当前位置: 仪器信息网 > 行业主题 > >

土壤总氟化物检测

仪器信息网土壤总氟化物检测专题为您提供2024年最新土壤总氟化物检测价格报价、厂家品牌的相关信息, 包括土壤总氟化物检测参数、型号等,不管是国产,还是进口品牌的土壤总氟化物检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤总氟化物检测相关的耗材配件、试剂标物,还有土壤总氟化物检测相关的最新资讯、资料,以及土壤总氟化物检测相关的解决方案。

土壤总氟化物检测相关的资讯

  • 日本突发!多地有机氟化物超标,大量居民血检异常
    据CCTV-4中文国际频道官方微博13日报道,日本媒体12日援引一项最新调查报道称,大阪府摄津市部分居民血液中有机氟化合物含量偏高,健康受到威胁,目前相关话题登上了微博热搜第一位。据报道,近期,日本关西地区多座城市的河流和地下水检测出全氟和多氟烷基物质超标,大阪府摄津市是其中之一。 今年9月以来,当地一个由医生和研究人员组成的市民团体组织居民参加血液检测。结果显示,87名受检居民中,31人血液中含有高浓度的全氟和多氟烷基物质。这一市民团体决定扩大检测范围,将对当地1000名居民做血检,并根据调查结果要求日本中央政府采取对策。据了解,全氟和多氟烷基物质难以降解,会在环境和人体中累积,因此被称为“永久性化学物”。专家指出,长期大量饮用受这类物质污染的水可能影响生殖健康和儿童生长发育,甚至引发乳腺癌、前列腺癌等疾病。日本多地居民血液中全氟和多氟烷基物质超标今年以来,日本多地曝出居民血液中全氟和多氟烷基物质超标,他们大多居住在驻日美军基地和日本自卫队基地附近区域。此前,一个名为“曝光多摩地区有机氟化合物污染之会”的市民团体组织当地居民参加血液检测。根据他们6月8日公布的检测结果,参加血液检测的650人中,有335人血液有机氟化合物超标,达到日本全国平均值的大约2.4倍。据日媒报道,嫌疑最大的污染源是位于东京西郊的美军横田基地。日本相关标准是每升水中不超过50纳克有机氟化合物。而据东京都自来水公司网站发布的消息,多摩地区的水质抽查结果显示,有至少两家净水设施净化过的自来水中有机氟化合物浓度都是相关标准值的2到3倍。参加血液检测的不少当地居民对自来水污染可能引发的健康问题感到担忧。多个美军基地周边测出高浓度有机氟化合物此前有英国记者报道称,位于多摩地区西部的驻日美军横田基地使用含有高浓度有机氟化物的泡沫灭火剂,多年来持续污染土壤。此外,神奈川县和冲绳县的驻日美军基地及周边地区也相继检测出高浓度有机氟化物。去年10月,冲绳驻日美军基地附近的387名居民进行了血液检查,结果也显示有机氟化物超标。不过,由于日方称没有权限进入驻日美军基地调查,受污染地区周边居民只能忍气吞声。中国新闻社综合自:@CCTV4、CCTV-7《正午国防军事》、CCTV-13《新闻直播间》
  • 全国土壤污染物状况详查检测项目和分析方法汇总
    近日,国务院下发通知,按照党中央、国务院有关决策部署,为全面掌握我国土壤资源情况,国务院决定自2022年起开展第三次全国土壤普查。  据仪器信息网跟踪,其中土壤污染状况调查及相关监测评估或是至关重要的一环,将涉及大量分析检测与仪器配置等相关工作。仪器信息网特别整理2017年发布的“全国土壤污染物状况详查检测项目和采用的分析方法”,供广大用户与仪器企业参考。详查计划检测项目和采用的分析方法一览表序号检测领域检测项目分析方法参考标准编号1土壤无机污染物总镉GAAS法、ICP-MS法GB/T 17141-1997、HJ 766-2015总汞原子荧光法GB/T 22105.1-2008总砷原子荧光法GB/T 22105.2-2008、HJ 766-2015总铅ICP-MS法、ICP-AES法、GAAS法HJ 766-2015和GB/T 14506.30-2010、HJ 781-2016、GB/T 17141-1997总铬ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、HJ 491-2009总铜ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17138-1997总镍ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17139-1997总锌ICP-AES法、ICP-MS法、FAAS法HJ 781-2016、HJ 766-2015、GB/T 17138-1997总钴ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总钒ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总锑ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总铊ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总锰ICP-AES法、ICP-MS法HJ 781-2016、HJ 766-2015总铍ICP-AES法、ICP-MS法HJ 781-2016、HJ766-2015总钼ICP-MS法HJ 766-2015氟化物离子选择性电极法GB/T 22104-2008氰化物异烟酸-巴比妥酸分光光度法、异烟酸-吡唑啉酮分光光度法HJ 745-20152土壤有机污染物多环芳烃GC-MSD法HJ 805-2016有机氯农药GC-MSD法HJ报批稿2土壤有机污染物邻苯二甲酸酯类GC-MSD法ISO 13913-2014石油烃(C10-C40)GC-FID法ISO 16703:2011挥发性有机物顶空GC-MSD法、吹扫捕集GC-MSD法HJ 642-2013、HJ 605-2011酚类GC-FID法HJ 703-2014硝基苯类GC-MSD法EPA method 8270D苯胺类GC-MSD法EPA method 8270D多氯联苯GC-MSD法HJ 743-2015二噁英类和呋喃HRGC-HRMS法HJ 77.4-20083土壤理化性质水分重量法HJ 613-2011pH值玻璃电极法NY/T 1377-2007有机质重铬酸钾容量法LY/T1237-1999机械组成吸管法、密度计法LY/T 1225-1999阳离子交换量乙酸铵交换法、氯化铵-乙酸铵交换法NY/T 295-19954农产品(水稻/小麦)污染物总砷ICP-MS法、AFS法GB 5009.11-2014总铅GAAS法、AFS法、ICP-MS法GB 5009.12-2010总镉GAAS法、ICP-MS法GB 5009.15-2014总汞原子荧光法、冷原子吸收法GB 5009.17-2014总铜FAAS法、GAAS法、ICP-MS法GB 5009.13-2003总锌FAAS法、ICP-MS法GB 5009.14-2003总镍GAAS法、ICP-MS法GB 5009.138-2003总铬GAAS法、ICP-MS法GB 5009.123-20145地下水无机污染物金属元素(同土壤)ICP-AES法、ICP-MS法、AFS法HJ 776-2015、HJ 700-2014、HJ694-2014氟化物离子选择性电极法、离子色谱法GB 7484-87、HJ 84-2016氰化物异烟酸-吡唑啉酮分光光度法HJ 484-20096地下水有机污染物多环芳烃GC-MSD法HJ 478-2009有机氯农药类GC-MSD法HJ 699-2014邻苯二甲酸酯类GC-MSD法ISO 18856-2004石油烃(C10-C40)GC-FID法ISO 9377-2:2000挥发性有机物顶空GC-MSD法、吹扫捕集GC-MSD法HJ 810-2016、HJ 639-2012酚类GC-MSD法HJ 744-2015硝基苯类GC-MSD法HJ 716-2014苯胺类GC-MSD法USEPA Method 8270D多氯联苯GC-MSD法HJ 715-2014二噁英类和呋喃HRGC-HRMS法HJ 77.1-2008检测方法说明:ICP-MS 等离子体质谱 ICP-AES 等离子体发射光谱 GAAS石墨炉原子吸收 FAAS火焰原子吸收 AFS 原子荧光GC-FID 气相色谱火焰光度 GC-MSD气相色谱质谱 HRGC-HRMS 高分辨气相色谱高分辨质谱
  • 东莞市标准化协会发布《冬虫夏草中有机氟化物的检测》团体标准征求意见稿
    各有关单位:由东莞市东阳光冬虫夏草研发有限公司、广州市药品检验所、暨南大学、澳门科技大学、中国检验检疫科学研究院等单位牵头起草的《冬虫夏草中有机氟化物的检测》团体标准的草案编写工作已完成,为集思广益,进一步修订和完善该标准,使该标准更具科学性、针对性、适用性和可操作性,现公开征求意见。如对标准草案内容有任何意见建议,请各单位于2023年8月15日前填写《东莞市标准化协会团体标准征求意见反馈表》(附件3)并加盖公章,反馈至我会秘书处。联系人:何见心 电子邮箱:dgbzh2009@126.com 东莞市标准化协会2023年7月14日附件:附件1《冬虫夏草中有机氟化物的检测》(征求意见稿).pdf附件2《冬虫夏草中有机氟化物的检测》(征求意见稿)编制说明.pdf附件3 东莞市标准化协会团体标准征求意见反馈表(1).doc关于征求《冬虫夏草中有机氟化物的检测》团体标准意见的通知.pdf
  • 检测土壤中全氟化合物有难题?谱育科技LC-MS/MS来助力
    前言 近年来,全氟化合物的毒性检测研究已成为众多科研工作者关注的热点,欧盟、美国、加拿大相继出台了一系列环境中全氟化合物的检测标准。2022年2月,国务院发布第三次全国土壤普查文件,全氟化合物纳入本次普查监管范畴。 本文使用谱育科技 EXPEC 5210 超高效液相色谱-三重四极杆串联质谱仪(LC-MS/MS),建立了土壤中全氟辛磺酸和全氟辛酸的残留量检测方法。全氟辛烷磺酸和全氟辛酸的检出限、定量限、线性等完全符合标准要求,为普查开展提供强力的国产三重四极杆质谱产品支持。仪器部分EXPEC 5210 LC-MS/MS EXPEC 5210 LC-MS/MS 是谱育科技在“国家重大科学仪器设备开发专项”支持下,自主研发的三重四极杆串联质谱仪。具有卓越的灵敏度,优异的稳定性,集高性价比与可扩展性于一身,广泛应用于食品安全,医学司法检测,生物医药和环境领域。 EXPEC 570 全自动固相萃取仪谱育科技 EXPEC 570 全自动固相萃取仪可自动完成固相萃取全过程(柱活化、上样、柱淋洗、柱干燥、柱洗脱等),自动完成柱切换等功能,实现批量样品的处理。EXPEC 520 氮吹平行浓缩仪EXPEC 520 氮吹平行浓缩仪是通过水浴加热及利用氮气的快速流动打破液体上空的气液平衡,从而使液体挥发速度加快,达到快速浓缩溶剂的效果。实验部分液相和质谱条件典型谱图与标准曲线8分钟即可获得全氟辛烷磺酸和全氟辛酸的色谱图。全氟辛烷磺酸和全氟辛酸的色谱图(1ng/ml)全氟辛烷磺酸和全氟辛酸线性相关系数R均在0.999以上,标准曲线图如下:全氟辛酸标准曲线全氟辛烷磺酸标准曲线总结
  • 百灵达(Palintest)水质检测工具在饮用水水质监测和土壤分析中得到应用
    农村饮用水水质监测项目 由清华大学环境科学与工程系的李教授率领的饮用水处理国家研究计划选择了百灵达(Palintest)水检测试剂盒,用于其中的农村饮用水水质监测项目。该设备将被用来作为研究的一部分,处理中国北方农村普遍存在的水中含氟化物过高的现象。百灵达水检测试剂盒可以服务于整个系列的水检测项目,包括氟化物,氨氮,碱度,氯,铬,铝,铁,镁,钙离子,硝酸盐,锰,硫酸盐和砷。 中国市场上的第一个土壤检测试剂盒 百灵达最近还在中国出售了其首个完整的土壤分析检测试剂盒。SL 170 试剂盒将用于由山西农业科学与技术学院的土壤培肥现场测试。目前,中国正着手在全国范围内进行第二次国土资源大调查,这意味着百灵达的土壤检测试剂盒拥有着巨大的市场潜力。 百灵达 ( www.palintest.com ) 是豪迈旗下一家世界领先的致力于水质量,饮用水及游泳池水质检测装置和环保产品的制造企业。公司在生活用水、工业及商业用水和土壤管理市场方面技术领先。百灵达提供各种光度计和比较仪器、测试工具箱以及用于检测多种元素的试剂系统。目前,公司在中国的办公地点位于豪迈的北京办事处。
  • 东莞市标准化协会发布《冬虫夏草中有机氟化物的检测》 团体标准
    各有关单位:按照《东莞市标准化协会标准管理办法》(东标协〔2019〕12号)的相关规定,标准编制小组按要求组织完成团体标准《冬虫夏草中有机氟化物的检测》的制定工作, 经专家组审查通过,现东莞市标准化协会批准发布,编号为T/DGAS 037-2023,自2023年9月27日实施。 东莞市标准化协会2023年9月27日关于发布《冬虫夏草中有机氟化物的检测》团体标准的公告.pdf
  • Soiltec China 2017:土壤监测、检测市场迎重大利好,您不能不知道的最新资讯
    p   2017环境检测服务需求贯穿土壤污染防治始终,初期基础性工作中,对土壤污染状况以及污染地块分布调查将涉及到环境检测工作,在此后风险评估筛查,对修复效果评估中,也均涉及环境检测业务。土壤监测是做好土壤防治、处理的基础。环保部解读称,《土十条》将推动形成土壤污染防治产业链,规范土壤污染防治产业发展。业内人士和分析机构认为,土壤监测和调查市场将迎来重大利好,权威人士预估土壤监测、检测、修复行业的投资将超过60000亿元,尤其土壤重金属防治及修复产业将迎来黄金发展期,这不仅需要专业的第三方环境检测服务机构提供专业的土壤污染评估、抽样、检测、项目管理及系统集成,更需要社会的积极参与。 /p p   Soiltec China 2017第二届中国国际土壤与地下水修复高峰论坛设置土壤检测专题,热点议题包括: /p p   1.土壤污染检测、早期预警系统与信息管理 /p p   2.土壤环境分析与检测的新产品、新技术、新方法推广应用 /p p   3.土壤污染样品采集和测试技术 /p p   4.土壤监测案例及解决方案分享 /p p   5.检测仪器在土壤有机污染物、VOCs、重金属等检测中的应用 /p p   6.便携检测仪(手持设备、现场快检设备等)在土壤污染物检测中的实时应用 /p p   7.土壤监测与第三方服务等。 /p p   届时将有来自国家环境分析测试中心、上海、江苏、浙江、广东等各地的环境监测中心及监测站等的专家领导带来精彩的分享。 /p p   在精彩分享和讨论的同时,Soiltec China 2017现场还设置了土壤监测、检测的精品展示区,SGS、珀金埃尔默、赛默飞、康达检测、东西分析仪器、岛津、广电计量、聚光科技、莫尔顿水务、安捷伦、必维等纷纷参与并有精彩展示,珀金埃尔默、赛默飞、聚光科技、康达检测、必维均是第二次支持此次活动,目前所剩展示席位不多,如有兴趣参加并展示,请尽快与组委会联系。 /p p   珀金埃尔默——致力于改善人类与环境健康安全,是全球领先的人类健康与环境健康解决方案提供者。8000名专业人员遍布全球,热切地为客户提供无与伦比的体验,以解决愈加严重的人类健康及环境健康问题。我们创新的检测,成像,信息和服务能力,深厚的市场知识及专业技术,帮助您深入洞悉科学前沿以更好地保护我们的生存环境,食品供应和家人健康。 /p p   赛默飞世尔科技——进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。 /p p   SGS通标——SGS是全球领先的检验、鉴定、测试和认证机构,是公认的质量和诚信的基准。SGS提供土壤检测服务,通过关键数据对土壤的适用性进行评估,为明智决策的制定和计划准备。土壤检验服务包括:完成对切变强度、抗压强度、固结度、渗透性、地基负荷、土壤指数和含灰度/密度的实验室测定 软件分析 技术支持和咨询等。 /p p   康达检测——江苏康达检测技术有限公司着力于将实验室建设成为一家拥有环境检测、职业场所检测评价、及分析方法开发研究的综合型检测实验室。公司严格按照ISO/IEC 17025国际规范、实验室资质认定评审准则进行管理和运作。在土壤底质,固体废弃物检测方面具有CMA资质,其中CMA批准的检测能力中有151项为土壤底质,固体废弃物检测项目。 土壤监测项目:各种金属离子、挥发性有机物(VOCs)、半挥发性有机物(SVOCs)、总石油烃类(TPH)、苯系物(BTEX)、有机氯农药(OC Pesticides)、有机磷农药(OP Pesticides)、除草剂(Herbicides)、氟化物、pH值等等。 /p p   东西分析仪器——东西分析作为国内主流生产厂商之一,凭借在环保领域二十几年的经验,为广大用户提供完美的整套环境监测解决方案。此次东西分析参与Soiltec China将会展示色谱产品如GC-4100型气相色谱仪、GC-MS 3200型气相色谱-质谱联用仪,分享土壤中沉积物酚类测定、水中、环境空气中及土壤中挥发性有机物VOCs的测定、非甲烷总烃分析及土壤质量中六六六和滴滴涕的测定等多种解决方案。同时分享了东西分析产品在土壤监测中的解决方案,如东西分析原子吸收,GBC产品ICP、东西分析原子荧光等产品在无机物检测中的应用等。 /p p   岛津——岛津企业管理(中国)有限公司成立于1999年8月11日,是岛津制作所的海外子公司。岛津制作所是著名的测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津公司充分发挥光谱、色谱和质谱仪器产品线齐全的优势,从土壤样品的开始制备到最后的分析检测,提供完整的包括仪器设备、消耗品、试剂、售后服务在内的整体解决方案。多种产品组合可以满足不同用户土壤检测的差异化需求,为用户提供一站式服务。岛津“土十条”检测解决方案,让“美丽中国”根植于洁净的土壤。 /p p   安捷伦——安捷伦是生命科学、诊断和应用化学市场领域的领导者。公司为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。 安捷伦的各种实验室和现场分析设备可确保土壤分析达到最高标准。完整的产品系列提供移动式仪器、ICP-OES、MP-AES、GC/MS 及 LC/MS 分析仪,可用于分析农药、PAH、挥发性物质、半挥发性物质,并且提供样品前处理产品、仪器色谱柱和软件解决方案。 /p p   必维——必维国际检验集团(Bureau Veritas,简称必维)创立于1828 年,是测试、检验、认证和技术咨询服务的全球领导者。必维通过提供全球领先的服务来帮助客户应对在质量、健康、安全、环保和社会责任方面不断增加的挑战。BV专业的环境检测服务,为企业的生产工艺改进和治理提供数据支持,帮助企业提升社会形象。必维环境服务部涉及的领域有土壤、水质、气体等检测服务。 /p p   如您想在Soiltec China 2017上展示产品并分享解决方案,请尽快与组委会联系。 /p p br/ /p
  • EZ氟化物分析仪在饮用水行业中的应用
    EZ氟化物分析仪在饮用水行业中的应用哈希公司01背景介绍EZ3507氟化物分析仪克尔湖区域水系统(KLRWS)位于北卡罗来纳州亨德森市,为大约5万名居民提供饮用水。克尔湖区域水处理厂设计水量 15 MGD(百万加仑/天),日平均产水量约 7 MGD。为促进公众健康,该饮用水厂需要在成品水中添加残余浓度为 0.7mg/L 的氟化物。利用在线和实验室测量氟化物,以确保两者结果一致。两种方法的测量结果误差要求在 0.1mg/L 以内。现场操作人员使用手动调节的蠕动泵来加入氟化物(氟硅酸)。该设施的未来计划是采用一种新的剂量机制,可以根据测量的氟化物浓度进行调整加料。该机构的监测方法是健全的,但目前测量技术的局限性给工作人员带来了挑战。主要有:01实验室的抓样检测不可靠,误差较大;02现有氟化物分析仪需要校准,维护频繁;03现有的在线分析仪不能多通道监测,需要经常更换取样点,容易造成操作中断。此外,处理厂的工作人员希望通过安装可靠的在线分析仪来提高他们自身的安全健康,避 免过量使用氟化物。02应用情况目前现场安装了一台标准加入法的EZ3507氟化物分析仪。客户选择这台分析仪的原因是EZ 氟化物分析仪能够提供准确的测量结果,稳定可靠的运行表现和电极电解液的自动补充等功能。这台分析仪的配置情况如下:01单通道分析仪,用于监测饮用水厂出厂水02氟化物测量范围是0.25-5mg/L,这是北美常见的氟化物范围034-20mA 模拟输出,方便与SCADA集成04安装点在控制室外的透明井上方,透明井是被测样品取水点客户按照Hach的要求和建议进行安装,成功的启动并运行这台氟化物分析仪。清晰可见的玻璃测量容易和氟化物电极可以让操作人员快速看到分析仪和电极是否正常工作,或者是否需要进行日常维护,补充电解液等。自安装以来,客户反映明显减少了对手工测试的依赖。手工监测可能产生不一致的结果,操作者之间的差异容易产生误差,这些都增添了对手工监测结果测量准确性的担忧。事实上,EZ3507氟化物分析仪与实验室比对结果十分准确,以致于工作人员认为EZ3507没有正常工作。然而,在对每种方法进行调查和验证之后,他们确定,由于采用了自动验证等测量步骤,EZ 分析仪更加准确、可靠和稳定。实际上,通过EZ氟化物分析仪,还帮助客户发现了实验室氟化物测量方法和电极的性能问题。03总结EZ3507 氟化物分析仪具有测量准确、稳定等特点,帮助克尔湖水处理厂实现实时监测成品饮用水添加氟化物浓度的目标。可以 24 小时接受氟化物浓度数据,同时维护量非常低。EZ3507 氟化物分析仪操作简单,通过准确的氟化物浓度监测,可以帮助企业节省氟硅酸等药剂的运行费用。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 崂应发布崂应2037型 空气氟化物/重金属采样器(增强型)新品
    崂应2037型 空气氟化物/重金属采样器(增强型)本仪器是一款兼顾环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物采样的多功能仪器。本仪器采样工作点流量涵盖16.7L/min、50.0L/min和100.0L/min,流量50.0L/min和流量100.0L/min时负载能力均能达到20kPa,可实现一机多用。 执行标准n HJ93-2013 环境空气颗粒物(PM10和PM2.5)采样器技术要求以及检测方法n HJ194-2017 环境空气质量手工监测技术规范n HJ/T374-2007 总悬浮颗粒物采样器技术要求及检测方法n HJ539-2015 环境空气 铅的测定 石墨炉原子吸收分光光度法n HJ618-2011 环境空气PM10和PM2.5的测定 重量法n HJ657-2013 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法n HJ955-2018 环境空气 氟化物的测定 滤膜采样/氟离子选择电极法n JJG943-2011 总悬浮颗粒物采样器 主要特点n 一机多用,可实现对环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物的采集n 采样流量范围宽,负载能力强,工作点流量涵盖16.7L/min、50.0L/min、100.0L/min,流量50.0L/min和100.0L/min时负载能力均能达到20kPa,可满足多种采样需求n 可实现即时采样、定时采样、间隔采样等多种采样模式n 采用高精度、宽量程平衡式流量计,微电脑系统检测采样流量,自动补偿因为电压波动和阻力、温度变化引起的流量变化n 采用引风式环境温度检测模块,大幅减小环境温度测量误差,进一步提高流量准确度n 可根据设置的采样流量自动切换内部阻力通道,免除手工更换的麻烦,同时能使采样泵处于最佳工作状态, 提高流量准确度n 采用精密芯泵,负载强,寿命长,噪音低,耐腐蚀,连续运转免维护,具有过载保护功能,适应于各种复杂工况n 宽温高亮TC-OLED显示屏,适用于高寒地区,通俗软件显示界面,人机交互良好n 自动计算累计采样体积,同时可根据气压、温度换算参比采样体积(出厂默认 25℃、101.325kPa 参比状态的体积)或标况采样体积n 内置过滤网,且具有过载、低流量自保护程序,可有效保护气路及采样泵n 外观采用L-Ergo设计,样式新颖,独特的密封结构可有效防雨雪,更适合野外作业n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 预留蓝牙模块,可连接便携式蓝牙打印机,轻松掌握实时数据n 预留物联网模块接口,可拓展联网功能n 采样过程停电自动保存工作数据,来电后可恢复采样 n 大气压可输入和测量,保障低压环境中可正常使用n 具有智能化的软件标定功能n 内置大容量存储器,采样数据可存储、查阅、导出、打印n 氟化物/重金属/TSP/PM10/PM2.5采样头采用铝合金材质,抗静电吸附*说明:以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、可实现对环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物的采集采样流量范围宽,负载能力强,工作点流量涵盖16.7L/min、50.0L/min、100.0L/min,流量50.0L/min和100.0L/min时负载能力均能达到20kPa,可满足多种采样需求。 2、精密芯泵负载强 3、流量精准助采样 崂应2037型 空气氟化物/重金属采样器(增强型)
  • 崂应发布崂应2037型 空气氟化物/重金属采样器(增强型)新品
    崂应2037型 空气氟化物/重金属采样器(增强型)本仪器是一款兼顾环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物采样的多功能仪器。本仪器采样工作点流量涵盖16.7L/min、50.0L/min和100.0L/min,流量50.0L/min和流量100.0L/min时负载能力均能达到20kPa,可实现一机多用。 执行标准n HJ93-2013 环境空气颗粒物(PM10和PM2.5)采样器技术要求以及检测方法n HJ194-2017 环境空气质量手工监测技术规范n HJ/T374-2007 总悬浮颗粒物采样器技术要求及检测方法n HJ539-2015 环境空气 铅的测定 石墨炉原子吸收分光光度法n HJ618-2011 环境空气PM10和PM2.5的测定 重量法n HJ657-2013 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法n HJ955-2018 环境空气 氟化物的测定 滤膜采样/氟离子选择电极法n JJG943-2011 总悬浮颗粒物采样器 主要特点n 一机多用,可实现对环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物的采集n 采样流量范围宽,负载能力强,工作点流量涵盖16.7L/min、50.0L/min、100.0L/min,流量50.0L/min和100.0L/min时负载能力均能达到20kPa,可满足多种采样需求n 可实现即时采样、定时采样、间隔采样等多种采样模式n 采用高精度、宽量程平衡式流量计,微电脑系统检测采样流量,自动补偿因为电压波动和阻力、温度变化引起的流量变化n 采用引风式环境温度检测模块,大幅减小环境温度测量误差,进一步提高流量准确度n 可根据设置的采样流量自动切换内部阻力通道,免除手工更换的麻烦,同时能使采样泵处于最佳工作状态, 提高流量准确度n 采用精密芯泵,负载强,寿命长,噪音低,耐腐蚀,连续运转免维护,具有过载保护功能,适应于各种复杂工况n 宽温高亮TC-OLED显示屏,适用于高寒地区,通俗软件显示界面,人机交互良好n 自动计算累计采样体积,同时可根据气压、温度换算参比采样体积(出厂默认 25℃、101.325kPa 参比状态的体积)或标况采样体积n 内置过滤网,且具有过载、低流量自保护程序,可有效保护气路及采样泵n 外观采用L-Ergo设计,样式新颖,独特的密封结构可有效防雨雪,更适合野外作业n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 预留蓝牙模块,可连接便携式蓝牙打印机,轻松掌握实时数据n 预留物联网模块接口,可拓展联网功能n 采样过程停电自动保存工作数据,来电后可恢复采样 n 大气压可输入和测量,保障低压环境中可正常使用n 具有智能化的软件标定功能n 内置大容量存储器,采样数据可存储、查阅、导出、打印n 氟化物/重金属/TSP/PM10/PM2.5采样头采用铝合金材质,抗静电吸附*说明:以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、可实现对环境空气中氟化物、重金属、TSP、PM10和PM2.5等粉尘污染物的采集采样流量范围宽,负载能力强,工作点流量涵盖16.7L/min、50.0L/min、100.0L/min,流量50.0L/min和100.0L/min时负载能力均能达到20kPa,可满足多种采样需求。 2、精密芯泵负载强 3、流量精准助采样 崂应2037型 空气氟化物/重金属采样器(增强型)
  • 崂应发布崂应2037型空气氟化物/重金属/气溶胶采样器新品
    本仪器采用大功率无刷采样泵,可高负荷连续工作,能够满足气溶胶采样的动力要求,适用于采集环境空气中TSP、PM10、PM2.5等,可供环保、卫生、劳动、安监、军事、科研、教育等部门用于环境空气的检测和研究。仪器一机多用,可选配崂应1073C型氟化物采样头采集环境空气中的气态、颗粒物氟化物。 执行标准n HJ 93-2013 环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法n HJ 194-2017 环境空气质量手工监测技术规范n HJ/T 374-2007 总悬浮颗粒物采样器技术要求及检测方法n HJ 618-2011 环境空气PM10和PM2.5测定 重量法n HJ 955-2018 环境空气 氟化物的测定 滤膜采样/氟离子选择电极法n JJG 943-2011 总悬浮颗粒物采样器 主要特点n 能够满足气溶胶采样的动力要求,达到快速采集样本气体的作用n 精密芯泵,负载能力强,适合高负载采样n 流量范围:(5~50)L/min,工作点流量为9.0L/min、16.7L/min、50.0L/minn 专用地质三脚支架,稳定可靠,适用于大风等恶劣环境下采样n 电子流量计自动准确控制流量,采样流量自动控制,流量稳定n 可设置定时采样,等间隔采样多次采样方式n 故障自动保护功能,安全性能高n 测量采样点大气压、温度,实时监测计压、计温,自动补偿流量偏差,自动计算累计采样体积,自动计算标况/参比体积n OLED宽温高亮显示屏,适用于野外、高寒地区n 采样过程中停电,来电自动恢复采样,采样数据自动记忆n 良好的人机交互界面,操作简单n 设计软件标定功能,方便仪器各参数进行标定校准*说明:以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、能够满足气溶胶采样的动力要求,达到快速采集样本气体的作用 2、精密芯泵,负载能力强,适合高负载采样 3、流量范围:(5~50)L/min,工作点流量为9.0L/min、16.7L/min、50.0L/min 崂应2037型空气氟化物/重金属/气溶胶采样器
  • 新品发布 | HQ-3700氟化物水质自动分析仪
    新品发布近日,泽铭科技明星系列——HQ-3000常规水质在线监测设备系列迎来了重要成员:HQ-3700氟化物水质自动分析仪,标志着泽铭自研水质监测技术的又一重要突破!应用领域- 饮用水领域 - 可以确保饮用水符合卫生标准,避免氟化物超标对人体健康造成的危害,如氟斑牙和骨氟中毒等。- 江河湖泊、地下水等水源地领域 -氟化物浓度过高会对水生生物造成不利影响,破坏生态平衡。监测氟化物有助于保护水生生物的生存环境,维护生态系统的稳定性和多样性。- 工业监测领域 - 在一些工业生产过程中,如电镀、冶金、玻璃制造等,氟化物是常见的原料或副产品。通过监测这些过程中氟化物的排放浓度,可以及时调整生产参数,控制污染物的排放,实现清洁生产,减少对生态环境的影响。产品特点泽铭HQ-3700氟化物水质自动分析仪,专为监测水体中氟化物的全自动在线监测而设计。该分析仪集成了高精度传感器、智能数据处理系统及远程通信控制技术,能够灵活应对各种监测需求。- 高精度分析:检出限最低0.02mg/L,展现在多种使用场景下的广泛适用性和高度精确性,能够捕捉到水体中微量的氟化物变化,为水质监测提供了更为精准的数据支持。- 电容式计量方式:电容式计量方式利用电容传感器来精确测量样品的体积或浓度。这种传感器具有高精度、高稳定性和良好的线性关系,能够确保样品和试剂的计量准确无误。- 自动色度/浊度补偿:水体中的色度和浊度是影响水质监测准确性的重要因素。泽铭HQ-3700通过内置的自动色度、浊度补偿功能,能够实时检测并校正这些干扰因素,从而确保在高浊度水体中也能获得准确的氟化物浓度测量结果。- 独特试剂配方:显著延长了试剂的保质期至3个月,大量减少人工运维成本,提高了监测工作的连续性和稳定性。产品参数结语泽铭科技肩负“科技净化地球”的神圣使命,专注于水质监测技术的深耕细作,旨在将先进的科技成果广泛应用于环保、水务、生态、工业、农业等多个领域。我们深信,技术是推动世界向前的核心动力,通过研发前沿的科技解决方案,为地球的绿水青山保驾护航,为构建一个可持续、宜居的生态环境贡献泽铭力量。
  • 又一省印发“十四五环保规划”!土壤在线监测成“热门”?
    7月28日,海南省政府印发《海南省“十四五”生态环境保护规划》(以下简称《规划》)。《规划》提出,以重点耕地、农产品超标区域耕地、化工园区、重要陆域输油管线周边等为重点开展土壤和地下水污染状况调查;以土壤污染重点监管 企业和高风险地块为重点实施土壤和地下水的风险管控和治理修复;在部分市县实施耕地土壤安全利用与修复工程。而在两天前,浙江省七部门也联合发布了《浙江省土壤、地下水和农业农村污染防治“十四五”规划》。《规划》提出,要强化涉土污染源头综合防治,加快实施耕地土壤污染溯源排查;坚持“边查边治、应控尽控”,对已查明的工矿企业、化肥农药、灌溉水和还田淤泥(秸秆)等各类污染源,有关县(市、区)要制订控源(断源)工作计划,督促落实阻断污染物扩散途径、削减污染物排放总量、调整农田灌溉水源、清理还田河道底泥(秸秆)等措施,有效遏制污染源对受污染耕地的持续影响。7月中旬,在2021土壤与地下水修复行业年会上,生态环境部南京环境科学研究所研究员龙涛对我国“十四五”土壤与地下水污染防治工作提出了展望。他指出,土壤和地下水环境质量要长期进行监测。强化土壤重金属通量的监测,国家一直有这方面的考虑,但由于技术不成熟,“十四五”将开展更多的探索,开展土壤的生态内涵和土壤固碳潜力以及地下水在线监测。目前来说,现在对土壤重金属的研究分为了两类:一是修复土壤重金属污染;二是土壤受到重金属污染情况的检测分析,检测研究则是修复污染研究的前提。只有搞清土壤重金属污染的切实情况才能提出相对应的修复措施,常用的重金属分析方法有:原子荧光、原子吸收、分光光度法、XRF分析法,ICP及ICP-MS法,这些手段,你真的掌握了吗?为此,仪器信息网特于8月11-12日举办“土壤中重金属检测技术”网络研讨会,邀请了来自中科院、南京土壤研究所、国家地质检测中心、环境监测总站、四川大学、岛津、安捷伦、曼哈格、普兰德、安东帕等15家单位的15位教授、专家、工程师,带来2天,15场报告!(点击图片,立即报名占位)一、 直播时间:2021年8月11-12日二、会议链接:https://insevent.instrument.com.cn/t/Hc 三、会议日程:8月11日09:30--10:00土壤中重金属的固体样品直接分析新技术新方法与新仪器段忆翔四川大学教授10:00--10:30微波消解及萃取在土壤样品前处理中的应用毛新峰奥地利安东帕(中国)有限公司应用工程师10:30--11:00土壤重金属前处理方法探讨王静天津市生态环境监测中心质量管理11:00--14:00午休音乐14:00--14:30新型X射线能谱在土壤重金属检测中的应用张培新江苏省地质调查研究院,国土资源部南京矿产资源监督检测中心 主任工程师/研究级高级工程师14:30--15:00土壤中六价铬测试技术方法蔡玉曼曼哈格检测技术股份有限公司 研究员级高级工程师15:00--15:30XRF在环境土壤行业中的应用李强江苏天瑞仪器股份有限公司研发主管/高级工程师15:30--16:00污染地块调查中XRF的应用、预测及优化建议陈云生态环境部南京环境科学研究所博士8月12日09:30--10:00土壤中甲基汞和乙基汞的测定 吹扫捕集/气相色谱-原子荧光光谱法张霖琳中国环境监测总站正高级工程师10:00--10:30ICP-MS在环境样品元素形态分析中的应用周裕敏岛津企业管理(中国)有限公司应用工程师10:30--11:00ICP-MSMS 在环境分析中的前沿应用严冬安捷伦科技(中国)有限公司南区无机分析产品应用经理11:00--11:30土壤中重金属元素的化学形态分析吴丽娟江苏省南京环境监测中心分析监测科副科长11:30--14:00午休音乐14:00--14:30土壤重金属分析方法简介龚华中国科学院南京土壤研究所分析测试中心土壤无机元素分析专家14:30--15:00土壤重金属检测分析中适用的移液设备与耗材张璐普兰德(上海)贸易有限公司市场部产品工程师15:00--15:30基于人体可给性的氟化物污染场地健康风险评估刘永兵国家地质实验测试中心15:30--16:00土壤重金属分析检测技术霍丽娟太原科技大学教授 扫码入群,与专家聊! (如失效,请添加助教二维码,邀请入群,2h通过)
  • 环境水质氟化物指标如何用蒸馏装置测定
    咱们各类环境化验室经常回遇到氟化物的测定,氟化物的测定一般是需要依据以下几个标准:1、氟试剂分光光度法:2、离子选择电极法:3、茜素磺酸锆目视比色法:以上这三个目前还有效的标准是实验室主流的测试方法,其中蒸馏这步主要是要求仪器在加热到一定温度后保持温度,同时导入水蒸气,需要蒸馏仪温度监测稳定,在固定条件下维持水蒸气导入,仪器要耐酸碱,要有后台稳定的温度控制程序,因此需要一种符合以上要求的蒸馏仪才能满足,或者就得需要人工搭建加热台,水蒸气来源等等,麻烦,不稳定。推荐的符合此类仪器的蒸馏仪型号是SEHB-1000C型水蒸气蒸馏仪:实物图,包含了温度控制,独立水蒸气来源,自动切换通道,内置制冷水循环,同时还可以做各种类型的蒸馏实验。
  • 2017年度盘点:土壤监测工作稳步推进 多方受益
    p   当前,我国土壤环境总体状况堪忧,部分地区污染较为严重,已成为全面建成小康社会的突出短板之一。对此,2016年5月31日,《土壤污染防治行动计划》(以下简称“土十条”)正式发布实施。摸清家底,组织开展土壤污染状况详查是“土十条”提出的排在首位的重要任务。根据“土十条”提出的要求,2018年底前需要查明农用地土壤污染的面积、分布及其对农产品质量的影响,2020年底前要掌握重点行业企业用地中的污染地块分布及其环境风险情况 除土壤详查工作之外,“土十条”还提出2017年底前,要完成土壤环境质量国控监测点位设置,建成国家土壤环境质量监测网络。 /p p   2017年作为“土十条”颁布后的落地起始之年,土壤污染防治相关配套文件陆续发布,土壤监测市场迎来政策利好。本文就2017年发布的土壤污染监测与治理相关配套文件、2017年土壤监测市场情况以及土壤监测相关仪器市场发展趋势进行简要梳理。 /p p strong span style=" color: rgb(0, 112, 192) " 土壤监测系列文件相继发布 /span /strong /p p   2017年年初,环保部公布《污染地块土壤环境管理办法(试行)》,进一步将“土十条”延伸和细化,明确各方责任。此外,“土十条”中提出配合完成土壤污染防治法起草工作,这一工作也在2017年得到落实。目前,《土壤污染防治法(草案)》二次审议稿正在征求意见中,并有望在今年出台。《土壤污染防治法》的出台,将填补土壤污染防治领域法律的空白。 /p p   关于土壤环境质量监测网络的建设方面,环境监测总站印发了《2017年国家网土壤环境监测技术要求》。截至目前,环保部初步建成了包含38880个点位的国家土壤环境监测网,从环境的角度来看,目前基本实现了所有土壤类型、县域和主要农产品产地的全覆盖。目前,环保部同农业部、国土资源部已基本达成一致,将农业和国土部门的近4万个点纳到这个网络里来,共享共用。 /p p   在农用地方面,我国现行法规中缺乏针对农用地土壤环境管理的具体规定,难以满足当前农用地土壤环境管理的实际需要,“土十条”中要求2016年底前发布农用地土壤环境管理办法。2017年,环保部和农业部随即联合发布《农用地土壤环境管理办法(试行)》。《办法》将为农用地土壤环境管理工作提供依据,对农用地土壤环境管理、防控农用地土壤污染风险、保障农产品质量安全具有重要意义。 /p p   2017年,为贯彻落实“土十条”,环保部还发布了十余项土壤环境检测方法标准,如下表所示。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/5cba7d71-3e11-4978-8c9b-40778d9dd234.jpg" title=" 标准表.png" / /p p   相关检测标准的发布或多或少都会对相关仪器市场产生影响。2016年,环保部发布了《HJ 783-2016 土壤和沉积物 有机物的提取加压流体萃取法》,大大促进了加压流体萃取仪的市场销量。《土壤和沉积物 金属元素总量的消解 微波消解法(HJ 832-2017)》作为环保部发布的第二个土壤前处理的标准,它的发布对于微波消解仪市场的发展或将起到推动作用。在一系列标准发布后,截至目前,我国现行土壤环境监测方法标准达到64项,土壤标准体系日趋完善。 /p p   在土壤环境监测的顶层设计方面,2017年12月,环保部印发了《“十三五”土壤环境监测总体方案》,该方案为“十三五”土壤环境监测工作做出了全面部署,主要包括以下几个方面:一是建成一个监测网络 二是理顺两个管理机制,即环保系统内的纵向联动的机制和部门间横向协同机制 三是完善三个技术体系,包括土壤环境监测的质量管理体系、标准方法体系和技术规范体系。同时,方案中提出要强化四个能力,包括土壤环境监测能力、人才队伍建设、信息化水平和科技创新能力。该方案对于指导全国开展土壤环境监测工作非常重要。 /p p strong span style=" color: rgb(0, 112, 192) " 土壤监测市场布局清晰 /span /strong /p p   为做好全国土壤污染状况详查工作,环保部、财政部、国土资源部、农业部、卫生计生委在强化顶层设计的基础上,共同组织编制了《全国土壤污染状况详查总体方案》。该方案已于2016年12月27日印发,全国土壤污染状况详查工作也由此正式启动。 /p p   土壤详查实验室包括检测实验室和质量控制实验室。环保、国土和农业部门的实验室以及一些第三方检测机构负责详查样品(包括土壤、农产品和地下水)的制备和分析测试工作,省级环保、国土、农业部门所属的主要技术支持单位负责质控。 /p p   在2017年发布的全国土壤详查质量控制实验室和首批检测实验室名录中,确定了5家国家级质控实验室、32家省级质控实验室 首批233家检测实验室,当前主要承担农用地土壤污染状况详查样品分析测试任务。同年11月,全国土壤污染状况详查检测实验室又增补了49家。 /p p   目前,土壤详查工作还是以国家部门为主,第三方检测机构为辅,大概投资为30亿到40亿。不过未来或将有大量监测任务对全国的第三方检测机构开放,环境保护部门主要负责质量控制,对第三方监测进行监督。 /p p   值得注意的是,虽然目前国家网土壤常规监测项目集中在土壤理化指标、8种重金属和多环芳烃等有机指标上,但是,随着土壤监测标准方法的不断发布,可能会有一些新的指标增加到土壤监测项目中。比如最近发布的第五次征求意见的《土壤环境质量标准》,除拆分更名为《土壤环境质量农用地土壤污染风险管控标准(试行)》和《土壤环境质量 建设用地土壤污染风险管控标准(试行)》外,草案在保留原有污染物项目的同时,还增加了总锰、总钴、总硒、总钒、总锑、总铊、氟化物、苯并〔a〕芘、石油烃总量、邻苯二甲酸酯类总量等10种土壤污染物选测项目,这对于实验室的软硬件能力建设提出更高的要求,相关企业或将受益。 /p p strong span style=" color: rgb(0, 112, 192) " 现场快速检测或成未来一个重要趋势 /span /strong /p p   根据全国土壤详查实验室要求,承担土壤详查的实验室要具备一定数量仪器设备,如分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪、微波消解仪、索氏提取器、气相色谱-质谱联用仪等。承担土壤详查工作的实验室名单是实行动态管理的,随时可能发生变化,若想入围,首先要具备这些仪器设备,相关的检测机构、企业、设备供应商也因此迎来了良好的发展机遇。据估计,到2020年,土壤监测设备行业市场增量可达45亿元。 /p p   前文也曾提到过,我国土壤监测的重点项目有土壤中的重金属,如镉、汞、砷、铅、铬等无机污染物和多环芳烃、石油烃等有机污染物。目前的土壤检测标准规范还只是满足于实验室分析,而如果想要了解全国土壤的污染情况和建立全国土壤的污染大数据则离不开现场快速检测方法和污染物快速筛查方法的支持。然而,目前我国在这个领域尚属空白。不过据有关信息显示,“十三五”期间,我国将发布约800项环保标准,其中有一项为《土壤 重金属的测定 便携式X射线荧光法》,目前监测司正在制定中,预计2019年发布。因此,土壤监测实现现场快速检测是一个重要的趋势,相关厂商可提前布局。 /p
  • 众瑞仪器【新品推介】环境空气 氟化物采样
    生态环境部 2018年第22号公告 标准HJ955-2018 《环境空气 氟化物的测定 滤膜采样/氟离子选择电极法》关于氟化物采样新旧标准对比新标准HJ955-2018旧标准HJ480-2009新旧标准差异新标准HJ955-2018旧标准 HJ480-2009方法原理环境空气中气态和颗粒态氟化物通过磷酸氢二钾浸渍的滤膜时,氟化物被固定或阻留在滤膜上,滤膜上的氟化物用盐酸溶液浸溶后,用氟离子选择电极法测定,溶液中氟离子活度的对数与电极电位呈线性关系。已知体积的空气通过磷酸氢二钾浸渍的滤膜时,氟化物被固定或阻留在滤膜上,滤膜上的氟化物用盐酸溶液浸溶后,用氟离子选择电极法测定。采样耗材乙酸-硝酸纤维微孔滤膜:孔径5μm,直径90mm。乙酸-硝酸纤维微孔滤膜:孔径5μm,直径92mm。大气采样器大气采样器:小流量采样器,流量范围满足10L/min-60L/min。采样头可放置90mm滤膜,有效滤膜直径为80mm。采样头配有两层聚乙烯/不锈钢支撑滤膜网垫,两层网垫间有2mm-3mm的间隔圈相隔。采样器配有电子流量计和流量补偿系统,具有自动计算累计体积的功能。流量为50L/min时,采样泵可克服20kPa的压力负荷。采样器外观、工作环境、温度测量示值误差、压力测量示值误差和流量测量示值误差等相关性能指标应符合HJ 194的规定。采样器:中流量采样泵,采样头带支撑滤膜的聚乙烯网垫,采样头有效直径为80mm,可以直接安装直径为92mm的滤膜。采样时间1h均值测定时,以50L/min流量采集,至少采样45min;24h均值测定时,以16.7L/min流量采集,至少采样20h。采样时,在滤膜夹中装入两张磷酸氢二钾浸渍滤膜,中间中2mm-3mm的间隔圈隔开,以100L/min-120L/min流量(气流线速约为0.3m/s-0.4m/s)采样10m3以上,根据使用的仪器性能设计采样记录(应包括开始和结束时的采样时间、流量或采样体积、风向、风速、气温、气压、采样点、样品编号等)并记录。采样后,用干净镊子将样品膜取出,对折放入塑料袋(盒)中,密封好,带回实验室。众瑞推出满足新标准HJ955-2018要求的氟化物采样设备搭配使用适合16.7L/min、50L/min、100L/min采样适合16.7L/min采样注:之前购买过高负压采样器的老客户,公司客服中心会与您及时沟通进行产品升级!
  • 【格哈特应用方案】赛默得通氮蒸馏仪—聚焦中草药二氧化硫/粮食磷化物/土壤硫化物等检测,为您提供通氮蒸馏应用方案!
    一、仪器简介基于享誉全球的TURBOTHERM 特博森红外快速加热系统,德国格哈特专门开发了先进的通氮快速蒸馏系统,专业用于样品中二氧化硫、硫化物、氰化物、高氯废水COD、氟化物、磷化物、甲醛、挥发酚、挥发性脂肪酸、二硫代氨基甲酸酯等的检测分析。先进红外加热技术,加热和冷却时间短,蒸馏效率明显提高。整体化设计,结构紧凑,带专业滴漏盘的专用支架放置冷凝管和高效吸收冷阱,操作安全便利,节省空间。独立冷凝系统,确保冷凝效果。可调气体流量计,4个蒸馏管流量可独立精准控制。二、特点1.自动程序控制①自动控制蒸馏时间和加热功率;②先进的程序控温,确保温度稳定,高重现性;③可设定和储存9个程序,每个程序可设定多达9步的加热条件/时间。工作过程可随时手动调整,应用灵活方便;④工作状态液晶清晰显示,随时提示程序步骤。2.仪器组成由红外快速加热系统基本单元、玻璃冷凝管、高效吸收阱、玻璃滴液漏斗、蒸馏管、气体流量计、带滴漏盘的专业支架,磁力搅拌器(可选)等。3.多功能性①批处理4个样品,蒸馏条件一致,稳定可靠;②两种蒸馏管和吸收冷阱可选,满足不同样品不同应用的需求;③磁力搅拌功能可选,提供更灵活应用;④可拓展为凯氏消化系统,可配套各种规格试管。⑤也可扩展作为流动注射的消化系统或湿灰化系统。4.高效吸收冷肼专业设计,无损收集蒸馏产物,极高的回收率,安全环保。三、应用资料基于Gerhardt一百多年专业知识的应用数据库,结合国内相关标准,我们可提供药典中二氧化硫残留量的测定、土壤和沉积物硫化物的测定、粮食磷化物残留量测定等通氮蒸馏应用方案。德国Gerhardt为实验室用户提供最全面的蒸馏解决方案,特点鲜明的“蒸馏家族成员”VAPODEST(维普得)水蒸汽蒸馏仪、THERMODEST(赛默得)通氮蒸馏仪、KJELDEST(凯尔得)直接蒸馏仪,总能满足您各种蒸馏应用需求。更多蒸馏应用方案,欢迎您致电咨询了解!
  • 环境新标准整体解决方案:水质、土壤和沉积物全氟化合物的测定
    全氟化合物作为一种表面活性剂和保护剂,自20世纪50年代起生产以来被广泛应用于工业生产和日常用品中,如地毯、皮革、地板蜡等。全氟化合物具有高毒性、持久性、生物累积性和远距离迁移性等持久性有机污染物的特点。2023年3月1日,《重点管控新污染物清单(2023年版)》正式生效,清单包含了全氟辛基磺酸及其盐类、全氟辛酸及其盐类等14种类重点管控新污染物。2023年12月5日,生态环境部首次发布HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类测定 同位素稀释/液相色谱-三重四极杆质谱法》和HJ 1334-2023《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》2项标准,为新污染物治理提供支撑。睿科提供自动化样品前处理解决方案,针对水质、土壤和沉积物中全氟化合物的分析,将自动化前处理设备带入检测的全流程,协助实验员对全氟化合物的检测进行快速无污染前处理,保证检测的快速、高效、准确。01水样前处理水样前处理流程水样预处理:取500 ml水样,加入50μL浓度为0.2μg/ml的提取内标使用液,混匀,使用抽滤装置和滤膜过滤,过滤后用乙酸或氨水调节pH至6~8活化柱子:6 ml 2%氨水-甲醇溶液、6 ml甲醇和6 ml水活化富集:以8 ml/min流速上样淋洗:6 ml水和8 ml 乙酸铵溶液(25 mmol/L,pH=4)淋洗干燥:小柱吹干15分钟洗脱:8 ml甲醇和6 ml 2%氨水-甲醇溶液洗脱浓缩:氮吹至近干(水浴温度≤40℃)定容上机:加入50 μL浓度为0.2μg/ml的进样内标使用液,用甲醇定容至1.0 ml,涡旋混匀,过滤后上机分析推荐仪器和耗材仪器Fotector Plus(PFC)高通量全自动固相萃取仪(全氟化合物专用机)Auto EVA 80全自动平行浓缩仪Fotector Plus(PFC)高通量全自动固相萃取仪Auto EVA 80全自动平行浓缩仪耗材货号产品描述数量类别HC-PFCs-00011000mL 棕色PP样品瓶20个标配耗材0.2um/47mm滤膜(醋酸纤维素),100/盒1盒10mL容量瓶(PP)20个固相萃取柱:RayCure WAX,150mg/6mL,30支/盒3盒离心管 15mL尖底螺口,100个/包1包1mL PP色谱进样瓶(12 x 32 mm),100/包1包进样瓶盖(11 mm),100/包2包HC-PFCs-0002棕色PP样品瓶 1000mL,1个1个选配耗材HC-PFCs-0007棕色PP样品瓶 500mL,1个1个HC-PFCs-00030.2um/47mm滤膜(醋酸纤维素),100/盒1盒HC-PFCs-0004容量瓶(PP) 10mL,1个1个HC-PFCs-0005PP色谱瓶 1mL(12 x 32 mm),100/包1包HC-PFCs-0006色谱瓶盖(11 mm),100/包1包RC-204-72823固相萃取柱:RayCure WAX,150mg/6mL,30支/盒1盒RC-15004M离心管 15mL,袋装,灭菌,100支/包1包HC-PFCs-00080.45um/47mm滤膜(醋酸纤维素),100/盒1盒02土壤和沉积物前处理土壤和沉积物前处理流程提取:取2g样品于50 ml试管中,加入50μL浓度为0.2μg/ml的提取内标使用液和10 ml 50%甲醇水溶液,用Raykol MTV 3000多管涡旋混合仪混匀1 min。用水平震荡仪常温振荡2h,离心10 min。重复提取一次,合并2次提取液。提取液过滤后加入80 ml水,用乙酸或氨水调节pH至6~8,待净化活化柱子:6 ml 2%氨水-甲醇溶液、6 ml甲醇和6 ml水活化富集:以8 ml/min流速上样淋洗:6 ml水和8 ml 乙酸铵溶液(25 mmol/L,pH=4)淋洗干燥:小柱吹干15分钟洗脱:8 ml甲醇和6 ml 2%氨水-甲醇溶液洗脱浓缩:氮吹至近干(水浴温度≤40℃)定容上机:加入50 μL浓度为0.2μg/ml的进样内标使用液,用甲醇定容至1.0 ml,涡旋混匀,过滤后上机分析推荐仪器和耗材仪器MTV 3000多管涡旋混合仪Fotector Plus(PFC)高通量全自动固相萃取仪(全氟化合物专用机)Auto EVA 80全自动平行浓缩仪耗材货号产品描述数量类别HC-PFCs-00011000mL 棕色PP样品瓶20个标配耗材0.2um/47mm滤膜(醋酸纤维素),100/盒1盒10mL容量瓶(PP)20个固相萃取柱:RayCure WAX,150mg/6mL,30支/盒3盒离心管 15mL尖底螺口,100个/包1包1mL PP色谱进样瓶(12 x 32 mm),100/包1包进样瓶盖(11 mm),100/包2包HC-PFCs-0002棕色PP样品瓶 1000mL,1个1个选配耗材HC-PFCs-0007棕色PP样品瓶 500mL,1个1个HC-PFCs-00030.2um/47mm滤膜(醋酸纤维素),100/盒1盒HC-PFCs-0004容量瓶(PP) 10mL,1个1个HC-PFCs-0005PP色谱瓶 1mL(12 x 32 mm),100/包1包HC-PFCs-0006色谱瓶盖(11 mm),100/包1包RC-204-72823固相萃取柱:RayCure WAX,150mg/6mL,30支/盒1盒RC-15004M离心管 15mL,袋装,灭菌,100支/包1包HC-PFCs-00080.45um/47mm滤膜(醋酸纤维素),100/盒1盒
  • 国瑞力恒发布GR-1351型环境空气氟化物采样器新品
    1产品概述GR-1351型环境空气氟化物采样器(以下简称采样器)是适用于采集大气中氟化物样品的必备采样器。该仪器采用进口高负压采样泵、高性能工业级核心控制单元,质量可靠、性能稳定、使用寿命长。2适用范围采用滤膜称重法捕集环境大气中的氟化物。可供环保、卫生、劳动、安监、军事、科研、教育等部门用于气态物质和气溶胶的常规及应急监测。3 采用标准HJ 955-2018《环境空气 氟化物的测定 滤膜采样/氟离子选择电极法》4技术特点u 无刷高负压采样泵,50L/min流量下,可以克服20kPa阻力;u 内置锂电池,电池工作时间大于8小时;u 内置无限通讯接口,可选配蓝牙打印机u 高性能工业级核心控制板,实时操作系统u 海量数据存储、数据存储两大于10000组u 具有USB接口,采样数据可以通过U盘导出u 具有实时时钟,可设置定时采样,间隔多次采样;u 氟化物采样头采用铝合金材质,抗静电吸附;u 自动测量温度、气压,自动计算标况采样体积;u 体积小、重量轻,携带方便;u 大尺寸中文点阵式液晶屏,自动调节对比度,可在零下30度正常工作;u 掉电保护功能,来电自动采样;5工作原理5.1 氟化物采样氟化物采样器是指能够采集空气动力学当量直径表1 技术参数主要参数参数范围分辨率准确度采样流量(10~60)L/min0.1L/min优于±2.5%流量稳定性优于±2.0%流量重复性优于±2.0%采样时间1min~99h59min1min不超过±0.2%计前压力(-30~0)kPa0.01kPa优于±2.5%环境大气压(70~130)kPa0.01kPa优于±2.5%定时开机24小时制等间隔采样时间99小时59分内任意设置等间隔采样次数1~99次噪声<62dB(A)整机尺寸(W×D×H)mm210×250×310重量约7.0 kg电源AC220V±10% 50HZ或DC24V功耗<200W 创新点:GR-1351型环境空气氟化物采样器 采用进口高负压采样泵、高性能工业级核心控制单元,质量可靠、性能稳定、使用寿命长 无刷高负压采样泵,50L/min流量下,可以克服20kPa阻力 自动测量温度、气压,自动计算标况采样体积;具有USB接口,采样数据可以通过U盘导出 ? 大尺寸中文点阵式液晶屏,自动调节对比度,可在零下30度正常工作; GR-1351型环境空气氟化物采样器
  • 第三次全国土壤普查来了!这些环境仪器市场大有作为!
    2月16日,国务院印发《关于开展第三次全国土壤普查的通知》(以下简称《通知》),决定自2022年起开展第三次全国土壤普查,利用四年时间全面查清农用地土壤质量家底。按照通知,土壤普查进度安排如下:2022年:完成工作方案编制、技术规程制定、工作平台构建、外业采样点规划布设、普查试点,开展培训和宣传等工作,启动并完成全国盐碱地普查。2023—2024年:组织开展多层级技术实训指导,完成外业调查采样和内业测试化验,开展土壤普查数据库与样品库建设,形成阶段性成果。外业调查采样时间截至2024年11月底。2025年上半年:完成普查成果整理、数据审核,汇总形成第三次全国土壤普查基本数据;下半年,完成普查成果验收、汇交与总结,建成土壤普查数据库与样品库,形成全国耕地质量报告和全国土壤利用适宜性评价报告。通过对往次土壤普查情况总结,全国土壤污染物状况详查项目主要包括:土壤无机污染物(总镉、总汞、总砷、总铅、总铬、总铜、总镍、总锌、氟化物、氰化物等)、土壤有机污染物(PAHs、有机氯农药、硝基苯、VOCs、临苯二甲酸酯类、多氯联苯、二噁英类、呋喃等)、土壤理化性质(水分、PH、有机质、阳离子交换量等)、地下水无机污染物(重金属、氰化物、氟化物等)。涉及检测分析仪器,包括不限于:ICP-MS 等离子体质谱 ICP-AES 等离子体发射光谱 GAAS石墨炉原子吸收 FAAS火焰原子吸收 AFS 原子荧光GC-FID 气相色谱火焰光度 GC-MSD气相色谱质谱 HRGC-HRMS 高分辨气相色谱高分辨质谱值此机会,网络讲堂特邀请在土壤污染源调查方面经验丰富的检测机构,以及有检测仪器的仪器厂商共同筹备系列会议、定制会议,交流共享相关经验或检测技术,助力国家继续深入打好净土保卫战。以往定制会成功案例如下: 定制会类别 会议名称 会议链接(点击跳转) 经典系列会(以某主题为主线,多期开展) 一期:2020中国药典:新药研发申报与质控专家论坛(报名1333人) https://www.instrument.com.cn/webinar/meetings/SCIEX522/ 二期:2020中国药典:新药研发申报与质控专家论坛(报名1333人) https://www.instrument.com.cn/webinar/meetings/zxshq2020/ 三期:光谱及光电技术应用研讨会(报名1386人) https://www.instrument.com.cn/webinar/meetings/zolix/ 特色定制会议 环境新型污染物主题网络会议-环境新“忧”,轻松排解!揭开新污染物神秘面纱——(适合某款仪器及解决方案的定制) https://www.instrument.com.cn/webinar/meetings/915hj/ 共聚焦显微镜在生物医学中的应用——牛津台式共聚焦显微镜新品发布——(适合无需策划的轻量级新品发布 https://www.instrument.com.cn/webinar/meetings/BC43/ “国家宝药,经典焕新”-中药全流程解决方案网络研讨会——(适合解决方案定制宣传) https://www.instrument.com.cn/webinar/meetings/zy2021/ 生物基体标准物质的研制和应用专题研讨会(伟业计量)——(适合具有独立办定制会议且需要增加曝光的企业) https://www.instrument.com.cn/webinar/meetings/bzwz202112/
  • 中国土壤环境监测方法现状、问题及建议
    p   摘要:综述了目前中国现行的土壤环境监测国家标准方法和环保、农业、林业等行业标准方法,指出国家标准和环保行业标准方法侧重于土壤污染物的检测,而农业和林业标准方法侧重于土壤营养元素及其有效态、理化指标的检测。针对现行标准方法存在的一些问题(如检测的土壤污染物种类少、部分方法先进性不足、土壤环境监测的基础研究薄弱以及方法的标准化尚待完善等),提出加强土壤监测标准方法的顶层设计、合理增加土壤污染物的控制种类,及时更新方法、发展多组分测定方法,加强标准方法研究的系统性、协调性,以及逐步增加原位监测标准方法等建议,为土壤监测技术的发展提供借鉴和参考。 /p p   土壤是经济社会可持续发展的物质基础,关系人民群众身体健康和美丽中国建设,加强土壤环境保护是推进生态文明建设和维护国家生态安全的重要内容。2016年国务院印发的《土壤污染防治行动计划》中,就明确提出完成土壤环境监测等技术规范制修订、形成土壤环境监测能力、建设土壤环境质量监测网络、深入开展土壤环境质量调查、定期对重点监管企业和工业园区周边开展监测等工作任务。监测方法是监测工作的基础,只有完善土壤环境监测方法体系,加强土壤环境监测技术水平,才能保障监测的科学性、规范性、准确性以及评价结果的客观性和合理性,从而掌握土壤环境的真实状况,进一步推进土壤环境监管。 /p p   根据质量管理体系的要求,环境监测应优先选用标准分析方法。中国土壤标准分析方法分为国家标准和行业标准两大类。国家和环保行业标准方法侧重土壤环境污染检测,农业、林业行业标准方法则主要侧重土壤营养元素及其有效态、理化指标的检测。笔者对目前中国土壤环境监测标准方法进行综述,指出存在的问题,并提出针对性的建议。 /p p   1 土壤污染物及其监测方法 /p p   土壤污染物包括无机物(重金属、酸、盐等),有机物,化学肥料,农药(杀虫剂、杀菌剂及除草剂),放射性物质,寄生虫,病原菌和病毒等 近年来,一些新型污染物(如兽药、抗生素、溴化阻燃剂、全氟化合物等)在土壤中的赋存、迁移等也成为研究热点。 /p p   目前多数土壤监测方法针对的是土壤中的无机物和有机物,按测定方式可分为2种:采样后实验室测定(又称异位测定)和现场测定(又称原位测定)。 /p p   实验室测定方法中,针对土壤中的无机物,有光学分析法(如原子吸收光谱法、原子发射光谱法、原子荧光光谱法、X射线荧光光谱法等),仪器联用法〔如电感耦合等离子体-质谱法(ICP-MS)等〕,以及电化学法(如极谱分析法)和以特定化学反应为基础的化学分析方法。其中光学分析法适用范围广,灵敏度较高,操作便捷,应用广泛 仪器联用法可实现定性、定量分析,检测灵敏度高、重现性好,但仪器较昂贵 极谱法选择性好,可测定组分线性范围宽,能实现连续测定,但易造成汞污染 化学分析法操作简便,但样品前处理复杂,灵敏度和选择性都较低,目前使用较少。针对土壤中的有机物,分析方法主要有色谱分析法〔如气相色谱法(GC)、高效液相色谱法(HPLC)〕,以及色谱-质谱联用法〔如气相色谱-质谱法(GC-MS)和高效液相色谱-质谱法(HPLCMS)〕。 /p p   现场测定方法中,针对无机污染物和有机污染物,测定方法分别有便携式X 射线荧光光谱法和便携式气相色谱-质谱法等。 /p p   2 中国土壤环境监测标准方法现状 /p p   土壤环境污染监测中常用的标准方法是国家标准和环保行业标准。迄今为止,中国有51个涉及土壤监测的国家和环保行业标准方法,其中无机物和有机物监测方法分别为23个(表1)和17个(表2),3个放射性监测方法(表3),8个土壤理化性质及其他监测方法(表4)。 /p p    /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/0f7be038-b868-4c35-a30a-eebb5206ebce.jpg" style=" float:none " title=" 土壤监测1.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/ef16ff2d-4052-480f-ab55-cc1db1edc730.jpg" style=" float:none " title=" 土壤及检测2.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/a21af8d0-ad32-43ef-aa25-97291184ad40.jpg" style=" float:none " title=" 土壤监测3.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/e26893be-1fc9-4dc3-a8bc-e58086ff5002.jpg" style=" float:none " title=" 土壤监测4.jpg" / /p p   23个无机物监测方法涵盖了55种无机组分,包括33个元素总量(As、Cd、Co、Mn等),7种氧化物(SiO2、Al2O3等),7种盐类(氰化物、硫酸盐等)以及9种元素有效态(Cu、Fe 等)。涉及的前处理方法有3种:酸消解、碱熔和浸提(提取液有二乙烯三胺五乙酸、碳酸氢钠、氯化钾、氯化钡等溶液)。酸消解方法最为常用,又分为2种体系(常压和高压),消解液有盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸(王水)等。测定方法主要有8种:ICP-MS、波长色散X 射线荧光光谱法、火焰原子吸收分光光度法、石墨炉原子吸收分光光度法、原子荧光法、分光光度法、离子选择电极法和重量法等。 /p p   17个有机物监测方法涉及161个组分的测定,其中绝大多数是集样品前处理和分析一体的方法,也有独立的样品前处理方法,如《土壤和沉积物有机物的提取加压流体萃取法》(HJ 783—2016)。样品前处理方法有6种:顶空、吹扫捕集、索氏提取、加压流体萃取、微波萃取和超声波提取等。分析方法有5种:GC、GC-MS、HPLC、高分辨GC-高分辨MS以及高分辨GC-低分辨MS等。161个测定组分中,包括16种多环芳烃,18种多氯联苯单体,67种挥发性有机物,17种二恶英类,10种有机磷,8种有机氯,21种酚类以及丙烯醛、丙烯腈、乙腈和毒鼠强。 /p p   3个放射性监测方法中,涉及钚和铀2个元素,测定方法有放射化学分析法、固体荧光法和分光光度法等。 /p p   8个理化指标等方法中,涉及5个测定指标(电导率、氧化还原电位、有机碳、可交换酸度、干物质和水分等),以及5种测定方法(电极法、滴定法、重量法、分光光度法和非分散红外法等)。另外,农业、林业也有土壤检测标准方法,主要侧重于土壤营养元素及其有效态、理化指标的检测,详见表5和表6。农业行业标准方法中,有21个涉及无机元素及其有效态测定的方法,有15个涉及土壤理化指标的方法 林业行业标准方法针对的是森林土壤,有15个涉及无机元素及其有效态测定的方法,有13个涉及土壤理化指标的方法。 /p p    /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/028c7c4a-4d6e-4bdf-b577-a660da14e2df.jpg" style=" float:none " title=" 土壤监测.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/400bfc0a-fd59-4d4d-90c9-abec47f38d03.jpg" style=" float:none " title=" 土壤.jpg" / /p p   3 中国土壤环境监测标准方法存在的问题 /p p   3.1 现行标准中监测污染物的数量不足 /p p   现行标准方法中,未覆盖目前中国生产、使用、排放的大量化学品及特征污染物。 /p p   一方面,特征污染物明确、但无标准方法监测。如正在修订的《建设用地土壤污染风险筛选指导值》中,虽然规定了酞酸酯类、石油烃类、毒杀酚、灭蚁灵等污染物的风险指导值,但目前尚缺标准方法,给该“指导值”的实际执行造成技术瓶颈。 /p p   另一方面,如何确定企业用地的特征监测因子难度更大。企业用地类型多样,人类活动强度大,涉及各种化学品和生产加工过程中产生的污染物,种类繁多,污染源类型复杂。在《建设用地土壤污染风险筛选指导值(三次征求意见稿)》中,结合行业生产特征、污染物理化和毒性性质,将污染物项目分为9类:金属与无机物、脂肪烃及其衍生物、单环芳烃及其衍生物、多环芳烃、多氯联苯与二口恶英、有机农药、石油烃和邻苯二甲酸酯,共包括121项土壤污染因子。但实际污染场地中,污染因子不限于这121项。如何合理筛选并科学监测特征污染物,从而进一步有效管控其环境、健康风险,是目前面临的一个难题。 /p p   3.2 一些标准方法长期没有修订,新技术、方法难有法定地位 /p p   正在修订的《农用地环境土壤环境质量标准》中,测定土壤中六六六和滴滴涕的方法(GB /T14550—2003),还规定可以用填充柱分离方法,而目前几乎很少有监测单位自行填充色谱柱,普遍是购买商品化毛细管柱进行分离测定。又如,原子吸收分光光度法是测定重金属所用的普遍方法,但以该方法为基础的标准方法-铜/锌、镍、铅/镉的测定方法是1997年颁布的,且分散在GB/T 17138、GB/T 17139和GB/T 17141等3个标准中,意味着要分析1个样品中的这5种元素时,至少要使用3种不同的标准方法,人力成本较高,时效性也不好。 /p p   3.3 土壤环境监测基础性研究较少,对标准方法的完整性、系统性、科学性技术支持不足 /p p   3.3.1 土壤粒径规定不统一 /p p   无机样品测定时要求的粒径不统一(2.0、0.85、0.15、0.075mm等),使得样品研磨环节时效性、可比性较差 有机样品测定时是否研磨、研磨的尺度要求不一,实际操作时无所适从。 /p p   土壤粒径是影响土壤光谱的重要因素之一,随着土壤粒径的减小,土壤光谱反射率呈现不同幅度的升高,小于0.154mm的土壤粒径对土壤光谱反射率的影响最大。《土壤环境监测技术规范》(HJ/T 166—2004)的“常规监测制样过程图”中规定,土壤样品自然风干、用四分法取压碎样、粗磨后,过孔径2mm尼龙筛后可进行样品入库存档,但在其中8.3.2小节,又规定过孔径0.25mm尼龙筛后,用于样品库存放以及土壤pH、阳离子交换量、元素有效态含量等项目的分析,前后规定有矛盾。测定土壤pH时,有要求研磨成粒径为0.25mm的,也有要求磨成2mm的,所得的数据可比性如何,还有待商榷。 /p p   《土壤环境监测技术规范》(HJ/T 166—2004)还规定,土壤元素全量分析是用研磨到全部过孔径0.15mm筛的样品,这个规定有些片面,如X射线荧光光谱法测定就需要将土壤样品研磨后过0.075mm筛。该规范中,要求用于农药测定的样品,要研磨到全部过孔径0.25mm筛,而早期的有机氯测定,的确是将样品研磨成粒径为0.25mm的,但通常土壤有机物(特别是易挥发、易分解等有机物)分析是用新鲜样品,掺拌无水硫酸钠或粒状硅藻土研磨成“细粒状”或“流砂状”,有的分析方法不要求过筛,有的要求过1mm的金属筛。 /p p   3.3.2 酸消解体系不统一 /p p   元素混酸(王水-高氯酸-氢氟酸)全溶、王水(部分全溶)、硝酸-过氧化氢法等前处理所用试剂体系不同,结果也不同,相应的结果评价体系并未一一建立,使得有些测定结果不可比、也无法评判。 /p p   盐酸-硝酸-高氯酸-氢氟酸的混酸“全酸”体系对样品进行消解,获得的是元素的全量,即将土壤晶格中的元素也一并提取出来 而其他一些酸浸渍法(如盐酸-硝酸溶浸法、硝酸-硫酸-高氯酸溶浸法以及硝酸溶浸法等),对土壤中部分元素则是不完全的消解提取,测得的元素含量结果比“全酸”体系的测定结果要低。使用不同的前处理方法得到的分析结果,用同一个评价标准如《土壤环境质量标准》(GB 15618—1995)进行评价,不仅数据不可比,结论也不科学。 /p p   3.3.3 元素形态分析、有效态分析,在不同的场合概念不明确 /p p   在评估环境效应时,往往不用土壤中元素总量数值,因为元素的迁移性、生态有效性、在生物体中的积累能力(又称生物可给性),与该元素在环境中存在的物理形态及化学形态密切相关。生物可给性指化学物质被吸收的能力和可能的毒性,是研究不同的形态被生物吸收或在生物体内积累的过程。 /p p   元素在环境中的物理形态与化学形态分析即为“形态分析”,目前广泛应用的形态分析方法是由TESSIER等提出的土壤样品重金属元素顺序提取法,该方法利用化学性质不同的提取剂选择提取样品中不同相态的金属元素,先后分别提取5态:可交换态、碳酸盐结合态、铁锰水合氧化物结合态、有机物和硫化物结合态和残渣态,有学者将这种方法归为物理形态分析。化学形态分析又可以分为筛选形态、分组形态、分配形态以及个体形态等分析。 /p p   环境中的土壤元素有效态与生物可给性概念密切相关,它与作物吸收效率有关,指在植物生长期内能够被植物根系吸收的元素,其土壤中的含量与作物的吸收有较高的相关性。多数测定中有效态的提取液是二乙烯三胺五乙酸-氯化钙-三乙醇胺(DTPA-CaCl2-TEA)缓冲溶液,可浸提出土壤中的铜、铁、锰、锌、镉、钴、镍、铅等元素。也有用0.1mol/L HCl或水浸提土壤中有效硼的,还有用1mol/L乙酸铵-对苯二酚溶液浸提有效态锰,用草酸-草酸铵溶液浸提有效态钼,用pH为4.0的乙酸-乙酸钠缓冲溶液、0.02mol/L H2SO4、0.025%或1%的柠檬酸溶液浸提硅。酸性土壤中有效硫用H3PO4-HAc溶液浸提,中性或石灰性土壤中有效硫用0.5mol/L NaHCO3溶液浸提。土壤中有效钙、镁、钾、钠用1mol/L NH4Ac浸提,土壤中有效态磷用0.03mol/L NH4F-0.025mol/L HCl或0.5mol/L NaHCO3浸提。由于各元素有效态的浸提方法不同,至今针对污染元素有效态的限值标准还很难形成。 /p p   在一些应用场合下,元素“形态分析”“有效态分析”概念并不很清晰,分析方法有差异,会造成不同分析方法所获得的监测结果可比性差,从而引起监测信息发布时的混乱,也难以成为污染土壤的健康风险判断和评估等工作的科学技术支撑。 /p p   3.4 在方法的标准化、系统化方面尚有许多工作待开展 /p p   3.4.1 缺少原位监测方法标准 /p p   至今,为数不多的土壤原位(现场)监测方法,只是用于污染物的初步、快速筛查,以定性、半定量为主,检测范围有限,灵敏度也不高,没有形成方法标准,所得测定结果不能作为科学决策及环境管理的主要依据。 /p p   3.4.2 样品前处理方法单独成为标准还是融入分析方法中,缺乏顶层设计 /p p   美国EPA的方法体系是样品前处理方法与分析方法相对独立,使用时可以自由组合,但实验室要有自己的标准操作程序(SOP),明确自己所用的前处理、分析方法。如EPA3000系列的方法为固体样品有机物的前处理方法,其中EPA3540C方法为索氏提取、EPA3545A方法为加压流体萃取、EPA3546A方法为微波萃取、EPA3550C方法为超声波萃取等。而EPA8000系列为前处理后的有机样品分析方法,如EPA8260是GC-MS法测定挥发性有机物 EPA8270D是GC-MS法测定半挥发性有机物 EPA8290A是高分辨GC-高分辨MS测定二恶英 EPA8318A是用HPLC 法测定氨基甲酸酯类等。中国的方法体系中,往往前处理和分析是“捆绑”在一个方法中的,如《土壤和沉积物多氯联苯的测定气相色谱-质谱法》(HJ 743—2015)中,规定了微波萃取、超声波萃取、索氏提取、加压流体方法提取PCBs,并给出了具体的提取条件。但近期又有独立的前处理方法标准颁布,如《土壤和沉积物有机物的提取加压流体萃取法》(HJ 783—2016),规定该方法适用于土壤中有机磷农药、有机氯农药、氯代除草剂、多环芳烃、邻苯二甲酸酯、多氯联苯等物质的提取。这样一来,原有方法体系中“前处理+分析方法”的模式就被打破了。“前处理+分析方法”的模式执行简单,规范性强,但若有新的前处理方法发展出来,由于重新考上岗证、将新方法纳入质量管理体系等工作需要一段时间,不能及时将新方法直接用于实践 单纯的前处理标准方法在具体实践中比较灵活,但存在与原有“前处理+分析方法”的规定可能不一致的问题,且可能会有某些实验室不制订规范的作业指导书,选用前处理方法比较随意,最终导致数据不可比。 /p p   今后是否沿用原有的体系,还是前处理方法相对独立,需要从顶层设计上通盘考虑。 /p p   3.4.3 质量保证与质量控制有待完善 /p p   以前的标准方法中,质量保证与质量控制的内容较少 近年来颁布的标准方法中,从新方法制订的角度,规定了“精密度”和“准确度”等质控指标,由多家实验室对污染物分别进行多次重复测定而获得。在日常样品分析时,通常情况下分析人员无须对同一样品进行3次以上的重复测定,也不太可能就一个样品,去寻找其他实验室来比对测定。因此,“精密度”和“准确度”这2个质控指标在日常分析工作中指导意义并不大,需要研究制订日常工作中实用、有效的质控指标及其评价标准,尤其是不同土壤基质下样品的回收率、平行样的测定偏差等量化评价指标。 /p p   3.4.4 方法的先进性、普适性较难兼顾 /p p   标准方法的出台,原则上需要1家方法研制单位和另外至少6家验证单位,会导致一些需要用新型、价格较为昂贵的仪器(如高分辨GCMS、HPLC-MS-MS等)进行测定的污染物(如毒杀酚、多溴联苯醚等),其标准方法不能及时制订、颁布 而没有标准分析方法,又导致一些新型仪器推广使用受限,制约了新技术的发展。 /p p   又如X-荧光分析法,地质部门已将其作为标准方法使用多年,实际工作中解决了批量样品的快速、准确检测,但由于环保部门使用较少、配置仪器设备的单位较少,对该方法性能了解不全面、应用经验不足,即使有标准方法颁布,在某些专项工作中还是不推荐使用。 /p p   4 中国土壤环境监测方法发展建议 /p p   4.1 加强土壤监测标准方法的顶层设计,合理增加土壤污染物的控制种类 /p p   建议结合环境标准和污染控制标准的陆续更新工作,将标准方法体系规范化、系统化的规划和发展作为土壤监测标准方法顶层设计的重点,例如,合理厘清标准方法与技术规范的关系 慎重考虑今后是将样品前处理方法单独设为一种系列标准,与现有的实验室分析标准系列并行,还是融入分析方法中,成为“一体化”的标准 既继续发挥经典标准方法的作用、保持历史监测数据的连续性,又兼顾和吸纳先进、高效以及简易、快速的监测方法作为标准分析方法。 /p p   《国家环境保护标准“十三五”发展规划(征求意见稿)》中,拟新增14个无机物的标准测定方法,其中新增测定组分有硫化物、氟化物、Tl、Sn、六价铬等 拟新增26个有机物的标准测定方法,其中新增测定组分有持久性有机污染物(PCB混合物、指示性毒杀酚、多溴联苯、多溴联苯醚、全氟辛基磺酸和全氟辛基羧酸、六溴环十二烷和四溴双酚A),农药(苯氧羧酸类农药、阿特拉津和西玛津、草甘膦、敌稗、代森锰锌、杀虫剂),酞酸酯类,烷基汞,总石油烃,挥发酚,醛/酮/醚类,苯胺类和联苯胺类等 另外,还拟新增其他指标:有机化学物质吸收常数、粒度、阳离子交换容量等标准方法。说明中国土壤监测标准方法(尤其是有机物的标准方法)开发已经受到一定的重视。建议在土壤目标污染物的选择上,针对农田地块,可以参考与土壤有关系的农作物、食品残留标准所控制的污染物(如相关食品安全国家标准) 针对企业用地,要在企业历史调查基础上,筛选特征污染因子,将与企业生产活动相关、对人体健康和土壤环境质量影响较大、有可能对土壤(地下水)产生高风险的污染物,初定为目标污染物,同时要综合考虑化合物特性(反应降解、土壤吸附性、挥发性等),目前的分析测试技术水平以及国内外土壤污染风险评价情况等,确定目标污染物,并参照国际方法、文献中相对成熟的方法,建立目标污染物的标准测试方法。 /p p   4.2 及时更新标准方法,大力发展多组分同时测定的高效方法 /p p   异位监测主要包括化学实验分析法和仪器分析法,目前几乎很少使用化学分析法研究土壤重金属、有机物,精度高、操作简单、可同时测多个项目的仪器分析法(如GC、HPLC、ICP-AES、X射线荧光光谱法等),以及仪器联用法是主流发展趋势,从分光光度法、原子吸收分光光度法到ICP、ICP-MS,从色谱法到色谱-质谱联用,所能测的目标物范围更广,监测精度从mg/kg到μg/kg,再到ng/kg,痕量污染物的检出限逐渐降低。《国家环境保护标准“十三五”发展规划(征求意见稿)》中,新增的分析方法有ICP-AES、催化热解-原子吸收法、HPLC-MS、GC-原子荧光法等,也吸纳了仪器联用的技术手段。食品安全国家标准中,水果和蔬菜、粮谷、茶业中,分别同时测定500、475、448种农药残留,这种多残留的测定技术也值得环保领域借鉴。 /p p   4.3 科学研究标准方法,加强其系统性、协调性 /p p   今后土壤监测标准方法开发可紧紧围绕土壤质量标准、污染场地修复限值、农产品标准等的需求,也可以将相对成熟的文献方法进行标准适用性转化,相对缩短方法标准研制的周期 在方法规定的细节方面进一步予以梳理(如元素筛分的粒径相对统一),便于提高测定效率 在测定方法与评价标准的匹配性方面要予以重视,土壤元素总量、形态和有效态测定方法均各有侧重,元素总量符合国家现行的土壤评价标准体系,且测定体系相对统一,结果可比性强 元素有效态能有效评估污染物可能的迁移、土壤污染对地下水的影响,更能反映环境效应,这些监测的目的不同,均需要研究,不可厚此薄彼 另一方面,应将总量、形态、有效态的评价方法与监测方法一一匹配,不管是元素形态分析还是有效态分析,需要模拟植物在土壤中生长的实际情况与多种因素对形态及生物可给性的综合影响,通过大量实测数据,探索具有普适意义的生物可给性方法学,并最终形成规范化的分析方法体系及可操作的控制标准体系。 /p p   4.4 鼓励原位监测方法的探索,使之尽可能准确、标准化 /p p   原位监测可实现快速、非破坏、大面积地监测土壤污染物,实验周期短,目前研究热点有便携式X-荧光光谱、高光谱遥感探测、生物发光技术(针对无机物)、便携式GC-MS(针对有机物)等,但技术大多处于定性或半定量化试验阶段,研究思路可借鉴,大面积推广应用仍需验证。对区域土壤进行监测时,可先用原位监测进行前期摸底调查,然后有针对性地重点选择异常点或面,用标准方法深入监测。原位监测的总体趋势是向精度更高的微观探索技术和节约时间成本的中观、宏观监测技术发展,不仅可用遥感技术对土壤重金属进行实地定位观测,还可用不同时期的影像叠加,对比观测土壤质量变化情况 通过近红外、热红外接收的遥感影像、光学侦测和修正(LIDAR)探测、计算得到组分含量,实现土壤污染物的定性、定量监测。 /p p   5 结论 /p p   中国土壤监测标准方法包括国家标准、行业标准两大类,其中国家标准和环保行业标准侧重于土壤污染物的检测,农业和林业行业标准侧重土壤营养元素及其有效态、理化指标的检测。在现行标准方法中,监测污染物的数量不足,一些标准方法长期未修订导致新技术和新方法尚无法定地位,土壤环境监测的基础性研究较少,对标准的完整性、系统性、科学性技术支持不足,在方法的标准化、系统化方面尚有许多工作待开展。建议加强土壤监测标准方法的顶层设计,合理增加土壤污染物的控制种类 及时更新标准方法,发展多组分同时测定的高效方法 科学研究标准方法,加强其系统性、协调性 鼓励进行原位监测方法的探索,使之尽可能地准确、标准化。 /p
  • 吉天仪器为您配齐流动注射土壤检测方案
    概述:流动注射(FIA)技术已被广泛应用于很多分析领域,使用流动注射分析仪不仅可以大大提高检测分析的效率,并且具有检测精度高、可靠性好、稳定性强等特点,所以在土壤检测方面同样具有广泛的应用。本文采用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)土壤样品经过批量处理后使用流动注射分析仪进行检测,根据检测项目的不同对土壤样品进行不同方法的样品处理,本文介绍了使用流动注射分析仪检测土壤中“氮”和“磷”含量的样品前处理方法。一、土壤中全氮的测定(HJ 717-2014):  1.1方法原理:  该方法基于改进的贝特洛反应,氨氯化生成一氯胺,一氯胺与水杨酸盐反应生成5-氨基水杨酸盐,接下来的氧化和氧化偶合反应生成了绿色的络合物,该络合物在660nm有最大吸收峰。  1.2试样的制备:  将土壤样品置于风干盘中,平摊成2~3cm厚的薄层,先剔除植物、昆虫、石块等残体,用铁锤或瓷质研磨棒压碎土块,每天翻动几次,自然风干。  充分混匀风干土壤,采用四分法,一份留存,一份用研磨机研磨至全部通过2mm(10目)土壤筛。取10g~20g过筛后的土壤样品,研磨至全部通过0.25mm(60目)土壤筛,装于样品袋或样品瓶中。  1.3还原剂的制备:  将五水合硫代硫酸钠(Na2S2O35H2O)研磨后过0.25mm(60目)筛,临用现配。  1.4催化剂的配置:  将200g 硫酸钾(K2SO4)、6 g 五水合硫酸铜(CuSO4?5H2O)和 6 g 二氧化钛(TiO2)于玻璃研钵中充分混匀,研细,贮于试剂瓶中保存。  1.5样品处理(HJ717-2014):  称取适量上述土壤样品(3.2)0.2000g~1.0000g(含氮约 1mg),精确到0.1mg,放入凯氏氮消解瓶(容积50ml或100ml)中,用少量水(约 0.5ml~1ml)润湿,再加入4ml 浓硫酸(H2SO4),瓶口上盖小漏斗,转动凯氏氮消解瓶使其混合均匀,浸泡8小时以上。使用干燥的长颈漏斗将0.5g 还原剂(3.3)加到凯氏氮消解瓶底部,置于消解器(或电热板)上加热,待冒烟后停止加热。冷却后,加入1.1g 催化剂 (3.4),摇匀,继续在消解器(或电热板)上消煮。消煮时保持微沸状态,使白烟到达瓶颈 1/3 处回旋,待消煮液和土样全部变成灰白色稍带绿色后,表明消解完全,再继续消煮1h,冷却。在土壤样品消煮过程如果不能完全消解,可以冷却后加几滴高氯酸后再消煮。  注 1:消解时温度不能超过400℃,以防瓶壁温度过高而使铵盐受热分解,导致氮的损失。  1.6样品处理(非标准方法):  称取上述土壤样品1.5g(精确至0.1mg)于50ml的消化管中(每个样品3次重复),每支消化管中加入2.0g加速剂(m硫酸钾:m五水合硫酸铜=10:1)和5ml浓硫酸(H2SO4),然后将样品和空白试剂置于远红外消解炉消解,直至土壤样品为蓝绿色或灰白色(颜色较浅)。待溶液冷却后,定容至50ml,摇匀过滤,滤液用于样品氮含量的测定。  1.7应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中全氮含量测定。图1 iFIA7全自动流动注射分析仪-全氮分析通道  1.7.1:标准曲线的测定:表1 土壤中全氮标准曲线标准样品浓度(mg/L)吸光度峰高吸光度峰面积回算浓度(mg/L)00.00020.03340.07520.10.00340.74590.15250.250.00911.99040.28760.50.01914.2120.528610.03928.62791.007720.078917.30181.948850.201744.17124.8642100.414890.69.9017200.8449184.449920.0844图2土壤中全氮标准曲线分析图图3 土壤中全氮方法工作曲线  1.7.2土壤有效态成分分析标准物质全氮的测定:  采用中国计量科学研究院的土壤有效态成分分析标准物质(GBW07414,标准值0.094%,不确定度0.005%, GBW07417,标准值0.076%,不确定度0.004%),对方法及仪器进行检验,测定结果如下。表2 土壤有效态成分分析标准物质全氮含量测定结果样品名称已知含量(%)回算含量(%)GBW074140.094±0.0050.095GBW074170.076±0.0040.078 二、土壤中氨氮的测定(HJ 634-2012):  2.1方法原理:  氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在630?nm波长具有最大吸收峰。在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。  2.2试样的制备:  将采集后的土壤样品去除杂物,手工或仪器混匀,过样品筛。在进行手工混合时应戴橡胶手套。过筛后样品分成两份,一份用于测定干物质含量,测定方法参见HJ613;另一份用于测定待测组分含量。  2.3样品处理:?  称取40.0g试样(1.2),放入500ml聚乙烯瓶中,加入200ml氯化钾溶液(1mol/L),在20±2℃的恒温水浴振荡器震荡提取1h。转移约60ml提取液于100ml聚乙烯离心管中,在3000r/min的条件下离心分离10min。然后将约10ml上清液转移至10ml样品管中。三、土壤中硝酸盐氮/亚硝酸盐氮的测定(HJ 634-2012):  3.1硝酸盐氮方法原理:  氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原成亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰,测定硝酸盐氮和亚硝酸盐氮总量。硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。  3.2亚硝酸盐氮方法原理:  氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰。在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。  3.3试样的制备:同2.2  3.4样品处理:同2.3四、土壤中全磷的测定(GB 9837-88):  4.1方法原理:  土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶液熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝。  4.2样品的制备:  取通过1mm孔径筛的风干土样在牛皮纸上铺上薄层,划分成许多小方格。用小勺在每个方格中提取出等量土样(总量不少于20g)与玛瑙研钵中进一步研磨,是全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。  4.3溶样(样品处理):  准确称取风干样品0.25g(精确到0.1mg)小心放入镍(或银)坩埚,切勿粘在壁上。加入无水乙醇3~4,滴润湿样品,在样品上平铺2g氢氧化钠(NaOH)。将坩埚(处理大批样品时暂放入大干燥器中以防潮吸潮)放入高温电路,升温。当温度升至400℃左右时,切断电源,暂停15min。然后继续升温720℃,并保持15min,取出冷却。加入80℃的水10ml,待熔块溶解后,将溶液无损失地转入100ml容量瓶内,同时用3mol/L的硫酸溶液和10ml水多次洗坩埚,洗涤液也一并移入该容量瓶。冷却,定容。用无磷定性滤纸过滤或离心澄清。同时做空白式样。五、土壤中有效磷的测定(HJ 704-2014):  5.1方法原理:  用0.5mol/L碳酸氢钠溶液(pH=8.5)浸提土壤中的有效磷。浸提液中的磷与钼锑抗显色剂反应生成磷钼蓝,在波长880nm处测量吸光度。在一定浓度范围内,磷的含量与吸光度值符合朗伯-比尔定律。  5.2干扰和消除:  砷(V )、铌、钽、锆、钛和钼酸铵产生同主反应类似的杂多酸,砷大于2mg/L干扰测定,1μg砷同0. 35 μg磷相当,当水样中砷含量超过磷时,应采用硫代硫酸钠掩蔽。对铌、钽、锆、钛的影响可通过萃取或加氟化物来避免。硅和钼酸铵产生同主反应类似的杂多酸,干扰测定,使结果偏高,在微酸性(pH4-6)的条件下,加入酒石酸可消除干扰。铁含量为20mg/L,使结果偏低5%,在大于30mg/L以上会使钼蓝退色, 可加入过量抗坏血酸抑制。亚硝酸影响钼兰显色,显色液中亚硝酸盐达数毫克会使显色液褪色,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。六价铬大于50mg/L有干扰,可用亚硫酸钠去除。硫化物含量大于2mg/L有干扰,在酸性条件下通氮气可去除。强氯化剂及铬酸盐使生成钼蓝褪色,高亚硝酸盐也有褪色作用,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。  5.3浸提剂的制备c(NaHCO3)=0.5mol/L:  称取42.0g碳酸氢钠溶于约800ml水中,加水稀释至约990ml,用氢氧化钠溶液(10%)调节至pH=8.5(用pH计测定),加水定容至1L,温度控制在25±1℃。贮存于聚乙烯瓶中,该溶液应在4h内使用。  注1:浸提剂温度需控制在25±1℃。具体控制时,最好有1小间恒温室,冬季除室温要维持25℃外,还需将去离子水事先加热至26~27℃后再进行配制。  5.4样品采集与保存:  按HJ/T 166的相关规定进行采集和保存土壤样品。  5.5试样的制备:  试样的制备按NY/T 395-2012《农田土壤环境质量监测技术规范》进行土壤处理和制备。  5.6干物质含量的测定:  准确称取适量试样(5.5),参照HJ 613测定样品干物质的含量。  5.7样品处理:  称取2.50g试样(5.5),置于干燥的150ml具塞锥形瓶中,加入50.0ml浸提剂(5.3),塞紧,置于恒温往复振荡器上,在25±1℃下以180~200r/min的振荡频率振荡30±1min,立即用无磷滤纸过滤,滤液应当天分析。  注2:浸提时最好有1小间恒温室,冬季应先开启空调,待室温达到25℃,且恒温往复振荡器内温度达到25℃后,再打开振荡器进行振荡计时。  5.8应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中有效磷含量测定:  5.8.1标准曲线的测定:表3土壤中有效磷工作曲线标准样品浓度(μg/L)吸光度峰高吸光度峰面积回算浓度(μg/L)00.00010.01236.0100.00170.315212.6200.00340.639619.6500.01041.942747.91000.02284.141195.72000.04938.7410195.65000.137022.8786502.6图4土壤中有效磷标准样品分析图图5土壤中有效磷方法工作曲线  5.8.2土壤中有效态成分分析标准物质有效磷的测定:表4 土壤中有效态成分分析标准物质有效磷含量测定结果样品名称已知浓度mg/kg回算浓度mg/kgGBW0741413.8±2.314.2GBW0741413.8±2.313.6GBW0741413.8±2.313.6GBW0741614.8±3.114.9GBW0741614.8±3.115.0GBW0741614.8±3.115.0GBW0741748±348.0GBW0741748±347.8GBW0741748±347.6  5.8.3 土壤中有效态成分分析标准物质土壤有效磷加标测定:表5 土壤中有效磷加标回收率实验样品名称样品浓度(mg/kg)加标前浓度(mg/kg)加标浓度(mg/kg)加标后浓度(mg/kg)回收率(%)GBW0741413.8±2.313.9 20.0 32.392.0GBW0741614.8±3.1 15.0 10.0 24.9 99.0GBW0741748±3 47.8 20.0 67.799.5
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 讲座预告 | 土壤样品前处理技术分析
    9月16日(周五)10:00-12:00,奥豪斯将开展主题为【土壤样品前处理技术分析】的线上讲座。扫描下方二维码即可免费报名。本期会议简介对于土壤,根据测定物质的不同特性,可以选用不同的前处 方法。在整个检测分析过程中,有60%的分析误差来源于样品的前处理方法。目前,土壤消解的前处理技术可以分为湿法消解(电热板、石墨消解仪)、微波消解、干灰化法等。土壤样品盘除测定常见的重金属外,还包括氰化物、氟化物等无机化合物。在土壤质量及污染检测时涉及的无机物指标及前处理方法。本期特邀讲师:赵小学河南省土壤重金属污染监测与修复重 点实验室高级工程师,近10年来,中文核心期刊发表学术论文20篇;参与编著环境监测行业教材3部;主持制定地方标准5项,参与国家环境准监测技术标准3项;获批7件专 利,发明专 利3件;主持取得4项省级技术成果。本期特邀讲师:阮秀秀上海大学环境科学与工程系教授,研究方向有有机污染土壤修复、废弃生物质的资源化、功能型生物炭材料的开发及环境应用、新型LDH类污染控制材料、工业固废资源化。我想听直播课,请问怎么报名?扫描下方的二维码,即可免费报名直播课如果您对本期话话题感兴趣赶紧报名参加吧 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 热点聚焦|东西分析助力第三次全国土壤普查
    近日,《国务院关于开展第三次全国土壤普查的通知》发布,决定自2022年起开展为期四年的第三次全国土壤普查。这是自1979-1985年开展第二次全国土壤普查后,时隔近四十年后的一次大摸底行动。消息来源于http://www.gov.cn中国政府网该通知明确普查的时间为2022-2025年,2022年完成普查技术、规范、物资等准备,开展全国性试点;2023-2024年全面铺开普查,形成阶段性成果;2025年开展普查数据审核、成果汇总、验收与总结。普查对象为全国耕地、园地、林地、草地等农用地和部分未利用的土壤。普查内容为土壤性状、类型、立地条件、利用状况等。 东西分析作为国内较早成立的科学分析仪器生产厂商之一,拥有质谱、光谱、色谱等多条产品线,检测项目覆盖无机元素、有机化合物。面对第三次全国土壤普查,东西分析凭借专业的服务能力,为相关土壤检测人员提供包括售前咨询、检测设备、应用方法、售后服务等在内的整体解决方案,助力土壤相关项目检测。应对方案按以往土壤普查及土壤监测的要求,土壤污染物检测项目主要包括土壤无机污染物(总镉、总汞、总砷、总铅、总铬、总铜、总镍、总锌、氟化物、氰化物等)、土壤有机污染物(PAHs、有机氯农药、硝基苯、挥发性有机物、半挥发性有机物、邻苯二甲酸酯类、多氯联苯、二噁英等)。涉及的分析仪器主要包括但不限于有原子吸收分光光度计、原子荧光光度计、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气相色谱仪、液相色谱仪、气相色谱(四极)质谱联用仪等等。用于土壤中镍、锌、铜、铬、镉、铅等金属元素的分析AA-7090型原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计用于分析砷、汞、硒、锡、铅、铋、锑、碲、锗、镉、锌等元素AF-7550型双道氢化物-原子荧光光度计用于分析土壤中铬、铜、镍、锌、钴、钒、锑、铊、锰、铍等元素ICP-7700型电感耦合等离子发射光谱仪GBC Quantima型电感耦合等离子发射光谱仪用于分析土壤中铬、铜、镍、锌、钴、钒、锑、铊、锰、铍等元素GBC OptiMass 9600电感耦合等离子体直角加速式飞行时间质谱仪用于分析土壤中六价铬等元素Cintra 4040 紫外-可见分光光度计用于分析土壤中农药残留、石油烃、挥发性有机物、酚类等GC-4100型气相色谱仪GC-MS 3200型气相(四极)色谱质谱联用仪用于分析土壤中多环芳烃LC-5520型高效液相色谱仪相关解决方案解决方案|GC-MS在土壤有机物检测中的应用解决方案|原子荧光法检测土壤中的砷、锑、硒、铋GB36600-2018解读及东西分析应对方案解决方案|碱溶液提取-火焰原子吸收法测定土壤中六价铬解决方案|土壤中的铟含量检测解决方案|AA-7050和SavantAA 火焰-原子吸收分光光度计测定土壤中的铬解决方案|气相色谱-质谱联用法测定土壤中半挥发性有机物东西分析第三方环境监测解决方案 2019.3.22解决方案|东西分析GBC cintra4040检测土壤中六价铬解决方案|顶空/气相色谱-质谱法测定土壤中挥发性有机物解决方案|“爱护环境,保护好我们的大地母亲”-东西分析土壤污染监测方案
  • 山东省市场监督管理局通报2023年资质认定检验检测机构能力验证(第一次)结果
    2023年11月2日,山东省市场监督管理局网站通报2023年资质认定检验检测机构能力验证(第一次)结果。本次检验检测机构能力验证必须参加机构1613家(实际参加1556家,未参加63家,自愿参加6家),其中:共完成能力验证参数3182个,数据为满意的能力参数2831个、存在可疑值的参数176个、不满意的参数175个,满意率为89.0%。土壤中总氟化物检测能力验证结果为可疑的资质认定检验检测机构序号检验检测机构名称可疑项目1山东尚水检测有限公司土壤中总氟化物2山东国润环境检测有限公司土壤中总氟化物3山东蓝普检测技术有限公司土壤中总氟化物4山东绿洲检测有限公司土壤中总氟化物5益铭检测技术服务(青岛)有限公司土壤中总氟化物6山东清诺环境科技有限公司土壤中总氟化物7山东君成环境检测有限公司土壤中总氟化物8山东省煤田地质局第五勘探队分析测试中心土壤中总氟化物9山东质鼎检测技术有限公司土壤中总氟化物10山东融通环保检测技术有限公司土壤中总氟化物11青岛易科检测科技有限公司土壤中总氟化物12山东捷润检测有限公司土壤中总氟化物13烟台鲁东分析测试有限公司土壤中总氟化物14山东城控检测技术有限公司土壤中总氟化物15山东公明检测技术有限公司土壤中总氟化物16山东佳诺检测股份有限公司土壤中总氟化物17山东绿城环境监测有限公司土壤中总氟化物18山东中瑞全兴检测技术有限公司土壤中总氟化物土壤中总氟化物检测能力验证结果为不满意的资质认定检验检测机构序号检验检测机构名称不满意项目1山东求真检测科技有限公司土壤中总氟化物2山东诺正检测有限公司土壤中总氟化物3山东聚友环境监测有限公司土壤中总氟化物4山东鼎立环境检测有限公司土壤中总氟化物5山东鼎安检测技术有限公司土壤中总氟化物6青岛益众检测有限公司土壤中总氟化物7山东嘉源检测技术股份有限公司土壤中总氟化物8山东天正质量检测有限公司土壤中总氟化物9潍坊市方正理化检测有限公司土壤中总氟化物土壤中总氟化物检测能力验证未参加的资质认定检验检测机构序号检验检测机构名称备注1滨州丝路能源环境检测科技有限公司有资质,未参加2山东国正检测认证有限公司有资质,未参加3青岛元信检测技术有限公司有资质,未参加4山东荣邦检测有限公司未参加,该公司已停止运营5山东铭洋检验检测认证有限公司有资质,未参加6山东智方检测服务有限公司有资质,未参加7山东金舆达检验检测有限公司未参加,电话沟通该公司相关业务已暂停8山东豌豆检测服务有限公司有资质,未参加9东营市河口区检验检测中心(东营市河口区农产品质量检验检测中心)有资质,未参加10山东新农夫环境检测修复有限公司未参加,电话沟通该公司已停止运营11山东冠嘉环境监测有限公司有资质,未参加塑料建材领域维卡软化温度检测能力验证结果为可疑的资质认定检验检测机构序号检验检测机构名称可疑项目1新泰市华新工程质量检测有限公司维卡软化温度2山东普泰工程检测鉴定有限公司维卡软化温度3济南泉景建设工程检测有限公司维卡软化温度4枣庄市薛城区力行建设工程检测有限公司维卡软化温度5山东恒正工程质量检测有限公司维卡软化温度6枣庄市峄城区建筑工程质量检测中心维卡软化温度7德州市陵城区永成建筑工程检测有限公司维卡软化温度8平阴县建筑工程质量检测站维卡软化温度9山东瑞鄃工程质量检测有限公司维卡软化温度10临沂正平质量检测有限公司维卡软化温度11济南衡信通达工程检测有限公司维卡软化温度12山东德信工程检测有限公司维卡软化温度13山东科建质量检测评价技术有限公司维卡软化温度14青岛泰昊工程测试有限公司(地址4:青岛市城阳区上马街道东程社区111号)维卡软化温度15阳信县宏泰工程质量检测有限责任公司维卡软化温度16山东犁城工程检测有限公司维卡软化温度17青岛市统达建设工程质量检测有限公司维卡软化温度
  • 3~4 μm中红外激光新机遇:红光LD泵浦的稀土共掺氟化物光纤
    近日,电子科技大学光电科学与工程学院李剑峰教授、罗鸿禹副研究员课题组提出了一种利用红光LD泵浦Er3+/Dy3+共掺氟化物光纤实现波长大于3 μm中红外激光激射的新方法,不但在3.5 μm波长附近获得了瓦级激光高效输出,同时还实现了3.05~3.7 μm波长宽带调谐。相关研究成果以“Red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber: A promising mid-infrared laser platform”为题发表在Optics Letters上。3~4 μm中红外波段是一个重要的光谱区间,它不但覆盖了众多气体分子及化学键的吸收峰,同时也是一个重要的大气传输窗口,因此位于该区间的激光在气体监测、材料加工、空间通信等领域具有重要的应用价值。尽管在该波段目前已存在多种技术手段如:带内级联激光器、光参量振荡器、固体激光器、气体激光器等,但全固态光纤激光器因在光束质量、转化效率、系统集成性及可靠性上优良的综合表现,仍具备极强的竞争力。然而,从实用性角度来讲,该波段在激光激射体系上还难以达到1~2 μm掺Yb3+、Er3+及Tm3+石英光纤激光器的成熟度(即采用商用LD包层泵浦直接实现高效激光输出),从而发挥出光纤激光器的全部优势。该团队提出采用红光LD泵浦双包层Er3+/Dy3+共掺氟化物光纤,通过直接激励Er3+高能级4F9/2,借助Er3+与Dy3+间以及内部的能量传递和Dy3+的带内吸收过程(图1),不仅可以有效释放Er3+长寿命能级4I11/2和4I13/2上的离子,加速离子循环,促进Er3+中4F9/2→4I9/2跃迁实现3.5μm附近激光高效激射,同时还可以激活Dy3+中6H13/2→6H15/2跃迁大幅拓展辐射带宽。图1 659 nm红光泵浦的Er3+/Dy3+共掺氟化物光纤简化能级示意图。ET:能量传递;ETU:能量传递上转换;CR:交叉驰豫;MR:多声子弛豫在自由运转状态下(F-P腔),采用21%输出耦合可以获得斜效率为8.8%的3.4μm单波带激光输出,最大功率为0.8W ;采用40%输出耦合可以获得斜效率为10.7%的3.3μm和3.5μm双波带激光输出,最大总功率为0.95W,进一步的功率提升仅受限于当前泵浦功率。在波长调谐状态下(Littrow结构光栅),可以获得3.05~3.7μm波长连续调谐激光输出(图2)。图2 659 nm红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器。(a)实验装置示意图(包含自由运转和波长调谐结构);(b)自由运转状态下的功率演化和光谱图;(c)波长调谐状态下的功率和光谱演化图相较于现有的3~4 μm光纤激光器,该团队提出的红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器,不仅具有简单的结构和高的运转效率,同时还可以实现宽带激光波长覆盖,为未来商用3~4 μm激光器小型化和集成化提供了新的机遇,同时该系统超宽的增益带也为中红外宽带信号放大以及少周期超短脉冲产生等提供了机会。
  • 莱伯泰科:省时、灵活、高通量,多样化产品助力土壤有机物检测
    p   随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在土壤污染物检测中,有机污染物种类众多、类型复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。 /p p & nbsp   为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/youjiwu" target=" _blank" style=" text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong “土壤有机物检测最新技术进展” /strong strong /strong /span /a 专题,并邀请莱伯泰科产品经理刘雪就土壤有机物检测技术相关的问题发表了自己的观点。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/fa91c9f8-344e-4bf5-805d-0e9eb230955e.jpg" title=" 莱伯泰科1.jpg" alt=" 莱伯泰科1.jpg" / /p p style=" text-align: center " strong 刘雪 莱伯泰科产品经理 /strong /p p & nbsp    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 目前国家一直在更新土壤检测方面的相关标准,相应的不同种类的仪器也被逐渐地收录到各个标准里面去,为相关检测单位提供了更加丰富、更加灵活的选择。然而就目前而言,相对于水和大气,土壤检测方面的标准还是相对偏少的,我相信后期在这方面肯定还会有更多更细化的标准出台。 /p p & nbsp   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 我认为还是以半挥发性有机物和挥发性有机物为主,除了常见的PAHs、PCBs、有机氯等,二噁英、全氟化合物等有机物的检测也在逐渐进入大家的视线之中。针对土壤中半挥发性有机物的检测,主要涉及样品制备-提取-浓缩-净化-浓缩过程,流程比较复杂,要保证所有物质的回收率满足标准要求,尤其是一些比较容易挥发的物质,就要在检测过程中更加注意操作细节。土壤样品的种类比较多,含水率不同,基质从简单到复杂,不同含水率的样品需要不同的制备方法,且根据样品复杂情况以及测试项目的不同,选择的净化方式也有所不同。 /p p & nbsp    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 在这方面我们公司主要有高效溶剂萃取仪、微波萃取仪、定量浓缩仪、旋转蒸发仪、固相萃取仪、凝胶净化仪等前处理仪器,可以提供包含提取、净化以及浓缩在内的整体产品组合。 /p p & nbsp   莱伯泰科一直秉承自主研发创新的理念,走在科技创新的最前沿,用创新带动企业发展。我们的全自动快速溶剂萃取仪是目前通量最大、效率最高的自动萃取产品,可支持30位、双通道同时运行,效率极高;且仪器自动密封,杜绝漏液,保证连续运转;仪器支持从小体积到大体积8种萃取罐规格、5种实验室常用的收集瓶体积可供选择,非常灵活;仪器创新三维平台机械臂设计,萃取罐可在运行过程中追加,节省填罐等待时间;收集瓶架可以方便抽出进行下一步浓缩,提高检测效率;仪器整体透明式设计,方便观察仪器运行情况,且系统密闭自带通风,无需放入通风橱;除了硬件方面,软件控制终端为仪器自带一体触摸屏,360度自由旋转,操作灵活,软件支持数据溯源和权限管理功能。 /p p & nbsp   另外,我们的的凝胶净化系列产品也是创新设计采用不锈钢净化柱代替传统玻璃柱,无需人工装填,减少人工工作;且机械中压填充方式,将净化时间、试剂消耗量减少为原来的1/3,大大提升了检测效率。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 592px height: 446px " src=" https://img1.17img.cn/17img/images/201909/uepic/5adc8484-2822-498f-97db-65ffa6590af4.jpg" title=" 莱伯泰科2.jpg" alt=" 莱伯泰科2.jpg" width=" 592" height=" 446" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong Flex-HPSE全自动高效快速溶剂萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/2a161bf0-83d1-49d2-886a-ade9fa90d9f6.jpg" title=" 莱伯泰科3.jpg" alt=" 莱伯泰科3.jpg" / /strong /p p style=" text-align: center " strong MultiVap-10 定量平行浓缩仪 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/7a022a3a-a2d2-446f-810f-8742c01070b6.jpg" title=" 莱伯泰科4.jpg" alt=" 莱伯泰科4.jpg" / /strong /p p style=" text-align: center " strong SPE 1000 全自动固相萃取系统 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/201909/uepic/233ce1b1-d11d-4514-b325-49a77af68122.jpg" title=" 莱伯泰科5.jpg" alt=" 莱伯泰科5.jpg" width=" 600" height=" 450" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong PrepElite-GV全自动样品前处理平台 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 574px height: 432px " src=" https://img1.17img.cn/17img/images/201909/uepic/54718096-28b5-43bd-a593-65b7625f9972.jpg" title=" 莱6.jpg" alt=" 莱6.jpg" width=" 574" height=" 432" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong Astation 全自动多功能样品制备进样平台 /strong /p p & nbsp   strong span style=" color: rgb(255, 0, 0) "  仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案? /span /strong /p p & nbsp    strong 刘雪: /strong 我们的仪器完全满足HJ 834、HJ 805等环境标准方法和GB15618和GB 36600等国标中对前处理的设备和方法的要求。对于土壤中半挥发性有机物(SVOC)检测,我们可以提供从提取、净化到浓缩的整体解决方案,如土壤中多氯联苯、多环芳烃、有机氯、二噁英等各种半挥发性有机物的检测。对于土壤中半挥发性有机物(VOC)检测,我们还可以提供全自动的多功能进样平台,配备水土一体吹扫捕集、顶空以及固相微萃取以及液体自动进样功能,可进行土壤中挥发性有机物的检测。 /p
  • 【恒美】土壤总有机碳检测仪:掌握有机碳,打造丰产田
    点击此处可了解更多产品详情:土壤总有机碳检测仪 土壤总有机碳检测仪对农业具有重要意义。该仪器可以通过测量土壤中的有机碳含量,评估土壤的肥力水平。这对于农民来说是一个重要的指标,因为它可以帮助他们了解土壤的状况,以便进行适当的施肥和耕地管理。 此外,土壤总有机碳检测仪还可以监测土壤的健康状况。如果土壤中的有机碳含量过低,可能会导致土壤质量下降,影响作物的生长。因此,通过定期检测土壤中的有机碳含量,农民可以采取必要的措施来保护土壤健康,并确保作物的生长。土壤总有机碳检测仪对农业具有重要的作用。它可以帮助农民了解土壤的状况,保护土壤健康,提高作物的产量和质量。 土壤总有机碳检测仪是一种用于检测土壤中有机碳含量的仪器。它通常是一个手持设备,可以通过分析土壤样品中的有机物质,来测量土壤中的总有机碳含量。 该仪器在农业中具有广泛的应用价值。通过测量土壤中的有机碳含量,农民可以了解土壤的肥力水平,并采取必要的措施来提高土壤质量。此外,仪器还可以帮助监测土壤的健康状况,并提前发现可能存在的土壤问题,土壤总有机碳检测仪是一个重要的工具,可以帮助农民更好地了解土壤的状况,保护土壤健康,提高农作物的产量和质量。
  • 岛津公司推出土壤中污染物检测解决方案
    目前,我国土壤重金属污染问题日趋严重,污染所导致的严重环境危害事件呈逐步上升趋势。我国受镉、砷、铬、铅等重金属污染的耕地面积近 2000 万公顷,约占总耕地面积的 1/5,其中工业&ldquo 三废&rdquo 污染耕地 1000 万公顷,污水灌溉的农田面积已达 330 多万公顷。另一方面,全国有 1300~1600 万公顷耕地受到农药的污染。除耕地污染之外,我国的工矿区、城市也还存在土壤(或土地)污染问题。这些有毒化学物质,如镉、铅等重金属以及有机氯农药等。它们主要来自工业生产过程中排放的废水、废气、废渣以及农业上大量施用的农药和化肥。国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标和接近临界值。土壤污染危害人体健康,土壤污染会使污染物在植(作)物体中积累,并通过食物链富集到人体和动物体中,危害人畜健康,引发癌症和其他疾病等。 由环保部牵头制定的《全国土壤环境保护&ldquo 十二五&rdquo 规划》已进入国务院审批程序,国家发改委批准了&ldquo &lsquo 十二五&rsquo 重金属污染防治规划&rdquo ,将&ldquo 土壤与场地污染治理与修复&rdquo 列入&ldquo 十二五&rdquo 社会发展科技领域国家科技计划项目指南。 岛津公司作为全球著名的分析仪器厂商,进入中国已经30多年,长期以来一致关注国内外各行业标准法规的颁布与实施,积极应对,及时提供全面、有效的解决方案。针对&ldquo 十二五&rdquo 期间国家重点治理土壤重金属污染以及大面积耕地受到农药的污染的背景下,推出了《土壤中污染物检测解决方案》,内容包括: 1 GCMS法测定土壤中多环芳烃 2 吹扫捕集-气相色谱质谱法测定土壤中挥发性有机物含量 3 顶空-GCMS测定土壤中挥发性有机物含量 4 加速溶剂萃取-气相色谱质谱联用法测定土壤中的有机磷农药 5 气相色谱-质谱法测定土壤中的多氯联苯 6 土壤中6种邻苯二甲酸酯类化合物的测定 7 土壤中15种挥发性卤代有机污染物的测定 8 土壤中55种挥发性有机污染物的测定 9 高效液相色谱法检测土壤中的16种多环芳烃 10 三重四极杆质谱测定土壤中的3种六溴环十二烷异构体 11 微波消解ICP-AES法测定土壤中的金属元素 12 ICP-AES测定土壤中的多种金属元素 13 火焰原子吸收分光光度法测定土壤中的总铬 14 碱消解-火焰原子吸收分光光度法测定固体废弃物中的六价铬 15 原子吸收分光光度法测定土壤中的铅和镉 16 原子吸收分光光度法测定固体废弃物铬渣中的总铬含量 17 微波消解-火焰原子吸收法测定污泥和土壤中的Pb和Cr 18 冷原子吸收法测定土壤中的汞 19 紫外分光光度计测试土壤中氨氮含量 20 紫外分光光度计测试土壤中磷含量 21 紫外分光光度计测试土壤中亚硝酸盐氮含 22 重铬酸钾氧化-紫外分光光度法测定土壤中的总有机碳含量 23 TOC-L和SSM-5000A对高碳酸盐土壤样品的TOC测 24 利用岛津SSM-5000A对土壤样品的TOC检测 25 IRAffinity-1测定土壤中石油类含量 26 波长色散X射线荧光分析土壤中重金属有害元素 27 能量色散X射线荧光分析土壤中重金属元素 有关详情,请您向&ldquo 岛津全球应用技术开发支持中心&rdquo 咨询。 咨询电话:021-22013542 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制