当前位置: 仪器信息网 > 行业主题 > >

单重实时荧光检测

仪器信息网单重实时荧光检测专题为您提供2024年最新单重实时荧光检测价格报价、厂家品牌的相关信息, 包括单重实时荧光检测参数、型号等,不管是国产,还是进口品牌的单重实时荧光检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单重实时荧光检测相关的耗材配件、试剂标物,还有单重实时荧光检测相关的最新资讯、资料,以及单重实时荧光检测相关的解决方案。

单重实时荧光检测相关的论坛

  • 网络讲堂:药物研发和实时荧光检测技术的应用(Molecular Devices)

    网络讲堂:药物研发和实时荧光检测技术的应用(Molecular Devices)

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647598_2507958_3.gif药物研发和实时荧光检测技术的应用时间:2014年9月25日 14:30讲师:董文忠先生,Molecular Devices产品经理 毕业于军事医学科学院毒物药物研究所,曾先后就职于安泰医药生物、新医药北京市技术转移中心、药明康德等药物研发机构。长期从事不同靶点、不同技术平台的药物研发和高通量筛选,拥有丰富的药物开发和筛选经验。现担任Molecular Devices产品经理,负责实时高通量荧光检测分析系统和全自动膜片钳系统的应用技术工作。讲座内容: 药物研发是一个漫长且投资巨大的复杂过程,G蛋白偶联受体和离子通道等一直以来作为最主要的药物作用靶点而倍受青睐,所占市场份额超过一半以上。另外,药物的安全性评测的重要性日渐提升并且开始的阶段也越来越早。如何更好、更快、更有效地完成相应的工作?实时高通量荧光检测技术将是您最佳的选择。钙流、膜电位、pH、hERG通道、氯离子、早期心肌毒性检测、cAMP检测等多种应用定能满足您的需求。尊敬的客户,耽误您宝贵的3分钟时间来填写以下webinar注册信息,对于完成注册并当天全程听会的客户,我们会抽取8位听众送出精美小礼品。感谢大家的关注!-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年9月25日 14:004、报名参会:http://ng1.17img.cn/bbsfiles/images/2014/08/201408011630_508801_2507958_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647598_2507958_3.gif

  • 浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    [align=center][b][font=宋体]浅谈单分子荧光检测技术的原理及其在生命科学中的应用[/font][/b][/align][align=center][font=宋体]吴晶[/font][sup][font='Times New Roman',serif]1[/font][/sup][font=宋体],刘皎[/font][sup][font='Times New Roman',serif]1,*[/font][/sup][/align][align=center][font='Times New Roman',serif]1. [/font][font=宋体]北京大学医药卫生分析中心,北京,[/font][font='Times New Roman',serif]100191[/font][/align][align=center][font='Times New Roman',serif]* [/font][font=宋体]通讯作者[/font][/align][b][font=宋体]摘要[/font][/b][font=宋体]由于单分子检测([/font][font='Times New Roman',serif]SingleMolecule Detection, SMD[/font][font=宋体])特有的[/font][font=宋体]高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体],使其[/font][font=宋体]有望发现其他常规实验中难以发现的实验现象,因此[/font][font=宋体]成为了生物学、医学及药学等生命科学领域重要的科研工具。本文结合作者所在的北京大学医药卫生分析中心生物成像平台的工作经验,概述了单分子荧光检测技术的原理以及在生命科学中的应用,以期为相关科研技术人员提供参考。[/font][b][font=宋体]关键词[/font][/b][font=宋体]单分子荧光检测,荧光互相关光谱,荧光寿命成像,应用[/font][b][font='Times New Roman',serif]Abstract[/font][/b][font='Times New Roman',serif]Single Molecule Detection (SMD)has become an important scientific research tool in the fields of biology,medicine and pharmacy due to its unique sensitivity, resolution and signalquality. Based on the author's work experience in the biological imaging lab ofPeking University Medical and Health Analysis Center, this paper summarizes theprinciple and applications of SMD in the life sciences, in order to providereference for related scientific researchers and technicians.[/font][b][font='Times New Roman',serif]KeyWords [/font][/b][font='Times New Roman',serif]SMD, FCS, FLIM, Application[/font][b][font='Times New Roman',serif]1 [/font][font=宋体]引言[/font][/b][font=宋体]单分子检测([/font][font='Times New Roman',serif]Single Molecule Detection, SMD[/font][font=宋体])技术是一种能够在单分子水平上检测分子的技术,它具[/font][font=宋体]有高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体]。[/font][font=宋体]它不但实现了某种意义上可称之为最高灵敏度的分子检测,而且有可能实时监测反应途径和追踪大分子在执行生理功能时的结构变化,因此有望发现其他常规实验中难以发现的实验现象。[/font][font=宋体]在单分子检测技术发展之前,大多数的分子实验是探测分子的综合平均效应([/font][font='Times New Roman',serif]Ensemble Averages[/font][font=宋体]),即探测大量由一种(或多种)对象组成的一个整体所表现出的平均响应和平均值[/font][font='Times New Roman',serif][1][/font][font=宋体]。这一平均效应掩盖了许多特殊的信息,尤其是生物学里很多小概率事件的发生。相比之下,单分子检测可以逐个地对体系中的单个分子进行研究,通过时间相关的方法,得到某一分子特性的分布状况。[/font][font=宋体]这对于了解机体细胞的物理、化学性质及其参与细胞正常功能的机制是十分必要的。它快速、卓越的进展无疑将影响许多科学领域,为医学、生物学、化学、物理[/font][font=宋体]学和纳米材料等领域提供新的检测手段,目前已成为当今科学研究的热点之一。[/font][font=宋体]在过去的几十年里,科研人员开发和设计了各种技术和实验来检测单个分子。例如上个世纪五十年代使用透射电镜拍摄了[/font][font='Times New Roman',serif]DNA[/font][font=宋体]和蛋白质等单分子的第一张图像;六十年代,有学者开展了间接检测水溶性生物分子的荧光研究,获得了含有高浓度底物的低浓度酶的液滴中存在的分子数量;七十年代,膜片钳被用于研究单分子,此后被广泛应用于离子通道蛋白的研究;八十年代,利用可扩散的多重荧光标记技术检测了单脂质分子;九十年代,应用宽场单荧光成像技术对单荧光团分子进行检测和成像,并且利用单分子荧光定位技术获得了大约[/font][font='Times New Roman',serif]30nm[/font][font=宋体]的分辨率;进入二十一世纪,研究人员开始在单分子水平上只使用一种荧光染料标签,对活细胞进行直接成像,并通过荧光显微镜进行观察[/font][font='Times New Roman',serif][2][/font][font=宋体]。[/font] [font=宋体]单分子荧光检测技术是实现单分子检测的手段之一,它利用单个荧光分子的荧光发射特性,对其进行精细控制和观测。[/font][font=宋体]本文拟通过对单分子荧光检测技术,包括荧光相关光谱[/font][font='Times New Roman',serif]/[/font][font=宋体]荧光互相关光谱([/font][font='Times New Roman',serif]Fluorescence Correlation Spectroscopy/ Fluorescence Cross-CorrelationSpectroscopy, FCS/FCCS[/font][font=宋体])及荧光寿命成像([/font][font='Times New Roman',serif]Fluorescence Lifetime Imaging Microscopy, FLIM[/font][font=宋体])技术的特征、原理及这些技术在生命科学领域的应用等方面进行阐述,以其为相关科研技术人员提供参考。[/font][b][font='Times New Roman',serif]2 [/font][font=宋体]单分子荧光检测技术概述[/font][/b][font='Times New Roman',serif]2.1[/font][font=宋体]荧光发射原理[/font][font='Times New Roman',serif][3][/font][font=宋体]荧光作为一种发射光,它的产生涉及对光子的吸收和再发射两个过程。简单的说,荧光产生有四个步骤(图[/font][font='Times New Roman',serif]1[/font][font=宋体]):[/font][align=center][img=,337,387]https://ng1.17img.cn/bbsfiles/images/2023/10/202310241358038590_3596_3237657_3.png!w337x387.jpg[/img][/align][align=center][font=宋体]图[/font]1 [font=宋体]荧光发射循环示意图[/font][/align][font='Times New Roman',serif](1)[/font][font=宋体]电子吸收入射光子后由基态向激发态跃迁,其跃迁速率在一定范围内与激光功率成正比;[/font][font='Times New Roman',serif](2)[/font][font=宋体]电子跃迁到不同电子能级或同一电子能级的不同振动能级上,经内转换和振动弛豫降落到最低激发单重态的最低振动能级上,这一过程需[/font][font='Times New Roman',serif]1x10[sup]-11[/sup]~1x10[sup]-13[/sup]s[/font][font=宋体];[/font][font='Times New Roman',serif](3)[/font][font=宋体]电子由激发态经发射光量子跃迁到基态的不同振动能级上,这一过程称为荧光发射;[/font][font='Times New Roman',serif](4)[/font][font=宋体]电子基态的内弛豫。[/font][font=宋体]物质发射荧光的能力用荧光量子产率来衡量。[/font][font='Times New Roman',serif]2.2 [/font][font=宋体]单分子荧光检测的基本要求[/font][font=宋体]对单分子荧光的检测必须满足两个基本要求[/font][font='Times New Roman',serif][1][/font][font=宋体]:[/font][font='Times New Roman',serif](1)[/font][font=宋体]在被照射的体积中只有一个分子与激光发生相互作用。这一点可以很方便地通过调整研究体系的浓度(密度)来达到;[/font][font='Times New Roman',serif](2)[/font][font=宋体]确保单分子的信号大于背景干扰信号([/font][font='Times New Roman',serif]background signal[/font][font=宋体]),其中关键的问题是要有效减少拉曼散射、瑞利散射及其杂质荧光所造成的干扰。[/font][font=宋体]因此,要获得理想的信噪比,需要将激发体积最小化。因显微镜物镜的焦点最小体积约[/font][font='Times New Roman',serif]1μm[sup]3[/sup][/font][font=宋体],故激光扫描共聚焦显微镜([/font][font='Times New Roman',serif]laser scanning confocalmicroscopy, LSCM)[/font][font=宋体]是探测单分子荧光的主要方法之一。[/font][b][font='Times New Roman',serif]3 [/font][font=宋体]单分子荧光检测技术在生命科学中的应用[/font][/b][font='Times New Roman',serif]3.1 [/font][font=宋体]荧光相关光谱[/font][font='Times New Roman',serif]/[/font][font=宋体]荧光互相关光谱([/font][font='Times New Roman',serif]FCS/FCCS[/font][font=宋体])技术[/font][font='Times New Roman',serif][4-7][/font][font='Times New Roman',serif]FCS[/font][font=宋体]和[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]都是在涨落光谱技术的基础上衍生而来的,通过检测某一微小区域内荧光信号的瞬时涨落变化,分析分子的密度、扩散以及分子之间的相互作用,是一种新兴的单分子检测技术。由于[/font][font='Times New Roman',serif]FCS/FCCS[/font][font=宋体]的高灵敏性可以用来检测生物系统中发生的小概率时间,因此此技术主要用于分子之间相互作用、活细胞分析、核酸分析、蛋白质的寡聚化、蛋白质的动力学研究以及纳米制剂粒径测量等研究,在检测物质浓度、扩散速度、分子结合速率等方面体现出巨大的优越性,亦可用于肿瘤的早期诊断以及高通量药物筛选等。[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术,即在[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]焦点的微小测量区域内,通过对荧光强度随时间变化的自发性波动分析和其时间函数自相关的分析,并通过计算机统计与拟合运算,在活细胞内单分子水平给出分子的扩散系数、分子数目、分子浓度及分子之间结合与分离状态等动力学参数的检测方法。其实质是监测带有荧光基团的物质在激光作用体积内的扩散情况,可揭示异质群体中的每个个体,并对各自的亚群进行鉴定、分类、定量比较,亦可对复杂的生化反应提供详细、确定的动力学参数。例如,张强课题组就通过[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术测定了负电蛋白与不同电荷的纳米颗粒结合情况不同,导致扩散系数呈显著性差异,从而判断出纳米颗粒与血浆中蛋白结合情况[/font][font='Times New Roman',serif][8][/font][font=宋体]。而薛采宁等人也使用[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术实现了无标记小分子药物筛选[/font][font='Times New Roman',serif][9][/font][font=宋体]:[/font][font='Times New Roman',serif]FCS[/font][font=宋体]可以根据荧光标记的蛋白分子的特征扩散时间的变化来区分蛋白质的聚集程度,定量评价蛋白质与药物的相互作用,如荧光标记蛋白聚集体的特征扩散时间越短,蛋白质与药物之间的相互作用越强。[/font][font=宋体]发明[/font][font='Times New Roman',serif]FCS[/font][font=宋体]的最初目的是在生物系统中研究非常稀的样本浓度的化学动力学特征。随着探测手段、自相关电子学等方面的技术进步,[/font][font='Times New Roman',serif]FCS[/font][font=宋体]在生物化学中的研究和应用越来越广泛,如经典的细胞膜中脂质扩散研究就是通过[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]整合了[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术后所取得的巨大进展。[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]技术,确切来说是[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术的一种延伸应用。其既保持了[/font][font='Times New Roman',serif]FCS[/font][font=宋体]技术的灵敏性,又可以解决[/font][font='Times New Roman',serif]FCS[/font][font=宋体]对两种粒子的扩散速度要有明显不同的要求(至少相差[/font][font='Times New Roman',serif]2[/font][font=宋体]倍,即二者质量差相差[/font][font='Times New Roman',serif]8[/font][font=宋体]倍)。该技术在实验中通常将两种粒子用不同的荧光进行标记,荧光分子被激发后,产生两种互不干扰的荧光信号,分别被两个独立的检测器探测,然后将探测到的信息进行交叉函数分析。如果分子间存在相互作用,那么两种不同的荧光信号将同时经过检测通道,这时两个检测器就会产生同步的信号波动,从而产生互相关信号;而当单色荧光分子独立在微区域内运动时,则不会产生互相关信号。这样,相互作用的荧光分子和独立运动的荧光分子就被区分开来。由于[/font][font='Times New Roman',serif]FCCS[/font][font=宋体]技术直接反映分子间的相互作用,而不像[/font][font='Times New Roman',serif]FRET[/font][font=宋体]技术那样受分子扩散或聚集的影响,因此在生物分子互作、蛋白寡聚化、酶活性研究领域中有重要的应用前景。[/font][font='Times New Roman',serif]3.2 [/font][font=宋体]荧光寿命成像([/font][font='Times New Roman',serif]FLIM[/font][font=宋体])技术[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术是研究细胞内生命活动状态的一种非常可靠的方法。荧光寿命是指分子受到光脉冲激发后返回基态之前在激发态的平均停留时间,是荧光团的固有性质(表[/font][font='Times New Roman',serif]1[/font][font=宋体]),取决于荧光分子所处的微环境,因此其不受探针浓度、激发光强度和光漂白效应等因素影响,且能区分荧光光谱非常接近的不同荧光团,故具有非常好的特异性和很高的灵敏度。此外,由于荧光分子的荧光寿命能十分灵敏地反映激发态分子与周围微环境的相互作用及能量转移,因此[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术可提供细胞自身荧光寿命信息,亦可被用来实现对微环境中许多生化参数的定量测量,如细胞中折射率、黏度、温度、[/font][font='Times New Roman',serif]pH[/font][font=宋体]值的分布和动力学变化、局部氧气浓度测量、活细胞内钙浓度测量等,这在生物医学研究中具有非常重要的意义。目前[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术在细胞生物学中一些重要科学问题的研究、临床医学上一些重大疾病的诊断与治疗研究以及纳米材料的生物医学应用研究等方面均有广泛应用,并取得了许多利用传统的研究手段无法获取的数据。如[/font][font='Times New Roman',serif]Melissa C Skala[/font][font=宋体]等人[/font][font='Times New Roman',serif][10][/font][font=宋体]及李慧等人[/font][font='Times New Roman',serif][11][/font][font=宋体]均报道了通过[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]手段无标记测量肿瘤细胞或组织内[/font][font='Times New Roman',serif]NADH, FAD[/font][font=宋体]和其他内源性光学生物标志物的荧光特性,来实现对正常细胞或组织与肿瘤细胞或组织之间代谢途径差异的检测。[/font][align=center][font=宋体]表[/font][font='Times New Roman',serif]1 [/font][font=宋体]荧光寿命特性[/font][/align] [table][tr][td] [align=center][font=宋体][color=black]取决于[/color][/font][/align] [/td][td] [align=center][font=宋体][color=black]不依赖于[/color][/font][/align] [/td][/tr][tr][td] [font=宋体][color=black]染料浓度[/color][/font] [/td][td] [font=宋体][color=black]染料固有特性(如异构化、质子化、蛋白质折叠等)[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]光漂白[/color][/font] [/td][td] [font=宋体][color=black]微环境(如[/color][/font][font='Times New Roman',serif][color=black]pH[/color][/font][font=宋体][color=black]、离子浓度、环境氧浓度、温度等)[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]样品厚度[/color][/font] [/td][td] [font=宋体][color=black]分子结合[/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]激发光强度[/color][/font] [/td][td] [font='Times New Roman',serif][color=black] [/color][/font] [/td][/tr][tr][td] [font=宋体][color=black]光源噪声[/color][/font] [/td][td] [font='Times New Roman',serif][color=black] [/color][/font] [/td][/tr][/table][font='Times New Roman',serif]3.3 [/font][font=宋体]荧光寿命成像[/font][font='Times New Roman',serif]-[/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif](Fluorescence Lifetime Imaging Microscopy- Fluorescence Resonance EnergyTransfer, FLIM-FRET[/font][font=宋体])[/font][font='Times New Roman',serif][12][/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif](Fluorescence Resonance Energy Transfer, FRET) [13][/font][font=宋体]是指两个荧光基团间能量通过偶极[/font][font='Times New Roman',serif]-[/font][font=宋体]偶极耦合作用以非辐射方式从供体传递给受体的现象。目前[/font][font='Times New Roman',serif]FRET[/font][font=宋体]技术可广泛用于单个固定细胞、亚细胞或活细胞原位生理环境下检测生物大分子的构象变化和分子间的直接相互作用,如检测配体[/font][font='Times New Roman',serif]-[/font][font=宋体]受体、蛋白分子共定位、转录机制、蛋白折叠以及蛋白质二聚化等,亦可用于检测酶活性变化、细胞凋亡以及膜蛋白的研究等[/font][font='Times New Roman',serif][12][/font][font=宋体]。[/font][font=宋体]在[/font][font='Times New Roman',serif]FRET[/font][font=宋体]体系中,常用的荧光能量供体、受体对主要有:[/font][font='Times New Roman',serif]CFP/YFP[/font][font=宋体]、[/font][font='Times New Roman',serif]BFP/RFP[/font][font=宋体]、[/font][font='Times New Roman',serif]CY3/CY5[/font][font=宋体]等。进行[/font][font='Times New Roman',serif]FRET[/font][font=宋体]实验时,需要满足以下几个条件:[/font][font='Times New Roman',serif]① [/font][font=宋体]所检测样品包含两个荧光分子,能量的提供者叫做供体,能量的接受者叫做受体;[/font][font='Times New Roman',serif]② [/font][font=宋体]供体与受体的距离在[/font][font='Times New Roman',serif]10nm[/font][font=宋体]之间;[/font][font='Times New Roman',serif]③ [/font][font=宋体]供体的发射波长与受体的激发波长一致。当供体的激发波长照射样品时,若没有[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效应产生,只会检测到供体的发射光;反之,如果有[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效应发生,则[/font][font='Times New Roman',serif]CLSM[/font][font=宋体]可检出供体发射的荧光减弱,而受体的发射光增强。[/font][font='Times New Roman',serif]FRET[/font][font=宋体]本身不是一种成像技术,而是一个物理过程。传统的[/font][font='Times New Roman',serif]FRET[/font][font=宋体]过程分析通常是基于荧光强度成像来实现,分析的结果容易受光谱串扰的影响。而将[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术应用于[/font][font='Times New Roman',serif]FRET[/font][font=宋体]过程分析,利用了[/font][font='Times New Roman',serif]FLIM[/font][font=宋体]技术可定量测量这一优势,可非常灵敏地反映供体荧光分子与受体荧光分子之间的能量转移过程,目前被认为是测量[/font][font='Times New Roman',serif]FRET[/font][font=宋体]效果的金标准。[/font][font=宋体]当受体分子与供体之间的距离[/font][font='Times New Roman',serif]10nm[/font][font=宋体]时,供体的能量转移到受体,受体从基态发生能量跃迁,从而影响供体的荧光寿命。与没有受体分子的时候相比,发生[/font][font='Times New Roman',serif]FRET[/font][font=宋体]的供体分子的荧光寿命降低。因此,[/font][font='Times New Roman',serif]FLIM-FRET[/font][font=宋体]联合能够实时监测生物细胞中蛋白质的动态变化,如蛋白质折叠、分子间(蛋白[/font][font='Times New Roman',serif]-[/font][font=宋体]蛋白,蛋白[/font][font='Times New Roman',serif]-[/font][font=宋体]核酸)相互作用和细胞间信号分子传递、分子运输以及病理学研究等。[/font][b][font='Times New Roman',serif]4 [/font][font=宋体]结论和展望[/font][/b][font=宋体]近年来,研究人员应用了多种技术来检测单分子,如从传统的技术到最近发展的生物传感技术。而荧光检测越来越受欢迎,并且在等离子体共振、全内反射荧光、多光子激发荧光显微镜和近年来发展起来的生物传感技术等改进形式中仍然受到关注。随着近场扫描显微镜、光激活定位显微镜、受激发射损耗显微术或超分辨率荧光显微镜等先进显微技术的发展,单分子的超分辨率成像亦成为可能。此外,随着纳米生物技术的发展,几种先进的纳米技术也对单分子检测在更大程度上发挥着指导作用。[/font][font=宋体]总之单分子检测特有的[/font][font=宋体]高灵敏度、高空间分辨率、高时间分辨率、高信号质量等特点[/font][font=宋体],[/font][font=宋体]经过近几十年的发展,在[/font][font=宋体]生物学、医学及药学等生命科学领域已经成为不可或缺的科研工具。[/font][font='Times New Roman',serif] [/font][b][font=宋体]参考文献[/font][/b][font='Times New Roman',serif]1. [/font][font=宋体]周拥军[/font][font='Times New Roman',serif], [/font][font=宋体]陈德强[/font][font='Times New Roman',serif], [/font][font=宋体]夏安东[/font][font='Times New Roman',serif], [/font][font=宋体]黄文浩[/font][font='Times New Roman',serif]. [/font][font=宋体]单分子的荧光特性及其在生物学上的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]物理[/font][font='Times New Roman',serif], 2000, 29(11): 657-661[/font][font='Times New Roman',serif]2. [/font][font='Times New Roman',serif]NidhiChauhan, Kirti Saxena, Utkarsh Jain. Single molecule detection from microscopyto sensors. 2022. doi: https://doi.org/10.1016/j.ijbiomac.2022.04.038[/font][font='Times New Roman',serif]3. [/font][font=宋体]盖宏伟[/font][font='Times New Roman',serif]. [/font][font=宋体]单分子荧光成像检测及其应用研究[/font][font='Times New Roman',serif][D]. [/font][font=宋体]大连[/font][font='Times New Roman',serif]: [/font][font=宋体]中国科学院大连化学物理研究所[/font][font='Times New Roman',serif], 2005, 2-3[/font][font='Times New Roman',serif]4. [/font][font=宋体]曲绍峰[/font][font='Times New Roman',serif], [/font][font=宋体]林金星[/font][font='Times New Roman',serif], [/font][font=宋体]李晓娟[/font][font='Times New Roman',serif]. FCS/FCCS[/font][font=宋体]技术及其在植物细胞生物学中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]电子显微学报[/font][font='Times New Roman',serif], 2014, 33(5): 461-468[/font][font='Times New Roman',serif]5. [/font][font=宋体]张普敦[/font][font='Times New Roman',serif], [/font][font=宋体]任吉存[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱及其在单分子检测中的应用进展[/font][font='Times New Roman',serif]. [/font][font=宋体]分析化学[/font][font='Times New Roman',serif], 2005, 33(6): 875-880[/font][font='Times New Roman',serif]6. [/font][font=宋体]黄茹[/font][font='Times New Roman',serif], [/font][font=宋体]周小明[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱在生物化学领域中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]激光生物学报[/font][font='Times New Roman',serif], 2013, 22(4): 289-293[/font][font='Times New Roman',serif]7. [/font][font=宋体]游俊[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光相关光谱([/font][font='Times New Roman',serif]FCS[/font][font=宋体])在生物活细胞中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]湖北大学学报[/font][font='Times New Roman',serif]([/font][font=宋体]自然科学版[/font][font='Times New Roman',serif]), 2005, 27(1): 53-56[/font][font='Times New Roman',serif]8. [/font][font='Times New Roman',serif]ZibinZhang, Junji Ren, Wenbing Dai, etc. Fast and Dynamic Mapping of the ProteinCorona on Nanoparticles Surfaces by Photocatalytic Proximity Labeling. Advancedmaterials, 2023, 35: 2206636[/font][font='Times New Roman',serif]9. [/font][font='Times New Roman',serif]CainingXue, Wenxin Yu, Haohan Song, etc. A study of protein-drug interaction based onsolvent-induced protein aggregation by fluorescence correlation spectroscopy.Analyst, 2022, 147: 1357[/font][font='Times New Roman',serif]10. [/font][font='Times New Roman',serif]MelissaC Skala, Kristin M Riching, Annette Gendron-Fitzpatrick, etc. In vivomultiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes,and cellular morphology in precancerous epithelia. PNAS, 2007, 104(49): 19494-9[/font][font='Times New Roman',serif]11. [/font][font='Times New Roman',serif]Hui Li,Jia Yu, Rongli Zhang, etc. Two-photon excitation fluorescence lifetime imagingmicroscopy: A promising diagnostic tool for digestive tract tumors. Journal ofInnovative Optical Health Sciences, 2019, 12(5):1930009 1-16[/font][font='Times New Roman',serif]12. [/font][font=宋体]罗淋淋[/font][font='Times New Roman',serif], [/font][font=宋体]牛敬敬[/font][font='Times New Roman',serif], [/font][font=宋体]莫蓓莘[/font][font='Times New Roman',serif],[/font][font=宋体]等[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光共振能量转移[/font][font='Times New Roman',serif]-[/font][font=宋体]荧光寿命显微成像([/font][font='Times New Roman',serif]FRET-FLIM[/font][font=宋体])技术在生命科学研究中的应用进展[/font][font='Times New Roman',serif]. [/font][font=宋体]光谱学与光谱分析[/font][font='Times New Roman',serif], 2021, 41(4): 1023-1031[/font][font='Times New Roman',serif]13. [/font][font=宋体]肖忠新[/font][font='Times New Roman',serif], [/font][font=宋体]张进禄[/font][font='Times New Roman',serif]. [/font][font=宋体]荧光共振能量转移技术在激光共聚焦显微镜中的应用[/font][font='Times New Roman',serif]. [/font][font=宋体]中国医学装备[/font][font='Times New Roman',serif], 2014,8(11): 73-75[/font]

  • 10种免疫荧光检测方法

    [font='calibri'][size=13px]10种免疫荧光检测方法详解!从入门到专业![/size][/font]免疫荧光技术(Immunofluorescence technique )又称荧光抗体技术,是标记免疫技术中发展最早的一种。它是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。很早以来就有一些学者试图将抗体分子与一些示踪物质结合,利用抗原抗体反应进行组织或细胞内抗原物质的定位。免疫荧光步骤包括,细胞固定和通透,封闭,孵育一抗,二抗等。除了这些基本步骤,接下来的实验方法希望可以帮到您。1. 细胞固定和通透为达到蕞佳的检测效果,细胞需要经过固定和通透。步骤很重要,细胞和抗原需要保证蕞佳的结构,并利于抗体与抗原结合。通常情况下,2. 抗体特异性免疫荧光需要用到特异性非常强的抗体,可以避免高背景和不理想的蛋白定位结果。在大多数情况下,纯化抗体的效果很好,但是正确的对照可以帮助精-准定位抗原。使用只有二抗染色的片子作为阴性对照,有利于减少降低背景干扰。3. 合适的抗体稀释比例通过优化抗体稀释比例来优化染色,通常情况下 1ug/ml 的纯化抗体或者 1:100-1:1000 的抗血清足够达到特异性染色的结果。但在能保证低背景染色的前提下,可以通过增加浓度来提高信号强度。如果是第1次使用该抗体或测定某抗原,强烈建议浓度梯度实验。4. 优化缓冲液和封闭剂尽管很多抗原在常见的 Buffer 如 PBS 中可以很好的被染色,但是对于某些目的抗原,更换一下含有不同离子的缓冲液,比如钙、镁、钾等,可以带来很大程度上的改善。Rockland 可提供优化过的 IHC 用封闭缓冲液,同样适用于荧光染色实验。5. 选择正确的二抗如果您需要做免疫实验,我们强烈建议您选择进行过预吸附的二抗进行单染实验;如果是双重甚至是多重染色,那么必须使用预吸附的二抗。同时,请优先选择来自同一物种的二抗。6. 使用合适的细胞密度选择合适的细胞数量进行染色,当细胞数量过多时,细胞结构不好,导致染色背景深,低细胞密度,会使细胞贴壁不佳,状态不好。7. 多重染色对同一样本进行两个不同抗原的检测时,可以用各自的抗体进行同时染色,但要求两个一抗的种属来源不同,标记物不同,而二抗的种属来源需保持一致。8. 降低背景高背景是免疫荧光常见的问题,解决此问题可以用二抗来源的正常血清代替 BSA 做封闭液,降低抗体浓度,增加洗涤次数,洗涤至少三次,每次五分钟,推荐洗涤液为 PBS+0.05%Tween。9. 封片作为免疫荧光的蕞后一步,可以提高折射率,保护样品。10. 数据分析观察整体样片时,选择具有代表性的细胞进行数据获取与分析。以上是10种检测方法,但是针对免疫荧光检测服务,推荐义翘神州,服务优势:①技术员长期从事抗体质量控制工作,经验丰富。②拥有包括Nikon A1激光共聚焦显微镜等重要仪器,可满足您对样片、活细胞等样本的静态和动态观察拍摄。③检测结果准确、重复性高,实验结果可直接用于论文发表。更多免疫荧光检测服务详情可以参看https://cn.sinobiological.com/services/immunofluorescence-service

  • 【云唐仪器】ATP生物荧光检测仪有哪些作用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403080946164455_1310_5604214_3.jpg!w690x690.jpg[/img]  ATP生物荧光检测仪是一种高科技的检测设备,它利用生物荧光技术来快速、准确地检测样品中的ATP含量。ATP,即三磷酸腺苷,是生物体内能量的直接来源,其含量与生物体的活跃程度密切相关。因此,ATP生物荧光检测仪在多个领域都有着广泛的应用,其作用不容忽视。  首先,ATP生物荧光检测仪在食品安全领域发挥着重要作用。在食品生产过程中,微生物的污染是一个不可忽视的问题。这些微生物会在食品中繁殖,产生大量的ATP。通过ATP生物荧光检测仪,可以快速检测出食品中的ATP含量,从而判断食品的卫生状况。这对于保障食品安全、预防食物中毒具有重要意义。  其次,ATP生物荧光检测仪在医疗卫生领域也有着广泛的应用。在医疗环境中,细菌、病毒等微生物的存在会对患者的健康造成威胁。ATP生物荧光检测仪可以快速检测出医疗器械、手术室、病房等环境中的ATP含量,从而评估环境的清洁程度。这对于预防医院感染、保障患者安全具有重要意义。  此外,ATP生物荧光检测仪还在环境监测领域发挥着重要作用。环境中的微生物污染会对人们的健康和生活质量造成影响。通过ATP生物荧光检测仪,可以实时监测环境中的ATP含量,从而评估环境的卫生状况。这对于改善环境质量、保障人们的健康具有重要意义。  总之,ATP生物荧光检测仪具有快速、准确、灵敏等特点,可以广泛应用于食品安全、医疗卫生、环境监测等多个领域。通过实时监测样品中的ATP含量,可以评估生物体的活跃程度、判断环境的卫生状况、预防微生物污染等。这对于保障人们的健康、改善环境质量、提高生产效率等方面都具有重要意义。随着科技的不断进步和应用领域的不断拓展,ATP生物荧光检测仪将会在更多领域发挥其重要作用,为人们的生产和生活带来更多便利和保障。

  • 罗丹明B荧光检测器检测不到峰?

    请教各位前辈: 我用安捷伦1200LC配荧光检测器检测 罗丹明B 标样时候,检测不到峰,只有一条直线,是什么原因??????我用的是SN/T 2430-2010的检测方法,色谱条件为:C18柱,流动相为甲醇+水;梯度洗脱,程序为 时间(min) 0 4 6 9 9.1甲醇/% 40 40 70 70 40水/% 60 60 30 30 60流速:0.8ml/min;柱温:35 C ;激发波长(Ex)550nm,发射波长(Em)580nm标样为标准物质用甲醇稀释到130ng/ml。

  • 双道原子荧光afs 920检测器是怎么同时检测两种元素的呢?

    如题,网上查资料说检测器用的是日盲光电倍增管,按照我个人的理解,光电倍增管是不能区分出荧光波长的啊,应该只是说在100多到3百多的波长能发生光电转换,同时进入两道波长不同但在范围内的荧光应该只相当于单种荧光强度变大而已啊。如果各位老师觉得幼稚也不要笑,谢谢啦~~

  • 云唐便携式ATP荧光检测仪检测餐具卫生

    云唐便携式ATP荧光检测仪检测餐具卫生

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111002363579_4863_5604214_3.jpg!w690x690.jpg[/img]  便携式ATP荧光检测仪可以用于检测餐具的卫生情况。ATP荧光检测仪的原理是检测样本中的生物活性分子ATP,通常与细菌和微生物的存在相关联。当餐具表面存在有机残留物、细菌、霉菌或其他微生物时,这些生物会释放出ATP。检测仪会测量样品中的ATP浓度,从而提供有关卫生情况的信息。  使用便携式ATP荧光检测仪来检测餐具的卫生具有以下优点:  快速:这种仪器通常能够在几分钟内提供结果,因此适用于快速检测。  实时:便携式ATP检测仪可提供实时数据,使餐馆或食堂能够立即采取措施,如果发现卫生问题。  定性和定量:检测仪可以提供有关卫生问题的定性和定量信息,帮助餐厅工作人员了解问题的严重程度。  高灵敏度:这些仪器通常非常敏感,能够检测到微生物水平的变化,即使微生物数量很少也能被检测到。  虽然便携式ATP荧光检测仪对餐具卫生的检测是有用的,但它主要用于表面卫生的初步评估。如果检测结果显示卫生问题,进一步的卫生措施,如清洗、消毒和曝晒,通常是必要的。这种设备不能替代传统的餐具清洁和消毒程序,但可以作为一个附加的工具,帮助确保餐具的卫生标准得到遵守。

  • ATP荧光检测仪有哪些功能

    ATP荧光检测仪有哪些功能

    [size=16px]  ATP荧光检测仪有哪些功能  ATP荧光检测仪具有多种功能,可以用于多种生物样品中的ATP含量检测,包括:  检测细胞活力:可以检测细胞悬液中的ATP含量,从而评估细胞的活力水平。  检测细胞增殖:可以检测细胞培养基中的ATP含量,从而评估细胞的增殖水平。  检测细胞凋亡:可以检测血清、血浆、组织液、细胞提取物等样品中的ATP含量,从而评估细胞的凋亡水平。  检测其他有机物:如蛋白质、核酸、糖类等,从而可以更好地了解细胞的生物学过程。  此外,ATP荧光检测仪还可以用于研究ATP的生物学功能,以及检测药物的活性、蛋白质的结构和功能、细胞的活性等。总之,ATP荧光检测仪是一种功能强大的工具,可以广泛应用于生物医学领域。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312111001065946_671_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 中国科学家利用酵母菌实时在线监测PM2.5毒性

    空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记酵母菌的微流控装置取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。据了解,目前对于大气颗粒物的毒性研究,大多采用离线的方式,不能及时知晓其毒性;而细胞染毒或动物暴露实验灵敏度偏低,一些健康效应不易检测到。在颗粒物致病机理方面,目前也存在类似“盲人摸象”的现象,不能够全方面地了解PM2.5的毒性机理。受酵母菌相关研究的启发,由北大环境科学与工程学院研究员要茂盛、物理学院副教授罗春雄领导的研究团队,集成利用空气采样、微流控、荧光蛋白标记的酵母菌以及单酵母菌蛋白荧光自动检测平台,用活体酵母菌替代传统半导体传感器,创建了大气PM2.5毒性实时在线监测系统。要茂盛介绍,课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的微流控芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。据悉,这种酵母菌俗称酿酒酵母,繁殖快,其基因序列于1996年测序完成,是第一个完成基因测序的真核生物,被广泛地应用在人类疾病研究中。研究人员认为,这种方法对于颗粒物对人体健康效应机制的研究提供了开创性的研究思路和方法,可从分子水平理解PM2.5对人体的可能损伤情况。目前,此项研究成果已申请国家发明专利。课题组正在利用该体系对不同国家、地区颗粒物的毒性进行研究,同时也在筛查更多有响应的酵母菌蛋白,并研究其灵敏度、响应的毒性标定,以进一步揭示PM2.5对人体的具体致病毒性机制。

  • ATP生物荧光快速检测仪有什么用

    ATP生物荧光快速检测仪有什么用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401020948555266_8178_5604214_3.jpg!w690x690.jpg[/img]  ATP生物荧光快速检测仪是一种用于检测样品中三磷酸腺苷(ATP)的生物荧光检测仪器。它在许多领域都有广泛的应用,以下是一些主要的用途:  1. **食品安全检测**:ATP生物荧光快速检测仪可以用于检测食品生产过程中的卫生状况。由于ATP是所有活细胞能量代谢的产物,因此通过检测ATP的含量,可以快速判断食品加工设备、包装材料和操作环境的卫生状况,确保食品安全。  2. **医疗诊断**:ATP生物荧光快速检测仪也可用于医疗诊断,特别是在口腔科和泌尿科。医生可以通过检测唾液或尿液中ATP的含量,初步判断患者是否存在口腔疾病或泌尿系统问题。  3. **环境监测**:在环保领域,ATP生物荧光快速检测仪可以用于监测水体和土壤中的微生物活性。通过检测ATP的含量,可以快速判断水体或土壤的污染程度,为环境治理提供科学依据。  4. **生物工程应用**:在生物工程领域,ATP生物荧光快速检测仪常用于监测细胞培养物中的代谢活性。通过实时监测ATP的含量,研究人员可以了解细胞生长和代谢的情况,为优化细胞培养条件提供依据。  5. **公共场所卫生检查**:在公共场所,如游泳池、公共卫生间等,ATP生物荧光快速检测仪可以快速检测环境的卫生状况,确保公众的健康安全。  总之,ATP生物荧光快速检测仪具有广泛的应用前景,它可以为科学研究、食品安全、医疗诊断、环境保护和生物工程等领域提供有力的技术支持。  ?

  • 【求助】16种多环芳烃的荧光检测

    用荧光检测器与紫外检测器串联检测标样中的16种物质,紫外可以出16个峰,荧光可以出15个峰,有相关文献用荧光检测的也是做了15种,给出的解释是二氢苊的荧光效应比较若,而从结构看苊的荧光效应更弱,但是在荧光检测的时候这两种物质只有一种检测比较容易。做过的给解释一下。其次,为什么只针对一个峰修改了激发波长跟发射波长以后,在一些无关的位置基线会有下移呢。

  • atp荧光细菌检测仪如何检测水中细菌

    atp荧光细菌检测仪如何检测水中细菌

    [size=16px]  ATP(腺苷三磷酸)荧光细菌检测仪是一种常用于快速检测水样中细菌污染程度的设备。它基于细菌存在时产生的细胞内能量分子ATP,并利用ATP与荧光染料的反应来检测细菌的存在。以下是ATP荧光细菌检测仪如何检测水中细菌的一般过程:  取样和样品制备: 从待检测的水源中取得一定数量的水样。样品可能需要进行预处理,如过滤或稀释,以确保样品中的颗粒物不会影响检测结果。  提取细菌的ATP: 通过一系列化学方法,细胞膜被破坏,使细菌内的ATP能够释放出来。这通常涉及使用一个称为提取缓冲液的溶液,它能够破坏细胞膜并释放细胞内的ATP。  荧光染料与ATP的反应: 一旦ATP被释放,它与荧光染料(通常是叫做“荧光素”的化合物)反应,产生荧光。荧光素与ATP结合后会发出强烈的荧光信号,这个信号的强度与提取的ATP量成正比。  荧光信号测量: 设备会使用荧光探测器测量荧光信号的强度。荧光强度的测量是快速且敏感的,可以在短时间内提供结果。  数据分析和结果显示: 通过与已知细菌样本的比较,可以确定荧光信号的强度与细菌的数量之间的关系。这样,设备可以根据荧光信号的强度,估计水样中细菌的数量或污染程度。  需要注意的是,尽管ATP荧光细菌检测仪在快速检测上非常有效,但它只能提供关于细菌总量的信息,而无法区分具体的细菌种类。此外,样本的处理和设备的操作都需要按照特定的方法和指南进行,以确保准确和可靠的结果。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/08/202308231557437534_6784_6098850_3.png!w690x690.jpg[/img][/size]

  • ATP荧光检测仪在食品行业中的用处

    ATP荧光检测仪在食品行业中有广泛的应用,主要用于食品卫生和质量控制方面。ATP(腺苷三磷酸)荧光检测仪可以快速检测样品中的微生物活性,通过测量样品中的ATP含量来评估食品表面的清洁程度、卫生状况以及卫生程序的有效性。以下是ATP荧光检测仪在食品行业中的一些具体用途:  卫生监测: ATP检测仪可以用于监测食品加工设备、生产线和工作台等表面的卫生状况。通过检测表面的ATP含量,可以迅速判断卫生程度,及时采取清洁措施,确保食品加工环境的卫生安全。  清洁验证: 在食品加工过程中,设备和工具的清洁是防止交叉污染和食品安全问题的关键。ATP荧光检测仪可以用于验证设备和工具的清洁程度,确保它们在使用前达到卫生要求。  卫生程序监控: 食品加工企业通常有卫生操作程序(SOPs)来确保卫生标准得到遵守。ATP检测仪可以用于监控这些卫生程序的有效性,确保清洁和卫生措施的落实情况。  食品安全管理: 使用ATP荧光检测仪可以迅速识别食品加工环境中可能存在的微生物污染源。这有助于提前发现潜在食品安全风险,并及时采取措施进行管理和控制。  质量控制: 通过定期使用ATP检测仪,食品生产企业可以监测生产过程中可能影响产品质量和食品安全的环境因素。这有助于提高产品质量的一致性。  设备维护: ATP荧光检测仪还可以用于监测设备的维护情况。设备的正常维护可以减少污染源和交叉污染的风险。  总的来说,ATP荧光检测仪在食品行业中的应用有助于保障食品加工环境的卫生安全,预防食品污染,确保产品的质量和安全。它能够提供快速、定量的信息,帮助食品企业更好地管理卫生风险,提高食品生产的可靠性和合规性。

  • 【转帖】实时荧光定量PCR在人感染猪流感诊断中的作用

    彭年才12 张镇西1 兰邹然3 黄兵3 李红东2 李明2 苗保刚2 1西安交通大学生物医学分析技术与仪器研究所 2西安天隆科技有限公司 3山东省动物疾病预防与控制中心2009年4月30日摘要:病原检测方法及仪器是人感染猪流感防控的关键环节,针对实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]分子诊断核酸检测技术的先进性以及国产试剂和仪器的成熟性,本文分析了该技术在以往禽流感检测被采用的国家标准以及使用的广泛性,最后介绍了最新发布的美国CDC《针对人感染猪流感病毒治疗和预防的临时指南》和我国卫生部《人感染猪流感预防控制技术指南(试行)》,两部法规都将实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]确定为人感染猪流感实验室检测的确诊方法。从以上情况可以获知:实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在人感染猪流感诊断中具有先进、快速、成熟、合法的特点,是一种法定的主流技术,将来实施中,国产化仪器和试剂都有保障。关键词:人感染猪流感 猪流感诊断 快速检测 实时定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]全球性的人感染猪流感公共卫生事件发展势头迅猛,发生国家众多,世界卫生组织29日晚已将全球流感大流行警告级别从4级提高到5级,我国也于28日召开了国务院常务会议对防控进行了部署。现在已进入关键的防控措施落实阶段,其中检测与诊断技术至关重要。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在以往禽流感诊断中的应用众所周知,虽虽然本次人感染猪流感事件的病毒基因序列还在进一步确立当中,但本次疫情病原学基础明确,属于RNA病毒感染性疾病。回顾近年来感染RNA病毒的烈性传染病,如SARS、禽流感,世界卫生组织及我国卫生行政和技术部门相继制定了较为成熟的实验室检测和诊断标准,其中我国颁布的应用实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法进行实验室检测和快速诊断的标准如《GB/T 19438.1—2004禽流感病毒通用荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》、《GB/T 19438.2—2004 H5亚型禽流感病毒荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》、《GB/T 19438.3—2004 H7亚型禽流感病毒荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》等,同时我们也注意到近年来国家针对食品安全尤其是乳品检测和食物致病菌检测的实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测标准,如《SN/T 1632.3-2005 奶粉中阪崎肠杆菌检验方法:荧光[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法》和《SN/T 1870-2007 食品中致病菌检测方法:实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法》。以上实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在禽流感及其它方面检测的国家标准是该技术在当前的人感染猪流感诊断中应用的基础和前提。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术及在我国卫生应急中的应用要求 实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术(Real-time quantitative Polymerase Chain Reaction简称Real Time [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url],如果用于RNA检测,这被称为逆转录实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]即Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])是实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法,它是指对DNA或经过反转入(RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])的RNA通过聚合酶链式反应并实时监测DNA的放大过程,在扩增的指数增长期就测量扩增产物,因为扩增指数增长期测量值与特异DNA(RNA)起始量存在相关性,从而实现定量检测。Real Time [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]的基本目标是精确测量和鉴别非常微量的特异性核酸,从而可通过监测CT值而实现对原始目标基因的含量定量。目前被普遍使用的多种常规[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法如各种凝胶电泳[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法,终点荧光定量法或[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-ELISA法叫做终点[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法最大的优点是克服了终点[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法进入平台期或叫饱和期后定量的较大误差,实现DNA/RNA的精确定量。普通[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术发明于1983年,而实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术发明于上世纪九十年代并于1996年生产出了世界上第一台实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪,实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术得以实现的技术要素主要有荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]试剂盒和实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪,我国荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]试剂盒研发实力强大,生产厂家较多,临床诊断的品种如HBV/HCV及禽流感诊断试剂盒性能优良、供应充足,基本实现国产化。在猪流感病毒RNA核酸序列明确的情况下,利用现有的试剂研发平台,人感染猪流感实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]诊断试剂盒很快就会面世。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪由于技术含量高,只有少数几家中国企业有能力生产如西安天隆科技有限公司生产的TL-988系列仪器不但取得了发明专利、国家科学技术奖、国家重点新产品证书、医疗器械注册证,而且被国家发改委确立为国家高技术产业化示范工程2008年生物医学工程专项,产品性能达到国际先进水平,在乳品检测行业市场占有率比进口仪器还高[1-3]。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪应用广泛,1999年开始,西方发达国家尝试将[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]应用于临床传染病诊断、食品安全检测以及血液筛查,目前已相当普及。2008年12月13日中国卫生部下发《卫生应急队伍装备参考目录》(卫办应急发[2008]207号),其中要求县级以上卫生应急队伍建设中必须配备[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪和实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪作为传染病控制类装备。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在猪流感诊断中的作用已有法规确立在人感染猪流感病毒出现以前,针对猪与猪传染的传统猪流感疫情,近年来我国科技人员经过不懈努力,探索快速检测与诊断方法,发表了一系列应用实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测的研究论文[4-5]。人感染猪流感疫情发生后,美国疾病预防控制中心(CDC)于2009年4月28日发布了针对人感染猪流感病毒治疗和预防临时指南,西安天隆科技有限公司在第一时间将其翻译成中文版本[6]。其中规定了确诊病例的诊断方法:具有急性发烧呼吸道疾病的临床症状并且经实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] (real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])或病毒分离培养 (viral culture)实验室检测方法检验证实感染A(H1N1)型猪流感病毒。卫生部办公厅于4月30日印发了《人感染猪流感预防控制技术指南(试行)》的通知》[7],其中在实验室检测和病例诊断报告章节,内容如下:检测程序呼吸道标本应首先应用real time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法检测A型流感病毒的M基因、Swine( H1N1)的HA基因和NP基因,以及质控对照RNP基因。同时,接种MDCK细胞或SPF鸡胚进行病毒分离,并测定病毒的全基因组序列。 推荐检测方法用Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法检测猪流行性感冒( H1N1病毒)病毒。 其他检测方法 快速流感抗原检测 病毒培养免疫荧光法(或装配的IFA ) 显然,上述卫生部法规中,与“其他检测方法”不同,实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法被法定为人感染猪流感诊断的推荐检测方法。参考文献:1. Nian-cai Peng(彭年才), Chun-lin Wang ,Li-li Zhang ,Miao-lin Lu ,Zhen-xi Zhang: Asymmetric [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] method in generation of HBV ssDNA for pyrosequencing, Academic Journal of Xi’an Jiaotong University,VOL.21 No.1,Feb 2009,54-562. 彭年才,张镇西,李明:乳制品中阪崎肠杆菌的快速检测,食品安全导刊,08.7:96-1003. 彭年才,苏明权,张镇西:乳品检测中实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪的研制,中国乳品工业,200705:62-644. 段廷云,陈红英,崔保安等:实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测H1N1亚型猪流感病毒,畜牧兽医学报,2008。39(6):752-7565. 张春明,乔传玲,陈艳等,猪流感病毒M基因实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]诊断方法的建立,中国预防兽医学报,2008。20(10):805-8096. 美国CDC针对人感染猪流感病毒治疗和预防的临时指南(中英文全文)http://www.medtl.com/ckxw.asp?id=757.中国卫生部:人感染猪流感预防控制技术指南(试行)http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohwsyjbgs/s3577/200904/40319.htm

  • 【原创】实时荧光定量PCR在人感染猪流感诊断中的作用

    实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]在人感染猪流感诊断中的作用彭年才12 张镇西1 兰邹然3 黄兵3 李红东2 李明2 苗保刚2 1西安交通大学生物医学分析技术与仪器研究所 2西安天隆科技有限公司 3山东省动物疾病预防与控制中心2009年4月30日摘要:病原检测方法及仪器是人感染猪流感防控的关键环节,针对实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]分子诊断核酸检测技术的先进性以及国产试剂和仪器的成熟性,本文分析了该技术在以往禽流感检测被采用的国家标准以及使用的广泛性,最后介绍了最新发布的美国CDC《针对人感染猪流感病毒治疗和预防的临时指南》和我国卫生部《人感染猪流感预防控制技术指南(试行)》,两部法规都将实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]确定为人感染猪流感实验室检测的确诊方法。从以上情况可以获知:实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在人感染猪流感诊断中具有先进、快速、成熟、合法的特点,是一种法定的主流技术,将来实施中,国产化仪器和试剂都有保障。关键词:人感染猪流感 猪流感诊断 快速检测 实时定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]全球性的人感染猪流感公共卫生事件发展势头迅猛,发生国家众多,世界卫生组织29日晚已将全球流感大流行警告级别从4级提高到5级,我国也于28日召开了国务院常务会议对防控进行了部署。现在已进入关键的防控措施落实阶段,其中检测与诊断技术至关重要。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在以往禽流感诊断中的应用众所周知,虽虽然本次人感染猪流感事件的病毒基因序列还在进一步确立当中,但本次疫情病原学基础明确,属于RNA病毒感染性疾病。回顾近年来感染RNA病毒的烈性传染病,如SARS、禽流感,世界卫生组织及我国卫生行政和技术部门相继制定了较为成熟的实验室检测和诊断标准,其中我国颁布的应用实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法进行实验室检测和快速诊断的标准如《GB/T 19438.1—2004禽流感病毒通用荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》、《GB/T 19438.2—2004 H5亚型禽流感病毒荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》、《GB/T 19438.3—2004 H7亚型禽流感病毒荧光RT—[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测方法》等,同时我们也注意到近年来国家针对食品安全尤其是乳品检测和食物致病菌检测的实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测标准,如《SN/T 1632.3-2005 奶粉中阪崎肠杆菌检验方法:荧光[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法》和《SN/T 1870-2007 食品中致病菌检测方法:实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法》。以上实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在禽流感及其它方面检测的国家标准是该技术在当前的人感染猪流感诊断中应用的基础和前提。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术及在我国卫生应急中的应用要求 实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术(Real-time quantitative Polymerase Chain Reaction简称Real Time [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url],如果用于RNA检测,这被称为逆转录实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]即Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])是实时[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法,它是指对DNA或经过反转入(RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])的RNA通过聚合酶链式反应并实时监测DNA的放大过程,在扩增的指数增长期就测量扩增产物,因为扩增指数增长期测量值与特异DNA(RNA)起始量存在相关性,从而实现定量检测。Real Time [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]的基本目标是精确测量和鉴别非常微量的特异性核酸,从而可通过监测CT值而实现对原始目标基因的含量定量。目前被普遍使用的多种常规[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法如各种凝胶电泳[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法,终点荧光定量法或[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]-ELISA法叫做终点[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法最大的优点是克服了终点[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]法进入平台期或叫饱和期后定量的较大误差,实现DNA/RNA的精确定量。普通[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术发明于1983年,而实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术发明于上世纪九十年代并于1996年生产出了世界上第一台实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪,实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术得以实现的技术要素主要有荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]试剂盒和实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪,我国荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]试剂盒研发实力强大,生产厂家较多,临床诊断的品种如HBV/HCV及禽流感诊断试剂盒性能优良、供应充足,基本实现国产化。在猪流感病毒RNA核酸序列明确的情况下,利用现有的试剂研发平台,人感染猪流感实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]诊断试剂盒很快就会面世。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪由于技术含量高,只有少数几家中国企业有能力生产如西安天隆科技有限公司生产的TL-988系列仪器不但取得了发明专利、国家科学技术奖、国家重点新产品证书、医疗器械注册证,而且被国家发改委确立为国家高技术产业化示范工程2008年生物医学工程专项,产品性能达到国际先进水平,在乳品检测行业市场占有率比进口仪器还高[1-3]。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪应用广泛,1999年开始,西方发达国家尝试将[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]应用于临床传染病诊断、食品安全检测以及血液筛查,目前已相当普及。2008年12月13日中国卫生部下发《卫生应急队伍装备参考目录》(卫办应急发[2008]207号),其中要求县级以上卫生应急队伍建设中必须配备[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪和实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪作为传染病控制类装备。实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]技术在猪流感诊断中的作用已有法规确立在人感染猪流感病毒出现以前,针对猪与猪传染的传统猪流感疫情,近年来我国科技人员经过不懈努力,探索快速检测与诊断方法,发表了一系列应用实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测的研究论文[4-5]。人感染猪流感疫情发生后,美国疾病预防控制中心(CDC)于2009年4月28日发布了针对人感染猪流感病毒治疗和预防临时指南,西安天隆科技有限公司在第一时间将其翻译成中文版本[6]。其中规定了确诊病例的诊断方法:具有急性发烧呼吸道疾病的临床症状并且经实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] (real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url])或病毒分离培养 (viral culture)实验室检测方法检验证实感染A(H1N1)型猪流感病毒。卫生部办公厅于4月30日印发了《人感染猪流感预防控制技术指南(试行)》的通知》[7],其中在实验室检测和病例诊断报告章节,内容如下:检测程序呼吸道标本应首先应用real time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法检测A型流感病毒的M基因、Swine( H1N1)的HA基因和NP基因,以及质控对照RNP基因。同时,接种MDCK细胞或SPF鸡胚进行病毒分离,并测定病毒的全基因组序列。 推荐检测方法用Real-time RT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法检测猪流行性感冒( H1N1病毒)病毒。 其他检测方法 快速流感抗原检测 病毒培养免疫荧光法(或装配的IFA ) 显然,上述卫生部法规中,与“其他检测方法”不同,实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]方法被法定为人感染猪流感诊断的推荐检测方法。参考文献:1. Nian-cai Peng(彭年才), Chun-lin Wang ,Li-li Zhang ,Miao-lin Lu ,Zhen-xi Zhang: Asymmetric [url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] method in generation of HBV ssDNA for pyrosequencing, Academic Journal of Xi’an Jiaotong University,VOL.21 No.1,Feb 2009,54-562. 彭年才,张镇西,李明:乳制品中阪崎肠杆菌的快速检测,食品安全导刊,08.7:96-1003. 彭年才,苏明权,张镇西:乳品检测中实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]仪的研制,中国乳品工业,200705:62-644. 段廷云,陈红英,崔保安等:实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]检测H1N1亚型猪流感病毒,畜牧兽医学报,2008。39(6):752-7565. 张春明,乔传玲,陈艳等,猪流感病毒M基因实时荧光定量[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]诊断方法的建立,中国预防兽医学报,2008。20(10):805-8096. 美国CDC针对人感染猪流感病毒治疗和预防的临时指南(中英文全文)http://www.medtl.com/ckxw.asp?id=757.中国卫生部:人感染猪流感预防控制技术指南(试行)http://www.moh.gov.cn/publicfiles/business/htmlfiles/mohwsyjbgs/s3577/200904/40319.htm

  • 【科研仪器案例库收录文章展示】:浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    【科研仪器案例库收录文章展示】:浅谈单分子荧光检测技术的原理及其在生命科学中的应用

    [font=none][size=16px][color=#004be0]第16届原创大赛继续与中国仪器仪表学会合作。凡符合要求的原创作品将被推荐到“ 科研仪器案例库 ”,被案例库收录后,将由中国仪器仪表学会授予“科研仪器案例库收录证书”;征集活动结束后,被评为优秀案例的,将由中国科协授予“优秀案例授予证书”,助力参赛者评定职称。(注:往届获奖作品若有投递案例库的意向,可咨询主办方)[/color][/size][/font][align=center][b][size=18px][color=#ff0000]【科研仪器案例库收录文章展示】:浅谈单分子荧光检测技术的原理及其在生命科学中的应用[/color][/size][/b][img=,690,496]https://ng1.17img.cn/bbsfiles/images/2024/01/202401191711571780_6432_3237657_3.png!w690x496.jpg[/img][img=,690,354]https://ng1.17img.cn/bbsfiles/images/2024/01/202401191712253950_3062_3237657_3.png!w690x354.jpg[/img][b]原文链接:[/b][url]https://bbs.instrument.com.cn/topic/8278040[/url][/align]

  • 北大首次用酵母菌实现PM2.5毒性实时在线监测,你怎么看?

    空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记的酵母菌取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。受酵母菌相关研究的启发,北大环境科学与工程学院研究员要茂盛课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。比较于传统方法半导体传感器监测PM2.5,现在用酵母菌实现PM2.5毒性实时在线监测,哪个合适,这事你怎么看?详情请看:http://www.instrument.com.cn/news/20170322/215289.shtml

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制