当前位置: 仪器信息网 > 行业主题 > >

地下水放射性检测

仪器信息网地下水放射性检测专题为您提供2024年最新地下水放射性检测价格报价、厂家品牌的相关信息, 包括地下水放射性检测参数、型号等,不管是国产,还是进口品牌的地下水放射性检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地下水放射性检测相关的耗材配件、试剂标物,还有地下水放射性检测相关的最新资讯、资料,以及地下水放射性检测相关的解决方案。

地下水放射性检测相关的资讯

  • 252.8万!海委水文局地下水测站水质样品检测项目
    项目编号:HWSWJHT2022-032项目名称:海委水文局地下水测站水质样品检测预算金额:252.8000000 万元(人民币)最高限价(如有):252.8000000 万元(人民币)采购需求:主要工作内容包括配合甲方开展海河流域565个地下水测站(包括25个地下水水源地取水口、186个保留生产井、354个国家地下水监测工程监测井)水质样品采集的有关协调工作,完成海河流域790个地下水样品的实验室检测分析,检测指标为《地下水质量标准》(GB/T14848-2017)中39项地下水质量常规指标:色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量(CODMn法)、氨氮、硫化物、钠、总大肠菌群、菌落总数、亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯、总α放射性、总β放射性。出具地下水水质样品检测报告和相关数据。合同履行期限:自合同生效之日起1年本项目( 不接受 )联合体投标。
  • 环保部:未发现朝鲜地下核试验人工放射性核素
    针对2月12日朝鲜进行的第三次地下核试验,环境保护部有关负责人今天表示,环保部门继续在我国东北边境及周边地区加密监测点位,开展辐射环境监测。截至今天上午11时,东北边境及周边地区大气气溶胶样品监测中未发现人工放射性核素。   全国辐射环境自动监测站数据显示,包括哈尔滨、长春、沈阳在内的31个直辖市及省会城市的空气吸收剂量率均处正常水平。   环保部核与辐射安全中心副总工程师陈晓秋在接受本报记者专访时说,进行封闭式地下核试验,由于核裂变而泄漏的环境辐射污染较小,即使设备等发生故障有少量放射性物质逸出,大致估算,也仅为大气核试验的十万分之一。   1963年8月,美国、苏联和英国签署了《部分禁止核试验条约》,即禁止在大气层、外层空间和水下进行核试验,但允许在地下进行核试验。陈晓秋说,此后很多国家都转到地下做核试验。一方面,地下核试验的爆炸当量比大气核试验小很多,可进行主要性能测试,如验证理论计算和工程设计是否正确,为改进设计提供科学依据等 另一方面,其泄漏到环境的人工放射性核素比大气核试验少很多,仅为十万分之一。此外,伴随核裂变产生的放射性氙-133,半衰期为两天多。“如果设备等发生故障,有少量放射性物质泄漏出,对环境的辐射影响也仅出现在前几天。”   陈晓秋说,从《部分禁止核试验条约》到1996年9月联合国大会第50届会议通过《全面禁止核试验条约》,世界各国进行了大约上千次地下核试验。以往的经验证明,地下核试验的环境辐射影响较小,“对土壤和地下水的影响也比较小,所排放的放射性核素在土壤中每年仅迁移几厘米”。
  • 中国科学报:放射性废物处置遇技术难关
    日益增加的放射性废物令人担忧,然而很多专家都无法清楚说出目前中国究竟有多少放射性废物。公众的担忧不仅来自不断发生的核泄漏事故,更与放射性废物的管理息息相关。将于3月1日实施的《放射性废物安全管理条例》或将推动我国放射性污染物的防治工作,但仍需要接受公众的审视与检验。   2月13日,离大学正式开学还有一星期,《中国科学报》记者来到位于北京师范大学南门外的放射性药物化学实验室。   实验室管理员李娜一早便开始忙碌起来。“过几天,我就更忙了!”她一边在放置放射性废物的冰柜前作记录,一边说,“等学生放假回来之后,实验产生的放射性废物又会多起来。”   在烦琐的处理流程和冗长的半衰期中,李娜必须每天记录下放射性废物的情况,等待专门机构将这些特殊的“垃圾”集中收走。   如同李娜所在的这间实验室一样,许多实验室也产生放射性废物。不仅如此,广泛使用的核电站、铀矿、辐照设备等工业设施则产生了数量更多、放射性剂量更大的废物。   2003年正式实施的《放射性污染防治法》,标志着我国依法防治放射性污染工作迈出了重要的一步。法律明确规定了放射性污染管理的五个方面,放射性废物管理则是其中之一。在此基础上制定的《放射性废物安全管理条例》将于今年3月1日起实施。   中国辐射防护研究院三废治理研究所副所长孙庆红告诉《中国科学报》记者,目前最大的难题在于高放射性水平废物的永久处置。   越来越多的“垃圾”   核技术在医药、能源、军事等领域的应用已经让人们尝到了它的甜头。同时,日益增加的放射性废物也让专家们头疼不已。但当《中国科学报》记者采访相关领域专家时,却没有一位专家能说得清目前究竟有多少放射性废物。   李娜所在的放射性药物化学实验室主要研究放射性药物在动物体内的情况,每天都会产生大量包含放射性的溶液和动物尸体。   李娜介绍,他们所用的药物半衰期都不长,而10个半衰期后,放射性剂量则被认为已经减少到不足以造成伤害的程度,便可以进一步处置。“这个时候,我们就可以向环保局提出申请,请专门人员来收走这些废物了。”   最近这些年,李娜感到收“垃圾”的人来得越来越频繁,实验室的放射性废物也越来越多了。   同样地,据中国原子能科学研究院统计,2009年,该院共收贮放射性固体废物22.2立方米,主要有污土、金属、工作服、塑料、玻璃、棉纱等,均为“低水平放射性废物”。在1996年发布的《放射性废物分类标准》中,这是一种“在正常操作和运输过程中通常不需要屏蔽”的放射性废物。   中国科学技术大学国家同步辐射实验室教授李珏忻也对《中国科学报》记者称:“随着技术的发展,核仪器使用越来越多,留下的废物肯定越来越多。”例如,在找矿时地质工作者使用的探伤仪,其中带有小型放射源。   不仅在科学研究上,放射源也快速进入了民用领域。在常见的烟雾报警器中,便含有少量的放射性金属镭。“单个报警器放射性强度很低,但广泛使用后数量激增,放射性镭的处理便成了大问题。”孙庆红指出。   辐照技术的推广也带来不少放射性废物。据不完全统计,截至2011年,全国已建成运行的辐照装置超过200座。   早在1975年,湖南彬州市农业科学研究所获取钴源38支,放射总强度为5500克镭当量。当时,彬州市农科所利用钴源先后开展了辐射诱变育种、食品灭菌消毒、刺激作物增产、辐射产品加工等综合性应用。   30多年后,这批钴源早已废弃。其间产生了大量放射性废物,针对这些废物的处置则花费了330多万元的经费。   此外,自1956年以来,全国几十座铀矿山、铀水冶厂、铀采冶联合企业已遍布云南、西藏、内蒙古等地区,完整的铀矿冶工业体系同样留下了危险的放射性废物。   孙庆红透露,我国现有核电站中,每一个百万千瓦级的机组将产生50到100立方米的放射性固体废物。   而根据2007年国务院批准的核电中长期规划,到2020年前,中国将新建27个百万千瓦级核电机组,届时将有超过30台的百万千瓦核电机组投入运行。据此估算,到2020年,由这些核电机组运行产生的放射性固体废物将在1500到3000立方米之间。   值得注意的是,尽管这些来自核电站的废物体积看上去并没有达到惊人的地步,但它们都属于“高放射性废物”,其放射性水平高、释热量大、毒性大,处理和处置难度非常大,且费用非常高。   日益严格的管理   近年来,不断发生的核事故让人们谈“核”色变,也与放射性废物的管理无不相关。西安交通大学能源与动力工程学院教授胡华四向《中国科学报》记者强调:“放射性废物安全管理事关人体健康和环境安全,也直接关系到核能和非动力核技术及应用事业的健康发展。”   其实,早在1987年,当时的国家环保总局下发文件《城市放射性废物管理办法》。该《办法》对放射性废物的分类、产生放射性废物单位的责任、废物的收运及废物库的管理都作了详尽的规定。   对此,胡华四解释:“放射性废物处理、贮存、处置活动是放射性废物管理的三个核心环节。”而放射性废物管理还应以安全为目的,具体应遵循“减少生产、分类收集、净化浓缩、减容固化、严格包装、安全运输、就地暂存、集中处置、控制排放、加强监测”的原则。   但是,由于管理不善带来放射源丢失、违规使用的事故仍然时常发生。   2004年7月12日凌晨,唐山市某建筑工地技术人员因操作不慎,将一个用于工业探伤的硒-75放射源失落在施工现场。10余名工人误将放射源当做机器配件,最终发现主要受照者受到全身非均匀照射。   无独有偶,2008年4月11日,山西省农科院旱农辐照中心发生了一起严重的钴源意外照射事故。由于违规使用已经退役的钴源室照射药剂,数名工人受到不同程度的辐照。   另外,在铀(钍)矿和伴生放射性矿开发利用过程中,由于对放射性污染防治重视不够,缺乏对放射性污染防治的专项管理制度,乱堆、乱放放射性废矿渣的情况也时有发生,由此造成的放射性污染威胁着环境安全和公众健康。   中广核中科华核电技术研究院反应堆工程设计与燃料管理研究中心主任肖岷向《中国科学报》记者介绍:“针对这些情况,政府部门对放射性废物进行了日趋严格的管理。”   国务院法制办公室负责人解释,《放射性污染防治法》规定了“要尽量减少放射性废物的产生量”、“排放废物要经国家许可”、“对高放废物要进行分类处理”等原则性问题,而将于今年3月1日起实施的《条例》则将法律的原则规定具体化了。   那么,对具体单位而言,新《条例》的实施将带来什么变化?北京市环保局宣传教育处工作人员称,目前仍在等环保部的进一步通知。截至发稿时,记者仍未得到回应。   肖岷认为,国家对放射性废物的管理力度加大,不仅相关文件得到了细化,管理体系也在进行调整。   有报道称,我国在核安全监管机构上将进行大幅度调整,国家能源局将新增设核电司,国家核安全局在原来一个司的基础上调整到三个司,核安全监管人员增加近千人。国防科工局新增设核应急司。   永久保存难题   孙庆红长期与放射性“三废”打交道,中低放射性水平的废物主要以暂存后处置为主。公开资料显示,目前中国已建有两座中低放射核废料处置库,分别位于甘肃玉门和广东大亚湾附近的北龙,还将在华东和西南建设两座区域性低放废物处置库。   1944年,美国田纳西州橡树岭进行了世界上首次放射性废物的处置。在今天看来,第一个用于处置“放射性污染的破碎玻璃器皿”的处置场,只不过是橡树岭处置场中的一条简易地沟,填满了未经处理的废物。   在核动力发展的初期阶段,世界上其他国家也都采取了与此类似的方法进行放射性废物处置。如今,国际原子能研究机构成员国中已经有100多座专业的设施运行。   在普通人眼中,放射性废物暂存库恐怕是一个非常神秘的地方。据统计,截至2011年,我国已建成31个放射性废物库。孙庆红向记者透露,我国几乎每个省都有自己的放射性废物暂存库。   1998年建成的湖北省城市放射性废物库深藏在大别山脉的崇山峻岭中。戒备森严的仓库配备厚实的铁门,地面上有一个个标有字母的水泥盖板,放射性废物就封存在盖板下面。   运送废物的卡车,必须加装防护铅板,每次将放射源搬入库中后,经办人员、车辆必须进行彻底清洗。这些“洗澡水”被排入专门的蒸发池,防止其混入地表及地下水体。   去年6月,该库结束了为期8年的改造工程。改造后的废物库实现了物联网远程在线监控,这在全国放射性废物库建设中走在了前列。  与此相比,高放射性水平废物处置的技术要求则高很多。高放射性核废料含有多种对人体危害极大的高放射性元素,10毫克钚就能令人毙命。   所以,在孙庆红看来,目前最大的难题在于高放射性水平废物的永久处置。   核工业北京地质研究院环境工程研究所所长苏锐曾撰文称,高放废物的最终去向是深地质处置。这需要把高放废物埋藏在距离地表深约500米到1000米的地质体中,使之永久与人类的生存环境隔离。   首先要将高放废液变成玻璃固化体,再将玻璃固化体装入金属罐中,并在地下1000米的深部找一块2平方公里到10平方公里不等的坚硬岩石,将装有高放玻璃固化体的废物罐埋藏其中,最后用一种特殊的回填材料将所有深部空间封填。   孙庆红形容:“看上去有点像一座巨大的坟墓。”   因此,地质条件是首要的考虑因素。南京大学地球科学与工程学院水科学系教授周启友向《中国科学报》记者介绍,选择高放废物的处置地点最重要的则是要地下水的条件。   “我们要寻找一个不含地下水或者地下水移动非常缓慢的地方。”周启友说,“除了自然条件,还需要加固工程屏障,对岩石圈进行保护。”据此,一些专家认为甘肃敦煌北山可能是将来最为理想的高放废物处置库。   不仅是中国,高放废物的处置也是一个全球性的难题。从建造核电站的那天起,德国政府有关机构和地质、核电专家就在为核废料的最终去处而发愁。   目前已知的看法是,核废料在相当长的时间内不得流入自然界。那么,什么样的建筑构造和地点能经得住自然界的沧海桑田?   “别放在我家后院”   在美国的报刊上,经常会见到这样的缩写——NIMBY,即Not in my backyard.意思是:别将垃圾放在我家后院。   纽约市的许多垃圾填埋场因为不符合美国环境署的环保标准而被迫关闭,一些城市索性将垃圾直接运到别的城市或其他州。被动接受垃圾的城市的居民就非常愤怒,他们组织了“NIMBY”运动,抵制垃圾运进自家后院。   在令人恐慌的放射性废物处置上,我国也面临类似问题。2008年,在一家地方网站的论坛中出现一个“湖北省的放射性废物库在广水市”的帖子。帖子中陈述了“广水市癌症发病率全省最高与省放射性废物仓库具有很大关联”,并抗议废物库继续在当地运行。   而2010年11月,中国核工业集团与法国阿海珐公司签署的协议则引发了更大的波澜。协议规定,在甘肃嘉峪关以北的金塔县内建设一座年处理规模达到800吨的乏燃料后处理基地。   这意味着,今后运往甘肃的核废料不仅来自国内的核电站,还有可能来自周边国家。“回收技术是否成熟”已经成了专家担忧的问题。   不过,这已不是阿海珐公司第一次在运输核废料途中遭遇“拦路虎”。作为国际“核废料处理中心”,核废料在法国与这些国家之间往来运输,所到之处,无不遭到民众的强烈抗议。   普遍认为,核废物处置计划的成功离不开与公众良好的沟通。长久以来,一些国家已经采取若干种步骤,并取得相当的成效。   例如,在匈牙利,上世纪90年代的两次选址受阻后,匈牙利原子能委员会于1992年启动了国家低中放射性废物处置选址计划。委员会采用公众自愿参加的方式,确定了愿意成为这些场地“东道主”的社区,最终在这些社区内选定了6个处置场场址。   在澳大利亚、美国、加拿大等国家和地区,全面的公众磋商过程是专设低中放射性废物处置库选址的一个重要环节。   而在我国,在环境问题上与公众进行互动才刚刚兴起。胡华四向记者表示:“将来,公众对核的态度将影响核科学技术事业的发展。”如何使公众既不“对核安全报以无所谓的态度”,也不致“谈核色变”,还需要作长期的努力。   “必须要开展广泛深入细致的核科技知识的普及宣传工作。”他说,“要使公众能理解、配合和支持这项工作的开展,应当保障充足的经费开展核科学的普及工作。”   放射性废物的来源   地质勘探、铀矿开采、选矿和矿石   含有铀、镭和其他天然放射性核素的铀矿山废石、尾矿和水冶厂尾砂,放射性水平较低   铀的精制、转化、同位素分离和燃料元(组)件制造   含铀的坑道废水、选矿水等   核电厂和其反应堆的运行   含活化产物和裂变产物中、低放射性废物和固体废物及卸出的乏燃料   核燃料后处理厂的运行   含裂变产物和锕系元素高放射性废液和废物   核设施退役   堆芯活化材料、可回收的放射性污染废钢铁及其他废金属、大量放射性水平极低的固体废物   核能研究与开发、放射性同位素生产和应用   废辐射源,主要是钴-60和镭-226源
  • 【行业动态】GB/T 14848-2017 地下水质量标准
    水是万物之源,人们的日常饮食起居都离不开水。随着我国工业化进程加快,人工合成的各种化合物投入施用,地下水中各种化学组分正在发生变化;为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,国土资源部特制定《地下水质量标准》(GB/T 14848-2017),于2018年5月1日实施;该标准代替《地下水质量标准》(GB/T 14848-1993)。与《地下水质量标准》(GB/T 14848-1993)相比,该标准的变化是水质指标明显增加,由原来的39项增加至93项,增加了54项。调整了20项指标分类限值,直接采用了19项分类限值;减少了综合评价规定,使标准具有更广泛的应用性。 该标准规定了地下水质量分布、指标及限值,地下水质量调查与监测,地下水质量评价等内容地下水质量是指地下水的物理、化学和生物性质的总称。 它包括常规指标和非常规指标的检测。Ø 常规指标:反映地下水质量基本状况的指标,包括感官性状及一般化学指标、微生物指标、常见毒理学指标和 放射性指标。Ø 非常规指标:在常规指标上的拓展,根据地区和时间差异或特殊情况确定的地下水质量指标,反映地下水中所产生的主要质量问题,包括比较少见的无机和有机毒理学指标。 针对该标准中毒理学指标,坛墨质检提供五款混标和一款单标方案,涵盖有机检测项目指标,欢迎大家到坛墨质检商城选购。详细阅读:GB/T 14848-2017标准文件产品名称商城编号溶剂浓度μg/mL规格27种VOC混标GB/T 14848-201781723a甲醇1001mL11种SVOC混标GB/T 14848-201780238GM二氯甲烷1001mL9种PCB混标GB/T 14848-201780247GB正己烷1001mL8种有机氯农药混标GB/T 14848-201780087GA甲醇1001mL11种农药类混标GB/T 14848-201781471a甲苯1001mL 有机物定制混标组分 有机物单标中文名称CAS号商城编号溶剂浓度 μg/mL规格草甘膦1071-83-671257//250 mg71257-100mg100 mg71257-10mg10 mg水中草甘膦BW900145-1000-L水10001.2 mL水中草甘膦BW900145-100-L水1001.2 mL
  • 《地下水质量标准》发布新版 指标增加54项(附全文)
    p   我国目前现行的《地下水质量标准》是1993年发布的,14年来,我国地下水污染状况有了新的变化,水质监测的技术也有了长足的进步。近日,由国土资源部和水利部共同提出的新版《地下水质量标准》正式发布,此次标准对原有内容进行了很多修改,主要技术变化如下: /p p   水质指标由GB/T14848-1993的39项增加至93项,增加了54项 /p p   将地下水质量指标划分为常规指标和非常规指标 /p p   感官性状及一般化学指标由17项增至20项,增加了铝、硫化物和钠3项指标 用耗氧量替换了高锰酸盐指数,修订了总硬度、铁、锰、氨氮4项指标 /p p   毒理学指标中无机化合物指标由16项增加至20项,增加了硼、锑、银和铊4项指标,修订了亚硝酸盐、碘化物、汞、砷、镉、铅、铍、钡、镍、钴和钼11项指标 /p p   毒理学指标中有机化合物指标由2项增至49项,增加了三氯甲烷、四氯化碳、1,1,1-三氯乙烷、三氯乙烯、四氯乙烯、二氯甲烷、1,2-二氯乙烷、1,1,2-三氯乙烷、1,2-二氯丙烷、三溴甲烷、氯乙烯、1,1-二氯乙烷、1,2-二氯乙烯、氯苯、邻二氯苯、对二氯苯、三氯苯(总量)、苯、甲苯、乙苯、二甲苯、苯乙烯、2,4-二硝基甲苯、2,6-二硝基甲苯、萘、蒽、荧蒽、苯并(b)荧蒽、苯并(a)芘、多氯联苯(总量)、六六六(林丹)、六氯苯、七氯、莠去津、五氯酚、2,4,6-三氯酚、邻苯二甲酸二(2-乙基已基)酯、克百威、涕灭威、敌敌畏、甲基对硫磷、马拉硫磷、乐果、百菌清、2,4涕、毒死蜱和草甘膦 滴滴滴和六六六分别用滴滴涕(总量)和六六六(总量)代替,并进行了修订 /p p   放射性指标中修订了总阿尔法放射性 /p p   修订了地下水质量综合评价的有关规定。 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201711/ueattachment/69ac7083-d005-492b-8dec-180dbffa0efe.docx" GBT14848-2017 地下水质量标准.docx /a /p p br/ /p
  • 国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》发布
    《核电厂流出物放射性监测技术规范(试行)》(国核安发[2020]44 号)(以下简称“技术规范”)由国家核安全局颁布,于2020年9月1日起施行。核电厂液态流出物中总β放射性监测是技术规范明确规定的监测项目之一,为了统一和规范各监测单位对核电厂液态流出物中总β放射性的监测工作,生态环境部组织编制了国家生态环境标准《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》,相关意见和建议反馈日期至2024年1月26日。总β放射性是指核电厂液态流出物中各种核素的β放射性活度浓度的总和,它不包括3H、14C的放射性贡献。本标准为首次发布。本标准规定了核电厂液态流出物总β放射性活度浓度的测量方法。本标准由生态环境部核设施安全监管司、法规与标准司组织制订。标准主要起草单位:生态环境部辐射环境监测技术中心(浙江省辐射环境监测站)。本标准规定了核电厂运行状态下液态流出物总β放射性活度浓度的测量方法。本标准适用于核电厂运行状态下液态流出物总β放射性活度浓度的测量,事故状态下参考使用。现行常用水中总β放射性测量标准有:(1)《水质 总β放射性的测定 厚阿源法》(HJ899-2017)原环境保护部发布,该标准适用于地表水、地下水、工业废水和生活污水中总β放射性的测定。(2)《生活饮用水标准检验方法第 13 部分:放射性指标》(GB5750.13-2023)中华人民共和国国家市场监督管理总局和国家标准化管理委员会发布,适用于测定生活饮用水和/或水源水中β放射性核素(不包括在本文件规定条件下具有挥发性的核素)的总β放射性活度浓度。(3)《饮用天然矿泉水中总β放射性的测定方法 蒸发法》(GB8538-2022)中华人民共和国国家卫生健康委员会和国家市场监督管理总局发布,该标准采用薄样法和活性炭吸附法,适用于饮用天然矿泉水中总β放射性的测定。(4)《水中总β放射性测定 蒸发法》(EJ/T900-1994)中国核工业总公司发布,适用于饮用水、地表水、地下水和工业排放废水中放射性核素的总β放射性的测定,也可用于咸水或矿化水中放射性的测定。(5)《地下水质检验方法》(DZ/T0064.1~0064.80-2021)中华人民共和国自然资源部发布,采用放射化学法,适用于地下水总β放射性的测定。(6)《煤矿水中总α和总β放射性测定方法》(MT/T744-1997)。原中华人民共和国煤矿工业部发布,采用比较测量法,适用于煤矿矿井水,深井水总α和总β放射性测定。附件1  征求意见单位名单  国家能源局综合司  国家国防科技工业局综合司  各省、自治区、直辖市生态环境厅(局)  新疆生产建设兵团生态环境局  生态环境部各地区核与辐射安全监督站  中国环境监测总站  生态环境部核与辐射安全中心  国家海洋环境监测中心  中国核工业集团有限公司  中国广核集团有限公司  国家电力投资集团有限公司  中国华能集团有限公司  中国原子能科学研究院  中国辐射防护研究院  苏州热工研究院有限公司  抄送:生态环境部辐射环境监测技术中心。附件2、核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿).pdf附件3、《核电厂液态流出物 总β放射性测量 标准曲线法(征求意见稿)》编制说明.pdf
  • 《化工园区地下水环境监管体系建设技术指南》等三项团体标准发布
    根据国家《团体标准管理规定》和《中关村众信土壤修复产业技术创新联盟团体标准管理办法》,《化工园区地下水环境监管体系建设技术指南》、《地下水污染可渗透性反应墙风险管控效果评估技术指南》、《在产园区地下水污染风险监管及预警技术指南》三项团体标准按照立项、起草、征求意见、技术审查、修改完善、送审等标准编制流程,经审查后,批准发布,2023年7月19日起实施。一、T/CSER-004- 2023《化工园区地下水环境监管体系建设技术指南》本指南规定了化工园区地下水环境监管体系建设的指导原则、工作内容和流程、工作要求等。 本指南适用于化工园区和园区内在产企业的地下水环境监管。本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。本文件起草单位:生态环境部环境规划院、南方科技大学、浙江省生态环境科学设计研究院、深圳市南科环保科技有限公司、生态环境部对外合作与交流中心、浙江久核地质生态环境规划设计有限公司、广州沃索环境科技有限公司、江苏光质检测科技有限公司、北京昊能环保科技有限公司 、中晋(内蒙古)资源环境科技有限公司、爱默里(河北)科技有限公司、上海宝发环科技术有限公司。 本文件主要起草人:殷乐宜、赵航、易树平、陈坚、刘志杰、张弛、钟重、李奕杰、罗文婷、刘君全、周兰兰、楼激扬、舒金骏、潘易、费伟良、杨天森、陈杰、樊小军、郑广强 、周永坚、李继军、吴卫勇、张志新、李淑彦、胡建新、胡云鹏、宋庆国、李静、邢绍文、高梦雯、李云。二、T/CSER-005- 2023《地下水污染可渗透性反应墙风险管控效果评估技术指南》本文件规定了可渗透性反应墙地下水污染风险管控效果评估的原则、内容、程序和技术要求。本文件适用于采用可渗透性反应墙技术实施地下水污染风险管控工程的效果评估。本文件不适用于放射性污染、致病性生物污染地下水治理的效果评估。本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。 本文件起草单位:浙江省生态环境科学设计研究院、南方科技大学、生态环境部环境规划院、深圳市南科环保科技有限公司、成都理工大学、北京化工大学、中国水电基础局有限公司、浙江久核地质生态环境规划设计有限公司、江苏光质检测科技有限公司。 本文件主要起草人:钟重、张弛、易树平、陈坚、罗文婷、冯一舰、李斐、刘志杰、刘玉梅、黄犇、殷乐宜、赵航、楼激扬、舒金骏、刘国、姜海宁、江浩、王何灵、宋宇飞、陈伟、徐方才、孙亮、贾飞、姚合伟、李智亮、孙强、张小燕。三、T/CSER-006- 2023《在产园区地下水污染风险监管及预警技术指南》本指南规定了在产园区/工业园区地下水污染风险监管与预警工作的目的、工作流程、工作方法和技术要求等。 本指南适用于在产园区/工业园区的地下水污染风险监测监管预警工作本文件由中关村众信土壤修复产业技术创新联盟提出并归口管理。本文件起草单位:南方科技大学、深圳市南科环保科技有限公司、生态环境部环境规划院、浙江省生态环境科学设计研究院、成都理工大学、深圳市赛盈地脉技术有限公司、浙江久核地质生态环境规划设计有限公司、广州沃索环境科技有限公司、浙江华东岩土勘查设计研究院有限公司、爱默里(河北)科技有限公司、广州一城建筑工程有限公司、上海宝发环科技术有限公司。 本文件主要起草人:易树平、刘君全、陈坚、钟重、楼激扬、刘志杰、殷乐宜、赵航、张弛、潘建飞、黄犇、罗文婷、舒金骏、刘国、黄鹤飞、姜海宁、袁泉、王何灵、潘易、江浩、李佳、沈星、时舟扬、李家健、刘健、吕一彦、高品红、宋庆国、杨韶山、黄杨、刘贻安、邢绍文、高梦雯、李云。附:1.关于批准发布《化工园区地下水环境监管体系建设技术指南》等三项团体标准的公告.pdf2.【发布稿】化工园区地下水环境监管体系建设技术指南.pdf3.【发布稿】地下水污染可渗透性反应墙风险管控效果评估技术指南.pdf4.【发布稿】在产园区地下水污染风险监管及预警技术指南.pdf
  • 德合创睿发布放射性水样蒸发浓缩赶酸仪新品
    一、仪器简介传统的放射性水样前处理过程,包括取样、浓缩、转移、洗涤、蒸发、灼烧、灰化、称重等一系列环节;水样浓缩环节,样品量不得超过烧杯的1/2,浓缩过程中要求微沸,浓缩步骤需要多次手工加液、转移、洗涤,浓缩过程中加热功率不好控制,全程需要人员值守;水样硫酸磺化环节,水样蒸干过程容易溅射,不好控制,电炉灼烧不方便且安全性差;整个实验过程操作必须认真仔细,整个水样前处理过程相当漫长和繁琐,给实验人员带来很多不便。德合创睿全自动放射性水样蒸发浓缩赶酸仪依据国标方法,实现各类样品蒸发浓缩赶酸无需人员值守,实验效率大大提高,且转移过程中无样品损失,保证安全高效运行。二、仪器用途适用于水质及自来水行业,放射性总α、β及其他放射性水样检测过程中的水样蒸发浓缩赶酸全自动前处理;环境空气降尘样品自动蒸发浓缩;溶解性总固体(TDS)项目的蒸发浓缩,等其他大体积水样浓缩过程。三、仪器特点可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。一、适用标准 国际标准:? ISO 9696:2007水质 不含盐的水中 总α活度的测量 厚源法? ISO 9697:2008水质 不含盐的水中 总β活度的测量 厚源法 核行业标准:? EJ/T 1075-1998 水中总α放射性活度的测定 厚源法? EJ/T 900-1994 水中总β放射性的测定 蒸发法 地质矿产标准? DZ/T 0064.76-1993 地下水质检验方法 放射性化学法测定总α和β 环保行业标准:? HJ 898-2017 《水质 总α放射性的测定 厚源法》? HJ 899-2017 《水质 总β放射性的测定 厚源法》 国家标准:? GB 8537-2008 《饮用天然矿泉水检验方法》? GB/T 15265-94《环境空气 降尘的测定 重量法》? GB/T 5750.13-2006 《生活饮用水标准检验方法 放射性指标》? GB/T 5750.4-2006 8.1 《水质 溶解性总固体的测定 生活饮用水标准检验方法》创新点:可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。 放射性水样蒸发浓缩赶酸仪
  • 广电计量守护地下水环境安全 2022年国家地下水监测项目通过验收
    近日,水利部信息中心在北京组织专家组,对2022年国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测(水质部分第二批)项目召开线上合同验收会。业主单位水利部信息中心和验收专家听取广电计量验收汇报。专家组一致评价:项目采样过程严谨,质量控制措施合理,成果材料完整,同意通过验收。   “十四五”时期,国家明确建立以“水生态系统健康”指标为核心,以“水生态保护”“水环境保护”和“水资源保障”三方面指标为支撑的指标体系,着力推动水生态环境保护由污染治理为主,向水生态、水资源、水环境等要素协同治理、统筹推进转变。   根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文[2022]79号)任务安排,广电计量继圆满完成“2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目”后,再度承接2022年山西等18省地下水监测、调查与评估工作。任务总计1112眼国家地下水监测工程(水利部分)监测井,主要分布于东北、华南、西南、西北、华中18个省(市、自治区),任务覆盖面积占全国国土总面积71%。   面对点位分布散、时间紧、任务重的挑战,公司的全国一体化管控为项目顺利开展打下了坚实基础。广电计量统一调度8个计量检测基地共计162人组建了项目服务团队,服务过程统一调度、多地协同,为顺利推进实施计划提供了重要技术保障。期间,技术人员克服南方夏季高温酷暑,西藏地区高原反应等自然环境带来的不利影响,经合理安排采样计划,顺利完成安徽、新疆、云南等时值疫情区域的采样任务。   不同于常见的地表水监测任务,地下水监测对在线监测设备的取放方法、洗井设备(泵)的选择及采样时间等都有特殊要求。为确保项目完成质量,保障团队实行“公司、计量检测基地、项目组”三级质量保障措施和综合保障体系,确保各项工作既能严格落实质量控制,保证所得检测数据准确可靠,又能高效协同不误进度。最终,项目采样工作较合同要求时间提早10天完成,为项目后续检测及成果汇总工作提供了时间保障。   作为国有上市的第三方技术服务机构,广电计量在生态环境领域的服务能力覆盖水质、空气废气、噪声、土壤、固废、电磁辐射等领域,可提供全面的环境检测和技术服务,是国家、省部级水质监测分析、土壤修复评估检测服务、农田污染综合管理检测等重大项目的承接和技术支撑单位。   广电计量近年来承担了国家部委及广东、湖南、河南、辽宁、广西、安徽、内蒙古、吉林等多个省份的水资源环境调查服务项目,以强有力的检测技术支撑,为政府部门科学开展水质评价、打赢“碧水保卫战”作出积极贡献。后续,广电计量将继续夯实项目经验及检测能力,为监管部门提供强有力的技术支撑保障,为生态环境管理、区域环境调查提供专业、全面的技术服务,积极履行国企在生态环境保护事业中的责任担当,为守护蓝天、碧水、净土,建设美丽中国贡献技术力量!
  • 15省正开展地下水监测工程运行维护与地下水质监测
    年初,生态环境部、发展改革委、财政部、自然资源部、住房城乡建设部、水利部、农业农村部7部门联合印发的《“十四五”土壤、地下水和农村生态环境保护规划》中明确提出建立以饮用水水源和国家重点生态区域保护、地下水污染防控为重点的地下水环境监测网。为保障地下水监测站点和地下水自动监测仪的高效运行和发挥作用,掌握区域地下水动态变化规律和水质状况,开展科学研究和科技创新工作。近期,中国地质环境监测院国家地下水监测工程运行维护与地下水质监测(2021-2023)项目公开招标,涉及15个省份共计15个包,项目2022年预算金额3053.69万元,2023年4631.97万元,资金来源为中央财政资金。从招标文件中,我们获悉15个省份近两年地下水监测工作任务,2022年15省共开展 6538处国家地下水监测站点及辅助设施的看护、巡查和维修重建,共开展2456处地下水监测站点样品采集,涉及37项常规指标检测分析。常规指标测试项(37 项)序号测试指标1色(铂钴色度单位)2嗅和味3浑浊度/NTU4肉眼可见物5pH6总硬度(以 CaCO3计)/(mg/L)7溶解性总固体/(mg/L)8硫酸盐/(mg/L)9氯化物/(mg/L)10铁/(mg/L)11锰/(mg/L)12铜/(mg/L)13锌/(mg/L)14铝/(mg/L)15挥发性酚类(以苯酚计)/(mg/L)16阴离子合成洗涤剂/(mg/L)17耗氧量(CODMn法,以 O2计)/(mg/L)18氨氮(以 N 计)/(mg/L)19硫化物/(mg/L)20钠/(mg/L)21亚硝酸盐/(mg/L)22硝酸盐/(mg/L)23氰化物/(mg/L)24氟化物/(mg/L)25碘化物/(mg/L)26汞/(mg/L)27砷/(mg/L)28硒/(mg/L)29镉/(mg/L)30铬(六价)/(mg/L)31铅/(mg/L)32钾/(mg/L)33钙/(mg/L)34镁/(mg/L)35重碳酸根/(mg/L)36碳酸根/(mg/L)37游离二氧化碳(mg/L)
  • 监测工程渐行渐近 地下水仍面临多重困局
    p   水是生命之源,也是一种公共产品,地下水质量与每个人息息相关。尽管水利部随后给大家补了一颗“定心丸”,但涉及人口众多,浅层地下水的监测数据堪忧着实令人不安,浅层地下水是否会污染深层地下水等关于地下水水质的追问还应继续。 /p p style=" text-align: center " img style=" width: 400px height: 265px " title=" yg3-1470697.jpg" border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201605/noimg/1009c864-50fe-4316-83db-1fdbfd0799d9.jpg" width=" 400" height=" 265" / /p p   国土资源部近日发布的最新数据显示,2015年,在全国202个地市级行政区的5118个地下水监测点中,较差级和极差级的水质监测点占的比例超过60%,地下水水质状况并不理想。 /p p   其中,水质呈极差级的监测点964个,占18.8%;水质呈较差级的监测点2174个,占42.5%。而水质呈较好级的监测点236个,占4.6%;水质呈良好级的监测点1278个,占25.0%;水质呈优良级的监测点466个,仅占监测点总数的9.1%。 /p p   地下水主要超标组分为总硬度、溶解性总固体、铁、锰、氟化物、硫酸盐等,个别监测点水质存在砷、铅、六价铬、镉等重金属超标现象。 /p p   此外数据还显示,与上年度比较,有连续监测数据的水质监测点总数为4552个,其中水质综合变化呈稳定趋势的监测点有2837个,占监测点总数的62.3%;呈变好趋势的监测点有795个,占17.5%;呈变差趋势的监测点有920个,占20.2%。 /p p   strong  地下水污染到底多严重? /strong /p p   而在4月初,一则“我国地下水八成不能饮用”的消息引发强烈关注。此后水利部专门对此进行“辟谣”,称报道中说的水是浅层地下水,而如今的地下饮用水水源大多都是深层的。 /p p   那么问题来了,中国的地下水饮用水水源质量到底怎样呢? /p p   根据水利部最新一期《地下水月报》中“监测结果中不适宜人类饮用的IV类水和V类水合计占比为80.2%”这一数据,有媒体将之误读为“我国超八成地下水不能饮用”。一石激起千层浪,这随即被社会舆论所高度关注。 /p p   中国科学院水资源研究中心副主任贾绍凤介绍,水利部选择了污染较为严重的地区,监测对象以浅层地下水为主。“但地下水作为我们的水源已经很少了,跟我们喝的水的水源是两回事。” /p p   “近年来,随着浅层地下水的污染,很多地区已经放弃了浅层水源地,开始开采深层地下水。”马军介绍说,但这并不意味着全都换成深层地下水就可以不必担心了。深层地下水不仅也会受到污染,同时很多也是非常有限,并难以有效地补给。 /p p   strong  十年“联姻”路 /strong /p p   自2005年起,水利部和国土资源部开始对“国家级地下水监测工程”共同进行申报,提交一个建议书,分别实施、信息共享。自此,两家开启了十年的漫长“求亲路”。2011年国务院通过国家级地下水监测工程后,水利部和国土资源部亦分别编制可行性报告,逐渐走向“合二为一”。2012年8月,水利部、国土资源部联合向国家发改委提交了《国家地下水监测工程可行性研究报告》。2014年7月22日,国家发改委批复了上述报告。 /p p   “技术问题不是主要问题。行政管理职权交叉以及部门之间分工才是主要问题。两部联合行文,比一个部门单独申请,要更加困难。”上述国土资源系统人士这样解释原因,“比方说,水利部有自己的一套管理机制、技术标准,而国土资源部也有自己的标准、规范。” /p p   例如地下水监测规范,某权威媒体通过网络检索,国土资源部有主持编制并发布的《地下水监测井建设规范》(DZ/T0270-2014),而水利部则编制发布有《地下水监测站建设技术规范》(SL360-2006)。 /p p   自然,两家联姻也少不了“嫁妆”和“彩礼”。从事地下水监测的一名专家透露,最终国土部门取消了水利部门在打井中所需的繁琐的土地申请审批。而按照此前的项目程序,国土部门建每一个井都要向水利部门申请打井许可证。作为回馈,水利部门省掉了国土部门的打井许可。 /p p   根据国家发改委的要求,水利、国土资源两部共同委托中国国际工程咨询公司对《国家地下水监测工程初步设计概算》进行审查,并于2015年5月提交发改委。2015年6月8日,国家发改委核定并正式批复了这一概算 10日,水利部和国土资源部对《国家地下水监测工程初步设计报告》进行批复。自此,经过11年的“磨剑”,地下水监测工程正式开始建设。 /p p   strong  挑战与破局 /strong /p p   早在2011年,环保部就出台了《全国地下水污染防治规划(2011—2020年)》。一年后,2012年10月,环保部公布了《华北平原地下水污染防治工作方案(2012—2020年)》,要求2015年初步建立华北平原地下水质量和污染源监测网、摸清华北平原地下水污染情况,2020年全面监控华北平原地下水环境质量和污染源状况、开展地下水污染修复示范。 /p p   但有专家表示,这些方案在现实的执行中却大打折扣。如今,我国依然面临地下水环境保护的法律法规不健全、地下水环境监管能力薄弱、缺乏完善的风险管理体系、地下水修复技术支撑能力不强、治理资金缺乏有效保障等多重困局。 /p p   北京师范大学法学院教授陈芬指出,我国目前缺少专项的地下水环境保护法律法规,而且我国规范地下排污方面的法律主要是水污染防治法,但这部法律提出了对地下水环境保护的一般原则,并未明确具体内容和责任,故而在实际中缺乏约束力。 /p p   而一名环保部门官员表示,单从地下水的污染防治而论,其职责归环保部门,但地下水的勘探和开发利用又牵涉到住建部和水利部,而环保部门经常与水利部门“打架”,因此这些部门之间如何建立起一个有效的协调机制,将成为一个重大挑战。 /p p   不久前,国土资源部部长姜大明表示,将加快实施“国家地下水监测工程”。准备用三年时间,新建改建2万个国家级地下水监测点,覆盖国土面积350万平方公里,实现对全国地下水水质的区域监控和重点地区的实时监控。继续搞好全国地下水污染调查评价,全面摸清全国地下水污染的状况。同时,加强地下水污染防治科技攻关,促进地下水管理的立法工作,完善相关法律法规。 /p p   (本文综合央广网、钱江晚报、南方周末、民主与法制时报) /p
  • 17省(区、市)国家地下水监测工程地下水水质监测项目开启招标
    日前,水利部信息中心2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告发布(项目编号:OITC-G220320263-8)。信息显示:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。根据中国政府采购网信息显示,目前天津、江苏、山东、黑龙江、河北、甘肃北京等省市相关的招标信息也已经发布。项目名称:2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-7)2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目共有151个地下水水质监测站,15个同步监测站。项目名称:2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-5)2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目共有125个地下水水质监测站,13个同步监测站。项目名称:2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-6)2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目共有219个地下水水质监测站,22个同步监测站。项目名称:2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-4)2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目共有222个地下水水质监测站,22个同步监测站。项目名称:2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-3)2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目共有265个地下水水质监测站,27个同步监测站。项目名称:2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-2)2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目共有93个地下水水质监测站,9个同步监测站。项目名称:2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-1)2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目共有172个地下水水质监测站,17个同步监测站。
  • 地下水现场必检项目如何选仪器?——《地下水环境监测技术规范》(HJ 164-2020)解读
    一、背景介绍地下水的利用与开采是工业用水的重要来源,为了保护地下水水质和防治地下水污染,做好地下水环境的监测工作是重中之重。《地下水环境监测技术规范》(HJ 164-2020)为首次修订,将于于2021-03-01 实施。在《地下水环境监测技术规范》(HJ/T 164-2004)的基础上,结合十余年地下水污染物监测方法的更新情况和全国实际应用经验进行修订完善,增加了监测井布设、建设和管理等适应当前地下水环境监测需求的内容。该标准的发布实施,将进一步规范地下水环境监测工作,为水污染防治提供有力的技术支撑。 二、标准介绍1. 《地下水环境监测技术规范》(HJ 164-2020)地下水环境监测时的气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等监测项目为每次监测的现场必测项目。2. 《地下水质量标准》(GB/T 14848-2017)地下水质量检测指标推荐分析方法(部分)序号检测指标推荐分析方法1浑浊度散射法2pH玻璃电极法3. 《地下水质检验方法》(DZ/T 0064系列)序号检测指标分析方法标准名称1电导率电极法DZ/T 0064.7-19932氧化还原电位电极法DZ/T 0064.7-1993 三、仪器配置方案●《地下水环境监测技术规范》(HJ 164-2020)要求的必检项目:气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等。●“雷磁”提供2种现场检测方案:方案1:配置便携式检测箱,现场取样检测。检测箱配置满足水温、pH、溶解氧、电导率、氧化还原电位、浑浊度的测量,可以选配嗅和味、肉眼可见物的检测配置。方案2:配置便携式检测箱,现场原位检测。检测箱内置DZB-715便携式原位水质检测仪和配套试剂,可以直接投入监测点进行原位测定,满足水位、水温、pH、溶解氧、电导率、氧化还原电位和浑浊度的原位检测。现场必检项目雷磁仪器配置方案测试项目检测方法现场监测仪器型号及名称(方案1)现场监测仪器型号及名称(方案2)水位//DZB-715型原位水质监测仪水温电极法DZB-718L型便携式多参数分析仪(选配ORP电极)pH玻璃电极法氧化还原电位电极法溶解氧电极法电导率电极法浑浊度散射法WZB-175型便携式浊度计注:其他监测项目,请联系销售获取具体方案
  • 官方拟出地下水新标准 建国家级地下水监测网络
    中国地质环境监测院副院长张作辰29日在京透露,在现行地下水质量标准实施近20年之后,官方拟对其进行修订。目前新标准已完成初稿,待征求相关部门意见、报国家标准化管理委员会审查后出台。   目前中国施行的地下水标准制定于1993年。张作辰在当日国土资源部召开的新闻通气会上表示,随着中国经济社会发展和对地下水状况的认识不断深入,需要对该标准进行重新修订。   他表示,考虑到近20年间国家人类工程活动对地下水环境的影响,新标准将增加和修订一些具体的标准,将比现有标准更加完善。   对于目前中国地下水监测现状,张作辰透露,截至2013年底,中国共有各级各类的地下水监测点约1.6万个,监控面积约110万平方公里,其中包括水位流量监测点2000个,全国地下水监测网的建设初具规模。不过仍存在国家级地下水监测点比较少,自动化监测程度不高,监测能力比较低,不能满足经济社会发展要求等问题。   为此,国土资源部、水利部等相关部门已部署在未来三年建立国家地下水监测工程。其中,国土资源部将建立103个国家级地下水监测点。建成之后将会采集水量,并开展水体的检测,并实现水位、水温等数据的自动的采集和监测。   上述新建工程结合现有的地下水监测站网可以形成比较完整的国家级地下水监测站网,为社会提供及时准确、较为全面的地下水动态信息。   国土资源部今年颁布《地质环境监测管理办法》并且自7月1日起施行。其中就包含地下水、地质灾害、矿山等地质环境监测。   据介绍,这个政策在组织实施、网络建设和监测成果等方面都有相关的规定,同时还明确了各级国土资源主管部门的主要职责。
  • 金属矿产品放射性监测实现无人值守
    江苏检验检疫局工业品中心完成的&ldquo 进口有色金属矿产品放射性监测及远程放射性监控技术的研究&rdquo ,近期通过鉴定委员会鉴定。各位专家对该课题所取得的成果给予了高度肯定和积极评价,一致认为该课题的研究成果具有很高的推广应用价值。目前,工业品中心正在进一步完善该远程放射性监控系统,拟在相关口岸大力推广应用。   超标矿产品难于有效监测   随着我国进一步实施改革开放政策和国际间贸易的迅速发展,我国矿产品贸易迅速增长,品种涉及到金矿粉、银矿粉、铜矿砂、铁矿石、锌矿、铅矿、锆矿砂等210种。近年来,一些国外不法商人见利忘义,将放射性超标或受放射性污染的物品掺杂在矿产品中出口至我国,尤以集装箱运载的矿产品为害较重。近年来对江苏口岸进口矿产品监管情况表明:多批矿产品放射性严重超标,有些矿产品的放射性水平超过国家标准的几倍、几十倍,甚至几百倍,部分矿产品中甚至夹带有人工放射性核素。由于这些放射性超标的矿产品进口时往往没有任何危险标识,也没有采取任何防护措施,如果这些放射性超标的矿产品得不到有效的监测(检测),导致其进入生产和流通领域,将会给我国工业生产和人民生命健康带来不可估量的损害。   然而,口岸长期以来对进口有色金属矿产品的放射性是以手持伽马剂量率仪进行现场检测的方式进行的,这样的检测方式存在威胁检测人员健康、检测效率低下以及容易漏检等弊端。远程放射性监控技术的实施无疑可以很好地解决这些问题。然而,国内外在远程监控技术领域的研究多集中于视频的远程监控系统的开发,还没有针对进口有色金属矿产品的远程放射性监控技术的研究报道,国内在进口商品的远程放射性监控方面还停留于概念阶段。   为了实现口岸对进口有色金属矿产品的远程放射性监控,江苏检验检疫局工业品中心在中心主任李建军研究员的引导下,于2009年争取到国家质检总局科技项目《进口有色金属矿产品放射性监测及远程放射性监控技术的研究》(编号2009IK121)的立项支持,并由此展开了基于进口有色金属矿产品放射性监测及远程放射性监控技术的一系列研究工作。   远程监控技术取得突破   在大量文献调研的基础上,课题组发现,2006年颁布实施的《有色金属矿产品的天然放射性限值》(GB 20664-2006)标准中对于剂量率400nGy/h(包括环境本底&gamma 剂量率)以及天然放射性核素238U、226Ra、232Th衰变系中的任一核素比活度&le 1Bq/g,40K&le 10Bq/g的规定不尽合理。基于此,课题组首先对进口有色金属矿产品的放射性限值进行了研究,制定了根据年剂量率限值1mSv来反推核素的比活度限值的更为科学的推算方法,并最终给出了相对于原标准更为合理、科学的有色金属矿产品的天然放射性限值计算公式。   对进口有色金属矿产品放射性的监测应当尽可能的节约成本,兼顾实用性和经济性两方面的原则。毫无疑问,研究进口有色金属矿产品放射性的风险分析方法和预警机制,可以为口岸对进口有色金属矿产品放射性的监测提供参考,做到有针对性的重点监测,在节约仪器和人力成本的同时提高检出率和准确性。经过多方面的综合考察和论证,课题组从进口有色金属矿产品的矿种、产地和包装运输方式三方面着手,建立了放射性风险分析方法和预警机制。   探测器的安装是整个监测过程的重中之重,探测器安装的地点合理,可以最大限度地发挥监测过程的作用,否则将事倍功半。经过实地调研,课题组将到港的进口有色金属矿产品在口岸的存在状态分解为泊位停靠、卸货过程和堆场停放三个环节,在风险分析的基础上,制定了将探测器分别安装于这三个环节以达到对每个环节进行监测的目的。同时,通过相应放射源的模拟实验,确认监控方案可行。在此基础上,要实现远程放射性的监控,须开发远程监控所必需的软硬件系统。课题组将远程放射性监控所需实现的功能逐一分解,拆分为数据采集、数据传输和存储、数据分析和监控终端等几部分,在拆分的每一部分都有针对性的研发了相应的硬件和软件系统作为实现相关功能的支撑,由此研发了一整套适用于进口有色金属矿产品远程放射性监控的软硬件系统。   进口矿产品实现安全防控   该课题建立了新的适用于进口有色金属矿产品放射性监控的剂量限值标准和核素的比活度限值公式,为口岸对进口有色金属矿产品放射性的有效监管提供了基础支撑。   从矿种、产地以及运输包装方式三方面着手,研究了进口有色金属矿产品放射性的风险分析方法和预警机制,并运用风险分析的结果,建立了适用于进口有色金属矿产品放射性的全覆盖式监测方案,所提出的&ldquo 在风险分析的基础上实施放射性的重点而全面的监控&rdquo 的思路在实际的监管中具有重要的现实意义,可以为口岸对进口废物原料、机电产品等其他的工业产品的放射性监测所借鉴。   课题组针对进口有色金属矿产品的特点,自主研发了适用于进口有色金属矿产品远程放射性监控的硬件系统,包括:数据解码设备、数据存储和无线发送设备、GPS定位系统以及电源系统等。开发的&ldquo 核辐射云软件平台&rdquo ,实现了放射性剂量率的实时显示、数据地图模式回放、数据自动存储与波动分析、自动报警以及自动发送报警信息等功能,实现了口岸对进口有色金属矿产品的远程放射性监控,极大地加强了口岸对进口有色金属矿产品放射性的安全防控,可实现口岸对进口有色金属矿产品放射性监测的无人值守,克服了传统的人工检测效率低下并可能危及检测人员健康等弊端,对保护检测人员的健康具有较高的应用指导性,具有较大的社会效益。
  • 3053万大单!国家地下水监测工程运行维护与地下水质监测(2021-2023)
    项目编号:0733-22171032项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023)预算金额:3053.6900000 万元(人民币)采购需求:1、本次公开招标项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023),共15包,各包均为2022年和2023年一招两年,合同一年一签。资金来源为中央财政资金,其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。2、招标项目概况和简明技术要求及各包预算等如下表:序号分包编号分包名称2022年分包预算(万元)2023年分包预算(万元)(预计金额)主要工作内容/工作量工作周期2022年2023年2022年2023年10733-22171032/1国家地下水监测工程2022年度运行维护(河北省部分)220.30345.74开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展215处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展607处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。2022年5-12月2023年5-12月20733-22171032/2国家地下水监测工程2022年度运行维护(山西省部分)193.07230.13开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展133处地下水监测站点样品采集与37项常规指标检测分析。开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展338处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月30733-22171032/3国家地下水监测工程2022年度运行维护(内蒙古自治区部分)264.49368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展190处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月40733-22171032/4国家地下水监测工程2022年度运行维护(辽宁省部分)161.13297.14开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展166处地下水监测站点样品采集与37项常规指标检测分析。开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展455处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月50733-22171032/5国家地下水监测工程2022年度运行维护(吉林省部分)213.56339.07开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展498处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月60733-22171032/6国家地下水监测工程2022年度运行维护(黑龙江省部分)234.13365.31开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展192处地下水监测站点样品采集与37项常规指标检测分析。开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展496处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月70733-22171032/7国家地下水监测工程2022年度运行维护(江苏省部分)117.66191.38开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展124处地下水监测站点样品采集与37项常规指标检测分析。开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展336处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月80733-22171032/8国家地下水监测工程2022年度运行维护(安徽省部分)189.42313.68开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展115处地下水监测站点样品采集与37项常规指标检测分析。开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展370处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月90733-22171032/9国家地下水监测工程2022年度运行维护(山东省部分)290.78435.76开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展256处地下水监测站点样品采集与37项常规指标检测分析。开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展640处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月100733-22171032/10国家地下水监测工程2022年度运行维护(河南省部分)226.30330.22开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展485处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月110733-22171032/11国家地下水监测工程2022年度运行维护(四川省部分)140.80188.60开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展109处地下水监测站点样品采集与37项常规指标检测分析。开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展277处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月120733-22171032/12国家地下水监测工程2022年度运行维护(陕西省部分)161.60255.13开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展136处地下水监测站点样品采集与37项常规指标检测分析。开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展360处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月130733-22171032/13国家地下水监测工程2022年度运行维护(甘肃省部分)232.77368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展186处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月140733-22171032/14国家地下水监测工程2022年度运行维护(青海省部分)148.70232.91开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展98处地下水监测站点样品采集与37项常规指标检测分析。开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展266处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月150733-22171032/15国家地下水监测工程2022年度运行维护(新疆维吾尔自治区部分)258.98370.40开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展162处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展410处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月合计3053.694631.973、本项目为非专门面向中小企业采购项目,采购标的对应的中小企业划分标准所属行业:《中小企业划型标准规定》(工信部联企业〔2011〕300号)中(十六)其他未列明行业。4、本项目评标、授标均以包为单位。拆包投标或多包合并一个报价投标将被视为无效投标。5、本项目各包均为2022年和2023年一招两年,合同一年一签。其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。6、本项目为国家财政预算投资项目,如因国家政策调整或其他不可抗拒的因素造成预算调整或取消,采购人和招标代理机构将不对投标人和中标人作出任何补偿,请投标人注意风险。合同履行期限:合同签订之日起至2023年12月。本项目( 接受 )联合体投标。
  • 地下水水质监测是治污的重中之重
    国土资源部4月22日发布《2014中国国土资源公报》。2014年全国202个地级市开展了地下水水质监测工作,监测点总数为4896个,其中国家级监测点1000个。   按照《地下水质量标准》(GB/T 14848-93)的监测标准,此次4896个监测点中,优良的有529个,占监测点总数的10.8% 良好的有1266个,占25.9% 较好的有90个,占1.8% 较差的有2221个,占45.4% 极差的有790个,占16.1%。在我们大力推进生态文明建设过程中,&ldquo 地下生态&rdquo 作为生态建设系统的一个方面,同样不可轻视。没有&ldquo 地下生态&rdquo 文明,就没有系统的生态文明,地下水质直接考验我们国家和地区的&ldquo 地下生态&rdquo 治理能力。   在我国各地区大力推进统筹城乡建设发展过程中,&ldquo 地下工程&rdquo 越来越多,&ldquo 地下工程&rdquo 的建设也越来越复杂,如何科学规划、合理布局,既顺应经济社会发展,又不破坏地下生态环境,是我们面临的新课题。笔者认为,地下水质是不可忽视的大问题,地下水质问题直接影响居民的生活质量。优质的地下水不仅能够体现优质的生态环境,同时也是地方生态文明建设的有力见证。反之,被重金属等严重污染的地下水质虽然一时不被人们发现,但是这样的低劣水质绝对不利益居民长期的生产生活,同样也反应了相关部门治理&ldquo 地表&rdquo 不治&ldquo 地底&rdquo ,管&ldquo 天&rdquo 不管&ldquo 地&rdquo 的治理思路。   从《公报》中还可以到这这样一组数据,与上年度比较,有连续监测数据的水质监测点总数为4501个,分布在195个城市,水质有提升的监测点位有751个,占16.7%,变差的监测点有809个,占18.0%,报告以&ldquo 综合变化趋势以稳定为主&rdquo 说明&ldquo 有进步&rdquo ,因为&ldquo 呈变好趋势和变差趋势的监测点比例相当&rdquo 。读罢,笔者不禁要问,为何还有809个监测的水质有变差的现象?换做是地面生态环境治理,就有809个地区的生态环境在持续恶化,这样必定会对相关部门问责,但是因为是地下水,因此就不再追责。然而这恰恰是我们生态环境治理的漏洞,管&ldquo 天&rdquo 不管&ldquo 地&rdquo 的治理思路和治理考核机制的缺失直接考验我国各地区的&ldquo 地下生态&rdquo 治理能力。   笔者认为,生态文明建设是一个系统而全面的工程,凡是影响长远发展的自然环境,都应当是我们各地区治理的重中之重,没有地下的生态,就没有系统的生态,没有优质的地下水,就没有我们可持续发展的基础。
  • 欧盟研制出高灵敏度放射性物质检测技术
    根据欧委会的要求,欧盟联合研究中心(JRC)的科技人员,在地下深层实验平台(主要为避免宇宙射线的干扰),利用目前最先进的伽马射线探测仪,筛选出所谓高纯度的“近零辐射”(Radiopure)材料获得成功。   自然界的放射性物质无处不在,如人体就包含约6000贝克勒尔(Bq,放射性单位测量符号)的放射性物质。伴随着现代经济社会的发展进步,愈来愈多行业进入需要进行低剂量放射性检测的时代,一般为毫贝克勒尔(mBq)量级,相当于低于自然界人体放射性辐射剂量的100万倍。而传统基本电子元器件(主要为电容、晶体管结构)制作的放射性辐射探测仪,由于自身所含放射性物质的影响,往往很容易淹没需要测量低剂量放射性物质的微弱信号,所测数据的准确性和可靠性受到广泛质疑。   欧盟联合研究中心(JRC)的科技人员再利用基于这些材料的电子元器件“近零辐射电容”(Radiopure Capacitors),制作设计的、在地下实验平台运行的伽马射线探测仪,可在原有基础上,如铀(Uranium)和钍(Thorium),降低自身放射性至少100倍,从而填补了测量低剂量放射性物质所需仪器设备的空白。   欧盟联合研究中心(JRC)自行研制设计的新型低剂量放射性辐射探测仪,已通过欧委会同行专家组的评审验收。可广泛应用于从追踪世界各地来自日本福岛的放射性核素和探测跟踪非法核活动,到开发食品放射性监控参照材料等,犹如开辟了追踪自然界或工业活动放射性物质“指纹认定”的新路径。
  • 过度开采且污染严重 地下水水质如何监测?
    3月22日是刚刚过去的“世界水日”,今年世界气象日的主题又是“气候与水”,水环境的污染和治理似乎已经受到越来越多人的重视。日常生活中,当我们提起水质安全时,脑海中浮现出来的总是饮用水、河流、湖泊甚至是海洋等地表水,而作为全球水系统中极其重要的地下水,往往很容易被忽略。狭义上的地下水是指地面以下各种岩石空隙中的水,包括地下水面以下饱和含水层中的水。在《水文地质术语》中,地下水是指埋藏在地表以下各种形式的重力水。虽然埋藏于地表之下,难以用肉眼观察到。但实际上地下水是一个很庞大的系统,据了解,全球地下水的总量多达1.5亿立方公里,几乎占地球总水量的十分之一,井水和泉水就是我们常见的地下水。作为地球上的重要水体之一,地下水与人类社会有着密切的关系。由于其水量稳定、水质好,因此地下水是农业灌溉、工矿和城市的重要水源之一。尤其是在地表缺水的干旱和半干旱地区,地下水常常成为当地的主要用水来源。而一些含有特殊化学成分或水温较高的地下水,还可用作医疗、热源、饮料和提取有用元素的原料。然而,在我国大气“阴霾”尚未全然散退之时,地下水也同样面临着严重的开采和污染危机。近10年来我国地下水供水量每年约1000亿—1100亿立方米,约占全国供水总量的18%,全国年均超采近170亿立方米。与此同时,工业废水与生活污水的大量入渗,也严重威胁着地下水的水质安全。根据有关部门的相关监测,我国约有64%的城市地下水遭受着严重污染。因此,加强地下水系统的保护、科学治理以及有效监管,对于确保我国城乡居民用水安全,有效改善地下水的可持续发展策略具有重要的意义。但由于我国地下水开采时间长且程度深,再加上地下水的流动性及其系统的复杂性,导致地下水的检测要比地表水及其它水体的检测更加困难,对技术的要求也更高。所以地下水的检测,离不开现代科学仪器和分析技术的支撑。在地下水检测之前,需要对地下水先进行采样。伴随着监测技术的不断发展,更多不同类型的地下水采样设备已经被研制出来,有包括自动水质采样器、全自动多功能地下水采样器、智能地下水采样器等采样设备和系统。根据结构不同,还可以分为取样筒式采样器、惯性式采样器、气体驱动式采样器、潜水电泵式采样器。采样的目的是为了进行更加准确的分析。事实上,现在的水质分析是相当完备的,而且水质分析的方法也正在逐步向连续化、自动化方向发展。重金属分析仪、多参数水质分析仪、水质毒性分析仪、余氯分析仪、水中VOC检测仪、氨氮测定仪以及污染指数测定仪等仪器仪表共同组成了地下水的监测网络。作为人类宝贵的自然资源,那些埋于地底、不为人知的地下水和地表水一样弥足珍贵。从长远利益出发,我们有必要了解地下水的污染状况、途径和原因,制定科学的防治对策,保护地下水的安全。24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系我们网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 20469个地下水监测站点!2022年国家地下水监测报告发布
    近日,《国家地下水监测报告2022》正式发布。报告指出:国家地下水监测网设有地下水监测站点20469个,其中自然资源部门10171个。根据地下水赋存介质类型,地下水监测站点可分为三种类型:松散岩类孔隙水监测站点17193个,占比84.0%;基岩裂隙水监测站点1933个,占比9.4%;岩溶水监测站点1343个,占比6.6%。其中,松散岩类孔隙水监测站点可进一步划分为:浅层地下水监测站点12208个,深层地下水监测站点4985个。2022年,国家地下水监测网(自然资源部分)基础设施保持完好监测设备运行稳定,地下水自动监测设备日到报率保持在98%以上,共采集获取水位水温监测数据约8900万余条。其中,自动采集传输接收有效数据8241万条、野外提取补录数据659万条。开展地下水水质年度监测一次,获取37项常规指标数据4479组。此报告监测数据来源于自然资源部门地下水监测站点。根据监测数据显示:全国地下水水位总体稳定,长江中上游地下水受干早影响水位主要呈下降趋势:全国地下水质量保持稳定,影响水质的主要超标组分为锰、铁、总硬度、溶解性总固体、钠、硫酸盐、氯化物、碘化物、氟化物、氨氮等。监测网产生的数据和成果为生态文明建设和自然资源管理提供与地下水相关的科学建议和专项解决方案。研究分析四川、重庆、湖北、湖南、安徽、江西、江苏、贵州和河南旱季地下水动态状况,为国家抗旱工作提供专业建议。开展内蒙古东部宝日希勒等五个矿区地下水监测,分析煤炭开采对生态环境的影响,为矿产资源开发利用提供支撑。分析全国省级行政区地下水质量变化,直接填补可持续发展目标 (SDG)指标监测数据缺失,为服务联合国 2030 年可持续发展议程提供科技支撑。
  • 近600万!2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目
    项目编号:OITC-G220320263-8项目名称:2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目预算金额:586.6600000 万元(人民币)最高限价(如有):586.6600000 万元(人民币)采购需求:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。
  • 首届开播!土壤与地下水监测技术!
    近几年,土壤和地下水污染问题频繁曝光,土壤与地下水污染修复日益成为重要的治理手段。相较于土壤,地下水污染本身的隐蔽性、复杂性以及滞后性为修复治理工作提出了更高的要求。而地下水监测直接指示污染物的越界迁移风险,做好地下水监测工作,对于土壤与地下水污染防控与修复有着重要意义。基于此,仪器信息网联合《岩矿测试》杂志,将于6月21日举办“土壤及地下水分析检测新技术”网络研讨会,已邀请来自中国地质大学、中国地质科学院、中国环境监测总站专家出席直播!三大会议亮点,抢先看!亮点一:足够热本届会议紧追政策热点,基于《十四五、土壤地下水和农村生态环境保护规划》、《大气与土壤、地下水污染综合治理“重点专项申报指南》,经专家委员组评议,选取了极具代表性的议题方向,即新污染物、有机物在线监测、无机物监测、污染物溯源、快检技术等。亮点二:足够权威作为地下水监测的指导性文件,《地下水质量标准 GB/T14848-2017 》明确了多项质量指标,起草单位主要包括了中国地质科学院水文地质环境地质研究所、中国地质大学等。本届会议成功邀请到以上单位的权威专家出席,进行技术报告,并在线答疑。与此同时,邀请到中国环境监测总站的工程师,就“地下水在线监测技术”进行分享。亮点三:足够新2022年,九部门联合发布《大气与土壤、地下水污染综合治理“重点专项申报指南》,明确了未来土壤与地下水监测重点技术项目。本届会议邀请到权威专家分享“地下水污染源同位素解析技术”。此外,地下水中新污染物的监测被多次提及,特邀请中国地质大学教授讲解相关检测技术!会议日程:点此处,可免费报名报名失败,可添加助教微信:13260310733报告日期报告题目报告嘉宾9:30-10:00土壤及地下水新污染物识别及风险防控刘菲中国地质大学(北京) 教授11:00-11:30地下水污染源同位素解析技术张敏 地科院水文所 研究员14:00-14:30地下水典型无机元素监测解决方案张永涛 中国地质科学院水文地质环境地质研究所 实验测试室主任15:30-16:00地下水典型有机污染物实时在线监测技术研究田志仁 中国环境监测总站 工程师
  • 国家投20亿元用于地下水监测工程建设
    据中国政府采购网消息,中国地质环境监测院发布关于国家地下水监测工程(国土资源部分)初步设计的招标公告。根据招标内容可知,国家地下水监测工程建设内容主要由地下水监测中心、监测站点、信息传输系统和应用服务系统等组成。该工程估算总投资为204042.60万元.   其中,国土资源部门102472.58万元,建设五大区16个重点区(水文地质单元)共10103个地下水监测站点(包括30个泉流量监测站点),改建2个地下水监则(均衡)试验场、改建1个地下水与海平面综合监测站,建立31个省级地下水监测信息节点。10103个地下水监测站点,包括新建地下水监测站点7141个(包括泉流量监测站点18个),改建现有地下水监测站点2962个(包括泉流量监测站点12个)。钻探总进尺649502m,配备地下水水位信息自动采集设备10103台套,泉流量站水位与流量监测仪器30台套。   项目详情请见招标公告。 中国地质环境监测院关于国家地下水监测工程(国土资源部分)初步设计招标公告 (招标编号:0733-146220821801)   按照《中华人民共和国招标投标法》、《中华人民共和国招标投标法实施条例》的有关规定,中信国际招标有限公司受中国地质环境监测院委托,对国家地下水监测工程(国土资源部分)初步设计进行国内公开招标。请愿意承担本项目的投标人投标。   一、资金来源   本项目资金来源于中央预算内投资。   二、项目概况   国家发展和改革委员会下达了《国家发展改革委关于国家地下水监测工程可行性研究报告的批复》(发改投资[2014]1660号),要求据此编制工程初步设计,初步设计投资概算由发改委核定后由水利部和国土资源部联合审批。工程建成后,可扩大国家地下水监测站点的控制范围和站网密度,进一步提高地下水监测的自动化、信息化水平,基本实现对全国地下水动态的有效监控,对大型平原、盆地和岩溶山区地下水动态的区域性监控及地下水监测点的实时监控,基本满足当前水资源管理和地质环境保护的需要。建设内容主要由地下水监测中心、监测站点、信息传输系统和应用服务系统等组成。该工程估算总投资为204042.60万元,所需资金全部由中央预算内投资负责安排,具体投资数额在初步设计阶段进一步核定。   其中,国土资源部门102472.58万元,建设五大区16个重点区(水文地质单元)共10103个地下水监测站点(包括30个泉流量监测站点),改建2个地下水监则(均衡)试验场、改建1个地下水与海平面综合监测站,建立31个省级地下水监测信息节点。   1.国家地下水监测中心建设   与水利部门合并建设国家地下水监测中心,国土资源部门负责建设面积4585㎡,信息系统建设配备各种硬件设备196台套,水质测试实验室配备各种测试仪器26台套。   2.地下水均衡试验场及地下水与海平面综合监测站建设   修复改造河南郑州均衡试验场(代表中国东部平原半湿润、半干旱气候区孔隙地下水类型)、新疆乌鲁木齐昌吉均衡试验场(代表中国西北内陆盆地干旱气候区孔隙地下水类型)。修复改造河北秦皇岛地下水与海平面综合监测站。总共配备各种试验仪器10台套。   3.省级地下水监测信息节点建设   完善全国31个省(市、区)地下水监测信息系统,建设省级地下水信息采集节点,配备217台套信息设备。   4.地下水监测站点建设   建设地下水监测站点10103个,包括新建地下水监测站点7141个(包括泉流量监测站点18个),改建现有地下水监测站点2962个(包括泉流量监测站点12个)。钻探总进尺649502m,配备地下水水位信息自动采集设备10103台套,泉流量站水位与流量监测仪器30台套。   三、招标内容   国家地下水监测工程(国土资源部分)初步设计。主要内容包括站网布设、土建工程、技术装备、地下水资源信息服务和业务系统、施工组织、工程管理、招投标设计、环境影响分析与保护措施、设计概算、资金筹措及效益评价等方面的设计工作。   设计工期:合同签订后的30个日历日内完成全部设计工作,并将设计成果文件交付招标人。  四、投标人资格要求   1. 投标人必须是在中华人民共和国境内注册的具有独立法人资格的企业或事业单位   2. 投标人必须具有住房和城乡建设部颁发的工程勘察综合甲级资质或住房和城乡建设部颁发的工程设计综合甲级资质或国土资源部颁发的水文地质、工程地质、环境地质调查甲级资质或国土资源部颁发的液体矿产资源勘查甲级资质   3. 本项目不接受联合体投标。   五、投标报名须知   1. 本次招标将采用资格后审   2. 法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司,都不得同时投标,否则取消其投标资格 招标人及招标代理机构的附属机构不得参与本招标项目投标,否则取消其投标资格   3. 投标人必须向招标代理机构购买招标文件并登记备案,未向招标代理机构购买招标文件并登记备案的潜在投标人均无资格参加投标   4. 投标报名时间:2014年10月10日至2014年10月15日止,每天9:00-16:00(北京时间)   5. 投标报名地点:北京市朝阳区新源南路6号京城大厦A座8层   6. 投标报名须出示:营业执照副本(复印件加盖公章) 组织机构代码证(复印件加盖公章) 资质证书(复印件加盖公章) 法定代表人授权委托书(原件) 被授权人身份证(原件及复印件加盖公章)。   六、招标文件获取   招标文件于投标报名时获取,招标文件售价1000元人民币,售后不退。招标文件获取地点为北京市朝阳区新源南路6号京城大厦A座8层。   七、投标截止时间和开标时间   2014年10月31日上午9时30分整(北京时间)。届时请参加投标的代表出席开标仪式。   八、开标地点   北京市朝阳区新源南路6号京城大厦A座8层会议室1。   九、投标文件的递交   投标文件须密封后于开标当日投标截止时间前递至开标地点。逾期送达或不符合规定的投标文件恕不接受。   招标人名称:中国地质环境监测院   地 址: 北京市海淀区大慧寺路20号   电 话: 010-62135242   传 真: 010-62182412   联 系 人:叶林   招标代理机构名称:中信国际招标有限公司   地址:北京市朝阳区新源南路6号京城大厦A座8层   电话:010-84865168-135 010-84865168-179   传真:010-84865255   联系人:陈俊良、付强   开户银行及帐号:   户 名:中信国际招标有限公司   开户银行:中信银行北京京城大厦支行   帐 号:7110210182600030709
  • 自然资源部国家地下水监测工程收官
    p   2019年12月29日,自然资源部国家地下水监测工程收官,自然资源部中国地质调查局在京召开了竣工验收会。由袁道先、王浩、王光谦等14位院士专家组成的专家组验收认为,国家地下水监测工程建设竣工,使我国地下水监测事业产生了质的飞跃,是我国地下水领域具有里程碑意义的标志性成果,标志着我国的地下水监测工作迈入国际领先行列。 /p p   会上,自然资源部国家地下水监测工程首席专家李文鹏在会上介绍了工程取得的主要成果。他表示,该工程首次构建了国家级地下水三维自动化监测网,以水文地质单元为基本单位,在人口密集区、国家重大工程区、地下水超采区、地面沉降区进行重点监测,实现了对我国主要平原盆地和岩溶含水层地下水水位、水质的有效监测,大幅提高了我国区域性地下水专业监测的能力和水平。 /p p   其次,工程运用物联网和北斗通信技术、大数据及云计算技术,研发了集地下水水位水温和大气压监测数据自动采集、自动传输、数据整编、综合分析及数据共享和信息服务为一体的信息应用服务系统。建设完成国家信息中心与省级节点及数据灾备节点之间的专线网络,实现了国家级和省、市等多级地下水监测网的联动管理和数据信息共享服务。 /p p   同时,工程建设完成地下水水质测试与质量控制实验室,可分析无机、有机化学指标100余项,满足国家地下水监测网水质测试和质量控制的需求。改建完成的河南郑州地下水均衡试验场、新疆昌吉地下水均衡试验场及秦皇岛海平面综合监测站,将为我国地下水科学和气候变化等综合研究提供科学观测平台和基础数据。 /p p   再次,工程编制了地下水水位水质监测网优化、监测井建设材料和工艺等13项地下水监测标准体系,有效带动了省—市级地下水监测网络建设,并将为后续水资源和生态环保监测网的建设提供依据。北京、内蒙古、河南等10个省级监测井建设累计投入资金3.19亿元,建设完成2389个省级监测井。 /p p   此外,自然资源部通过工程实施形成了10171个监测站点建设全过程的水文地质勘探成果资料,全面更新了整个监测区的水文地质参数系列,大幅提升了监测区水文地质认识。 /p p   据介绍,国家地下水监测工程建设启动于2015年6月,总投资达22亿元,共建设完成20469个监测站点,由自然资源部和水利部共同建设。其中,自然资源部建设完成10171个监测站点。两年试运行结果表明,水位水温自动监测数据到报率保持在95%以上,每年产生8900余万条水位水温数据,水质测试指标从35项扩展到97项,工程总体运行平稳。所获两次全国水质监测数据已应用于并将持续服务于我国地下水保护、国土空间规划和水资源管理,为地下水资源与环境科学研究提供数据基础。 /p
  • 北京:1182个“地眼”实时监测地下水
    历时3年、总投资8476万元的北京平原区地下水环境和重要污染源监测网建成,1182个“地眼”实时监测京城地下水。   今天上午,记者从北京市地勘局了解到,北京率先建成国内最全面、最先进的平原区地下水环境监测网系统,将在年内开始正式运行。   北京是国际上为数不多的以地下水作为主要供给水源的特大型城市。   为了从源头保护地下水源,从2007年至2009年,北京市地勘局建立了包括区域地下水环境监测和重点污染源监测在内,共1182眼监测井的北京市平原区地下水环境监测网。   监测网充分吸纳和利用全市原有监测井资源,整合了市域范围内监测井685眼,补充建设了137眼监测井,共建成822眼监测井,控制面积达6900平方公里,覆盖平原区(含延庆盆地)。   监测层位包括浅、中、深层的区域地下水环境监测网,平面控制精度达1:50000比例尺,可为市政府及环境保护部门定期发布地下水环境质量信息提供准确、客观、全面的分层地下水质量监测数据。   同时完成全市重点污染源监测孔360眼,监控北京市平原区重点污染源对地下水环境的影响。   这些“地眼”的监控对象主要是污染指标和污染途径具有典型性且污染物排放规模较大的污染源。
  • 关于地下水监测采样器 你了解多少?
    随着地下水监测技术的不断发展,国内外研制出了适应不同地下水监测井类型、采样目的及要求的多种类型地下水采样设备。根据设备设计结构和采样原理,大致可分为取样筒式采样器、惯性式采样器、气体驱动式采样器和潜水电泵式采样器。  1、取样筒式采样器  取样筒式采样器由一绳索与采样筒组成。根据取样筒取样原理、制作材料,采样筒分为多种类型:(1)在采样筒上安装阀体控制地下水样品的采取,(2)通过液压及取样筒下放速度控制进行地下水样品采取,(3)筒体可采用不锈钢、PVC等多种材料制作,也可直接采用聚乙烯袋替代。采样时通过绳索将采样筒从井口下放至地下水采样层位,采样筒采取目标深度地下水试样,实现地下水采样。该采样器原理简单、制作方便、成本低,且受监测井井径、采样深度影响较小,由于采样器每次只能进行单筒采样,当采样深度较大及井径较小时采样效率较低。  2、惯性式采样器  惯性式采样器由采样管与惯性泵泵头组成。惯性泵泵头内设计有单向进水装置,安装在采样管底部,放入到地下水监测井中指定采样深度,采样管上部露出井口,徒手或者采用机械快速下压提拉采样管,在惯性力作用下快速下压时地下水进入采样管中,提拉时单向阀关闭,使采样管中地下水样品液面逐渐上升至采样管上端口流出。该类采样器外径小,可应用于小口径地下水监测井,采样深度可达到90m。  3、气体驱动式采样器  气体驱动式采样器由气体驱动管、采样管及泵体组成,根据泵体结构设计可分为有气囊泵、U形管采样器等。高压气体经过气体驱动管进入泵体中,驱动地下水进入采样管,然后将高压气体释放,地下水在地层压力作用下进入泵体,如此循环,地下水样品从采样管中返出地面,实现地下水采样。该类采样器结构较复杂,但适用范围广,采样深度可从十几米至几千米,除了极小井径的地下水监测井,可适用于大部分地下水监测井,并且采样效率较高。  4、潜水电泵式采样器  潜水电泵式采样器是将潜水电泵下入至采样层位,通过潜水电泵将地下水样品输送至地面实现采样操作,采样效率很高,但受电线及潜水电泵制作工艺限制,采样器要求井径较大、采样深度相对较浅。
  • 力合科技在“2023地下水污染防治技术与方法学术会议”上隆重推出《地下水监测新模式及数据应用》
    4月13日至16日,2023地下水污染防治技术与方法学术会议在重庆召开,我公司总工程师黄海萍在地下水污染监测、预警与管理技术与方法分会场发表了题为《地下水监测新模式及数据应用》的主题演讲,向与会专家和业界朋友们汇报了公司用于地下水监测的产品和解决方案,并分享多监测模式数据融合支撑地下水评估、污染防治的成功案例和经验。政策背景随着国家相关部委《生态环境监测规划纲要(2020-2035年)》、《地下水污染防治实施方案》、《“十四五”土壤、地下水和农村生态环境保护规划》等针对地下水污染防治工作系列政策和规划的出台,建立地下水监测体系,完善地下水环境监测网络,建立地下水污染防治体系显得尤为重要。解决方案01围绕地下水监测工作的要求开展监测监管能力建设,进一步做好地下水管理的支撑工作,推动解决地下水污染的突出问题。我公司推出地下水环境监测监管整体解决方案,以监测来支撑“评”与“治”,推进地下水污染问题的解决。地下水环境监测模式02力合科技地下水环境监测监管整体解决方案依据地下水业务管理和监测需要,有原位探头监测、抽取式自动监测站、移动监测车监测、采样+实验室分析四种监测模式,符合《地下水环境监测技术规范》(HJ 164-2020)》的相关要求,可根据不同应用场景和实际监测需求选择最佳的地下水监测模式。应用平台03地下水环境监测监管平台是一个基于互联网技术和地下水监测数据的信息化管理系统,主要用于地下水监测数据的采集、处理、分析和共享。通过实时监测地下水质量和水位变化等指标,及时预警并处理地下水污染事件,保障地下水安全。主要有以下特点:(1)基于地理信息系统(GIS)技术,地图可视化能够让使用者更直观地了解地下水质量和水位变化的空间分布情况。(2)通过地下水溶质运动模型和地下水水动力模型,模拟地下水中污染物质的扩散与转移规律,对地下水系统进行分析和预测,预测潜在的污染危害范围,为地下水开发、管理和保护提供科学依据。(4)利用人工智能算法,对地下水监测数据进行处理和分析,识别异常变化和预警地下水污染事件。典型案例04
  • 核安全与放射性污染防治十二五规划发布 投资达798亿元
    核安全与放射性污染防治“十二五”规划及2020年远景目标   核安全事关核能与核技术利用事业发展,事关环境安全,事关公众利益。党中央、国务院历来高度重视核安全与放射性污染防治工作,有关部门和企事业单位认真贯彻落实国家确定的方针政策,我国核能与核技术利用事业多年来保持了良好的安全业绩。日本福岛核事故发生后,国务院立即做出重要部署,明确要求抓紧编制核安全规划。   本规划结合全国核设施综合安全检查和日常持续开展的安全评价结果,深入分析当前核安全工作中存在的薄弱环节,以确保核安全、环境安全、公众健康为目标,坚持“安全第一、质量第一”的根本方针,遵循“预防为主、纵深防御 新老并重、防治结合 依靠科技、持续改进 坚持法治、严格监管 公开透明、协调发展”的基本原则,统筹规划了9项重点任务、5项重点工程、8项保障措施,力争至“十二五”末我国核能与核技术利用安全水平进一步提高,辐射环境安全风险明显降低 到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好,为保障我国核能与核技术利用事业安全、健康、可持续发展提供坚实有力的支撑。   一、现状与形势   半个多世纪以来,我国核能与核技术利用事业稳步发展。目前,我国已经形成较为完整的核工业体系,核能在优化能源结构、保障能源安全、促进污染减排和应对气候变化等方面发挥了重要作用 核技术在工业、农业、国防、医疗和科研等领域得到广泛应用,有力地推动了经济社会发展。   核安全是核能与核技术利用事业发展的生命线。我国核能与核技术利用始终坚持“安全第一、质量第一”的根本方针,贯彻纵深防御等安全理念,采取有效措施,保障了核安全。2011 年3月日本福岛核事故后,进一步保障核安全与防治放射性污染任务更加艰巨和紧迫,相关工作面临新的形势和挑战。   (一)核安全与放射性污染防治取得积极进展。   1。核安全保障体系渐趋完善。在深入总结国内外经验和教训的基础上,参考国际原子能机构和核能先进国家有关安全标准,我国已基本建立了覆盖各类核设施和核活动的核安全法规标准体系。2003年以来,先后颁布并实施了《中华人民共和国放射性污染防治法》、《放射性同位素与射线装置安全和防护条例》、《民用核安全设备监督管理条例》、《放射性物品运输安全管理条例》和《放射性废物安全管理条例》,制定了一系列部门规章、导则和标准等文件,为保障核安全奠定了良好基础。初步形成了以营运单位、集团公司、行业主管部门和核安全监管部门为主的核安全管理体系,以及由国家、省、营运单位构成的核电厂核事故应急三级管理体系。   核安全文化建设不断深入,专业人才队伍配置渐趋齐全,质量保证体系不断完善。核安全监管部门审评和监督能力逐步提高,运行核电厂及周边环境辐射监测网络基本建立。在汶川地震等重特大灾害应急抢险中,我国政府决策果断、行动高效,有效化解了次生自然灾害带来的核安全风险,核安全保障体系发挥了重大作用。   2。核安全水平不断提高。   我国核电厂采用国际通行标准,按照纵深防御的理念进行设计、建造和运行,具有较高的安全水平。截至2011年12月,我国大陆地区运行的15台核电机组安全业绩良好,未发生国际核事件分级表2级及以上事件和事故,气态和液态流出物排放远低于国家标准限值。在建的26台核电机组质量保证体系运转有效,工程建造技术水平与国际保持同步。大型先进压水堆和高温气冷堆核电站科技重大专项工作有序推进。2011年实施的核设施综合安全检查结果表明,我国运行和在建核电机组基本满足我国现行核安全法规和国际原子能机构最新标准的要求,安全和质量是有保障的。   研究堆安全整改活动持续开展,现有研究堆处于安全运行或安全停闭状态。核燃料生产、加工、贮存和后处理设施保持安全运行,未发生过影响环境或公众健康的核临界事故和运输安全事故。核材料管制体系有效。放射源实施全过程管控,辐照装置防卡源专项整治工作取得成效,安全管理水平逐步提高,放射源辐射事故年发生率由上世纪90 年代的每万枚6.2起下降至“十一五”期间的每万枚2.5起。核安全设备的设计、制造、安装和无损检验活动全面纳入核安全监管,设备质量和可靠性不断提高。   3。放射性污染防治稳步推进。近年来,国家不断加大放射性污染防治力度,早期核设施退役和历史遗留放射性废物治理稳步推进。多个微堆及放化实验室的退役已经完成。一批中、低放废物处理设施已建成。2座中、低放废物处置场已投入运行,1座中、低放废物处置场开始建设。完成一批铀矿地质勘探、矿冶设施的退役及环境整治项目,尾矿库垮坝事故风险降低,污染得到控制,环境质量得到改善。废旧放射源得到及时回收,一批老旧辐照装置完成退役。国家废放射源集中贮存库及各省(区、市)放射性废物暂存库基本建成。全国辐射环境质量良好,辐射水平保持在天然本底涨落范围 从业人员平均辐照剂量远低于国家限值。   (二)核安全与放射性污染防治面临挑战。   1。安全形势不容乐观。我国核电多种堆型、多种技术、多类标准并存的局面给安全管理带来一定难度,运行和在建核电厂预防和缓解严重事故的能力仍需进一步提高。部分研究堆和核燃料循环设施抵御外部事件能力较弱。早期核设施退役进程尚待进一步加快,历史遗留放射性废物需要妥善处置。铀矿冶开发过程中环境问题依然存在。放射源和射线装置量大面广,安全管理任务重。   2。科技研发需要加强。核安全科学技术研发缺乏总体规划。现有资源分散、人才匮乏、研发能力不足。法规标准的制(修)订缺少科技支撑,基础科学和应用技术研究与国际先进水平总体差距仍然较大,制约了我国核安全水平的进一步提高。   3。应急体系需要完善。核事故应急管理体系需要进一步完善,核电集团公司在核事故应急工作中的职责需要进一步细化。核电集团公司内部及各核电集团公司之间缺乏有效的应急支援机制,应急资源储备和调配能力不足。地方政府应急指挥、响应、监测和技术支持能力仍需提升。核事故应急预案可实施性仍需提高。   4。监管能力需要提升。核安全监管能力与核能发展的规模和速度不相适应。核安全监管缺乏独立的分析评价、校核计算和实验验证手段,现场监督执法装备不足。全国辐射环境监测体系尚不完善,监测能力需大力提升。核安全公众宣传和教育力量薄弱,核安全国际合作、信息公开工作有待加强,公众参与机制需要完善。核安全监管人才缺乏,能力建设投入不足。   日本福岛核事故的经验教训十分深刻,要进一步提高对核安全的极端重要性和基本规律的认识,提升核安全文化素养和水平 进一步提高核安全标准要求和设施固有安全水平 进一步完善事故应急响应机制,提升应急响应能力 进一步增强营运单位自身的管理、技术能力及资源支撑能力 进一步提升核安全监管部门的独立性、权威性、有效性 进一步加强核安全技术研发,依靠科技创新推动核安全水平持续提高和进步 进一步加强核安全经验和能力的共享 进一步强化公共宣传和信息公开。   二、指导思想、原则和目标   (一)指导思想。   以邓小平理论和“三个代表”重要思想为指导,深入贯彻落实科学发展观,坚持“安全第一、质量第一”的根本方针,以法规标准为准绳,以科技进步为先导,以基础能力为支撑,进一步明确责任、优化机制、严格管理、持续改进、消除隐患,不断提高我国核安全与放射性污染防治水平,确保核安全、环境安全和公众健康,推动核能与核技术利用事业安全、健康、可持续发展。   (二)基本原则。   预防为主,纵深防御。采取所有合理可行的技术和管理手段,确保核设施各种防御措施的有效性和多道屏障的完整性,防止发生核事故,并在一旦发生事故时减轻其后果。   新老并重,防治结合。多还旧账,积极推进早期核设施退役,开展历史遗留放射性污染治理,恢复和改善环境。不欠新账,按照新标准建设各类核设施,从源头防止或减少放射性废物产生,及时处理处置新产生的放射性废物。   依靠科技,持续改进。发挥科技在核安全工作中的支撑和引领作用,注重经验积累和反馈,及时查找和消除安全隐患,不断改进和提升安全水平。坚持法治,严格监管。完善核安全法规标准体系,与国际先进水平保持一致。贯彻“独立、公开、法治、理性、有效”的监管理念,严格依法开展审评、许可、监督和执法,严厉查处违法违规行为。   公开透明,协调发展。完善公众参与机制,保障公众对核安全相关信息的知情权。加强宣传教育,增强公众对核安全的了解和信心。坚持核安全监管与核能、核技术利用事业同步发展,推动核能与核技术利用事业和社会、环境的协调发展。   (三)规划目标。   总体目标:进一步提高核设施与核技术利用装置安全水平,明显降低辐射环境安全风险,基本形成事故防御、污染治理、科技创新、应急响应和安全监管能力,保障核安全、环境安全和公众健康,辐射环境质量保持良好。   具体目标:在核设施安全水平提高方面,运行核电机组安全性能指标保持在良好状态,避免发生2级事件,确保不发生3级及以上事件和事故 新建核电机组具备较完善的严重事故预防和缓解措施,每堆年发生严重堆芯损坏事件的概率低于十万分之一,每堆年发生大量放射性物质释放事件的概率低于百万分之一 消除研究堆、核燃料循环设施重大安全隐患,确保运行安全。   在核技术利用装置安全水平提高方面,放射性同位素和射线装置100%落实许可证管理 放射源辐射事故年发生率低于每万枚2.0 起 有效控制重特大辐射事故的发生。   在辐射环境安全风险降低方面,基本消除历史遗留中、低放废物的安全风险 基本完成铀矿冶环境综合治理。在事故防御方面,完成运行和在建核电厂、研究堆、核燃料循环设施的安全改造,提高核设施抵御外部事件、预防和缓解严重事故的能力。   在污染治理方面,建设与核工业发展水平相适应的、先进高效的放射性污染治理和废物处理体系,基本建成与核工业发展配套的中、低放废物处置场。   在科技创新方面,完善核安全与放射性污染防治科技创新平台,培养一批领军人才,突破一批关键技术。   在应急响应方面,强化各级政府和有关单位的应急指挥、应急响应、应急监测、应急技术支持能力建设,形成统一调度的核事故应急工程抢险力量,充实应急物资及装备配置。   在安全监管方面,基本建成国家核与辐射安全监管技术研发基地,构建监管技术支撑平台,初步具备相对独立、较为完整的安全分析评价、校核计算和实验验证能力 建成全国辐射环境监测网络,国家、省级辐射环境监测能力100%达到能力建设标准。   2020年远景目标:运行和在建核设施安全水平持续提高,“十三五”及以后新建核电机组力争实现从设计上实际消除大量放射性物质释放的可能性。全面开展放射性污染治理,早期核设施退役取得明显成效,基本消除历史遗留放射性废物的安全风险,完成高放废物处理处置顶层设计并建成地下实验室。全面建成国家核与辐射安全监管技术研发基地和全国辐射环境监测体系。形成功能齐全、反应灵敏、运转高效的核与辐射事故应急响应体系。到2020年,核电安全保持国际先进水平,核安全与放射性污染防治水平全面提升,辐射环境质量保持良好。   三、重点任务   坚持以提高核能与核技术利用安全水平、加快放射性污染防治为核心,以加强科技研发、提升应急响应和核安全监管能力为依托,全面加强我国核安全与放射性污染防治工作。   (一)强化纵深防御,确保核电厂运行安全。   运行和在建核电厂营运单位根据核设施综合安全检查的评价结论和改进要求,从技术、管理和工程等方面采取切实有效措施,提升预防和缓解事故及严重事故后果的能力。   对运行核电厂,开展应对事故及严重事故的安全分析、技术评估和工程改造,并制定完善相应的管理规定和应对预案,开展定期安全审查,加强设备维修维护,深化安全文化培育。   专栏1 提升运行核电厂安全水平   近期   1。逐项排查并完成有关门窗、通风口、电缆贯穿和工艺管道贯穿等的防水封堵。   2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。3。确保核电厂地震监测记录系统的有效性,提高核电厂抗震响应能力。   2013年底前:   4。结合各核电厂可能遭遇水淹情况的评估结果,落实各核电厂防水淹措施 完成秦山核电厂防洪改造工程。   5。完成沿海核电厂地震、海啸影响的复核、评估及必要的改造。   6。制定并实施严重事故管理导则。   7。对在严重事故下用于缓解事故的设备和系统的可用性以及可能发生的氢气爆炸进行评估,并根据评估结果实施相应改进。   8。开展抗外部事件安全裕量分析评估。   9。研究制订核电基地多机组同时进入应急状态后的响应方案。   2015年底前:   10。开展外部事件概率安全分析。   对在建核电厂,依据我国现行核安全法规和国际原子能机构最新标准,完成设计安全水平再评估,修订建造许可证条件。在建核电厂营运单位在首次装料前落实全部许可证条件要求。全过程、全方位控制核电工程建造质量和安全,落实独立第三方监理,执行核电建造队伍准入制度,提高核电工程建造专业化水平,继续完善核电工程建造质量保证体系,加强调试监管,严格执行事件报告制度和不符合项管理制度。   专栏2 提升在建核电厂安全水平   首次装料前:   1。结合各核电厂可能遭遇水淹情况的评估,逐项排查并完成管沟、廊道、门窗和贯穿等的防水封堵。   2。综合考虑全厂断电工况下满足反应堆堆芯冷却、乏燃料水池冷却、防止反应堆冷却剂泵发生轴封小破口失水事故和保持必要的事故后监测能力的要求,采取设置移动电源、移动泵和增设相匹配的接口等措施。   3。增强乏燃料水池的补水和监测能力。   4。制定并实施严重事故管理导则。考虑各类事故工况和多堆厂址共因失效工况,分析评估严重事故下重要设备、监测仪表的可用性和可达性。   5。完善严重事故下安全壳或其他厂房内消氢系统的分析评估,并实施必要的改进。   6。分析评价双机组布置的核电机组缓解严重事故后果的能力和可靠性。   7。进一步加强对环境监测布点的合理性和代表性的分析评估,完善严重事故下应急监测方案,确保在各种事故工况下有可用的应急监测手段。   8。完善应急控制中心功能及可居留性的分析评估,并实施必要的改进。   9。开展抗外部事件安全裕量分析评估。   10。加强与气象、海洋部门之间的实时联系,以及与地震部门间的信息交流,进一步完善防灾预案和相关管理程序,提高外部灾害发生时的预警和应对能力。   11。研究核电基地多机组同时进入应急状态后电厂的应急响应方案,并评估应急指挥能力及应急抢险人员和物资的配备、协调方案。   2015年底前:   12。从设计、验证和故障分析等方面分析评估安全级数字化控制系统的可靠性,查找薄弱环节并实施相应的改进。   13。进一步开展二级概率安全分析、外部事件概率安全分析工作。   14。进一步改进放射性废物处理系统 开展严重事故下废物处理系统的有效性研究。   坚持在确保安全的前提下发展核电,并把握好发展节奏。对于新申请建造许可证的核电项目,按照我国和国际原子能机构最新的核安全法规标准进行选址和设计,采用技术更加成熟和先进的堆型,提高固有安全性。在符合最先进安全指标的核电技术得到充分验证之前,合理控制核电建设规模和速度。通过科学选址和采取更加高效、可靠的工程措施,确保气态和液态流出物在核电机组正常运行和事故情况下对环境和公众均不会造成不可接受的影响。积极发展具有我国自主知识产权的安全性能高的先进核电技术。力争“十三五”及以后新建核电机组从设计上实际消除大量放射性物质释放的可能性。   (二)加强整改,消除研究堆和核燃料循环设施安全隐患。根据核设施综合安全检查结论和改进要求,对存在安全隐患的研究堆和核燃料循环设施实施安全改进,对于无法满足安全标准的,予以限制运行或逐步关停。完成研究堆分类名录,明确管理要求,实施分类管理。完善研究堆许可证管理模式和定期安全审查方法。确定研究堆在停闭状态下的安全保障和管理方法。对大型研究堆实施严重事故管理。开展研究堆概率安全分析和老化评估。完成快中子增殖堆等新堆型技术法规和技术审评原则及其下层技术文件的编制。完成部分研究堆内乏燃料组件向集中贮存设施的转移。   2012年底前:   专栏3 提升研究堆安全水平   1。根据调整后的地震区划图,完成对所涉及研究堆的抗震校核及必要的改造工作,并重新优化其运行管理程序。   2。为大、中型研究堆增设事故后堆芯监测装置。   3。评价研究堆构筑物抵御极端外部事件的能力,根据评估结果完成相应的加固工作。   2013年底前:   4。为研究堆增设可靠电源、移动电源、移动泵、消防车辆和应急水源。对核燃料循环设施的安全重要构筑物、系统和设备进行分级管理。加强核燃料循环设施工艺和安全研究,不断提高固有安全水平。建立核燃料循环设施运行经验反馈体系,强化核临界安全风险管理。规范和完善早期核设施的安全管理,尽快解决历史遗留问题。根据核电发展的方向、规模与速度,配套开展核燃料循环发展顶层设计,加强“三废”处理等配套设施的建设和运行管理,强化流出物监测和环境监测。   专栏4 提升核燃料循环设施安全水平   2012年底前:   1。按照现行标准对核燃料循环设施老旧厂房进行抗震校核,并根据校核结果进行加固或限期退役。   2。根据核燃料循环设施厂址特点,建立外部应急支援接口,完善应急预案,提高抵御极端自然灾害的能力。   2015年底前:   3。开展核燃料循环设施的应急和“三废”等配套建设,确保其与主工艺建设同步。   4。制定贫化六氟化铀的处理规划,加强贫化六氟化铀贮存的安全管理,必要时进行稳定化处理。调查在役放射性物品运输容器的安全状况,完成运输容器安全评价。建设一、二类放射性物品运输的在线实时监控系统。强化放射性物品运输容器制造和运输活动的安全监督。加强实物保护系统建设,对各核设施实物保护系统实施改进和升级。   (三)严格安全管理,规范核技术利用。   2012年底前完成全国核技术利用单位综合安全检查。针对发现的安全隐患,采取有效整改措施。对存在较大安全隐患的高风险核技术利用装置实施强制退役,彻底消除安全隐患。健全核技术利用辐射安全管理信息系统,完善放射源的全过程动态管理。建立高危险移动放射源跟踪监控体系。对辐照加工、科研、医疗等领域Ⅰ类放射源和Ⅰ类射线装置实施在线监控。全面开展对废旧金属回收熔炼的辐射监测,加强进出境口岸放射性物品安全管理。强化核技术利用单位的辐射环境和个人剂量监测。加强从业人员辐射安全培训。   城市放射性废物库配备放射性物质鉴别、分类、处理等配套设施,完成3-5个区域性移动式废旧放射源整备设施的研制和建设。加大闲置、废弃放射源的收贮力度,确保新产生的废旧放射源依法及时送贮,推动已到寿期的Ⅲ类及以上进口放射源返回原出口方。推动废旧放射源的再利用和放射性同位素的循环使用技术研究,倡导并支持废旧放射源回收再利用。   制定和完善核技术利用行业的准入制度,提高核技术利用装置安全水平。鼓励除科研用途外设计活度小于1.11×1016贝可(30万居里)的静态辐照装置关停退役或转型升级。   (四)加强铀矿冶治理,保障环境安全。   “十二五”中期,完成铀矿冶企业尾矿(渣)坝的风险评估,建立尾矿(渣)坝监测与预警系统,采取必要措施降低垮坝风险,关停不符合安全要求的铀矿冶设施。“十二五”末,完成地浸采场地下水去污恢复技术研究。建设事故废水收集池,避免超标废水直接向环境排放。建立铀矿冶退役治理工程长期监护机制。   对历史遗留铀矿地质勘探设施进行调查与评价,在2020年前完成位于社会和环境敏感地区的铀矿地质勘探设施环境整治工程。继续开展退役矿山的环境治理,在2020年前全部完成2010年前关停的铀矿冶设施的退役治理和环境恢复工作。   贯彻清洁生产和循环经济的理念,加大废水处理技术的科研力度,逐步提高水的重复利用率,降低废水产生量并实施达标排放。“十二五”中期,保证水冶工艺废水的重复利用率达到75%以上。   进一步完善铀矿冶辐射防护体系,降低采冶过程中的职业照射水平,保护工作人员健康。到“十二五”末,铀矿冶行业的职业照射水平管理目标值控制在15毫希沃特/年以内。   进一步开展主要伴生放射性矿的辐射水平调查工作,完善伴生放射性矿监管名录和办法,明确管理要求,制定废物处置的相关环境政策,开展污染防治工作。   (五)加快早期设施退役和废物治理,降低安全风险。   加强对已停运核设施的监管和维护,及时实施已关停或已决定关停核设施的退役,推进早期核活动遗留的放射性污确保放射性废物的安全贮存,加快放射性废物处理、处置。对全国放射性废物处理处置能力进行统一布局,推动地方政府及核能相关企业加快放射性废物贮存、处理、处置能力建设。以高风险放射性废物治理为重点,加快放射性废液固化处理进程。   在核设施设计中采用先进的废物处理工艺。鼓励营运单位在核设施运行中采用先进的技术和管理手段减少废物产生量。推动核电厂妥善处置现存废物。建立放射性废物治理管理信息系统。推动高放废物地质处置预选区研究。   专栏5 早期核设施退役及放射性废物治理   “十二五”末:   1。全面推进重点单位的核设施退役活动。2。完善中、低放废物处理、处置手段。3。完成全国放射性污染现状调查与评价,开展放射性污染治理。4。开展核设施退役和放射性废物治理关键技术研究。   至2020年:   5。已停运的核设施全部安全关闭,早期核设施退役和污染治理取得明显成效。6。形成全国中低放固体废物近地表处置场的统一布局。   7。建成高放废物处置地下实验室。   (六)强化质量保证,提高设备可靠性。告。
  • 国家地下水监测工程建设完成
    p style=" text-indent: 2em text-align: justify " 从自然资源部中国地质调查局获悉,2018年,由该单位组织实施,31个省级自然资源主管部门和地质环境监测机构配合,自然资源部门国家地下水监测工程建设全面完成,大幅提升了地下水监测的专业化和自动化水平。 /p p style=" text-indent: 2em text-align: justify " 自然资源部门国家地下水监测工程共建成层位明确的国家级地下水专业监测站点10168个,全部安装一体化地下水自动监测设备,实现了全国主要平原盆地和人类活动经济区的地下水水位、水温监测数据自动采集、实时传输和数据接收,与水利部门地下水监测数据实时共享。 /p p style=" text-indent: 2em text-align: justify " 改建完成西北干旱、华北半干旱地区的2个地下水均衡试验场和1个秦皇岛地下水与海平面综合监测站,实现了土壤水负压、潮汐等要素的实时在线监测,提高了土壤水运移、海平面变化等方面的分析研究能力。 /p p style=" text-indent: 2em text-align: justify " 利用云平台和大数据技术,研发了监测信息应用服务系统和三维地下水云计算实时模拟系统,实现了监测数据管理、动态分析、水质水量综合评价与信息发布等功能,建立了国家—省—市县多级数据共享与异地联动的工作模式。 /p p style=" text-indent: 2em text-align: justify " 建成国家地下水监测网络数据中心,与31个省级节点实现互联互通;建成现代化的水质监控实验室,满足《地下水监测网运行维护规范》中规定的100项水质指标测试监控能力,实现对国家地下水质标准93项指标的全覆盖。 /p p style=" text-indent: 2em text-align: justify " 在国家地下水监测工程实施过程中,首次研发并成功实施了承压—自流井监测技术,有效地解决了承压水与无压水转化过程的自动监测问题,有效解决了水样采集、冬季的防冻和洗井清淤难题;完成了基于北斗传输的自动监测站点建设,解决了无移动信号网络覆盖或信号较弱地区监测数据传输问题;编制了12项地下水监测行业标准规范,提出了多要素综合评价的地下水位和水质监测网优化设计方法,总结形成了多层含水层系统的分层监测井建设技术和服务于生态环保的浅部地下水分层监测井建设技术。 /p p style=" text-indent: 2em text-align: justify " 国家地下水监测工程的建设,形成了10168个监测孔的地层编录和抽水试验资料,获取了丰富的水文地质参数,进一步揭示了区域含水层结构特征,深化了区域水文地质条件认识。信息应用服务系统每年产生近9000万条地下水水位、水温、水质数据,将为水资源科学管理、地质环境问题防治、生态文明建设提供重要支撑。 /p
  • 地下水中抗生素污染检测分析研究进展
    摘要: 抗生素是一类环境中新型有机污染物,其在地下水系统中的污染状况和环境行为备受关注。本文从污染来源、危害、污染现状、检测技术和迁移转化等方面综述了近年来地下水中抗生素的研究现状。抗生素主要来源于抗生素生 产工业、医疗卫生业、畜牧养殖业、水产养殖业等,进入地下水中的微量抗生素不但诱导抗药性细菌的产生,更对原位微生物及人体产生危害。检测技术的进步是抗生素污染研究的重要支撑,目前已有多种抗生素污染的检测技术,其中酶联免疫技术主要用于抗生素污染初步筛查 气相色谱-质谱技术由于需要衍生化等处理过程而较少使用 毛细管电泳技术具有消耗样品量少、分析成本低等优点,但重现性差使其应用受到限制 液相色谱技术是在抗生素检测中应用较普遍的技术,特别是液相色谱-串联质谱技术具有灵敏度高、检出限低、可检测多组分污染物等优点,应用最为广泛。近年来依托于各种检测技术在国内外均有地下水中抗生素检出的报道,其检出浓度范围1 ~ 104 ng /L 不等,检出种类有磺胺类、喹诺酮类、四环素类及大环内酯类抗生素。抗生素在地下水系统中的迁移转化行为包括吸附、水解、光解、生物降解等过程,其基质复杂、含量低和产物难以定性等问题给检测提出了新的挑战。优化检测方法、开发新的预处理技术、开展全面的地下水污染调查、进行代谢产物定性分析、探索抗生素治理技术等,将是今后地下水中抗生素污染研究的主要方向。   相关文献:地下水中抗生素污染检测分析研究进展.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制