫描速度来确定时基线扫描零点的方法是,利用试块上已知声程差的两个反射面的回波来校准时基线刻度值,即可消除探头延迟块声程影响而获得金属中的声程。脚跟试块为轴对称形状,探头可从圆周体两侧以完全相同角度入射并获得全反射回波,但两者的声程不同,在矩形槽一侧为S1=30+Rcosβ,在无矩形槽一侧为S2=60+Rcosβ,如图所示,两者之间有固定的声程差30 mm,恰好满足确定扫描零点所需的条件。图 跟脚试块的设计及工作原理脚跟试块既要满足曲面斜探头的特殊标定要求,同时还需兼顾测试仪器性能和校验探伤灵敏度等一般用途,因此试块的尺寸设计至关重要。当折射声束垂直试块底面和矩形槽面传播时,探头与反射面之间声程应大于2倍探头近场区长度,可以避免近场区影响而造成的测量结果误差。对于晶片尺寸为13 mm×13 mm的2.5 MHz斜探头,波长λ=C/f=(3230×103)/(2.5×106)=1.29 mm,则近场区长度:由于试块半径R一般大于30 mm,因此选择矩形槽面距水平圆心线30 mm可以满足声程不小于2N的最低要求。将长方体高度设计为60 mm,既使声程大于2N,还使声程差S2-S1=30 mm足够大。【标准特点】本标准具有先进性,填补了世界同行业空白。船形试块和牛角试块的应用对象均为平面件产品。截至目前,对于检测凸曲面工件的凹曲面斜探头的标定,在世界各国尚没有统一的校准试块。脚跟试块保证了曲面斜探头对检出缺陷的精确定位,提高了凸曲面锻件、铸件和管件等形状产品的周向超声波检测的水平;同时,它还能“一块多用”,用来测试仪器性能(包括相控阵超声仪器)和校验灵敏度。本标准具有创新性,该标准标定了曲面斜探头入射点、折射角和扫描零点的校准试块,称为脚跟试块(或命名为3号试块)。本标准有利于锻造、铸造、制管、焊缝及仪器、探头等厂家,在进行曲面工件检测的角度探头校准工作。之前采用的校准试块为GB/T19799.1(等同ISO 2400)规定的1号船形试块或GB/T19799.2(等同ISO 7963)规定的2号牛角试块,均为平面探头。本标准是基础通用标准,提供了曲面工件斜探头检测方法中的一种检测工艺验证技术,解决了这一检测工艺验证技术标准空缺的问题。中国专利授权号:201410166754.4;美国发明专利授权号:US009810667B2。【标准应用】本标准适用于航空航天、造船、兵器、石油化工、汽车、采矿和核电等领域的曲面锻件缺陷的超声检测。这系例试块除了可以用来标定检测面为曲面探头的入射点、折射角和扫描零点,也可以测量仪器的水平线性、垂直线性、动态范围等性能指标。本标准规定了校准试块的尺寸、材料、制造,以及用它对超声检测设备进行曲面工件检测校准和校验的使用方法。本标准有利于锻造、铸造、制管、焊缝及仪器、探头等厂家,在进行曲面工件检测的角度探头校准工作。脚跟试块不仅能准确测定曲面斜探头的入射点和声束角度等,还为平面斜探头改制为曲面斜探头以及曲面斜探头使用磨损后维修提供了测量手段,扩大了检测范围,实现了更多领域的检测。脚跟试块的问世一定能为钢铁产品质量提升发挥重要作用,并带来良好的社会效益和经济效益。CSTM的建立和发展坚持以市场需求为导向,始终以推进无损检测基本方法建设为导向,以科研成果快速转化为目标,以确保钢铁产业链的高质量发展为己任。T/CSTM 00214-2020《无损检测 超声检测 凸面斜入射试块制造与检验方法》标准的建立,探索了凸曲面产品检测技术创新过程中标准化同步发展的新模式,最大限度地缩短技术创新与产品质量的关系,践行前沿技术研究成果直接转化为先进标准的新理念,加快推动新时代制造业高质量发展。【标准制定单位构成】主要起草单位有:南京迪威尔高端制造股份有限公司,中国特种设备检测研究院,山东瑞祥模具有限公司,钢研纳克检测技术股份有限公司,常州超声电子有限公司,卡麦隆(上海)机械有限公司。
  • 湖北省规划建设激光雷达计量检测能力,助跑新能源与智能网联汽车新赛道
    在新能源及智能网联汽车产业竞逐的新浪潮中,湖北正抢立潮头——我省新能源汽车产量继续保持高速增长,今年9月全省生产新能源汽车3.2万辆,相当于2020年全年产量,产量占全国的4.2%;今年5月在汉举行的新能源与智能网联汽车产业发展对接会上,总金额661.73亿元的30个重点项目花落湖北……科技赋能,让汽车变得“清洁”又“聪慧”;质量护航,使产业发展高效又安心。近年来,以计量、标准、检验检测与认证认可为代表的国家质量基础设施(NQI)发挥技术优势,积极推动技术成果转化与先行先试,助力湖北抢抓新机遇,打造万亿级汽车产业集群。建成电波暗室服务矩阵湖北省计量测试技术研究院(国家光电子信息产品质量检验检测中心)十米法电磁兼容实验室内。随着大门缓缓打开,一辆新能源汽车驶入实验室内。停入待检区域,车辆正对的是远处两根形状奇异的“天线”……这些试验是用来检验汽车对外界电磁辐射信号强弱以及对外界电磁辐射的抗干扰能力的,通常在电波暗室内进行。新能源汽车大量使用芯片和电子零部件,其电磁辐射信号强度直接关系到驾驶人及乘客的身体健康,以及汽车电子电气系统运行的稳定性,需要按相关标准进行检测,确保质量合格,方可通行市场。据了解,省计量院已构建起“十米法、三米法、一米法”电波暗室服务矩阵,建立覆盖世界主流标准的整车、汽车电子零部件全项电磁兼容测试服务能力。近年来,先后为极目电子、海微科技等汽车电子零部件企业的中控、显示屏等产品提供测试服务。同时,该院还承担着定期为全省充电桩定期“做体检”的任务。新能源汽车技术创新发展,离不开该院可靠的计量检测技术支撑。去年12月,湖北省新能源汽车产业计量测试中心正式在襄阳挂牌落成。该中心已建成覆盖充电桩计量检测、新能源汽车零部件计量检测、铅酸蓄电池检测、金属材料元素分析等全产业链计量测试和科技创新能力;湖北省汽车电子产品安全质量检验中心助力区域汽车电子生产企业在本地实现了研发验证、产品检测、整改咨询;以中汽研汽车检验中心(武汉)有限公司为建设主体的国家新能源汽车质量检验检测中心在数字化转型、驾驶场景试验场、移动污染源防治等领域具备行业领先优势……计量与检验检测,正全方位承托新能源汽车产业跃升之路。据省市场监管局统计,近年来,为服务新能源与智能网联汽车产业,我省共建设国家智能网联汽车质量检验检测中心(湖北)、国家新能源汽车质量监督检验中心等8家国家质检中心;建设湖北省氢燃料电池产品质量检验中心等7家省级质检中心,形成了服务新能源与智能网联汽车产业检验检测需求的全覆盖网络。建立新能源与智能汽车“标准高地”在钢缆牵引下,一辆车疾速撞向障碍物,随着一声巨响,车头瞬间变形……这样的硬核又刺激的碰撞试验,几乎每天都在位于襄阳的国家燃料电池汽车质量检验检测中心的新能源碰撞线频繁上演。新能源汽车已经成为未来汽车工业的发展方向。燃料电池汽车——污染极少、经济性强的新能源车“新宠”,通过催化剂作用,使氢氧在燃料电池中产生电化学反应而获得电能。想要保障燃料电池汽车的安全,就要对其进行完善的测试评价。国家燃料电池汽车质量检验检测中心的建设主体、襄阳达安汽车检测中心有限公司(以下简称“达安中心”),完成了国内首次带氢碰撞试验及车载氢系统检测,开发完成国内首套氢燃料电池汽车碰撞试验后氢泄漏量采集与计算系统。目前,达安中心正在牵头制定《氢燃料汽车碰撞后安全要求》团体标准,将填补国内燃料电池汽车碰撞相关标准的空白。随着一个个填补行业空白的标准出台,湖北正在探索打造新能源汽车领域的“标准高地”。2019年,湖北省新能源汽车标准创新联盟成立,省标准化与质量研究院作为68家相关领域企事业单位参与其中。该联盟明确了今后湖北省新能源汽车技术标准体系构建,以标准之力推动新能源汽车标准化、技术化和产业化。打造北斗应用产业中试公共服务平台北斗导航系统能够“借”给智能汽车一双“慧眼”,用来“看清”路况——智能驾驶需要定位导航、路径规划、环境感知、决策控制,可以说,定位导航技术决定着车辆高精度位置和姿态感知。实现雨雾极端天气驾驶情况监测、利用“高精地图采集+北斗系统”确保无人驾驶的安全性、实现厘米级精度定位、利用激光雷达系统进行无人驾驶的汽车的360度检测……这些都离不开“北斗星”的指引。眼下,省计量院正紧锣密鼓地进行着国家北斗应用产品质检中心的申建工作。该院还将在“十四五”期间申建国家时间频率计量中心湖北应用中心,建立高水平卫星导航北斗/GNSS高精度计量实验室。全力打造北斗应用产业中试公共服务平台,加强相关领域计量检测和认证能力建设,开展北斗应用产品的质量检测、入网认证等工作,推动湖北以北斗芯片、北斗终端、北斗智慧应用等为代表的北斗卫星导航产业集群加速发展,这一举措将为智能网联汽车发展添上强大助翼。加强激光雷达检测技术研究为更好服务新能源车、智能汽车产业发展,未来我省还将建设新能源车电磁兼容检测系统、车规芯片可靠性检测平台等技术基础项目,并加强电动汽车充电设施设备及零部件全寿命周期质量技术研究,吸引新能源车电动系统、电子零部件制造企业向湖北集聚。眼下,省计量院正在加强激光雷达检测技术研究,规划建设激光雷达相关计量检测能力资质。激光雷达被广泛用于无人驾驶和机器人领域,被誉为机器人的“眼睛”,通过发射激光来测量物体与传感器之间的精确距离,L4/L5级新能源车(安装自动辅助驾驶系统或实现全自动驾驶)及智能网联汽车上少不了它的身影。待建成相关计量检测资质后,将进一步推动激光雷达设备产业快速发展,助力“湖北造”新能源和智能汽车越来越“灵敏”。省市场监管局相关负责人透露,目前,我省正在以更集约、更强大的检验检测实力,建成辐射面广、功能齐全、服务优质的认证检验检测聚集区,打造新能源汽车、智能汽车及零部件检验检测、认证认可和标准制修订、人才培养等综合性“一站式”服务平台,让绿色成为湖北高质量发展的鲜明底色。
  • 【通知】2021中国超声检测大会将于11月26-28日在山东济宁举行
    2021中国超声检测大会拟于2021年11月26日-28日在山东省济宁市举行。大会旨在交流超声检测技术的最新思想,展示超声检测领域的最新成果,洞察国际超声检测领域的最新动向,促进超声检测技术的进步与创新。会议将邀请知名专家做专题报告,并安排多个分会场进行论文交流,同时举办仪器展览。热烈欢迎国内外超声检测学者、专家、研究人员、技术人员积极投稿和参会,并欢迎超声检测设备器材生产销售企业和研发机构展示仪器产品。 主办单位:中国机械工程学会无损检测分会协办单位:北京理工大学、北京航空航天大学、南昌航空大学、北京工业大学、广东工业大学、中国科学院声学研究所、中国航发北京航空材料研究院、中国航天科技集团有限公司无损检测工艺技术中心、内蒙古北方重工业集团有限公司、中国铁道科学研究院集团有限公司、中国特种设备检测研究院、中国宝武上海金艺检测技术有限公司、中国船级社实业公司、武汉中科创新技术股份有限公司、汕头市超声仪器研究所股份有限公司、ASNT北京分部承办单位:山东瑞祥模具有限公司、硕德(北京)检测技术有限公司 1. 会议时间和地点报到日期:2021年11月26日,会议日期:2021年11月27日-28日会议地点:济宁富力万达嘉华酒店,济宁市任城区太白东路59号 2. 分会场主题(1)超声波理论;(2)超声传感器与仪器;(3)超声导波检测;(4)相控阵超声;(5)材料性能超声表征;(6)在役状态监测;(7)超声检测技术应用。 3. 会议收费 会务费: 1800元/人,学生 1000元/人。食宿费用自理。仪器展览展台费:8000元-12000元。汇款账号信息如下: 名称:硕德(北京)检测技术有限公司 开户银行:中国农业银行股份有限公司北京北苑支行 银行账号:11230701040010774 大会将统一开具“会务费”电子普通发票,在大会报到处现场扫码提交发票申请。 4. 联系人 潘勤学 13716096968(论文和报告),香 勇 13910787225(参展和赞助) 史亦韦 13901075470,徐春广 13701099129,万海涛 13583708833 5. 酒店预定住宿信息参会人员需提前自行预订酒店,预订方式为填写所选酒店的住宿登记表(见附件1、附件2、附件3),按其中要求填写信息后提交相应酒店邮箱,并付首日房费。会议协议酒店信息如下:(1) 济宁富力万达嘉华酒店(主会场)地址:山东省济宁市任城区太白东路59号电话:0537-3208888联系人:杨丹丹 18053759520房价:豪华大床房530元/间(含双早)豪华双床房530元/间(含双早)附件1-住宿登记表-济宁富力万达嘉华酒店.doc(2)济宁名雅经纬大饭店地址:中国山东济宁市环城北路1号电话:0537-3160888 联系人:张茂龙 13012609578房价:套房398元/间(含双早) 豪华单间278元/间(含双早)豪华标间278元/间(含双早)行政单间180元/间(含双早)行政标间180元/间(含双早)附件3-住宿登记表.-经纬大厦doc.doc(3)济宁广电精品酒店地址:济宁市任城区常青路9号电话:0537-6565777/6565799联系人:周经理15653728786房价:商务标准房240元/间(含双早)商务大床房220元/间(含双早)商务大床房220元/间(含双早)附件2-住宿登记表-广电酒店.doc中国机械工程学会无损检测分会2021年10月20日 2021中国超声检测大会通知(盖章版)最终.pdf
  • 中央督察组:多地母亲河污染严重!智能化河湖水质监测系统成刚需!
    “太臭了,我要想办法搬出去”......中央环保督察组近日通报了多起“母亲河”被严重污染的典型案例。正在8省(区)进行的第二轮第三批中央生态环境保护督察发现,一些地方的“母亲河”正遭遇严重污染。有的河流每天被直排污水超万吨,有的形成明显黑色污染带,令当地居民被迫选择逃离。从公布的典型案例看,云南保山、湖南湘潭、广西崇左、山西清徐县等都存在将污水直排江河、污染治理做表面文章的现象。除了监管体系的失职外,更重要的是水质污染监测系统的缺失。软硬件更新迭代不及时、有设备不用、无设备可用等问题,成了水质污染监测系统缺失的主要原因。当前,各地的检测还是以人工巡检、抽样检测为主,不仅费时费力,整体监测效果存在局限性。如何建立智能化水质监测系统,主要还是在软硬件的升级迭代、检测方式的改变。光谱法水质监测的应用研究成了当前的热点领域之一。无损、快速识别、实时监测是光谱法水质检测的主要特点,奥谱天成基于20年光谱行业经验,自主研发了全系列光谱水质分析仪器,建立了水、陆、空全方位的水质监测体系,以智能化监测为目的,全面开发出各检测领域的应用解决方案。奥谱天成还与同行共同制定了《光谱法水质在线监测系统技术导则》行业标准,并于2020年获得颁布通过。ATE7000遥感高光谱水质多参数实时监测系统ATE7000 型遥感高光谱水质监测系统,是奥谱天成公司针对河道、湖泊、海洋、水源地等需要监控水质的应用领域,推出的一款实时在线遥感监测产品。ATE7000 采用国际领 先的高光谱水质遥感技术,它内置奥谱天成研制生产的高性能高光谱分析仪,联合中国科学院,投入大量成本,联合开发训练的深度学习反演算法,再经历上万次的现场水样实验,从而研制成功的水质多参数实时检测仪。ATE7000 可以实时提供原位的多参数水质参数和液位信息,并对异常状况及时报警,并记录现场可见光视频/图片。ATE7000 的监测数据、现场图像,还可以上传云平台,从而进行多点的实时信息采集,设定各个点的阈值报警,并可以做区域的历史信息回顾和全局趋势判断。ATW9012W无人机载水质遥感监测系统因其灵活机动的特点,在近海、河湖及小范围的水质监测中发挥了重要作用。ATP9100便携式水质遥感监测系统尺寸小、使用灵活、方便携带等特点,常用于人工巡检、抽检等针对性使用。ATE2000免试剂多参数水质分析仪ATE2000属于实时在线监测系统,放置于水底,实现实时监测预警排查,常放置于水库、湖泊等重要水质监测点,避免了人工巡检的延时性、误差性较大等问题。根据实际检测需求,灵活搭配各方面仪器,实现海、陆、空全方位覆盖的水质监测预警系统,结合5G应用,实现智能化预警监测管理,达到水质污染监测的目的。更多水质光谱方面的应用方案,欢迎私聊获取!
  • 智能监测 联合共建 | 水质监测AI人工智能实验室在浙江省杭州生态环境监测中心开展试点
    生态环境部“十四五”生态环境监测规划提出,加强生态环境监测数字化工作,推进人工智能、物联网等新技术在生态环境监测领域的应用,满足国家提升生态环境监测能力的需求,实现实验室检测技术迈向现代化、智能化、标准化、流程化、数字化。联合共建,打造水质监测新引擎在浙江省杭州生态环境监测中心的水质监测AI人工智能实验室,水质全自动监测分析系统正在井然有序地运行,由机器全自动开展高锰酸盐指数、氨氮、总磷、总氮等国家采测分离“9+X”项目的监测分析,提升了检测速度,减少了人工检测可能引起的误差。该实验室由浙江省杭州生态环境监测中心联合谱育科技发展有限公司共建,试点项目成功通过2021年年度目标验收;在多项创新技术牵引和高端设备加持下,其已成为行业内创新型的生态环境监测AI人工智能实验室。浙江省杭州生态环境监测中心浙江省杭州生态环境监测中心的前身为杭州市环境监测中心站,成立于1976年4月。近年来,监测中心紧紧围绕新时期生态环保的形势及蓝天、碧水、净土保卫战的重点难点,为推进美丽杭州建设,改善环境质量作出了积极贡献。水质监测AI人工智能实验室1. 构建以智能化为核心的全流程监测技术,通过自动化分析仪器与流水线系统的建设,逐步实现样品从任务分派、采样、运输到前处理、分析、数据报送等步骤的全自动运行,实现全流程智能化监测;2. 构建以人工智能为核心的监测管理体系,通过对任务启动、采样追踪、样品运输、样品处理、检测分析、质量控制、数据报送等各环节的智能化管理,实现监测分析全程留痕、进度可视。水质监测AI人工智能实验室,已入选杭州市经信局第三批重点建设的人工智能应用场景清单,被列入浙江省生态环境系统2021年度改革工作试点项目,以及浙江省生态环境厅和浙江省科技厅共同开展的《浙江省生态环境科技发展三年行动计划(2020-2022年)》第二批生态环境领域关键技术项目。智能监测,实现水质检测智能化谱育科技 SUPEC 8000水质全自动实验室分析系统,基于水质监测AI人工智能实验室联合打造,以《中国制造2025》为指导原则,将信息技术与制造业相融合,创新性地融入大数据分析和机器智能化等技术,成为工业互联网技术创新的先锋。该系统由全自动水质分析仪器、全自动水质分析流水线、智能控制及信息管理系统组成,可实现水质多参数全自动、无人值守分析,以达到分析高效、数据准确、分析过程智能化、分析结果可追溯、安全稳定、节约成本等目的。有别于传统的手工监测方法,该系统由机器人进行标准化操作,全流程无人化测定、智能控制,各水质监测指标可自由、柔性化定制。同时结合大数据、人工智能监测分析,减少人工参与检测时可能引起的误差,实现地表水水质监测分析的精准、智能、高效。能力提升,创新水质监测新机制所有水质指标分析测定过程,全部依据国家/行业标准,保障测定结果准确的同时,提升检测与管理的标准。系统初期覆盖国家采测分离“9+X”项目中的高锰酸盐指数、氨氮、总磷、总氮等指标,同时系统预留开放式端口,后期将进一步接入重金属元素、有机污染物等指标的分析模块,实现地表水水质全指标监测。水质监测AI人工智能实验室试点项目的开展,为浙江省杭州生态环境监测中心夯实监测技术能力,理顺监测工作机制打下坚实的基础。中心将逐步落实省委关于数字化改革的要求,用“生态环境监测AI人工智能实验室”的“小切口”,构建监测业务开展与能力建设“大场景”,力求在“数字化改革创新监测技术体系,重塑监测流程”方面做先行者,努力打造全面提升生态环境监测自动化、智能化、信息化能力的样板工程。
  • 赋能创“芯”| 把控化学品中超痕量金属元素污染,应对极致检测需求!
    随着半导体制程线宽已达纳米时代,细微的污染都可能改变半导体的性质,湿电子化学品是电子行业湿法制程的关键材料,需要直接与硅片接触,其金属离子的控制对于确保产品良率至关重要。赛默飞可提供从ICP-OES到ICPMS(单杆、三重四极杆到高分辨)的全产品线解决方案,适用于不同制程的痕量污染物检测需求,确保 QA/QC 一致性,助力提升良率!► ► 突破高纯有机溶剂行业壁垒高纯度有机溶剂被广泛使用在集成电路行业中,包括异丙醇、甲醇、丙酮、N-甲基吡咯烷酮(NMP)、丙二醇甲醚醋酸脂(PGMEA)、乳酸乙酯、二甲基乙酰胺等。如异丙醇因其低表面张力和易挥发性而用于晶片清洗和干燥,在封装测试、化学中间体以及油墨生产中异丙醇的需求量也很大;NMP和PGMEA作为高级溶剂可与水互溶,并且能溶解大部分的有机和无机化合物,具有良好稳定性,被广泛应用于光刻胶溶剂等。 赛默飞可为高纯有机溶剂提供QA/QC检测,遵循国际半导体设备和材料组织SEMI标准中规定用ICPMS法来测定超痕量金属离子杂质,此外,还可以提供创新R&D检测方案,准确地对杂质进行鉴定和监测,可以有利于工艺方案的优化及产品质量的控制,以及不同批次产品间的组分差异,助力突破研发壁垒。 ► ► 高纯有机溶剂ICPMS测试的挑战有机溶剂直接进样对于ICPMS测定有较大的挑战,高挥发性增加了等离子体负载,导致炬焰收缩而熄火,炬管和接口的积碳导致检测强度下降影响长期稳定性,甚至于堵塞锥孔。因此传统测试上采用挥发蒸干用酸提取,对于水溶性溶剂也使用稀释法进样。固态聚合物更多地使用高温灰化或微波消解的前处理方法。但随着试剂纯度的提高,对于其中要求的杂质限量值越来越低,样品前处理步骤往往会有引入污染的风险,尤其是前处理条件不能满足洁净度要求的情况下。 iCAP TQs最新变频阻抗匹配设计的RF发生器,对于有机溶剂直接进样具有及其快速的匹配,并结合高效Peltier雾化室制冷模块,在雾化室连接管上接入高纯度氧气,与样品气溶胶混合后导入离子体,加氧消除积碳保持进样稳定性,即便在600w冷等离子体条件下也能获得稳定的测定结果。串联四极杆技术结合碰撞与反应模式可进一步去除碳、氮、氩等基体产生的多原子离子干扰,可获得低背景值并更为准确的结果。分析操作流程也更为简单、快速,可有效控制外来污染并提高分析工作效率。► ► 应用案例:电子级N-甲基吡咯烷酮(NMP)电子级NMP在半导体产业用途广泛,可作为光刻胶溶剂、除胶剂、清洗剂等。NMP密度为1.028g/cm3与水的密度相当,沸点202℃其在室温下挥发性低,粘度较低并可以与水互溶。结构中存在N-甲基使NMP直接进样ICPMS分析时,其基体效应相对于异丙醇要强,将抑制待测元素的信号强度。通过等离子体条件优化,结合标准加入法定量测定可消除基体效应。在NMP的检测中,采用赛默飞三重四极杆iCAP TQs半导体专用ICPMS,将ICPMS雾化室制冷至-5℃,减少有机溶剂进样量,50ml/min等离子体加氧避免锥口积碳。有机溶剂直接进样测定时,碳、氮、氩基体离子将对待测离子产生严重的干扰,如¹ ² C₂ +对² ⁴ Mg+,¹ ³ C¹ ⁴ N+对² ⁷ Al+,¹ ⁴ N¹ ⁶ O¹ H+和¹ ² C¹ ⁸ O¹ H+对³ ¹ P+,以及¹ ² C+的峰拖尾对M-1的¹ ¹ B+的干扰等等,方法中采用冷等离子体模式,可有效降低C、 N、Ar等电离,同时在Qcell中加纯氨反应以获得低背景值。¹ ¹ B的测定采用Q1和Q3的高分辨模式,提高丰度灵敏度消除¹ ² C+的影响。³ ¹ P采用热等离子体氧反应模式,Q3选择³ ¹ P¹ ⁶ O+消除CNHO的多原子离子的干扰。分析结果 iCAP TQs ICPMS稳定可靠的RF发生器在等离子体加氧下,可适合于直接进样测定有机溶剂,冷等离子体可有效抑制碳基多原子离子的干扰,结合TQ氨气和氧气反应模式,在一次测定中可稳定切换各种测定模式,提高易用性和分析效率,可满足半导体行业超痕量ppt级的痕量金属杂质检测要求。 一键获取赛默飞半导体材料检测文集赛默飞为半导体材料开发了全面的痕量无机阴离子、阳离子和金属离子的检测方案,在晶圆表面清洗化学品、晶圆制程化学品、晶圆基材和靶材等各方面,全方位满足半导体生产对相关材料的质量要求,并开发了通过高分辨质谱Orbitrap技术对于材料未知物研发检测的需求,从完整制程出发提供全面可靠的分析技术,助力半导体材料国产化乘风破浪! 长按识别下方二维码即可下载《赛默飞半导体材料检测应用文集》,或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • 验检测产业再添新引擎!华盛检测入驻西部(重庆)科学城
    2月21日,在近期入驻国家检验检测高技术服务业集聚区(重庆)的重庆华盛检测技术有限公司里,员工们在舒适、宽敞、明亮的2栋检验检测大楼里,已进入繁忙的工作状态。   “我们这次将公司总部搬来西部(重庆)科学城,一期共计划装修了8700平方米左右,足以满足当前阶段的发展需要。而且公司能这么快顺利入驻新厂区,非常感谢园区服务专班、服务专员的各种帮助。”华盛检测总经理张雪松说。   重庆科学城科技产业发展有限公司为助力企业更好扎根西部(重庆)科学城,发挥“店小二”精神主动靠前服务企业,为帮助华盛检测顺利入驻科学城,成立了服务专班,专门负责该项目的协调服务工作。   在前期准备中,重庆科学城科技产业发展有限公司服务专班积极主动协助华盛检测办理工商注册、项目建设、部门协调、消防环评等相关行政性审批手续,并积极协助华盛检测争取相关国家级、市级政府财政支持。   此外,西部(重庆)科学城还专门出台了《重庆高新区高技术服务业发展扶持办法》等加快发展检验检测服务业的政策措施,对落户集聚区的检验检测机构,在支持企业购置和租用重要设备、支持企业做大做强、鼓励检验检测企业集聚发展等方面都会给予一系列优惠政策扶持。   按照《成渝地区双城经济圈建设规划纲要》和《重庆市检验检测服务业发展规划》,西部科学城重庆高新区正在加快建设国家检验检测高技术服务业集聚区(重庆),做大做强国家质检基地,加快培育检验检测高技术服务产业集群,助力新质生产力加快形成。   国家检验检测高技术服务业集聚区(重庆)地处西部科学城重庆高新区核心区,以国家质检基地为核心,集聚了国家技术标准创新基地,国家特种设备应急救援演练基地,国家电梯、升降机质检中心,国家城市能源计量检测中心,国家笔记本电脑质检中心,国家客车、摩托车、智能网联汽车、新能源汽车质检中心,国家消防及阻燃产品质量检验检测中心等16个国家级质量基础服务平台,技术能力覆盖相应产业90%以上的产品或参数,汽摩整车及零部件、电磁兼容、车路协同及自动驾驶、能效测试等多个项目检测能力处于国内领先水平,在全国率先实现了计量、标准、检验检测、认证认可四大质量技术基础的内涵集成,有效助推了传统产业优化升级和先进制造业高质量发展。   据重庆科学城科技产业发展有限公司相关负责人介绍,国家检验检测高技术服务业集聚区(重庆)集聚了美国倍科、华大基因、苏交科、国芯微、重庆建科院等国际国内众多知名检验检测和认证认可机构,招商车研、重庆赛宝、清研理工等检验检测龙头企业和行业领军企业,检验检测高技术服务产业集群正在加快形成。   据了解,华盛检测成立于2009年9月,先后取得了重庆市市场监督管理局颁发的资质认定证书,重庆市住房和城乡建设委员会颁发的建设工程质量检测机构资质证书、交通运输部颁发的公路工程综合甲级资质和公路工程桥梁隧道工程专项资质证书。业务涵盖见证取样、建筑制品、道路、桥梁、隧道、主体结构、钢结构、地基基础、边坡、建筑门窗、建筑幕墙、建筑节能、室内环境等多个领域。   “按照重庆市检验检测千亿级产业集群的规划,我们会将搬至科学城作为新的起点,朝着横向和纵向发展,为建设成为智能化、信息化的国内一流工程检测机构努力,同时为科学城高技术服务业的发展贡献自己力量。”说到新年愿望时,张雪松满怀信心。
  • 2021中国超声检测大会延期召开
    7月29日,2021中国超声检测大会组委会发布通知,原定于2021年8月4日-7日在济宁召开的中国超声检测大会延期,延期后具体召开日期待定。原定2021中国超声检测大会会议程序如下:
  • 浙江省首个区县级水质监测AI人工智能实验室建成投用
    央广网宁波11月15日消息(记者 俞烨 通讯员 周佳贝 仇维杰)近日,宁波市北仑区建成投用浙江省首个区县级水质监测AI人工智能实验室,通过监测技术升级、监测装备升级、监测效能升级等实现了水质监测实验室的全新建设。11月14日,一批地表水样品送达宁波市北仑区环境保护监测站的水质监测AI人工智能实验室,实验室里的设备如同工厂内的自动化生产线一样,开始不停地运行。智能移动机器人首先通过多模式扫码技术,对样品台上的样品进行迅速扫描识别,随后,精准抓取样品放上传送带。通过传送带后,水样进入自动取样系统,自动取样系统则以多方位多重感知技术、液体流路自动控制、机器人自动进样等一系列关键技术,实现批量地表水样品从分液、前处理、检测分析到数据报告的全流程自动化。AI人工智能实验室(央广网发 通讯员供图)该实验室将自动化分析与人工智能、物联网、区块链、数据库管理等新技术融合创新,实现氨氮、总磷、总氮等9项监测因子的全过程智能化自动测试。移动机器人与智能样品台的“乐高组合”,使样品位扩充到200个,后续还可根据需要增加清洗、预处理等功能或拓展其他监测项目,满足不断变化的监测需求。“AI智能实验室实现了检测项目由‘单台测试’向‘协同测试’的转变,可以24小时无休眠工作,工作效率达到传统手工监测的5到10倍。”宁波市北仑区环境保护监测站站长祝旭初说,“同时,它有效减少了检测过程中引起的人为误差,并且大幅减少监测人员与含毒试剂等危险源的直接接触,降低安全风险”。AI人工智能实验室(央广网发 通讯员供图)据了解,目前北仑区每月监测地表水样品量近500个,且监测项目多元化,城市水质监测任务繁重。开发建设AI智能实验室,有效缓解了生态环境监测系统“人少事多”的问题。以每日100个样品9项参数检测计算,传统人工监测预计需要投入约7至8人,而利用AI智能实验室,仅需2人便能完成试剂配置、方案确认及数据上传工作,节约人力成本超80%。近年来,北仑在生态创建、降碳减污、改革创新上发挥示范引领作用,并着力推进数字化水环境治理,不断增强城市水环境大脑。此次建成投用的AI人工智能实验室“升级版”, 把传统实验室以人力为中心的运行模式转变到以数据为中心的人工智能监测模式,为地表水样品的大通量检测提供了新思路、开辟了新路径,打造了全面提升生态环境监测自动化、智能化、信息化能力的样板工程,为北仑全面建设生态环境监测现代化区县奠定基础。
  • 赛成科技发布赛成隆重上新 MFY-CM智能密封性检测仪器新品
    MFY-CM密封试验仪专业适用于产品的密封试验,通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,是食品、塑料软包装、湿巾、制药、日化等行业理想的密封试验检测仪器。产品特点◎ 7寸彩色触摸屏,人性化操作更便捷;◎ 保压与压力递增两种试验模式,满足不同材料测试需求;◎ 全自动控制,抽压、保压、补压、计时、反吹、打印、保存、数据上传自动完成;◎ 配备微型打印机,USB数据接口,支持PC软件测控运行,mbar、kpa单位互换;◎ 自动保存历史试验记录,本地查询,并可导出EXCEL格式保存;◎ 用户分级权限设置,满足GMP要求、测试记录审计、追踪功能;◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览;◎ 本地数据与云端数据双重备份,确保数据不会丢失;◎ 中英文双语选择,方便客户语言切换选择;测试原理本机通过对真空室抽真空,使浸在水中的试样产生内外压差,观测试样内气体外逸情况,以此判定试样的密封性能;通过对真空室抽真空,使试样产生内外压差,观测试样膨胀及释放真空后试样形状恢复情况,以此判定试样的密封性能。测试标准该仪器符合多项国家和国际标准:GB/T 15171、ASTM D3078、GB/T 27728、YBB00112002-2015、YBB00122002-2015、YBB00262002-2015、YBB0005-2015、YBB00092002-2015、YBB00392003-2015、YBB00112002-2015。应用领域MFY-CM密封试验仪专业适用于产品的密封试验,主要包括软包装袋、硬质包装瓶、药瓶、金属罐、泡罩包装、复合包装等密封试验的检测。创新点:◎ 7寸彩色触摸屏,人性化操作更便捷; ◎ 保压与压力递增两种试验模式,满足不同材料测试需求; ◎ 全自动控制,抽压、保压、补压、计时、反吹、打印、保存、数据上传自动完成; ◎ 配备微型打印机,USB数据接口,支持PC软件测控运行,mbar、kpa单位互换; ◎ 自动保存历史试验记录,本地查询,并可导出EXCEL格式保存; ◎ 用户分级权限设置,满足GMP要求、测试记录审计、追踪功能; ◎ 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览; ◎ 本地数据与云端数据双重备份,确保数据不会丢失; ◎ 中英文双语选择,方便客户语言切换选择; 赛成隆重上新 MFY-CM智能密封性检测仪器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制