当前位置: 仪器信息网 > 行业主题 > >

岩石矿物分析手册

仪器信息网岩石矿物分析手册专题为您提供2024年最新岩石矿物分析手册价格报价、厂家品牌的相关信息, 包括岩石矿物分析手册参数、型号等,不管是国产,还是进口品牌的岩石矿物分析手册您都可以在这里找到。 除此之外,仪器信息网还免费为您整合岩石矿物分析手册相关的耗材配件、试剂标物,还有岩石矿物分析手册相关的最新资讯、资料,以及岩石矿物分析手册相关的解决方案。

岩石矿物分析手册相关的资讯

  • iCEM 2017邀请报告:扫描电镜在岩石矿物分析中的应用
    p style=" text-align: center " strong iCEM 2017邀请报告: /strong /p p style=" text-align: center " strong 扫描电镜在岩石矿物分析中的应用 /strong /p p style=" text-align: center " img title=" 原园.jpg" src=" http://img1.17img.cn/17img/images/201705/insimg/a3370dcc-29fc-42ff-8baf-7cc24c1eeddf.jpg" / /p p style=" text-align: center " strong 原园 博士 /strong /p p style=" text-align: center " strong 中国科学院地质与地球物理研究所 /strong /p p strong   报告摘要: /strong /p p   扫描电镜中的高能入射电子束轰击样品表面,从样品中激发出各种有用的信息,包括二次电子、背散射电子、X 射线等不同的信号,这些信号分别携带样品的形貌和成分等信息。 /p p   利用扫描电镜对新鲜断面样品或是氩离子抛光样品进行二维扫描,可以得到样品中不同矿物的结构形貌和元素成分等信息,进而确定矿物类型;结合分析软件可以对矿物的二维分布、含量、颗粒形态等信息进行提取。扫描电镜和聚焦离子束结合,对样品进行切割及三维重构,可以分析矿物的三维空间分布特征。 /p p strong   报告人简介: /strong /p p   原园,博士,毕业于中国石油大学(北京)非常规天然气研究院,现任职于中国科学院地质与地球物理研究所微纳结构成像实验室。 /p p   报告时间:2017年6月22日下午 /p p   立即免费报名:http://www.instrument.com.cn/webinar/meetings/iCEM2017/ /p p /p
  • 【直播预告】现代地质及矿物分析测试技术与应用网络研讨会
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。目前国家对于矿产资源的需求持续增加,实现矿产资源调查新发现新突破、提升开发利用效率、推动矿业转型升级和绿色发展,是提高国家资源安全保障能力的基础性工作。因此,应用现代实验测试技术对岩石矿物进行准确定性定量分析和精细刻画,是为解决矿产资源勘查、矿山开采价值及储量核实、矿物品质鉴定等关键问题提供重要信息和数据依据。欢迎大家积极参会。报名链接:https://www.instrument.com.cn/webinar/meetings/hyperspectral230808/ (点击报名) 会议日程(持续更新中)报告主题报告嘉宾LA-MC-ICP-MS微区硫化物Fe-Cu-S同位素测试技术研究进展张文中国地质大学(武汉)副研究员正确认识电子探针分析技术的优势与局限性李小犁北京大学高级工程师激光原位微区U-Pb和Lu-Hf定年技术吴石头中国科学院地质与地球物理研究所高级工程师发射光谱和原子吸收光谱技术在矿产样品分析中的应用赵伟山东省地质科学研究院所长/研究员扫描电子显微镜及联用技术在岩矿分析中的应用宋文磊西北大学副教授电子探针分析稀土矿物的难点与重点陈振宇中国地质科学院矿产资源研究所研究室主任/研究员待定待定国家地质实验测试中心
  • 光学显微镜在地质及矿物分析中的应用
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,徕卡显微系统应用工程师姚永朋将分享报告,从徕卡体视显微镜、数码显微镜、偏光显微镜、徕卡光学观测+元素分析二合一LIBS系统等方面,介绍光学显微镜在地质矿物分析中的应用。欢迎大家报名听会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 电子探针分析稀土矿物的难点与重点
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,中国地质科学院矿产资源研究所研究员陈振宇将分享报告,介绍电子探针分析稀土矿物的难点与重点。电子探针分析稀土矿物的难点包括:单个稀土元素被激发出来的特征X射线线系繁多(包括L线系和M线系,每种线系中还有α线系、β线系等,以及它们不同等级的线系),而且线系之间分布密集;稀土元素由于其原子结构和晶体化学性质相近而经常共生在同一个矿物中;多个稀土元素的线系之间相互重叠的现象极为严重……。电子探针分析稀土矿物的重点包括:详细的定性分析,以确定矿物中所含元素、确定元素分析适合的谱线、确定分析谱线的背景位置、选择合适的分光晶体等,选择合适的标样也非常重要,另外还要注意有些标样和样品在电子束轰击下容易受损、有TDI效应等问题。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 全新发布 | TESCAN公司推出新一代适用于地球科学研究和矿物分析的 综合矿物分析系统TESCAN TIMA
    2020年11月25日,TESCAN ORSAY HOLDING a.s.宣布正式发布新一代综合矿物分析系统---TESCAN TIMA,TIMA(TescanIntegrated Mineral Analyzer)是一款可满足地球科学研究和工业矿物分析的岩石矿物全自动化定量分析系统。TESCAN TIMA 可以对岩石、矿石、岩屑、精矿、尾矿、浸出渣或冶炼产品等进行快速定量矿物分析,能快速有效识别岩石类型、矿物种类、测量矿物含量、分布、颗粒大小、解离或锁定各种参数。TESCAN TIMA 综合矿物分析系统功能和优势:矿石的整体形态和矿物及元素的种类、含量及分布;矿石中矿物的结构构造、共生、连生和包裹关系特征;快速准确的金、银、铂和稀有金属亮相元素寻找功能;选矿和冶炼过程中矿物及成矿元素的品位和回收率计算;储油层岩石特征、岩屑分类、孔隙组合及孔隙度的测量;TIMA软件支持离线数据分析,数据永久保存,可随时查看。 TESCAN TIMA 可以快速解析复杂矿石和寻找贵重金属,提高资源利用,降低勘探成本,助力矿产资源勘查和潜力评估,精确监控粉碎、浮选、浸出和回收工艺,优化选矿流程设计,提高矿山运营效益。TESCAN TIMA 提供的特定矿物和亮相搜索模块,可以快速准确寻找目标矿物和金、铂等贵金属以及稀有和稀土金属。TIMA对矿物成分和结构的定量解析达到微米的尺度,相对于传统光学显微镜和扫描电镜具有非常大的优势,已广泛应用于地质、石油、矿业和冶金等领域。新一代的TESCAN TIMA在软件和硬件上都有了进一步的发展和融合,能够更准确的识别矿物,提高分析效率。提供的多达100个样品的全自动进样系统,24/7无人值守全自动分析功能更是带来前所未有的超脱体验!近几年来,无论在国内和国际上,已有多个课题组和公司采用该项技术进行了相关研究和实际应用,并在多种期刊上发表了高水平文章,相关的成果正在不断地涌现。 TESCAN TIMA 相关论文应用方向:地球1、Instantaneous rocktransformations in the deep crust driven by reactive fluid flow(Nature Geoscience,2020,DOI:10.1038/s41561-020-0554-9)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1u0c0r00x40s0g00143804h0e9320814&site=xueshu_se&hitarticle=1 2、Cold deep subductionrecorded by remnants of a Paleoproterozoic carbonated slab(NATURE COMMUNICATIONS,2018,DOI:10.1038/s41467-018-05140-5)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=5daab39185510fbab1e2466e7564a378&site=xueshu_se&hitarticle=1 3、Recoveryof an oxidized majorite inclusion from Earth' s deep asthenosphere(Science Advances,2017,DOI:10.1126/sciadv.1601589)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=439db230a088a740edda4a498fff8349&site=xueshu_se&hitarticle=1 应用方向:选矿 4、The mineralogy and processingpotential of the Commonwealth project in the Molong Volcanic Belt, centraleastern New South Wales, Australia(Ore Geology Reviews,2019,DOI:10.1016/j.oregeorev.2019.102976)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1v3u08r0v71x0rm0qh2f0gj0mj513539&site=xueshu_se&hitarticle=15、Assessment of a spodumene oreby advanced analytical and mass spectrometry techniques to determine itsamenability to processing for the extraction of lithium(Minerals Engineering,2018,DOI:10.1016/j.mineng.2018.01.010)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=ee20d0507c9e3a57a5bea30d91e1076d&site=xueshu_se&hitarticle=1 6、Comparison of the Mineralogyof Iron Ore Sinters Using a Range of Techniques(Minerals,2019,DOI:10.3390/min9060333)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1g580c805b3a0my0mw7k08j07t615415&site=xueshu_se&hitarticle=1应用方向:石油 7、Mineralogy and pore topologyanalysis during matrix acidizing of tight sandstone and dolomite formationsusing chelating agents(Journal of Petroleum Science andEngineering,2018,DOI:10.1016/j.petrol.2018.02.057)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=68908abcdef9cbd15705dc2371b76934&site=xueshu_se&hitarticle=1 应用方向:文保8、Alkaline leaching ofbrannerite. Part 2: Leaching of a high-carbonate refractory uranium ore
  • Science 和 Nature 子刊连续发文!TESCAN 综合矿物分析仪助力固体地球科学前沿问题研究
    近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约400公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破,研究成果相继发表于权威科学期刊Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作是由捷克孟德尔大学宋文磊博士和Jind?ich Kynicky博士与TESCAN总部应用部门(位于捷克布尔诺)使用TESCAN综合矿物分析仪(TIMA)合作完成。 地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战地球内部的结构组成和板块构造运动的起始是当今固体地球科学研究最前沿、最具挑战性的关键科学问题。俗话说,上天不易,入地更难。人类对于地球内部的了解还非常有限,固体地球的半径达 6400 公里,而目前人工钻探最深仅到 12 公里。科学家只能通过出露于地表的岩石或深部岩浆携带的捕虏体来推测地球的深部物质组成。 (图片来源于网络)板块构造是地球区别于其它太阳系类地行星的主要特征,它不仅影响着地幔的组成和演化,而且还控制着地球的水圈和大气圈,对地球上生命的起源具有重大意义,然而对现今板块构造启动的时间和机制的认识仍然存在很大分歧。近期,北京大学地球与空间科学学院许成研究员、张立飞教授和费英伟教授联合团队合作发现来自地幔过渡带(深约 400 公里处)的超高压矿物和古元古代现代板块构造的岩石学证据,在地球深部物质组成和板块构造启动时限等科学问题上取得了重大突破。研究的成果相继发表于权威科学期刊 Science Advances(2017年)和Nature Communications(2018年)上。其中一些重要的矿物学和岩相学工作都是使用TESCAN综合矿物分析仪(TIMA)完成,文中也对TIMA分析方法进行了具体解读。 △ 研究成果发表在 Science Advances (2017年) △ 研究成果发表在 Nature Communications (2018年)许成团队首次在我国华北克拉通中北部的内蒙古丰镇和河北怀安一带的幔源火成碳酸岩内发现了极少量的厘米级榴辉岩捕虏体(许成等,2018)。榴辉岩(由俯冲板块在深俯冲过程中遭受超高压变质作用形成)主要由绿辉石和石榴石组成,其次为蓝晶石、石英、帘石、多硅白云母和角闪石等。通过各种矿物温压计和 THERMOCALC 程序计算获得其峰期矿物组合石榴石+绿辉石+蓝晶石位于 2.5-2.8 GPa和 650-670℃ 的稳定范围,对应 250 (±15)℃ GPa-1 的低温古俯冲带地热梯度。 △ 图 1:TIMA 解离分析碳酸岩内榴辉岩捕虏体及其矿物组成(修改自许成等,2018)石榴石内独居石 U-Pb 定年确定其变质峰期年龄为 18.4 亿年,这是迄今为止记录的最“冷”的古元古代俯冲带中低温高压变质作用。“冷”的深俯冲作用很可能在古元古代非常普遍,但全球的低温记录很容易被后来陆内碰撞所产生的高温变质作用覆盖。板块构造何时启动一直存在争论,其主要原因在于缺少岩石学证据。该发现提供了直接的岩石学证据表明古元古代存在现代板块深俯冲。这些碳酸岩的地球化学特征显示其地幔源区含有俯冲的地壳物质,进一步表明地球早期已存在地壳物质深俯冲进入地幔,从而导致地幔深部碳循环。此外,科研团队还在这些榴辉岩的石榴石内发现了超硅石榴石(超高压矿物,主要在深源金刚石或者陨石冲击坑中有零星发现)包体(许成等,2017),分析显示该矿物具有高的三价铁 Fe3+(Fe3+/全Fe~0.87),远高于目前金刚石内发现的超硅石榴石(Fe3+/全Fe △ 图 2:TIMA拍摄的榴辉岩捕虏体中的超硅石榴石(Maj):图 (A) 为石榴石(Grt-II)中超硅石榴石包体的背散射图;图 (B) 显示超硅石榴石包体的铁和铝含量明显高于赋存矿物石榴石(引自许成等,2017) 高温高压合成实验标定其形成压力为14GPa,起源于地幔过渡带(400公里)。该发现为碳酸岩岩浆起源于地幔过渡带提供了直接的矿物学证据,同时异常富三价 Fe 超硅石榴石说明地幔过渡带存在局部富氧成分,这与俯冲地壳物质相关。这一发现对人们认识深部地幔的物质组成和演化具有非常重要的意义。 上述成果中 TIMA 分析工作(图1和图2)是由捷克孟德尔大学的宋文磊博士与 Jind?ich Kynicky 博士和 TESCAN 扫描电镜公司总部(捷克布尔诺)TIMA 应用部门合作完成。由于捕虏体结构复杂、矿物类型多样、颗粒繁多且大小不等(毫米至微米级),有时与寄主岩石和矿物在结构和成分上差别并不显著,因而普通光学显微镜、扫描电镜、激光拉曼和电子探针等分析仪器对于寻找和识别这些包含在捕虏体中且非常稀少的来自地球深部的(高压)矿物效果并不明显,研究过程相当耗时且仅限于对局部的观察,极易遗漏重要信息。全球著名扫描电镜公司 TESCAN 的综合矿物分析仪(TIMA,图4)可以很好的解决以上问题。该仪器是利用扫描电镜的岩石矿物自动定量化分析系统,具有将电镜和能谱高度集成的独特技术,能进行极高分辨率的 BSE 与 EDX 快速全谱成像和大范围面扫描自动拼接功能,可以完成对整个样品的快速、准确的多元素面扫描;其配备的矿物处理专业软件可以辅助分析扫描结果,实现各种矿物相的快速鉴定、分布模式、含量测算以及自定义矿物寻找功能,避免相似结构和成分的分析误差,揭示样品的整体形态、矿物含量、结构构造和矿物共生组合特征。对于以上研究样品量很少的榴辉岩,通过其各矿物含量估算的有效全岩成分将提高变质岩视剖面图温压计的可靠性,同时还可以查明矿物相内部和不同矿物相之间的显微结构关系以及对含量很少(如用于准确定年的锆石和独居石)或未知矿物的辨别,从而获取捕虏体的起源和演化的关键信息。 △ 图 4:TESCAN 综合矿物分析仪(TIMA) 上述科研成果表明,固体地球科学的研究越来越侧重于地质样品的微观结构、精细矿物学和微区原位分析测试。TIMA 对矿物的结构分析和定量解析达到微米的尺度,相对于传统光学显微镜和扫描电镜具有非常大的优势。TIMA 可以对岩芯、岩屑、岩石、矿石、精矿、尾矿、浸出渣或冶炼产品等进行快速定量矿物分析,能有效识别岩石类型,测量矿物种类和分布、颗粒大小、解离或锁定各种参数。此外,还提供亮相搜索模块,可以快速准确鉴定出铂族金属、金银矿和稀土元素。TIMA 已广泛应用于地质、石油、矿业和冶金等领域。目前,北京大学和中南大学今年已经引进了 TESCAN TIMA 综合矿物分析仪,目前设备正在安装调试中,期待 TIMA 用户做出更多重要的研究成果!
  • 现代地质及矿物分析测试技术与应用网络研讨会将于8月24日召开
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会,邀请多位致力于地质、环境等领域理论技术与应用创新的实践者,围绕国内外研究前沿和发展方向开展研讨。欢迎大家积极参会。点击此处链接报名听会注:本次会议不收取任何注册或报名费用 会议日程 8月24日,现代地质及矿物分析测试技术与应用(上)时间报告题目报告嘉宾09:00--09:30地质实验测试支撑新一轮找矿突破战略行动的思考刘大文(国家地质实验测试中心 副主任/研究员)09:30--10:00LA-MC-ICP-MS微区硫化物Fe-Cu-S同位素测试技术研究进展张文(中国地质大学(武汉) 副研究员)10:00--10:30牛津仪器显微分析技术在地质及矿物分析中的应用陈帅(牛津仪器 应用科学家)10:30--11:00正确认识电子探针分析技术的优势与局限性李小犁(北京大学 高级工程师)11:00--11:30发射光谱和原子吸收光谱技术在矿产样品分析中的应用赵伟(山东省地质科学研究院 所长/研究员)8月24日,现代地质及矿物分析测试技术与应用(下)时间报告题目报告嘉宾14:00--14:30激光原位微区U-Pb和Lu-Hf定年技术吴石头(中国科学院地质与地球物理研究所 高级工程师)14:30--15:00光学显微镜在地质及矿物分析中的应用姚永朋(徕卡显微系统(上海)贸易有限公司 应用工程师)15:00--15:30扫描电子显微镜及联用技术在岩矿分析中的应用宋文磊(西北大学 副教授)15:30--16:00短脉宽超快速准分子激光剥蚀系统在地质及矿物分析中的应用栗斌(上海仪真分析仪器有限公司 产品经理)16:00--16:30电子探针分析稀土矿物的难点与重点陈振宇(中国地质科学院矿产资源研究所 研究室主任/研究员) 报告嘉宾 (按报告顺序)刘大文,国家地质实验测试中心副主任(副局级)。理学博士,研究员,物化遥正高级工程师,国际勘查地球化学家协会(AEG)会员,中国地质大学(北京)兼职教授。科技部科学技术奖评审专家,《地质与勘探(中文)》审稿人。2012年被授予“国土资源部优秀青年科技人才”称号。现为中国地质调查局健康地质调查工程首席专家。专业方向:应用地球化学,国际地球化学填图,区域成矿学,地质调查国际合作。获国土资源部科学技术奖二等奖3项、地理信息科技进步二等奖1项、中国地质调查局成果二等奖6项、中国矿业大会组委会优秀组织奖1项。中国地质调查局记三等功一次。2017年2月获苏丹矿业部颁发的表彰证书,2018年11月局获老挝矿业部颁发的合作奖状。累计发表中英文文章20余篇,出版专著3部。张文,博士,中国地质大学(武汉)副研究员。2015年博士毕业于中国地质大学(武汉),现工作于中国地质大学(武汉)地质过程与矿产资源国家重点实验室。致力于全岩整体元素测试前处理和微米级尺度下地质样品元素和同位素组成精细、准确、高效表征的新技术、新设备和新参考物质。创新性地提出氟化氢铵地质样品消解法,建立高效准确分析地质样品中主微量元素含量新技术;开发以锆石Zr稳定同位素为代表的高精度微区原位分析新方法,为地学研究提供了新的技术支撑;革新传统微区原位Pb同位素和Sr同位素分析技术,使分析测试精度提高2-4倍。开展微区元素及同位素参考物质人工合成技术,力图解决本学科长期缺乏基体匹配参考物质的瓶颈问题。作为负责人或技术骨干参加基金委或科技部项目6项。以第一作者或通讯作者发表论文30篇,与他人合作发表SCI论文50余篇,以上论文共他引2182次。获得国家发明专利授权10项,软件著作权1项。现任国际SCI期刊《Atomic Spectroscopy》编委、《Frontiers in Chemistry》编委、《地球科学》(中英文版)青年编委。陈帅,博士,牛津仪器应用科学家。2015年3月毕业于日本京都大学材料工学专攻,获工学博士学位,博士期间主要研究超细晶亚稳态奥氏体钢的相变诱发塑性和马氏体相变。毕业后先后在钢铁公司和材料分析公司从事钢铁产品开发以及高纯材料分析等工作。2018年加入牛津仪器,主要负责EDS、WDS、EBSD、OP的推广及技术支持。李小犁,博士,北京大学地球与空间科学学院高级工程师。2005年本科毕业于中国地质大学(武汉)和莫斯科国立大学(中俄联合培养),2007年硕士毕业于莫斯科国立大学,2010年博士毕业于莫斯科国立大学,2013年在北京大学地球与空间科学学院完成博士后工作留校任职至今。主要研究方向为变质岩石学、成因矿物学和电子探针分析技术。主持国家自然科学基金委项目3项。发表SCI论文26篇,其中第一作者(通讯作者)18篇。出版俄文学术专著1部。赵伟,博士,研究员,山东省地质科学研究院测试与应用研究所所长。研究方向:金属、非金属矿产分析测试标准化。主持及承担国家重点研发计划课题研究工作4项、国家公益性科研专项及山东省科研项目近10余项;主持研制国家级标准物质10类共计50余个;制定自然资源行业标准3项,其中钛铁矿等标准物质及标准方法填补了国内外此类标准物质的空白,成果达到同类研究的国际先进水平。吴石头,博士,中国科学院地质与地球物理研究所高级工程师。2017年博士毕业于德国哥廷根大学,2018年入职中国科学院地质与地球物理研究所,主要从事LA-(MC)-ICP-MS分析方法研发及其应用研究。主要研究成果:(1) 在国内率先建立了磷钇矿、磷灰石和石榴石等富镥矿物的激光微区Lu-Hf定年方法,极大地拓宽了微区可定年矿物的范围;(2) 通过系统优化和改进质谱仪硬件,使得仪器灵敏度提升5-10倍。基于此,开发了激光微区方解石U-Pb定年技术,将锆石U-Pb定年空间分辨率提升至5-16mm,建立了微区超低含量元素分析方法;(3) 研制了3个安山岩微区元素/同位素标准物质(ARM-1、ARM-2、ARM-3)和3个天然玻璃元素/Pb同位素标准物质(OJY-1、OH-1、OA-1),丰富了现有微区分析标准物质数据库。主持国家自然科学基金面上项目1项,青年基金1项,获批中国科学院青年创新促进会会员人才称号(2022)。担任《地球化学》青年编委(2022—2025),以第一作者/通讯作者发表论文19篇。授权中国发明专利3项、美国发明专利1项。主持翻译英文著作1部。姚永朋,材料工程硕士,现为徕卡显微系统工业显微镜应用工程师。负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。宋文磊,博士,西北大学地质学系副教授,博士生导师,主要从事稀土稀有金属成矿作用研究。2007年本科毕业于中国地质大学(武汉),2010年硕士毕业于中国科学院地球化学研究所。2014年博士毕业于北京大学。2014—2016年在北京大学和2016—2019年在捷克孟德尔大学从事博士后研究,兼职捷克布尔诺理工大学助理研究员(2016—2019年),2019年入职西北大学地质学系(大陆动力学国家重点实验室)。曾为德国地学中心(GFZ)访问学者和欧盟地平线计划稀土稀有金属成矿项目组(Horizon 2020 HiTech AlkCarb)成员。现为中国稀土学会第七届稀土矿产地质与勘查专业委员会委员。发表国际SCI论文40余篇,论文总被引1500余次(据谷歌学术数据)。栗斌,毕业于中国科学院福建物质结构研究所,物理化学专业硕士。目前在上海仪真分析仪器有限公司担任产品经理一职,负责多条仪器产品线的技术支持工作,从事原子光谱仪及相关产品的技术研究和应用工作有超过10年以上的经验。陈振宇,博士,中国地质科学院矿产资源研究所研究员,博士生导师。主要从事矿物学与微束分析技术应用研究。主持、参与多项国家自然科学基金项目和中国地质调查项目,参加多项国家重大基础研究项目(973项目)和科技部条件平台的研究工作。发表论文40余篇。主持或参与编写微束分析国家标准5项。中国地质学会矿物学专业委员会秘书长,中国矿物岩石地球化学学会新矿物及矿物命名专业委员会秘书,全国微束分析标准化技术委员会副主任委员。 参会指南 1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
  • 欧波同第三方检测|AMICS对某金矿尾矿工艺矿物学分析与研究
    1 研究概况及样品制备受某公司委托,对该公司某金矿的尾矿开展AMICS矿物参数自动定量分析,重点查明尾矿中金矿物的赋存状态。样品分级制备,样品分级情况及产率见表1。表1 尾矿粒度分级及产率由于尾矿中金的含量很低,为了查清 金的赋存状态,我们采用分级大数量统计的测试方法,磨制了4件样品进行测试。2 尾矿矿物组成2.1 尾矿金品位经委托方化学分析,该尾矿金品位平均1.5g/t。2.2 尾矿矿物组成及含量采用AMICS自动矿物分析系统测定该尾矿矿物组成及含量,测定结果见表2及图1。结果表明:尾矿中矿物组成比较简单,主要金属矿物为毒砂、黄铁矿,其次为针铁矿、自然铜等,微量的自然金;脉石矿物主要为石英,其次为云母、碳酸盐矿物及长石等。尾矿各粒级矿物相分类颗粒图见图2。由矿物相分类颗粒图可知,黄铁矿、毒砂粒度较细,连生体较多。表2 物质组成及含量图1 尾矿矿物组成柱状分布图图2 尾矿矿物相分类颗粒图
  • 圆满落幕|“第六届现代地质及矿物分析测试新技术与应用”网络研讨会成功举办
    2024年8月22日,仪器信息网成功举办了“第六届现代地质及矿物分析测试新技术与应用”网络研讨会,吸引了近700名专业人士参会观看。本次会议在热烈的讨论和积极的氛围中圆满结束,为地质和矿物分析领域的专家、学者和技术人员提供了一个交流新技术、新应用的平台。岩石矿物分析检测是矿产资源勘探、开发与利用的关键环节,通过运用现代先进的检测方法与技术手段,更好地掌握矿产资源的分布格局与储量情况,为资源的合理、高效开发利用提供坚实的技术支撑与决策依据。多位在地质及矿物分析测试领域具有丰富经验的专家和学者,通过线上平台带来了精彩的报告和分享。锂矿作为一种关键的战略性资源,在多个领域发挥着至关重要的作用。核工业北京地质研究院正高级工程师(二级)郭冬发凭借多年一线分析经验指出,野外现场锂含量测定主要采用GD-OES和LIBS方法,具有设备便携、测定快速的优点;盐湖水、锂矿石和锂地质调查样品中锂含量实验室分析主要采用AAS、ICP-OES和ICP-MS法进行测定,具有经济、准确、高效的优点;锂同位素分析则采用化学分离后,用MC-ICP-MS和TIMS分析,具有精密度高的优点。地质样品检测领域汇聚了XRF、LA-ICP-MS、直读光谱、原子探针、TIMS等多元化分析方法,每种技术均以其独特优势助力科研深入。布鲁克(北京)科技有限公司应用科学家陈剑峰展示了公司平插能谱仪和微区XRF的创新设计,如何简化地矿元素与晶体结构的分析流程,确保数据可靠,为科研工作者配备了强大的分析工具。针对地矿中稀土元素的分析难题,德国斯派克分析仪器公司销售经理杨阳分享了其独特的偏振技术与强大软件解决方案,有效提升了分析精度。固体样品的激光原位剥蚀技术逐渐由纳秒向飞秒发展,飞秒激光剥蚀系统具有脉宽短、热效应小、分馏小的特点,在地质和环境等领域已成为至关重要的原位采样工具。上海凯来仪器有限公司自研的国产新型飞秒激光剥蚀系统GenesisGEO,是全国首台全自研国产飞秒激光系统。副总经理梁燕生动的为大家分享了国产新型飞秒激光剥蚀系统的原理、操作要点、最新进展及其在地质研究中的应用,展示了国产仪器的飞速发展态势与强硬实力。另外,激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)副矿物U-Th-Pb定年技术,为精确厘定地质演化历史、探讨成岩成矿等研究提供了重要的时间参数。中国地质大学(武汉)副研究员罗涛深入探讨了该技术在元素分馏校正、普通铅校正、非基体匹配分析和标准样品研发等方面取得的新进展。战略性矿产资源是国家经济发展的重要支撑,但含量低、多伴生、赋存状态复杂,样品制备过程中存在局部“微”不均匀现象。湖北省地质实验测试中心正高级工程师董学林通过改进实验室样品制备技术,研制合适的缓冲剂,优化仪器性能,建立了固体进样电弧直读光谱技术测定锂、铍、铌、钽等元素方法,拓展了该技术在战略性矿产分析领域的应用范围。原子探针层析技术(APT)是一种在原子尺度上提供样品化学组成和元素三维分布的技术,具有极高的空间分辨率和较低的检出限,非常适用于揭示成矿元素原子尺度赋存状态。由于原子探针样品制备、测试过程与以往的原位分析方法不同,中国地质科学院地质研究所副研究员谢士稳对APT基本原理、样品处理流程、针尖制备进行介绍,阐述近年来APT在矿床研究中的代表性应用成果及其潜在应用前景。热电离质谱(TIMS)一种采用热电离方式的质谱技术,具有低干扰和高灵敏度等特点,是公认的同位素分析技术“标杆”,为高精度同位素年代学和同位素示踪研究奠定基础。中国地质大学(武汉)副研究员冯兰平探讨了TIMS在仪器测试和数据校正方面的最新进展,深入分析其在超低含量和超高精度同位素分析中的应用潜力。此外,标准物质是实现样品分析量值传递、分析过程质量控制、分析方法确认、实验室能力考核评价等工作的重要工具,是确保实验测试结果准确可靠的关键技术手段。随着战略性矿产资源勘查、开发利用和测试技术的进步,标准物质研制受到越来越多关注,战略性矿产标准物质体系不断建设完善。国家地质实验测试中心研究员许春雪介绍了国内外现有战略性矿产标准物质的发展情况,分析了当前工作中存在的不足并提出展望。在研讨过程中,参会人员积极互动,通过线上提问和讨论的方式,与专家们就感兴趣的话题进行了深入的交流。现场讨论热烈,氛围良好。本次会议的成功举办,不仅为地质和矿物分析领域的新技术和新应用提供了展示和交流的平台,更为地质分析科学的持续发展注入了新的活力。
  • 欧波同发布全自动光学显微矿物分析系统新品
    1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂创新点:(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。 (2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征; (3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。 (4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。 全自动光学显微矿物分析系统
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • 地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】
    发现地底生命的关键——矿物在发现生命的轨迹【上篇】——化石中的碳元素分析(点击链接查看文章)中,我们了解了古生物化石中的碳元素对探究生命存在的重要作用。除了碳元素外,是否还有其他办法探索远古生命的存在呢?其实地质学体系中的矿物也是发现生命的关键,科学家把通过研究矿物中发生过的化学反应,以寻找地底微小生命存在的痕迹。埃里克埃里森是科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用,他的重要工作之一,就是利用拉曼光谱来分析从地底深处采集的岩石样本,研究其中的矿物成分、结构和相互关系,从而了解那些人类足迹难以到达的地底,生命是如何演化发展的。埃里克埃里森(Eric Ellison)科罗拉多大学波尔得分校探寻地底生命的生存环境铁遇水生锈的化学反应再普通不过了,然而在矿物中,这样的化学反应就有可能为地底生命创造适合的生存环境。埃里森就是通过这些反应来探寻地底生命的存在痕迹,他主要研究的是橄榄岩中的矿物。橄榄岩是一种存在于地幔中的岩石,在地球深处高温、高压和缺氧的环境下形成,这与地表多水且低温的环境相去甚远。当这些岩石通过地质活动移动到地球表面时,会与环境发生反应,这个过程称为“蛇纹石化作用”。“这些岩石的化学反应就像生锈”埃里森形象地表示。“橄榄岩中的矿物富含铁,与水发生化学反应后导致铁被氧化,水则被分解并释放出氢气。对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。地底矿物-水晶(图片来源:Pixabay)研究矿物成分的绝佳工具——拉曼光谱既然知道了矿物中的反应是探寻生命存在痕迹的重要方式,那么,如何判断这些化学反应是否发生过呢?“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”埃里森如是表示。埃里森将岩石切割成透明薄片放置在显微镜下,然后使用HORIBA LabRAM HR Evolution 显微共焦拉曼光谱仪,对其进行成像分析。LabRAM HR Evolution的焦长为800mm,在单级拉曼光谱仪中具有高的光谱分辨率,能够在亚微米尺度对矿物进行表征,获得高质量的拉曼光谱成像图和精细的峰位信息,同时还可对矿物进行2D和3D共焦成像。由此,研究人员能够在微观尺度了解矿物是否曾经被“消耗”过。注:如需了解该研究中HORIBA LabRAM HR Evolution光谱仪的详细介绍及使用问题,欢迎点击左下角“阅读原文”留言,我们的技术专家会尽快联系您进行答疑解惑。“拉曼是一种强有力的分析技术,它对晶体结构非常敏感,可以展示出矿物结构。科学家们就是通过这些来判断相关的化学反应是否发生过,从而破译深层地下找到的岩石如何为微生物生命创造栖息地。”下图就是利用拉曼光谱确定的透明岩石薄片中各种矿物的分布情况,这片已经部分蛇纹石化的岩石来自阿曼的萨梅尔蛇绿岩。拉曼光谱分析岩石薄片中各种矿物得到的高质量拉曼光谱图除此之外,拉曼光谱还能帮我们识别隐藏的稀少且细小的矿物。揭示能量流动的秘密——行星的生命痕迹生命的探寻总是一步一步,循序渐进。远古生态系统是否存在过?是否普遍的存在?其中有多少可供生命利用的能量?拉曼光谱正在为我们一步步揭开谜底。除了研究地底深处的岩石,科学家们还可以通过这种方式揭秘其他星球上是否存在类似的岩石宿主环境。除了橄榄岩等矿物的研究,埃里森就开展了名为 "推动生命的岩石(Rock Powered Life)"项目,致力于揭示从岩石圈(地壳和地幔)到生物圈的能量流动机制。该项目由NASA的天体生物学研究所支持,目的是为了进一步寻找其他行星上可能存在的生命痕迹。科罗拉多大学波尔得分校显微拉曼光谱实验室中使用的HORIBA LabRAM HR Evolution拉曼光谱仪生命轨迹探寻的方式并不局限,从之前介绍过的南冰下湖沉积物研究(点击链接查看文章),到上篇中化石的研究(点击链接查看文章),科学家们通过研究那些经过几百年甚至上千年的演变而形成的生命载体——岩石,来寻找生命遗迹。在如今气候日益恶化的环境下,这一探索也许能为我们探寻人类发展的进程给出可供参考的案例。至于如何为人类发展给到可供参考的信息,欢迎在往期文章中寻找答案。今日话题矿物研究无论是在生命科学还是考古、地质,抑或是珠宝行业等等,都是重要研究课题,你在科研中又研究过哪些新奇有趣的矿物呢?留言分享给大家吧,我们会在下一篇前沿应用中将您的研究分享给大家,点赞人数多的还可获得星巴克咖啡券一份噢~ 点击查看更多往期精彩文章发现生命的轨迹——化石中的碳元素分析 | 前沿应用严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯复旦巧用增强拉曼“识”雾霾 | 前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形! HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,了解HORIBA Scientific更多信息。
  • 综合矿物分析系统为何在地学领域大放异彩?
    综合矿物分析系统可以实现对岩芯、岩屑、岩石、矿石、精矿、尾矿、浸出渣或冶炼产品进行快速定量矿物分析,能有效识别岩石类型,测量矿物分布、颗粒大小、解离或锁定参数。此外,TIMA还提供亮相搜索模块,可以有效识别铂族金属(PGM),金银矿和稀土元素(REE)。 模态分析模块 解离分析模块 亮相搜索模块 从左至右依次为:BSE–所有颗粒,BSE–仅仅是亮相的颗粒,亮相颗粒的筛分为促进行业交流与发展,北京桔灯地球物理勘探有限公司联合TESCAN(中国)公司将举办“TIMA综合矿物分析系统技术交流会”,届时将邀请地质分析检测方向的专家,围绕综合矿物分析系统及其在地质方面的应用进行讨论交流。一、会议时间:2018年6月21日二、会议地点:北京桔灯地球物理勘探有限公司(地址:北京昌平区企业墅22号楼) 三、会议议程: 注:本次会议名额有限,需提前审核,有感兴趣的人员报名从速。 关注微信公众号报名 四、专家介绍: PaulTESCAN TIMA综合矿物分析首席专家, 澳大利亚CBB首席顾问。 主要研究方向:Mineralogy, Mining Engineering, Engineering Physics矿物学、采矿工程、工程物理。1972-1982, 服务于澳大利亚航空研究实验室从事航空器动态模拟研究。从1983年起,Paul作为首席科学家加入CSIRO ,从此进行了近20年的矿物分析研究。在此期间Paul发明了能够自动利用特征X射线能谱技术与扫描电子显微镜技术相结合,精确地照相并且鉴定矿石中矿物形貌和成分的科技。这项技术便是我们熟知的专利技术:QEM*SEM(Quantitative Evaluation of Minerals by Scanning Electron Microscopy)。1984年Paul发起并创立了Intellection Pty Ltd,并致力于自动化矿物分析技术QEMSCAN的发展和推广。2009年加入FEI,作为首席技术专家致力于自动化矿物分析在采矿和油气领域的技术研发。2013年加入TESCAN,成为TESCAN综合矿物分析首席专家。 宋文磊北京大学地球与空间科学学院,矿物、岩石、矿床学专业博士,孟德尔大学(捷克)地质与土壤系博士后,布尔诺科技大学(捷克)中欧技术研究所初级研究员。研究方向和兴趣:稀土稀有金属矿床的成因及找矿模式;碱性岩-碳酸岩岩浆的起源和演化;地球深部碳循环;高温高压实验地球化学模拟元素和矿物在岩浆-流体演化中的行为。参与欧盟地平线计划(HiTech AlkCarb项目;2016-2020年),作为该计划项目招收的博士后(参加该项目的唯一中方人员),主要从事碱性岩-碳酸岩稀土稀有金属成矿作用研究。以第一和通讯作者在Geology、Contributions to Mineralogy andPetrology、Precambrian Research、Lithos、Ore Geology Reviews和Scientific Reports等地学知名期刊上发表多篇论文。 五、报名方式 关注微信公众号报名参会。名额有限,本次会议不收取任何会议费用。
  • 历经岁月,MLA自动矿物分析系统传承科学:广东省科学院资源稀土所探寻之旅
    随着科技的不断进步和应用领域的不断拓展,电子显微镜在材料科学、生物医学、工业制造等领域的应用日益广泛。中国电镜市场规模在近年来呈现出快速增长的态势,已成为电镜保有量的大国。在许多实验室,一些经过岁月洗礼的电镜仍然被作为重要的科研工具用于科研一线,见证着中国科学技术的不断变革和进步。此背景下,仪器信息网与知名电镜品牌赛默飞世尔科技携手,共同开启探寻扫描电镜瑰宝之旅,历经岁月,传承科学,通过系列采访相关领域知名专家,再现这些电镜背后的故事。广东省科学院资源利用与稀土开发研究所工艺矿物学与分析测试中心主任李波我们有幸采访到广东省科学院资源利用与稀土开发研究所工艺矿物学与分析测试中心主任李波。李波主任于2004年入职广州有色金属研究院选矿工程研究所,随着2008年,所里引进第一台MLA自动矿物分析系统,其工作重心转到MLA系统使用研究中,并使MLA系统在工艺矿物学研究中起到关键作用,2021年起,担任工艺矿物学与分析测试中心主任。李波主任专长于稀有金属矿工艺矿物学研究和矿物自动检测分析系统的应用研究。接下来,让我们一同回顾资源稀土所十五年来工艺矿物学与MLA自动矿物分析系统技术的发展历程,踏上本次科学探索之旅。走进工艺矿物学与分析测试中心:见证传统显微镜法向MLA分析传承发展资源稀土所工艺矿物学与分析测试中心(以下简称“测试中心”)是国内特色的从事矿产资源以及二次资源等方向工艺矿物学研究与分析测试的机构,研究中心具有很好的历史传承,过去是由北京有色金属研究总院岩矿鉴定组发展而来,距今已有60多年历史。测试中心的特色是稀有金属矿工艺矿物学研究、矿物自动分析检测以及岩矿鉴定,是广东省少数具有CMA资质的岩矿鉴定实验室。测试中心拥有工艺矿物学和分析检测两个团队。广东省矿产资源开发利用科普基地矿石矿物展厅一角工艺矿物学是研究矿石和矿物在加工过程中性质及行为的一门学科,研究原矿的工艺矿物学是为了确定选矿的原则流程,是“选矿的眼睛”。随着国内外的富矿越来越少,工艺矿物学的重要性会越来越明显,可以使科研和生产人员少走弯路,降低科研和生产成本。测试中心目前配置的仪器分为矿物学和化学两类,与其他实验室相比,最优特色仪器和业务是两台MLA自动矿物分析系统和岩矿鉴定,支撑了测试中心包括研究所近一半以上的业务量。几乎涉及到工艺矿物学或选矿研究的课题,MLA扮演着重要角色。岩矿鉴定是份依赖经验的工作,测试中心成员在老中青传帮带氛围下,继承和发扬岩矿鉴定工作的内涵,见证了岩矿鉴定技术手段从传统依赖光学显微镜向结合MLA等现代仪器技术的发展,使岩矿鉴定提升到无机物料的鉴定。历经岁月:十五年、MLA每年6000机时忙碌一线李波主任认为,仪器检测技术对于工艺矿物学学科的发展具有重要意义,尤其随着现代测试技术水平的提高,丰富了工艺矿物学研究的理论基础、方法与手段,提高了研究深度和工作效率,比如基于扫描电镜的自动矿物分析系统的出现,就大大提高了研究深度和工作效率。MLA650自动矿物分析系统测试中心配备了两台MLA自动矿物分析系统(MLA250和MLA650),关于两台MLA的引进,李波主任回顾说, 2006年所里考察澳大利亚昆士兰大学时接触到MLA,认为这是非常先进的系统,可以给研究所的科研工作带来极大的提升,回来给科研人员开会宣传,还邀请当时JKtechMLA的研发团队专家给大家宣讲,于是,在省科技厅和院里财政支持下,购买了MLA250。后来,MLA在实验室应用越来广,机时已满足不了需求,随着广东省工研院平台的成立,研究所在平台建设经费支持下购买了第二台MLA650。MLA650和MLA250功能虽然一样,但它的样品仓更大,能谱换成电制冷的双能谱仪,测试效率更高了。李波主任表示,MLA在实验室应用频率非常高,这几年两台仪器每年使用频率超过6000小时,平均每台MLA每年超过3000个小时。之所以MLA被使用如此多的机时,一方面,实验室测试样品量非常大,每年测试光片数量就超过1000件;另一方面,现在的样品越来越复杂,大多是难选、难利用的矿石,如果要保证精密度,必须要加大测试时间和数据处理精度。MLA650和MLA 250持续高频应用十多年,离不开MLA的优秀可靠性和制造商产品的高标准和优质工艺,这也帮助科研人员从繁琐的、高难度的显微镜检测工作中解放出来,为测试中心大大加快和提高了获得矿石信息的速度和精度。传承科学:MLA极大提升选矿工艺流程速度与精度如果说仪器检测技术对于工艺矿物学学科的发展具有重要意义,那么自动矿物分析系统对工艺矿物学学科的发展则是革命性的。自动矿物分析系统是大型仪器与计算机结合的定量矿物学,它大大加快和提高了获得矿石信息的速度和精度,促进了选矿工艺流程设计精细化和准确性。与传统电镜相比,MLA除了具有传统电镜的功能(如形貌分析、EDS成分分析),还采用先进的背散射图像分析技术对样品微区不同灰度区间进行分相,结合EDS对不同分相区域元素分析技术,实现对样品进行快速定性定量分析。MLA既涵盖了传统扫描电镜的应用,同时也极大地扩充了其应用领域。十多年来,测试中心在MLA应用方面积累了诸多特色经验。李波主任表示,MLA自动矿物分析系统本身是一个专家系统,比较依赖用户的技术和经验,这在前期样品的前处理和后期数据的解析处理方面都有明显体现。在样品前处理方面,针对不同品位矿石、不同类型矿石,样品处理方法和常规样品是不同的,例如,低品位矿石需要预富集后进行制样,水敏感或可溶性的冶金样品需要无水处理,含碳煤矿样品需要特殊的包埋方法等;后期对数据的解析处理方面也非常讲究,测试中心也积累了许多鉴别技巧,如对盲点元素矿产、硅酸盐矿物识别,以及MLA结合LA-ICP-MS,FIB-TOF-SIMS等其他微束分析方法再综合判定等。李波主任表示,十多年来,MLA650和MLA 250在实验室甚至整个研究所扮演非常重要的角色,工艺矿物团队在长期的研究工作中建立了系统的检测方法和手段,特别是在稀有、稀贵金属矿石的矿物学研究和自动工艺矿物学检测技术方面,积累了丰富的经验,并取得大量研究成果。现已发表学术论文近70篇,出版著作《稀有金属矿工艺矿物学》一部;获省部级科技进步奖三等奖1项,有色行业科技进步一等奖1项,二等奖2项,三等奖1项;近5年来,研究所研究主持省市各级科研计划7项,服务的高校与企业有80多家,签订合同超过120项,合同金额超过1500万元,其中相当数量的经费由MLA直接贡献。在采访结尾,李波主任补充说,MLA650和MLA 250能正常持续应用十多年,与售后支持是密切相关的。过去FEI包括现在的赛默飞,在售后方面给予了极大的支持,如MLA培训和扫描电镜培训给测试中心团队留下比较深刻的印象,当时JKtech和FEI联合对团队就电镜操作和软件应用方面进行了近两周培训,当时MLA在国内非常稀少,团队也是最早用户之一,正因为前期FEI的全面支持,使得MLA使用十分顺利,也为后续发展打下良好基础。【MLA拓展阅读】MAPS MINERALOGY 自动矿物分析软件—面向矿物加工应用的全新表征技术
  • 岛津赞助第八届全国矿物科学与工程学术会议
    日前,“第八届全国矿物科学与工程学术会议”在绵阳召开。本次会议主题是基于矿物与生态文明建设,围绕“一带一路”和人类可持续发展战略,交流理论、技术和发展战略研究的重要成果。来自北京大学、南京大学、中国地质大学、中科院地球化学研究所、中科院广州地化所等科研院所、高等院校的近330名专家学者齐聚绵阳,围绕会议主题,共同研讨中国矿物科学与工程领域的最新研究成果,探讨“矿物+”的未来发展途径。第八届全国矿物科学与工程学术会议参会人员合影在会前培训会上,首先由深圳大学刘福生教授结合XRD粉末衍射峰的重叠使得粉末衍射结构解析困难等问题点,详细阐述了Rietveld结构精修在晶胞参数的精确计算、多相样品的定量分析上的应用及优势;然后,中国工程物理研究院核物理与化学研究所孙光爱研究员主要介绍了中国绵阳研究堆与应用的总体情况,并进一步对热中子和冷中子散射平台的提升与应用作了详细地讲解;最后,由岛津公司赵同新先生作了《岛津电子探针分析技术及在矿物研究中的应用》的报告,主要从SEM与EPMA的功能对比,岛津EPMA的技术特点及其在矿物学研究中的优势作了详细且综合地阐述。 会议首日,中国科学院院士、天津大学刘丛强教授,中科院广州地化所谢先德院士,中国矿物岩石地球化学学会矿物物理矿物结构专委会主任何宏平,中国地质学会矿物学专委会主任王汝成,绵阳市副市长孙福全,西南科技大学党委副书记董发勤、副校长陈波出席研讨会开幕式。孙福全代表绵阳市人民政府向大会的召开表示热烈祝贺,并表示矿物科学与工程学科作为科技、军事和国民经济各领域的重要支撑,发展前景巨大,此次会议的召开将会为绵阳市优化资源配置、调整产业结构、进一步推进实施“一带一路”战略起到积极的推动作用。陈波代表学校向与会领导和专家表示欢迎,并重点介绍了固体废物处理与资源化教育部重点实验室的建设发展情况。陈波表示,此次大会对矿物学科涉及的科学与工程问题开展学术研讨,围绕“一带一路”和人类可持续发展战略,交流学术思想,分享学术成果,将推动相关领域科技与产业发展,相信与会专家学者研讨会的举行能进一步开拓矿物学研究的新思路,启发新思想,进一步促进矿物科学工程的发展。王汝成在致辞中表示,我国矿物学工作者应以中国特色地质研究为强大动力,以矿产资源、材料和环境重大需求为契机,充分利用成分、结构等现代微区分析技术和理论模拟方法,重视引进物质科学研究的新理论、新方法,推动我国矿物学科进入国际先进行列。开幕式后,刘丛强院士和谢先德院士分别以《全球变化、表层地球系统科学与社会可持续发展》和《肇庆端砚和泗滨砭石的矿物组成与物性特征》为题作了特邀报告。刘丛强院士对社会可持续发展的重大需求,表层地球系统科学的重要性,以及地球关键带科学的内涵及其所包含的重大学科问题都进行了系统阐述,展现了矿物学在表层地球科学、关键带科学研究中的地位,为进行矿物学研究的师生提供了更广阔的研究空间。谢先德院士新矿物分类、矿物研究的国际影响、矿物元素成分特征以及在现实生活中的应用介绍了所在团队在天然高压矿物及陨石矿物研究中的最新研究进展与成果,为在座学者展现了矿物学研究的思路和广阔前景。其中对岫岩陨石坑的研究发现,Fe-Mg-碳酸盐在经受25-45GPa和800-900℃的冲击压缩下,不需要通过熔融、流体和其他还原物质作用,就能通过亚固态自身氧化还原作用,生成天然的金刚石。碳酸盐自身会生成金刚石的能力表明,金刚石在下地幔将是一种很普通的矿物,因为那里有很多碳酸盐,温度和压力也足够高。针对随州陨石的研究,出版了专著,包括6种新矿物,5种高压相;6种新矿物中5种以中国学者姓氏命名,除了理论上的突破外,在只有几个纳米大小的新矿物的鉴定技术上也取得了重要突破。谢先德院士(上图)和刘丛强院士(下图)作报告随后,来自University of Arizona的杨和雄教授介绍了《Effects of twinning and atomic order-disorder on structure analysis》,从矿物双晶以及原子有序和无序情况对结构的精修结果可信度的影响。新矿物的发现及提交国际矿物协会,需要提供的资料包括矿物的元素成分、化学式、光性、晶体结构等多方面的内容,其中晶体结构的测试包括一般的XRD、电子衍射(EBSD和TEM)等,在双晶和原子无序存在的情况下,衍射花样将会变得异常复杂,首先要扣除双晶和原子无序的影响,提高可信度因子。北京大学的鲁安怀教授主题报告《地球表面“矿物膜”在日-地系统中作用与启示》介绍了地球上几类矿物表面几十微米的膜层的研究进展,如红壤中长石和石英等颗粒矿物表面上包覆几十微米的铁锰氧化物半导体矿物胶膜,并研究了矿物膜的可见光光电响应特性,发现了光电子促进微生物生长代谢现象(一般植物依赖光合作用,某些微生物可以从光电子中汲取能量生存),提出光电能微生物的新类型。中国地质大学(北京)的董海良教授的《矿物微生物相互作用以及在环境领域中的应用》提出微生物还原结构铁使得黏土矿物中的蒙脱石向伊利石的转化、而微生物氧化结构铁可使伊利石向蒙脱石转化,他们团队对环境污染中的沙尘暴、PM2.5中的矿物尘也进行了研究,指出矿物微尘主要以石英、方解石、钠长石、白云母和石膏等构成,北方以石英相为主,南方方解石占优。并使用采集的大气污染物颗粒对大肠杆菌等微生物的影响。中科院广州地化所何宏平研究员作了《水热条件下粘土矿物的物相转变及其意义》,根据沉积物中粘土矿物组合特征来标识古气候。构成气候的两个基本要素是温度和湿度,从粘土矿物的成因,这两个指标也控制着粘土矿物的形成。绿泥石和伊利石可标识弱风化强度,热带富含高岭石。蒙脱石在南半球海洋中含量较高。粘土矿物的结构特点,使之可以运用在水体污染如生活污水、重金属污染、有机污染等的治理。此外来自成都理工大学、浙江工业大学、北京大学的专家学者也先后就微生物成矿修复环境污染、有色金属矿山废物的资源化以及污染的防控和治理等方面作了大会专题报告,分享研究经验与成果。可以看出主题报告除了矿物成因、新矿物发现等传统矿物学外,跨专业跨学科等学科交叉渗透趋势明显,尤其是环境污染及治理的交叉研究。(a)鲁安怀教授 (b)董海良教授 (c)何宏平教授 (d)杨和雄教授 作报告 会议次日,研讨会分“矿物表界面与纳米矿物”“环境矿物学与矿物资源绿色开发”“新矿物与成因矿物学”“矿物分析表征方法与纳米矿物材料”“矿物材料与功能矿物材料”“光电子调控矿物与微生物协同作用机制”六个分会场进行,共设120个分会场报告。在“矿物分析表征方法与纳米矿物材料”分会场中,岛津公司陈文迪先生作了《岛津EPMA针对含超轻元素矿物的解决方案》的报告,主要从超轻元素特征X射线的特点及其在电子探针分析上的难点出发,通过对岛津EPMA技术特点的分析及相关矿物的测试实例分享,论证了岛津EPMA在定量分析含Be、B、C、O等超轻元素矿物上的优势及可行性。与会专家学者踊跃发言,热烈探讨,就学科热点问题进行了广泛交流与深入研讨。岛津公司陈文迪作报告关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • LA-ICP-TOF-MS – 揭秘矿物晶体“元素指纹”
    自然界中存在着五颜六色的宝石矿物晶体。目前为止,国际矿物学会认可的矿物种类超过了5000种,而这其中具有吸引力和价值的可被用作珠宝或装饰之用的矿物被称为宝石。我们所熟知的钻石,蓝宝石,红宝石和祖母绿被称作四大宝石。宝石的形成是自然界的一场美丽的“意外邂逅”。宝石不仅外观美丽,稀有而价格昂贵,同时它也是地质学重要的标志物,对研究地质生成环境和地质定年有不可或缺的意义(图1)。1:缅甸抹谷(Mogok)地区的切割宝石级红宝石(0.369克拉)和大理石中的原始红宝石晶体【M.P. Myint, et al, Minerals, 2020, 10(2), 195 DOI: 10.3390/min10020195】。01  近年来,使用飞行时间质谱仪(ICP-TOF-MS)进行的多元素化学分析在环境科学、生物学等领域快速发展,其在宝石学领域的优势也逐渐凸显。在一项近期的研究中,科研人员提出了一种矿物多元素组成的定量方法【Wang and Krzemnicki, J. Anal. At. Spectrom., 2021, 36, 518. DOI: 10.1039/d0ja00484g】。该方法使用激光烧蚀搭配TOFWERK电感耦合等离子体飞行时间质谱(LA-ICP-TOF-MS)同时分析样品内几乎所有元素组成(图2)。图二:(a)使用LA-ICP-TOF-MS在标准NIST610试样上采集的从7Li-238U的全元素质谱谱图。注意图中信号强度采用的是指数格式,可以很好的展示仪器基线的变化情况。(b)使用75微米直径激光光斑,20Hz激光剥蚀频率的情况下的仪器的全元素检测限。【Wang and Krzemnicki, J. Anal. At. Spectrom., 2021, 36, 518. DOI: 10.1039/d0ja00484g】02 该研究提出了“先测量后确定”的新颖概念,用户在实验前无需确定要检测的元素,而是先检测几乎全部的元素组成后再进行选择和定量分析,确定样品中的无机组分。相较来说,传统的单四极杆质谱仪则需要用户在实验前提供元素信息来确定定量分析元素的同位素种类,再进行实验。而且实验后,无法对选择进行更改。这样的实验流程很可能会错过对宝石矿石类地质样品分析有重要意义且“意料之外”的元素。使用ICP-TOF-MS采集全元素质谱后再定量分析法,可以有效地抓住出现概率非常低的元素组成,比如极少数蓝宝石中的钍元素【M. Wä lle, et al, Euroanalysis会议报告, 2023】,还可以对宝石矿石的地质生成环境和年代进行分析,例如对红宝石中的极少出现的锆钛矿包裹体的成因和铀铅定年进行研究【M.P. Myint, et al, Minerals, 2020, 10(2), 195 DOI: 10.3390/min10020195】。除此之外,借助TOF-MS远优于四极杆质谱仪的高质量分辨率,一些常见的干扰,比如钡和镧系元素的双电荷离子对镓和锗同位素的影响,可以得到很好的校正。通过双重标准试样校准方法(NIST610和NIST612)则可以部分消除由于标准试样基质和待测样品不同而造成的测量误差。由于飞行时间质谱TOF数据的特殊性,对其全质谱基线的校正和处理十分关键,这很大程度决定了定量结果的准确性。如果没有很好的基线校正方法,那么将会带来实验结果的偏差。实验使用的icpTOF仪器采取将原始基线下载到本地硬盘再通过软件进行自动或手动拟合处理的方法,可以将完整实验的多个基线进行叠加之后再拟合,以最大程度的保证拟合结果的准确性。如果将每一个谱线的基线直接在质谱仪电脑上进行实时拟合,可能会出现信号强度过低,信号标准偏差偏大,而基线的拟合不准确的情况。这种由于基线拟合导致的统计学噪音会直接影响实验结果的准确性和精确性。另外,后期数据处理可让用户随时对基线拟合进行调整。如果直接舍弃原始基线数据,只积分和保存元素信号的话,会出现‘不谈海平面,只谈山峰高度’的不客观表达和数据表达。03结论 综上所述,采用带有原始基线采集功能的电感耦合-飞行时间质谱仪(ICP-TOF-MS)对宝石矿物进行广谱多元素分析具有明显的优势。在每个激光剥蚀事件的毫秒时间长度内,ICP-TOF-MS不仅可以对几乎全部元素进行采集,从而避免错过任何出现概率极小的元素组成。同时,将原始全谱线下载到电脑进行后处理的方法很大程度上赋予科研人员对实验数据处理方法的掌控。让实验结果不再仅仅只是数字,而是更精确更准确的靠‘谱’分析结果。
  • 中国合格评定国家认可委员会对CNAS-EL-XX:20XX《自然资源(岩石矿石、水、土壤)检测领域认可能力范围表述说明》网上征求意见
    各相关机构及人员:  根据CNAS业务发展需要,中国合格评定国家认可委员会(CNAS)组织编制了CNAS-EL-XX:20XX《自然资源(岩石矿石、水、土壤)检测领域认可能力范围表述说明》(征求意见稿),现于网上广泛征求各方意见。若相关单位和人员对文件有修改建议或意见,请填写附件中意见征询表,并于2024年7月15日前反馈CNAS秘书处。  联系人:窦维薇  E-mail:douww@cnas.org.cn  附件:  1:CNAS-EL-XX:20XX《自然资源(岩石矿石、水、土壤)检测领域认可能力范围表述说明》(征求意见稿)  2:CNAS-EL-XX:20XX《自然资源(岩石矿石、水、土壤)检测领域认可能力范围表述说明》编制说明  3:CNAS文件意见征询表
  • 发射光谱和原子吸收光谱技术在矿产样品分析中的应用
    长期以来,光谱分析法因其灵敏度高、受干扰影响小、不需要大量的实验样品、分析速度快、应用范围广泛、定性结果准确等优点被广泛应用于岩石矿物、土壤、金属产品等多种样品成分分析。地质矿产部门通过岩石矿物的光谱半定量分析法承担大量岩石矿物的测试任务,长期以来,分析工作者通过光谱半定量分析法为寻找化学矿区、区域地质普查提供了大量数据。通过数据分析可以寻找优质矿石,查明矿石的大致成分,为如何开采矿石提供参考。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,山东省地质科学研究院所长/研究员赵伟将分享报告,介绍发射光谱和原子吸收光谱技术在矿产样品分析中的应用。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 如何选择好的矿物分析仪
    这些年来我国矿产分析研究行业全面进步的情况下各方面保持进步的品牌商进入大家眼帘,一些惊艳市场的矿物分析仪设备确实在实际使用中展现出现代科技的魅力。不得不说市场当中销量好的矿物分析仪设备确实很适合相关领域的技术研究人员们体验使用。那么选择矿物分析仪设备一般值得好好考虑的要点有哪些? 1、仪器的适用环境  大家都知道任何的矿产资源勘查及分析工作面临的相关工作环境是较为复杂的,这些年来大家可以深切感受到各类高技术低成本的矿物分析仪可以适用于多种复杂的环境,尤其是在一些专业度要求非常高的情况下,这类矿物分析仪总能达到技术人员的应用要求。  2、仪器的测试准确性  当然关键的一点在于矿物分析仪作为一款测量分析仪器其分析的准确性是人们很关注的,这些年来技术不断进步的情况下各方面都很出色的矿物分析仪的准确度确实可以达到较高的要求。当然这一切都离不开相关技术上多年来对这类矿产行业专用分析仪设备的研究。  3、仪器的操作便捷性  一直都在保持进步的品牌商开发出来的矿物分析仪设备使用起来让人感到很省心,主要是因为这类矿物分析仪设备的操作便捷性以及效率都位于行业比较先进的水准。当然关于矿物分析仪便捷性的评估可以通过一些相关行业专业人士的口中获得答案。 莱雷科技发展有限公司本着“诚信、创新、沟通”的企业宗旨,以“技术、服务”为立业之本的企业精神,为广大有需求的群体提供可靠的矿物分析仪。矿物分析仪在全国内深受广大合作客户的满意认可,我们会更加努力的为有需求的群体提供质量更高、品种更全的矿物分析仪产品。  在日益激烈的市场竞争中,莱雷科技将继续加大科技投入,严格规范企业管理,力争以优异的矿物分析仪,树立优异企业形象,并且去争取更广阔的市场。莱雷科技勇于跨越,追求,诚挚欢迎各个企业用户与我司携手合作。
  • 合力推动中国矿物油分析发展 ——“矿物油分析测试技术研究合作实验室”揭牌仪式 暨矿物油分析技术最新进展学术交流
    p style=" text-indent: 2em " strong 仪器信息网讯 /strong 2019年8月27日,北京市理化分析测试中心与德国Axel Semrau公司的“矿物油分析测试技术研究合作实验室”揭牌仪式暨矿物油分析技术最新进展学术交流成功召开。北京市科学技术研究院副院长刘清珺、北京市粮食和物资储备局副局长阎维洪、中国分析测试协会汪正范、北京市科学技术研究院技术转移处处长郭鲁钢和科研处副处长李彦雪,北京市理化分析测试中心副主任高峡、研究员武彦文,以及德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、仪真分析仪器有限公司技术总监朱丽敏、安捷伦大中华区战略规划总监何峻等20多人参加了合作实验室揭牌仪式和矿物油分析技术最新进展学术交流活动。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b6953265-6131-47f1-a5c3-6ed3461420f3.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 活动现场 /strong /span /p p style=" text-indent: 2em " 从各自未来发展战略需求出发,北京市理化分析测试中心与德国Axel Semrau公司成立了“矿物油分析测试技术研究合作实验室”。合作实验室将开展仪器应用、方法培训与标准验证等方面的工作。双方希望通过合作,优势互补,共同推动液相色谱-气相色谱联用的矿物油分析技术在中国的本土化应用,特别是食品中矿物油的测定方法标准的建立,为中国食品安全出力,为未来具备矿物油在国内食品中分布的筛查、降低膳食中有害物质含量等,提供技术储备和方法支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/9933b358-d5da-4070-9b37-c1a9fae3b75a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong style=" font-size: 14px text-indent: 2em " 北京市科学技术研究院副院长刘清珺博士 /strong /p p style=" text-indent: 2em " 北京市科学技术研究院是北京市属的大型多学科高水平科研机构,立足应用基础研究、战略高技术研究、重大公益研究和科技服务发展定位。刘清珺简介了北京科学技术研究院的六大中心三大平台的概况,其中检测分析与测试平台即以北京市理化分析测试中心为主,形成了仪器设备开放共享的新型运行机制,加强应用研究、高新技术研究和重大科技攻关,不断提高科研开发和自主创新能力,形成竞争领先优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/32d335da-719a-4300-bcce-9dcd20990b76.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" font-size: 14px " 北京市理化分析测试中心副主任高峡博士 /span /strong /p p style=" text-indent: 2em " 经过近40年的发展,北京市理化分析测试中心成为了首都地区唯一的综合性分析科学研究机构、最大的开放共享分析测试平台。目前,中心综合实力在全国地方分析测试中心中位居第2,进入全国第三方理化分析检测机构前10名,中心连续四年实现经济总量超亿元。 /p p style=" text-indent: 2em " 北京市理化分析测试中心围绕着食品药品安全、环境监测、材料分析、生物技术、国产科学仪器应用示范等主要领域开展分析测试科学研究和技术服务工作,形成了食品药品质量安全检测技术、水土气环境监测与检测技术、未知物成分分析与鉴别技术等技术品牌。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0b03a027-e367-49f7-b0ba-6fe69288b4a0.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-indent: 2em text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr.Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " 在过去的35年里,Axel Semrau及其员工一直致力于样品制备、色谱、化学合成以及应用优化工作站的开发、销售和支持。Axel Semrau公司正在开发自己的硬件和软件,以便能够提供独特、强大的食品分析特别是粮油在线全自动样品前处理和多维色谱联用的解决方案。Axel Semrau的目标是以优秀的应用解决方案结合基于自身开发的优秀软件而闻名于世。此外,Axel Semrau这个名字将与卓越的客户服务和客户关系密切相关,包括客户、供应商或合作伙伴。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f6d8ceb5-aea2-41d4-9b9b-d88b2fbf10f7.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 仪真分析仪器有 span style=" font-size: 14px " 限公司技术 /span 总监朱丽敏博士 /strong /span br/ /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)成立于2005年,具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析的技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海、北京及广州设有主要的办公室,上海设有研发试验和培训实验室。 /p p style=" text-indent: 2em " & nbsp 仪真分析与Axel Semrau& nbsp 公司合作,应用Axel Semrau的软件平台,与仪器公司合作开发适合中国应用的包含软件与硬件的解决方案。2018年,仪真分析成为了安捷伦VAR合作伙伴,推出食品中矿物油检测的解决方案。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01eab20c-b922-482a-83d1-c1dbb5245aaf.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0e392f1d-f066-4b4e-8bda-3353c882bbce.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann和 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心副主任高峡签署合作协议 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c7422c93-8773-442a-aab6-d804de491c30.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市粮食和物资储备局副局长阎维洪和北京市科学技术研究院副院长刘清珺为合作实验室揭牌 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1af6c700-d21b-4b3a-b7f4-7965fe8fad38.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 向北京市理化分析测试中心武彦文、仪真分析仪器有限公司技术总监朱丽敏颁发证书仪式 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c9d190e2-168a-4fa8-8006-67e474ec655a.jpg" title=" 9_副本.jpg" alt=" 9_副本.jpg" / img src=" https://img1.17img.cn/17img/images/201908/uepic/2afede2e-9415-477f-a40c-f07069dcadb9.jpg" title=" 7_副本.jpg" alt=" 7_副本.jpg" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" font-size: 14px " strong 嘉宾致辞(北京市科学技术研究院技术转移处处长郭鲁钢、中国分析测试协会汪正范、安捷伦大中华区战略规划总监何峻) /strong /span br/ /p p span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/df342eba-ec56-4282-9c99-c4b7f9944b3f.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市科学技术研究院科研开发处副处长李彦雪主持活动 /strong /span /p p style=" text-indent: 2em " 矿物油源于石油,是C10~C50的烃类化合物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35) 容易在身体器官中积累并可能造成损伤,所以对矿物油的检测显得至关重要。 /p p style=" text-indent: 2em " 近年来,食品中的矿物油污染问题备受关注。食品接触材料特别是回收或再生包装纸中的残留油墨,食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等,都是食品中矿物油污染的主要来源。然而,由于组成复杂、数量巨大、基质干扰严重,使得矿物油的检测是行业公认的技术难题。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。随后,欧盟推出了EN16995矿物油分析方法,大力推动欧盟内部或输欧食品中矿物油污染调查。北京理化分析测试中心的武彦文团队从2015年开始开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。 /p p style=" text-indent: 2em " 合作实验室揭牌仪式后,与会人员就矿物油分析技术最新进展展开了学术交流。德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、北京市理化分析测试中心武彦文博士分别就国内外矿物油分析研究进展及标准制定等内容进行了分享。关于该项技术的推广应用与会者进行了热烈的讨论,期待互相合作、共同推动该技术的进一步发展。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1d28b593-14b0-4622-8649-727425cb392f.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 国际矿物油分析技术的最新进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " Axel Semrau公司优化了原始 LC-GC 方法,成功推出CHRONECT LC-GC 食品中矿物油分析系统,与欧盟方法EN16995完全一致,通过特殊的阀设置将LC和GC分离互相结合,使得在一次分析中测定 MOSH 和MOAH 馏分成为可能。 /p p style=" text-indent: 2em " 通过独立的大体积进样系统进行GC进样,进样量可达450μL;2通道GC进行两次平行和正交分离,随后进行FID检测。因此,样品中MOSH和MOAH含量的结果在30分钟后即可获得。CHRONOS软件控制采样、LC、GC、阀门连接,从而构成对方法和样品制备的完全自动控制。该解决方案应用于快速检测不同基质中的矿物油污染物,如化妆品、食品、油脂、饲料和包装材料。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/cf5aa040-5566-482d-bd91-2ef1bdd54e52.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 我国矿物油分析方法的研究进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心武彦文博士 /strong /span /p p style=" text-indent: 2em " 气相色谱-氢火焰离子化检测器(GC-FID)是目前公认的矿物油检测方法,FID对所有烃类化合物的响应几乎完全一致,可以无需标准品对照对矿物油进行准确定量。但同时也存在着对鼓包峰的灵敏度仅为尖峰的百分之一、作为通用检测器也意味着没有选择性这两大需要解决的问题。而On-line HPLC-GC技术,由于HPLC柱的填料颗粒小、柱效高,分离效率好;LC-GC将分离、浓缩和测定联为一体,避免了人工操作,自动化程度高,方法重现性好等优点,使得LC-GC成为了测定矿物油的理想技术。 /p p style=" text-indent: 2em " 北京市理化分析测试中心武彦文研究员于2015年开始了矿物油分析方法的研究。2018年国内第一台“全自动在线LC-GC二维色谱联用矿物油分析系统”落户武彦文的实验室,使得她的研究实现了由手动向全自动化的转变。 /p p style=" text-indent: 2em " 仪器安装使用不到两个月的时候,武彦文团队即参加了国际能力验证,获得了“with great success”的成绩。经过1年多的时间,武彦文团队在将国际先进分析方法本土化实现的同时,在样品前处理方面,尤其是在提取技术方面实现了多项创新。短短的时间内,该团队已经发布了10多篇高水平论文,并且计划制定3项方法标准。如:行标“粮油检验& nbsp 大米中矿物油的测定”,采用了SPE结合普通GC以及HPLC-GC联用的方法;行标“粮油检验& nbsp 动植物油脂中饱和烃和芳香烃矿物油的测定”采用了HPLC-GC联用的方法。除了食用油中矿物油污染物的研究,武彦文团队还进行了婴幼儿配方乳粉、巧克力和咖啡中的矿物油分析等研究工作。下一步,武彦文计划在继续拓展不同基质食品中矿物油研究的同时,还将开展将该方法应用于环境领域的探索工作。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b7041e77-aee3-4026-8ae1-d55b1986d51e.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 合影 /strong /span /p p strong 附录 /strong : /p p style=" text-indent: 2em " 北京市理化分析测试中心(理化中心)成立于1979年,隶属于北京市科学技术研究院,是公益性大型综合分析测试科学事业机构,围绕着食品药品安全、环境监测、材料分析、生物技术等主要领域开展分析测试科学研究和技术服务工作。理化中心坚持以分析测试为核心业务,以公益技术支持、公共技术服务和科学技术创新为立足点的发展定位,依靠高素质的分析方法开发与检验检测队伍,采用先进的分析测试技术和手段,为全社会提供全方位多层次的分析测试服务。 /p p style=" text-indent: 2em " 德国Axel Semrau公司致力于开发,销售和支持样品制备和色谱自动化专业解决方案的,如在线SPE,以及LC,LCMS,GC和GCMS其他高效前端解决方案,还包括基于LC-GC和GCMS-系统的应用优化的工作站。Axel Semrau公司开发的产品如专业色谱软件解决方案和LC-GC系统,已在全球上市和销售。 /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)是一家专业的,具备研发,集成,生产,代理,销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士及硕士和专业培训的工程师组成的技术团队,销售团队覆盖大中国区的整个区域;致力于市场研究与应用开发,将世界领先的分析技术与行业标准与中国分析技术发展相结合,将先进分析技术及解决方案本土化。 /p p style=" text-align: right "   采访撰稿编辑:刘丰秋 /p p span style=" text-indent: 2em " /span br/ /p p br/ /p
  • 如何高效准确地进行矿物油含量检测分析?
    近日,新京报报道指出,部分罐车在卸载煤制油后,未进行清洗便直接用于装载食用油,此事件迅速引起社会各界的广泛关注,油脂质量和我国人民群众身体健康之间的关系极为密切。◀ 矿物油组成及毒性▶ 01矿物油是C10-C50烃类化合物的总称,主要由饱和碳氢化合物(mineral oil saturated hydrocarbons, MOSH)、芳香族碳氢化合物(mineral oil aromatic hydrocarbons,MOAH)以及少量的多环芳烃(PAH)和含硫、含氮化合物构成。矿物油可以通过多种途径进入食品,传统的包括环境污染、采收运输、生产加工、包装销售等,整个产业链均可能发生矿物油迁移,从而污染食品。有毒理学研究表明,MOSH是人体中累积量最大的污染物,主要来源于食物的摄入。进入体内的矿物油,在小肠和肝脏被代谢为脂肪酸和脂肪醇后,部分MOSH会蓄积在人体的皮下脂肪、肝脏、肾脏、脾脏和肠系膜淋巴结等器官和组织中。相比MOSH,MOAH虽然没有蓄积效应,但其毒性很大,其中含3个以上苯环的MOAH具有遗传毒性和致癌性。◀ 矿物油检测方法分析▶ 01目前,高效液相色谱-气相色谱-氢火焰离子化检测器在线联用技术(HPLLC-GC-FID)是测定食品中矿物油的理想方法(DIN EN 16995-2017),原因是FID对所有烃类化合物的响应几乎完全一样,相同浓度的任一碳氢化合物的FID响应信号(峰高或峰面积)接近,因此,无需寻找与目标物对应的参考标准,仅采用任一内标物即可对不同化学组成的矿物油进行准确定量。气相色谱的作用是可以将矿物油按照沸程由低到高分离,从而可以通过色谱图了解矿物油的碳数范围信息。然而,仪器复杂且造假昂贵导致改方法普及程度不高。国内的两个标准GB/T 5539和GB/T 37514,采用了皂化法和氧化铝薄层色谱法,方法不足之处在于方法只能用于定性, 不能用于定量,而且检测限较高。02ISO 17780:2015,GC-FID(离线方法)装填的层析柱或SPE柱借助硝酸银渍来提高MOAH和烯烃的保留能力,使得MOSH分段流出。该方法与食品接触领域,相关检测标准SN/T4895-2017《食品接触材料 纸和纸板 食品模拟物中矿物油的测定气相色谱法》相近。SN/T4895-2017的检测原理是:经迁移试验获得的食品模拟物,经正已烷萃取富集,用固相萃取柱洗脱分离矿物油MOSH部分和MOAH部分,浓缩定容后,采用气相色谱火焰离子检测器(FID)测定,用内标物定量计算。依据此标准,睿科集团推出的0.3% AgNO3-Silica Glass, 3g/6mL(P/N:RC-204-AS306)定制固相萃取柱,可以较好分离MOSH和MOAH。◀ 仪器设备和耗材解决方案▶ 仪器设备检测项目设备类型技术性能设备型号矿物油含量全自动浓缩设备全自动的水浴氮吹浓缩仪-Auto EVA 60高通量全自动平行浓缩仪-Auto EVA 80高通量全自动平行浓缩仪耗材检测项目耗材矿物油含量固相萃取柱:0.3%硝酸银硅胶玻璃柱货号:RC-204-AS306◀ 样品制备自动化实验流程▶
  • 矿物油分析最新进展-德国奶粉事件分析方法解读
    10月25日,中国中央电视台CCTV 13“新闻直播间”报道了“德机构称部分婴幼儿奶粉检出矿物油残留”的食品安全新闻。中国安捷伦科技与仪真分析多年前就关注矿物油食品安全问题,并与欧洲保持同步,将欧洲最新的矿物油分析解决方案提供到国内。目前,国内已经有多家用户在使用此分析系统。导读中央电视台所称的德机构,实际上是德国著名的公益检测机构foodwatch。他们最近在德国、法国和荷兰随机抽样了16种罐装婴儿配方奶粉和婴儿奶制品,分析是否含有矿物油残留。并在2019年10月24日,公布了其检测方法和结果。以下是该报告中使用的分析方法的解读。1分析方法参照欧盟JRC(联合研究中心)方法:在线LC-GC-FID二维色谱联用法定量,检测限0.5 mg/kg;使用GC*GC-TOF联用法定性。2参与分析的实验室3家经过认可的实验室。3实验前处理用氧化铝除去MOSH干扰物、环氧化去除MOAH测量干扰。4实验结果4.116种受试产品中,有15种产品的MOSH/POSH含量高于0.5mg/kg的定量限,在5 mg/kg以上至8.4 mg/kg的范围内有4个样品。4.216份样本中,有8份(50%)检测到MOAH阳性,含量范围为0.5mg/kg至3.0mg/kg。阳性产品中MOAH含量表明它们受到了未完全纯化的矿物油的污染。4.3使用GC*GC-TOF分析技术对MOAH阳性物质中相应的标记物质和物质组的阳性结果进行分析验证,证明了污染物来自矿物或化石来源。4.4矿物油污染来源不能完全确定,可能来自生产链,也可能来自包装材料。虽然此次抽检的产品是从德国市场取样,但是这些奶粉工厂生产的产品是否也销售至需求量庞大的中国市场,是一个值得探究的问题。虽然中国目前奶粉的各项检测指标中,并没有关于芳香烃类矿物油(MOAH)的抽检。但作为事件的扩展,这些企业的中国方面也正对国内配供的婴幼儿配方奶粉做出安全的保证。矿物油矿物油(MOH)是以石油、煤或天然气为原料,经过加工提炼,获得的一类碳原子个数不同的烃类混合物,常见的碳数在C10-C50之间。外观类似日常的油脂,但又不来自于动物或植物。为了和动植物油脂有所区别,故称矿物油。常见的矿物油种类繁多,可能是燃料油、润滑油、白油、蜡油和除尘剂等等。随着产品的大量使用,矿物油逐渐渗入到我们的食物链中。矿物油的毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料 MOSH 迁移量小于 2mg/kg, MOAH 小于 0.5mg/kg。2017 年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。矿物油分析解决方案(Chronec LC-GC-FID)矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:系统清洁和改装技术,去除背景使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。Chronect 矿物油分析系统用户Chronect矿物油分析系统在欧美已经成功拥有了超过70家用户,包括BfR (德国联邦风险评估研究所),Eurofins(欧陆科技),德国SGS,德国IFP实验室, 费列罗(Ferrero)等著名欧洲食品检测实验室。本次foodwatch使用的3家独立实验室均使用Axel Semrau的分析系统:在线LC-GC-FID定量和GC*GC*TOF 定性。或许有被模仿,但AS在矿物油分析的专业性从未被超过,AS公司技术的矿物油分析方案的检测限为0.5 mg/kg。仪真分析和安捷伦中国仪真分析历来密切关注食品卫生安全的动态,为消费者提供咨询、建议及检测决方案。德国Axel Semrau公司选择了仪真分析作为大中国区的合作伙伴,授权并传授了其矿物油分析系统的设立,改装和分析技术。仪真是中国安捷伦科技的合作伙伴(VAR),首先共同推出安捷伦液相和气相色谱平台上的构建的Online-LC/GC-双通道FID+MS全自动矿物油检测方案,完全符合欧盟标准方法,并被国标或行标,如粮油系统行标-矿物油在油脂中的检测(草案),以及矿物油在大米中的检测(草案)作为推荐方案,被多位中国用户成功使用,食品企业未雨绸缪,已经建立内部监控计划,以可靠的数据应对突发事件。德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)已经于2019年8月正式揭牌,成为国内科研检测人员研究矿物油分析方法的平台。揭牌过程由仪器信息网全程跟踪报道(https://www.instrument.com.cn/netshow/SH101203/news_492242.htm)。欢迎光临2019.10.30-31的北京CIFSQ仪真分析展台或者2019.11.5-8 布拉格RAFA2019的Axel Semrau展位,有矿物油全自动分析系统及其它食品分析热点仪器展出。 请联系仪真分析或安捷伦科技,获取更多产品信息。
  • 火星探测中的近红外光谱矿物表征
    北京时间2月19日凌晨4时55分,在“天问一号”进入火星轨道一周后,“毅力”号(Perseverance)火星车不经变轨直接突入火星大气层,并成功着陆。本轮火星探测季也进入了新的阶段。毅力号火星车毅力号的着陆地点是位于北纬18度的耶泽罗陨击坑(Jezero crater)。有证据表明曾经有河流流入耶泽罗陨击坑,形成了一个早已干涸的三角洲。而毅力号在此处着陆,一项重要目标便是识别和收集该地区的沉积岩和土壤样本,探寻可能存在的火星生命迹象,同时测试人类在火星生存的技术。火星表面矿物分布提供了火星起源、地质及环境演化线索,火星表面卤水种类及分布提供了火星气候/水文演变信息。此外,毅力号还将通过对表面岩石、土壤物理化学特征的分析,帮助人类理解火星地质以及大气环境。Raman(拉曼)与NIR(近红外)光谱技术是从分子层面识别火星表面及次表面物质成分、丰度及分布特征的重要手段,是多国火星车的必备科学设备。位于毅力号火星车桅杆单元的SurperCam(超级相机)搭载了Raman和NIR光谱仪对火星进行巡视探测,将Raman与NIR数据融合进行联合矿物表征分析,并开展火星表面卤水及其它与水相关物质的分析具有重要科学意义。对地外行星探测来说, 近红外光谱技术具有几乎无需样品制备、信号易获取、探测矿物种类丰富、对H2O/OH探测响应灵敏等特点。马尔文帕纳科(Malvern Panalytical)旗下ASD TerraSpec Halo矿物近红外光谱分析仪以其宽广的光谱范围(350-2500nm)、超高光能动态范围、高光谱分辨率及重现性及体积小巧坚固结实等特性被选择使用于为人类重返月球、探測火星准备的多项重要研究中,以提高人类勘探行星资源的能力。其中之一是由NASA赞助的研究项目,地理发现操作策略测试(GeoHeuristic Operational Strategies Test-GHOST),选择了由马尔文帕纳科赞助和提供的涵盖VIS-NIR-SWIR波段的ASD TerraSpec HALO,以提高火星车样品收集的速度、效率和科学回报。该项目使用光谱仪模拟火星科学实验室(MSL)的ChemCam和2020火星车的SuperCam.SurperCam(超级相机)于毅力号火星车位置示意图分子在红外光谱内的吸收产生于分子振动或转动的状态变化或分子振动或转动状态在不同的能级间跃迁。能量跃迁包括基频跃迁(对应分子振动状态在相邻振动能级之间的跃迁)、倍频跃迁(对应于分子振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。由于近红外光谱谱峰较宽,实际样品中各种成分的吸收峰重叠严重,需要用化学计量学方法对近红外光谱进行化学成分的定量分析。蒙脱石/黑色,伊利石/亮蓝色,白云母/深蓝色的可见-近红外光谱曲线SuperCam超级相机桅杆单元内部(装配前)TerraSpec Halo矿物近红外光谱分析仪是勘探地质市场上最便携的近红外(NIR)仪器,它是手持一体式全量程的仪器。扣动一下扳机,这款创新性的仪器可以即时在仪器上获得矿物分析结果。这些近乎实时显示的结果极大地加快了勘探的工作力度,提高了效率,有助于进行分析和决策,最终为采矿经营者节省了宝贵的时间和金钱。TerraSpec HALO还被广泛地应用于例如考古和采矿行业中,包括陶瓷、陶器的成份分析,艺术品的鉴定和修复,矿藏的勘探,开采和加工等等。TerraSpec HALO矿物分析近红外光谱仪TerraSpec HALO光谱库内置超过150种矿物质的700种以上的光谱,来源于大学、个人采集、国际研究所、以及美国地质勘探局(USGS)的矿物质目录,并可由客户自定义添加光谱库,以进行矿物质的快速识别,且具有GPS和语音备忘录功能。TerraSpec HALO采用专利的矿物质匹配算法,通过将未知物质光谱与内置矿物质谱库匹配,计算匹配矿物后,将其从未知物质光谱中被扣除。使用扣除后的未知物质光谱,继续匹配,最多可以生成7种相关矿物成份的识别。将获取光谱导入计算机Halo Manager软件中可分析多达9种矿物成份。随机自带矿物质评级显示于屏幕右侧,描述矿物结晶程度或构成性质,允许地质学家了解地质或地热的情况,以指引潜在的矿物。参考文档:1. https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/2. https://finance.sina.com.cn/tech/2021-02-19/doc-ikftssap6896673.shtml3. http://www.globenewswire.com/news-release/2019/07/16/1883283/0/en/Renowned-Researchers-Leverage-Malvern-Panalytical-s-ASD-TerraSpec-Halo-Mineral-Identifier-to-Advance-Investigation-of-Life-on-Mars.html4. https://www.materials-talks.com/blog/2019/07/10/asd-terraspec-halo-used-in-space-based-research/5. 徐伟杰 火星表面模拟矿物和卤水的光谱鉴别研究[D] 山东大学 2018年
  • 岛津推出地质矿产元素分析解决方案
    两千多年前中国的铜矿开采规模就已经达到了非常可观的地步,中国古老的《山海经》、《禹贡》、《管子》等书籍以及古希腊的《石头论》中均包含了古代人类对于岩石矿物知识的总结。最近60 年来,我国地质测试工作为地质科学研究、矿产资源及地质环境评价奠定了重要基础,成为国土资源调查、普查勘探、找矿、矿产储量计算和矿产综合利用不可缺少的重要依据。 岩矿分析是分析化学在地球科学应用的一个分支学科,它以岩石、矿物为研究对象,它的任务是确定岩石、矿物的化学组成及有关组份在不同赋存状态下的含量。岩矿分析是地球科学研究中的一个重要组成部分,同时,岩矿分析数据也是各种地球科学研究成果中的重要组成部分。目前国土资源部发布了岩石和矿石化学分析方法总则及一般规定《GB/T14505-2010》、地质矿产实验室测试质量管理规范《DZ/T0130-2006》等标准,规定了岩矿分析、海洋实验测试等规范中有关质量保证、样品、测试、质量监控、质量评估、数据处理、质量审查、资料归档的通用原则。 随着地球科学的不断发展,分析对象和分析任务不断扩大和复杂化,从而对岩矿分析工作的要求也日益增多和提高。从发展的趋势来看,除常量元素分析外,还要求在同一试样中进行多种痕量超痕量组份的定量分析。岩矿种类繁多,成分和结构复杂,含量有高有低,要求分析的项目多样,这就需要依靠高灵敏度、高通量、便捷快速的检测手段。 岛津公司作为全球著名的分析仪器厂商,旗下分析仪器涵盖色谱、光谱等多款产品,在分析行业发挥着独特的作用。进入中国30多年来,岛津公司一直推陈出新, 及时提供全面的解决方案。岛津分析中心自2012年2月以来,积极与国家地质测试中心和国家海洋局第一海洋研究所合作,通过国家地质测试中心和海洋一所提供地矿样品结合岛津仪器开展应用方法开发,积累了大量地矿样品分析的应用经验和高质量的应用数据,推出《地质矿产元素分析解决方案》,供相关人员参考,希望能对地质矿产行业的发展有所帮助。 该方案涉及的检测方法如下: ICP-AES测定锌精矿中的多种金属元素ICP-AES测定玄武岩中的微量元素ICP-AES法测定硫化物矿石中的14种常微量元素ICP-AES测定页岩矿石中的多种微量元素ICP-AES测定正长岩岩中的微量元素ICP-AES测定花岗岩中的微量元素ICP-AES测定超基性岩岩中的微量元素ICP-AES测定海洋沉积物锰结壳中的常量、微量元素ICP-AES法测定海洋沉积物中的常微量元素岩矿土壤沉积物中微量元素的分析 有关详情,请您向“岛津全球应用技术开发支持中心”咨询。 咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 堪称粘土矿物分析“神器”的设备,究竟好在哪儿?
    粘土矿物主要指那些粒级为粘土级的层状含水铝硅酸盐矿物,有较大的比表面能,膨润性、吸附离子的可交换性优异。常见的粘土矿物主要有高岭土、蒙脱石、伊利石、绿泥石以及这些矿物组成的混层矿物,X射线衍射分析仪则是分析此类化合物的优异设备之一。奥林巴斯便携式X射线衍射分析仪可以为地质学家、冶金学家等提供实时的定量矿物学信息。地质勘探学者可以利用XRD现场分析的数据立即做出准确决策,冶金学家可以利用XRD分析数据提供高效的提纯精炼工艺,有益于提高矿石的分析效率。便携式XRD与实验室XRD分析结果一致,如下图是奥林巴斯便携式XRD(Terra)分析粘土矿物的谱图,结果表明样品主要含有方解石、伊利石、石英、钠长石及绿泥石。分析一系列粘土样品,可对比谱图的差异来观测样品的组分差异。奥林巴斯便携式XRD五大优势:极大的便携性极少样品量(约15mg)独特的震动舱设计简易的样品处理XRD与XRF同步分析检测奥林巴斯的XRD分析仪是一款高性能、封闭射线式便携XRD分析仪,可以通过对Cl到U元素进行的一次性快速XRF扫查,提供材料主要成份、次要成份或微量成份的全晶相结构信息。所需样品量极少,操作简便,可使操作人员在野外对样品进行实时快速的现场分析。
  • 热烈祝贺2019年4月19-4月22中国矿物岩石地球化学学会第 17 届学术年会在杭州圆满落幕
    恭祝此次杭州会议圆满举办成功,感谢各位老师朋友莅临展位并给予很多宝贵的意见和建议! 此次会议主要是为展示、交流和总结我国矿物学、岩石学与地球化学研究领域的研究成果,促进我国地球科学的发展与整体学术水平的提高 此次会议是由中国矿物岩石地球化学学会主办,由浙江大学地球科学学院和中国科学院地球化学研究所联合承办,会议地址在浙江大学金港校区。本次会议根据国内外本领域内学科发展趋势共设置了多个专题,长达三天的会议时间。 会议中研讨的主题有:专题1:地球表层系统中矿物环境属性与效应专题2:矿物表/界面过程专题3:地质过程与成岩成矿作用的矿物标识专题4:“三稀”矿产资源研究和利用中的矿物学问题专题5:板块俯冲带地球化学循环及其资源环境效应专题6:地壳物质再循环与花岗质岩浆作用:源区、机制和过程专题7:幔源岩浆活动和地幔动力学等其他专题方面的研究。
  • 牛津仪器显微分析技术在地质及矿物分析中的应用
    显微尺度下的矿物分析是地质领域非常重要的研究内容,采用不同的分析技术可以获得多维度的信息。牛津仪器的材料分析集团(Materials Analysis Group)整合了EDS、EBSD、WDS、Raman、AFM等多种显微分析技术,这些技术均可用于地矿样品的分析。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,牛津仪器应用科学家陈帅将分享报告,以具体的案例详细地展示牛津仪器显微分析技术在地矿领域的最新进展,内容包括EDS技术定量分析、鉴定未知矿物相;AZtecWave分析微量-痕量元素以及谱峰重叠严重的元素;Unity探测器对全样品进行BEX成像;EBSD技术分析矿物的相分布、取向关系和变形状态等;AZtecMineral分析矿物相比例、解离度、共生关系等参数;Raman成像技术鉴别矿物相、分析矿物相的三维分布;AFM技术分析矿物的物理性能等。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 印度月球探测器发现月面含铁矿物
    东方网1月5日消息:据中国探月网消息,美国航空航天局2008年12月25日表示,印度月球探测器上由该局提供的“月球矿物学测绘仪”(M3)在月面上发现了含铁矿物。   该仪器发回了东海盆地区域的图像,表明那里有丰富的辉石等含铁矿物。利用不同的波长,该仪器还首次揭示了岩石和矿物成分的变化。来自这台7公斤重的仪器的数据使空间科学家首次有机会以很高的空间和光谱分辨率来研究月球矿物学。据了解,仪器是由喷推实验室设计建造的。
  • 油+油,鬼见愁|食用油中矿物油检测难点一文解读
    仪器信息网讯2024年7月17日,食用油中矿物油的检测——Easy选型直播活动圆满落幕!本次活动由仪器信息网携手上海仪真分析仪器有限公司(以下简称“仪真分析”)联合主办,特别邀请了矿物油检测领域的资深专家,深入探讨了食用油中矿物油检测的技术动态及未来趋势,并展示了全自动矿物油分析解决方案及真机操作。此次线上活动现场累计超4000人观看,专家互动答疑环节观众提问踊跃。主题圆桌——食用油中矿物油检测技术难点及发展趋势近期,“罐车混用”事件再次引发公众对食品油安全的深切关注,使得“矿物油”问题成为社会焦点。在此背景下,本次论坛紧密追踪热点话题,专门设立了“食用油中矿物油检测技术及其未来发展趋势”的圆桌讨论环节。此环节特别邀请到在矿物油检测领域深耕多年的北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员和仪真分析仪器有限公司技术总监朱丽敏博士两位行业专家,共同探讨矿物油检测技术、食用油中矿物油的检测难题以及矿物油检测技术所面临的挑战,圆桌论坛主持由仪器信息网编辑蔡小芳担任。圆桌对话矿物油(MOH)源自石油与合成油,主要包含饱和烃(MOSH)及芳香烃(MOAH)两部分,它们或容易蓄积在人体,或有致癌和致畸毒性。矿物油会通过环境污染、种(养)殖采收、生产加工、包装储存等多种途径迁移进入食物,给人类健康带来风险。北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员对于开展矿物油分析研究工作的契机,武彦文老师分享到:当初我在研究食用油脂时发现,我国矿物油污染物的分析技术与国外差距很大,特别是由于我国的标准方法远远落后于国外,给油脂企业特别是出口企业造成很大困扰。于是,她迅速转变科研方向,开启矿物油分析测试技术的研发工作。她首先研读了几乎所有相关文献,发现我国在这个细分领域的研究几乎处于空白,不仅在理论理解上偏差,检测仪器也相去甚远,因此她开启了“精彩”的矿物油分析研究之路。仪真分析仪器有限公司技术总监朱丽敏博士仪真分析在矿物油检测始于对食品新型污染物检测技术的关注。2015年,朱丽敏博士在瑞士参观了一家专注于矿物油检测的实验室,意识到国内在该领域缺乏成熟的解决方案。2018年,仪真分析便凭借其技术实力和良好的商业信誉,获得了德国Axel Semrau公司的青睐,成为其在中国地区的独家技术合作伙伴。达成合作后,仪真分析坚持将技术本土化,来更好地满足中国客户的需求。2018年,仪真分析成功改装了第一台本土化的LC-GC在线分析平台,并将其推广到国内市场。获得了国家粮油检测部门、国际食品企业和第三方检测机构的广泛认可,并成功应用于食用油、食品接触材料、婴幼儿配方奶粉多个细分领域。两位老师在分享了开启矿物油检测的契机后,针对矿物油分析检测技术和食用油中矿物油检测难点展开讨论。武老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。在谈到矿物油分析检测未来的发展趋势,朱博士认为,矿物油检测技术正朝着更精细的成分分析、标准化方法和精确溯源的方向发展。将通过LC-GC-MS/MS联用技术将毒性更强的MOAH实现更精确的定性和定量分析;针对不同食品基质,如婴幼儿配方奶粉和食用油,将制定标准化的检测方法,以确保结果的可比性和一致性;此外,建立和完善矿物油溯源数据库,并开发先进的溯源技术,将有助于实现对矿物油来源的精准定位,从而更好地保障食品安全。精彩报告——《全自动矿物油分析解决方案》报告人:上海仪真分析仪器有限公司高级产品经理 张鸿矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。仪真分析在过去的20多年来一直关注食品分析方面的研究,在2018年开始涉足矿物油检测,并推出了全自动在线LC-GC二维色谱联用矿物油分析系统。全自动矿物油分析系统全自动矿物油分析系统以其卓越的性能优势显著提升了矿物油检测效率和质量。系统采用了清洁和改装技术,有效去除了背景干扰,确保了分析结果的准确性。通过液相色谱和硅胶柱的高效分离技术,矿物油能够从油脂等复杂介质中被精确提取。部分溶剂蒸发技术保证了样品在气相色谱中的超低量分析,而双通道双FID技术则实现了对MOSH和MOAH的同时定量检测,大大缩短了分析时间。全自动氧化铝和全自动环氧化技术的应用,也进一步增强了样品分析的灵敏度和准确度。最后,软件的兼容性能够与市场上所有主要品牌的LC和GC实现无缝对接,为用户提供了极大的便利。最后,张鸿还介绍了仪真分析的FAT/SAT服务,仪真分析提供的FAT服务(Factory Acceptance Test)确保了在实验室内使用标样对系统进行彻底测试,以确认其良好运行。在完成测试并拆卸包装后,仪真分析能够保证用户现场快速安装并投入试用。SAT服务(Site Acceptance Test),仪真分析提供详细的产品安装准备条件书,其中包括化学试剂的选择和前处理的准备工作等。仪真分析还为用户提供培训,详细讲解矿物油分析过程中的注意事项,确保用户能够熟练操作并维护系统。真正实现交钥匙工程!真机演示——走进仪真分析,进一步体验上机操作除了精彩纷呈的专家讲座和深入浅出的技术解析,本次直播活动还特别设置了“真机演示”环节,张鸿老师带领观众走进仪真分析,亲身感受全自动矿物油分析平台的强大功能。平台选用性能优良的安捷伦气液相色谱部件给客户带来了更好的体验,仪真分析和安捷伦的专家强强联合在现场进行专业讲解,详细介绍了系统各个组件的功能和工作原理,并针对观众可能遇到的操作疑问进行解答。精彩内容之外,直播间还进行了丰富多样的互动抽奖活动,贴心的准备了精美礼品回馈积极参与答题互动的用户们,也将直播间的热度推向高潮。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制