当前位置: 仪器信息网 > 行业主题 > >

活性炭亚甲基蓝检测

仪器信息网活性炭亚甲基蓝检测专题为您提供2024年最新活性炭亚甲基蓝检测价格报价、厂家品牌的相关信息, 包括活性炭亚甲基蓝检测参数、型号等,不管是国产,还是进口品牌的活性炭亚甲基蓝检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合活性炭亚甲基蓝检测相关的耗材配件、试剂标物,还有活性炭亚甲基蓝检测相关的最新资讯、资料,以及活性炭亚甲基蓝检测相关的解决方案。

活性炭亚甲基蓝检测相关的资讯

  • 《木质活性炭试验方法 表观密度的测定》等2214项国家标准复审结论进行公示
    各有关单位:按照《国家标准化管理委员会关于开展推荐性国家标准复审工作的通知》(国标委发【2022】10号)要求,标准委已完成相关国家标准复审工作。现将《木质活性炭试验方法 表观密度的测定》等2214项复审结论为修订或整合修订的项目进行公示。如对复审结论有不同意见,请于2023年4月9日前,登录征求意见公示网页 https://std.samr.gov.cn/gb/search/withdrawnReviewDetail?id=6233CB31322EB499374C40DE7FE1C039,通过意见反馈功能,将意见反馈至标准委。国家标准化管理委员会2023年3月10日 相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 12496.1-1999木质活性炭试验方法 表观密度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20172GB/T 12496.10-1999木质活性炭试验方法 亚甲基蓝吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20173GB/T 12496.11-1999木质活性炭试验方法 硫酸奎宁吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20174GB/T 12496.12-1999木质活性炭试验方法 苯酚吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20175GB/T 12496.13-1999木质活性炭试验方法 未炭化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20176GB/T 12496.14-1999木质活性炭试验方法 氰化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20177GB/T 12496.15-1999木质活性炭试验方法 硫化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20178GB/T 12496.16-1999木质活性炭试验方法 氯化物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-20179GB/T 12496.17-1999木质活性炭试验方法 硫酸盐的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201710GB/T 12496.18-1999木质活性炭试验方法 酸溶物的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201711GB/T 12496.19-2015木质活性炭试验方法 铁含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201712GB/T 12496.2-1999木质活性炭试验方法 粒度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201713GB/T 12496.20-1999木质活性炭试验方法 锌含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201714GB/T 12496.21-1999木质活性炭试验方法 钙镁含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201715GB/T 12496.22-1999木质活性炭试验方法 重金属的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201716GB/T 12496.3-1999木质活性炭试验方法 灰分含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201717GB/T 12496.4-1999木质活性炭试验方法 水分含量的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201718GB/T 12496.5-1999木质活性炭试验方法 四氯化碳吸附率(活性)的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201719GB/T 12496.6-1999木质活性炭试验方法 强度的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201720GB/T 12496.7-1999木质活性炭试验方法 pH值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201721GB/T 12496.8-2015木质活性炭试验方法 碘吸附值的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201722GB/T 12496.9-2015木质活性炭试验方法 焦糖脱色率的测定国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201723GB/T 12901-2006脂松节油国家林业和草原局整合修订整合修订标准号:GB/T 12901-2006,GB/T 31756-201524GB/T 12902-2006松节油分析方法国家林业和草原局整合修订整合修订标准号:GB/T 12902-2006,GB/T 33029-201625GB/T 13803.1-1999木质味精精制用颗粒活性炭国家林业和草原局整合修订整合修订标准号:GB/T 13803.1-1999,GB/T 13803.3-199926GB/T 13803.2-1999木质净水用活性炭国家林业和草原局修订27GB/T 13803.3-1999糖液脱色用活性炭国家林业和草原局整合修订整合修订标准号:GB/T 13803.1-1999,GB/T 13803.3-199928GB/T 13803.4-1999针剂用活性炭国家林业和草原局修订29GB/T 13803.5-1999乙酸乙烯合成触媒载体活性炭国家林业和草原局修订30GB/T 14020-2006氢化松香国家林业和草原局修订31GB/T 14021-2009马来松香国家林业和草原局整合修订整合修订标准号:GB/T 14021-2009,GB/T 14020-200632GB/T 14022.1-2009工业糠醇国家林业和草原局整合修订整合修订标准号:GB/T 14022.1-2009,GB/T 14022.2-200933GB/T 14022.2-2009工业糠醇试验方法国家林业和草原局整合修订整合修订标准号:GB/T 14022.1-2009,GB/T 14022.2-200934GB/T 17664-1999木炭和木炭试验方法国家林业和草原局整合修订整合修订标准号:20220535-T-43235GB/T 17666-1999黑荆树栲胶单宁快速测定方法国家林业和草原局修订36GB/T 18247.1-2000主要花卉产品等级 第1部分:鲜切花国家林业和草原局修订37GB/T 18247.2-2000主要花卉产品等级 第2部分:盆花国家林业和草原局修订38GB/T 18247.3-2000主要花卉产品等级 第3部分:盆栽观叶植物国家林业和草原局修订39GB/T 18247.4-2000主要花卉产品等级 第4部分:花卉种子国家林业和草原局修订40GB/T 18247.5-2000主要花卉产品等级 第5部分:花卉种苗国家林业和草原局修订41GB/T 18247.6-2000主要花卉产品等级 第6部分:花卉种球国家林业和草原局修订42GB/T 1926.1-2009工业糠醛国家林业和草原局整合修订整合修订标准号:GB/T 1926.1-2009,GB/T 1926.2-198843GB/T 1926.2-1988工业糠醛试验方法国家林业和草原局整合修订整合修订标准号:GB/T 1926.1-2009,GB/T 1926.2-198844GB/T 20399-2006自然保护区总体规划技术规程国家林业和草原局修订45GB/T 20416-2006自然保护区生态旅游规划技术规程国家林业和草原局修订46GB/T 20449-2006活性炭丁烷工作容量测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201747GB/T 20450-2006活性炭着火点测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201748GB/T 20451-2006活性炭球盘法强度测试方法国家林业和草原局整合修订整合修订标准号:GB/T 12496.1~22,GB/T 20449-2006,GB/T 20450-2006,GB/T 20451-2006,GB/T 35815-2018,GB/T 35565-201749GB/T 22347-20084号系列紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201850GB/T 22348-20084号紫胶虫种胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201851GB/T 26424-2010森林资源规划设计调查技术规程国家林业和草原局修订52GB/T 31756-2015重松节油国家林业和草原局整合修订整合修订标准号:GB/T 12901-2006,GB/T 31756-201553GB/T 33024-2016柳编制品国家林业和草原局修订54GB/T 33029-2016松节油及相关萜烯产品组成 毛细管气相色谱分析方法国家林业和草原局整合修订整合修订标准号:GB/T 12902-2006,GB/T 33029-201655GB/T 8137-2009颗粒紫胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201856GB/T 8138-2009紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201857GB/T 8139-2009脱蜡紫胶片、脱色紫胶片和脱色脱蜡紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201858GB/T 8140-2009漂白紫胶国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201859GB/T 8141-2009军用紫胶片国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201860GB/T 8142-2008紫胶产品取样方法国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201861GB/T 8143-2008紫胶产品检验方法国家林业和草原局整合修订整合修订标准号:GB/T 22347-2008,GB/T 22348-2008,GB/T 8137-2009,GB/T 8138-2009,GB/T 8139-2009,GB/T 8140-2009,GB/T 8141-2009,GB/T 8143-2008,GB/T 35805-201862GB/T 15691-2008香辛料调味品通用技术条件中华全国供销合作总社修订63GB/T 18525.6-2001桂园干辐照杀虫防霉工艺中华全国供销合作总社整合修订整合修订标准号:GB/18525.3-2001,GB/18525.4-2001,GB/18525.5-2001,GB/18525.6-200164GB/T 20573-2006密蜂产品术语中华全国供销合作总社修订65GB/T 21488-2008脐橙中华全国供销合作总社修订66GB/T 21528-2008蜜蜂产品生产管理规范中华全国供销合作总社修订67GB/T 21532-2008蜂王浆冻干粉中华全国供销合作总社修订68GB/T 22299-2008辣椒粉 天然着色物质总含量的测定中华全国供销合作总社修订69GB/T 22300-2008丁香中华全国供销合作总社修订70GB/T 22303-2008芹菜籽中华全国供销合作总社修订71GB/T 22306-2008胡荽中华全国供销合作总社修订72GB/T 17924-2008地理标志产品标准通用要求全国知识管理标准化技术委员会修订73GB/T 20402-2006超市鲜、冻畜禽产品准入技术要求中国商业联合会修订74GB/T 8935-2006工业用猪油中国商业联合会修订75GB/T 12309-1990工业玉米淀粉中国轻工业联合会修订76GB/T 4548-1995玻璃容器内表面耐水侵蚀性能测试方法及分级中国轻工业联合会修订77GB/T 11186.1-1989涂膜颜色的测量方法 第一部分:原理全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198978GB/T 11186.2-1989涂膜颜色的测量方法 第二部分:颜色测量全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198979GB/T 11186.3-1989涂膜颜色的测量方法 第三部分:色差计算全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 11186.1-1989,GB/T 11186.2-1989,GB/T 11186.3-198980GB/T 13491-1992涂料产品包装通则全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 9750-1998,GB/T 13491-199281GB/T 13492-1992各色汽车用面漆全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 13492-1992,GB/T 13493-199282GB/T 13493-1992汽车用底漆全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 13492-1992,GB/T 13493-199283GB/T 1710-2008同类着色颜料耐光性比较全国涂料和颜料标准化技术委员会修订84GB/T 1749-1979厚漆、腻子稠度测定法全国涂料和颜料标准化技术委员会修订85GB/T 20623-2006建筑涂料用乳液全国涂料和颜料标准化技术委员会修订86GB/T 21866-2008抗菌涂料(漆膜)抗菌性测定法和抗菌效果全国涂料和颜料标准化技术委员会修订87GB/T 5208-2008闪点的测定 快速平衡闭杯法全国涂料和颜料标准化技术委员会修订88GB/T 6753.4-1998色漆和清漆 用流出杯测定流出时间全国涂料和颜料标准化技术委员会修订89GB/T 9750-1998涂料产品包装标志全国涂料和颜料标准化技术委员会整合修订整合修订标准号:GB/T 9750-1998,GB/T 13491-199290GB/T 9754-2007色漆和清漆 不含金属颜料的色漆漆膜的20°、60°和85°镜面光泽的测定全国涂料和颜料标准化技术委员会修订91GB/T 19629-2005医用电气设备 X射线诊断影像中使用的电离室和(或)半导体探测器剂量计全国医用电器标准化技术委员会修订92GB/T 20013.1-2005核医学仪器 例行试验 第1部分:辐射计数系统全国医用电器标准化技术委员会修订93GB/T 20013.2-2005核医学仪器 例行试验 第2部分:闪烁照相机和单光子发射计算机断层成像装置全国医用电器标准化技术委员会修订94GB/T 20013.3-2015核医学仪器 例行试验 第3部分:正电子发射断层成像装置全国医用电器标准化技术委员会修订95GB/T 19042.2-2005医用成像部门的评价及例行试验 第3-2部分:乳腺摄影X射线设备成像性能验收试验全国医用电器标准化技术委员会修订96GB/T 16867-1997聚苯乙烯和丙烯腈-丁二烯-苯乙烯树脂中残留苯乙烯单体的测定 气相色谱法全国塑料标准化技术委员会整合修订整合修订标准号:GB/T 16867-1997,GB/T 38271-201997GB/T 30924.1-2016850GB/T 16860-1997感官分析方法 质地剖面检验全国感官分析标准化技术委员会修订851GB/T 20861-2007废弃产品回收利用术语中国标准化研究院修订852GB/T 8223-1987价值工程 基本术语和一般工作程序中国标准化研究院修订
  • 利用预注石灰与活性炭的布袋除尘器脱除汞
    使用NIC产品制作的科学出版物:注:一, 此科学出版物是由我们的客户使用NIC产品完成。二, 此页仅供文摘参考。请参阅此展位友情链接以获取完整信息。 Process Safety and Environmental ProtectionVolume 148, April 2021, Pages 323-332利用预注石灰与活性炭的布袋除尘器脱除汞作者: MasakiTakaokaa , YingchaoChenga,b , KazuyukiOshitaa , TomoakiWatanabec , ShojiEguchida. Department of Environmental Eng., Graduate School of Eng., Kyoto University, C-cluster, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan b. Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan c. Nippon Instruments Corporation, 14-8, Akaoji-cho, Takatsuki, Osaka, 569-1146, Japan d. Taiyo Chikuro Industries Co., ltd., 6-21, Higashi Kouen, Hakata-ku, Fukuoka, 812-0045, Japan 文摘: 火葬场已被确定为目前尚未得到治理的汞排放源之一。然而,通过安装布袋除尘器(FF)以改变操作条件,从而去除火葬场烟气中的汞的效果却未得到深入研究。本研究采用连续排放监测设备记录了火葬场烟气通过增加预处理的FF和选择性催化反应器(SCR)前后的汞浓度,验证了将石灰与10%活性炭的混合物预先注入烟道的汞去除效果。经该除尘系统处理后,SCR出口处的汞浓度极低,最高排放浓度低于5 μg/Nm3,汞去除率达87.5-99.9%。FF表面的石灰与活性炭的厚层有效地抑制了SCR出口处的汞浓度峰值。FF入口处的平均汞浓度与遗体死亡年龄之间的关系表明,死亡年龄或为火葬场控制汞排放的关键因素之一。 有关详情,请浏览NIC仪器信息网友情链接。
  • 煤基活性炭行业大气污染物排放标准编制工作展开
    记者近日从宁夏环境监测中心站获悉,中心站正在组织有关方面专家和专业技术人员编制《煤基活性炭行业大气污染物排放标准》。目前,各项工作已全面展开,并完成了区内活性炭生产企业碳化、活化工序、废气实地部分监测项目测试工作。   全国目前活性炭企业已发展到400余家,制定活性炭行业大气污染物排放标准,对节能降耗,减少污染物排放量,推动产业结构调整,促进技术进步,优化经济增长具有重要意义。   据介绍,课题组将通过活性炭工业排放污染物种类、排放方式、浓度限值、排放速率等项目的调查、调研,参考环境保护部有关固定污染源废气监测技术规范、采样方法规范、采样器技术规范等36个技术规范,通过实地监测、试验、验证,对活性炭 行业大气污染物排放制定详细标准。   宁夏回族自治区环保厅十分重视标准的制定工作,专门召开启动会议进行安排部署。自治区环保厅副厅长强小媛要求,狠抓工作落实,深入开展课题研究,圆满完成国家课题研制任务。
  • PMT-2液体颗粒计数器在活性炭中颗粒管应用案例
    PMT-2液体颗粒计数器在活性炭中颗粒管应用案例一、方案背景在环保与水处理领域,活性炭作为高效吸附剂,其性能直接关乎水质净化效果。然而,活性炭在制备、运输及使用过程中,易吸附并滞留微小液体颗粒,这些杂质不仅降低活性炭的吸附效率,还可能成为二次污染源。因此,制定一套科学严谨的活性炭中液体颗粒管控实践方案,对于保障水质安全、提升净化效率具有重要意义。二、方案目标本方案旨在通过精细化管理与先进检测技术,实现对活性炭中液体颗粒的全面、准确监测与控制,确保活性炭在使用前达到既定清洁标准,最大化其吸附效能,减少对后续处理工艺的负面影响,从而守护水质纯净的每一道防线。三、仪器与试剂普洛帝PMT-2液体颗粒计数器是一种用于检测液体中颗粒数量的仪器,它采用光散射原理,能够精确测量液体中颗粒的大小和数量。在活性炭的制备过程中,通过使用液体颗粒计数器,可以实现对活性炭中颗粒的精确管控。普洛帝PMT-2液体颗粒计数器,让活性炭颗粒管控更轻松,更精准!四、检测步骤1. 样品预处理:采用物理方法,有效去除活性炭表面杂质,避免干扰因素。2. 分散与染色:利用专用分散剂将活性炭中的液体颗粒均匀分散,并借助染色剂增强颗粒可视性。3. 检测分析:运用高精度仪器对样品进行多维度扫描,精确测定液体颗粒的数量、大小及分布。4. 数据记录:详细记录检测过程中的各项参数与观察结果,为后续分析提供可靠依据。五、数据报告六、实验结论通过本方案的实施,可实现对活性炭中液体颗粒的有效管控,显著提升活性炭的纯净度与吸附性能。同时,也为活性炭在环保领域的广泛应用奠定了坚实的基础,推动了水处理技术的持续进步与发展。
  • 乐枫推出预过滤增强型活性炭-RephiAC啦!!!
    p    span style=" color: rgb(0, 176, 240) " strong 背景 /strong /span /p p   使用过实验室纯水系统的人都了解,预过滤系统中都常配活性炭。作为一种环境友好型吸附剂,活性炭安全易得,具有比表面大,吸附容量大,吸附能力强等诸多优点。在预过滤中,主要担任去除进水中余氯、臭氧等强氧化物的角色。 /p p   自来水中残留的氧化物质,会氧化实验室纯水设备的纯化元件,对设备的正常运行造成危害。通常,纯水系统中的RO膜,EDI模块都要求在去除氧化剂的条件下使用,这些氧化剂物质会导致: /p p   RO膜、EDI模块等元件故障率上升,寿命缩短。不但影响用户的使用,还会产生额外的运行和售后成本。 /p p   所以,在纯水系统中,进水必须在预处理阶段除掉余氯等氧化物质,而活性炭就是担当这一重任的关键性预过滤材料。虽然是个小环节,却至关重要。 /p p    span style=" color: rgb(0, 176, 240) " strong 原理 /strong /span /p p   活性炭去除氧化物被认为是吸附作用和化学反应共同作用的结果。活性炭与水中剩余氧化物接触的初期,主要以吸附作用为主 达到吸附平衡后,化学反应开始起作用,氧化物含量还会继续下降,接触时间越长,反应就会越充分,活性炭去除余氯、臭氧的效果就越好。另外,去除效果还与活性炭的物理及化学性质有关,活性炭的比表面积和空隙构造会直接影响吸附能力。比表面积越大、炭孔径与余氯、臭氧分子大小愈接近的活性炭,去除效率也会更高 /p p    span style=" color: rgb(0, 176, 240) " strong 乐枫RephiAC的优势 /strong /span /p p   乐枫最新推出了增强型活性炭RephiAC,与目前市场上通用的活性炭材料相比,其去除余氯、臭氧等氧化剂的能力可高达10倍,能高效地去除进水中剩余氧化物质。 /p p   通过一个小实验可以了解到RephiAC的不一般的吸附性能: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/73b65b7b-4f86-472b-a6f9-742f5e474682.jpg" title=" 1.jpg" style=" width: 593px height: 635px " width=" 593" vspace=" 0" hspace=" 0" height=" 635" border=" 0" / /p p   RephiAC pk 普通活性炭 /p p   可以观察到,等量RephiAC和普通活性炭加入相同体积的水后,装有普通活性炭的烧杯中,表面尚有不少残留水分,表示活性炭已完全耗尽,而装有RephiAC的烧杯中,水分毫无踪影,说明已经被牢牢吸附住了。 /p p   乐枫将RephiAC用在其预过滤系统中,可真正为纯水系统中的RO膜,EDI模块或其他纯化元件建立起一道安全可靠的保护屏障,并达到延长实验室纯水系统中RO膜,EDI模块的使用寿命,加强他们使用稳定性的目的。 /p p   换用新的增强型活性炭RephiAC,看似改变的是预处理中的一个细节,却让: /p p   系统故障率下降了, /p p   维护维修简单了, /p p   不必要的维修费用减少了, /p p   用户可以更合理,更科学地管理系统运行成本。 /p p    span style=" color: rgb(0, 176, 240) " strong 上海乐枫生物科技有限公司 /strong /span /p p   上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。 /p
  • 使用集成式XRF元素分析仪和采样技术自动测量活性炭中的金含量
    碳浸法(CIL)和碳浆法(CIP)回路都是氰化取金法工艺,这项工艺通过将金转化为水溶性复合物来从矿石中提取金(Au)。然后,利用活性炭从氰化工艺产生的碳浆或溶液中吸附含黄金的水溶性复合物,从而实现黄金的回收。之后,将吸附在活性碳上的黄金剥离下来,对黄金进行电解沉积处理,再对黄金进行熔炼,制成金条。监测活性炭中的金含量对于高效回收黄金至关重要。凭借我们在X射线荧光(XRF)和集成方面的专业知识,Gekko Systems与Evident达成了合作,使其Carbon Scout装置能够对碳进行多元素分析,初步的重点是获得实时的黄金回路库存信息。Carbon Scout是一个独立的地面采样系统,通过测量碳浓度以及来自CIL和CIP回路的碳浆样品中的多元素分析、pH值、溶解氧(DO)和密度,实现碳运动自动化。这有助于金矿运营商优化加工厂的效率,并通过确定每个罐的活性碳在矿浆中的分布情况(准确度为每升矿浆±0.5克碳)来减少水溶性黄金的损失。Carbon Scout提高了CIL/CIP回路中碳密度测量的准确性、规律性和一致性。现在,Carbon Scout可以结合Vanta M系列手持式XRF元素分析仪。Vanta系列是采矿业常用的先进便携式XRF(pXRF)设备系列。Vanta pXRF元素分析仪以其在恶劣条件下的可靠性和可重复性著称,能为固体和液体样品中的30多种元素提供准确的化学分析——从痕量级到百分比级,贯穿整个矿物循环。集成了Vanta pXRF元素分析仪的Carbon Scout与化验室结果的数据对比而下图是Vanta pXRF数据与来自不同矿场和认证参考材料的活性炭中金(Au)的实验室结果对比。结果表明便携式XRF元素分析仪和实验室的检测结果高度吻合。这些结果还表明Vanta分析仪有能力监测碳内的金吸附趋势,从而为做出矿物加工决策和进行实验室操作提供支持。实时监测碳上的金负载量奥林巴斯Vanta M系列分析仪的速度、准确性和精度使Carbon Scout能够实时监测矿场内每个罐中碳上的金负载量。矿场经理可以使用实时数据来确认任何罐均未超过所需的设定最高金负载量,并根据需要移动和脱附碳。此外,这些数据还能清晰地展现生产成果,并提前了解是否能在进行月末金矿盘点之前完成回收目标。通过借助数据来确认日常的黄金生产计算,生产团队对于做出矿石混合、吞吐量和非计划停产等决策便更有信心。借助Carbon Scout和Vanta M系列分析仪的集成硬件和软件,所有这些有价值的数据都可以在金矿加工控制系统中得到无缝整合。
  • 《煤基活性炭行业大气污染物排放标准》国家课题启动
    目前,国内煤基活性炭行业无大气污染物排放标准,其特征污染物既无具体项目也无指标 活性炭行业污染未得到有效控制,环境污染严重。随着活性炭行业的日益发展,这种危害将越来越重,迫切需要制定行业的污染物排放标准。今年以来,宁夏自治区环保厅积极争取环保部的大力支持,申报了《煤基活性炭行业大气污染物排放标准》课题,并于2009年7月22日与环保部科技标准司签订了《环境保护项目任务合同书》。《煤基活性炭行业大气污染物排放标准》制定在国内尚属首次,也是宁夏第一次承担国家标准的制定任务。制定活性炭行业大气污染物排放标准,不仅关系环境保护问题,也关系到行业可持续发展的问题,对保护环境,节能降耗,节约资源,减少污染排放量,推动产业结构调整,促进技术进步,优化经济增长方式等都有非常重要的意义。   日前,宁夏自治区环保厅在平罗县举行了《煤基活性炭行业大气污染物排放标准》制定项目课题启动仪式。宁夏环保厅强小媛副厅长出席启动仪式并讲话,对《标准》的制定提出要求:一是要充分认识《标准》制定工作的重要意义。《煤基活性炭行业大气污染物排放标准》制定工作在国内尚属首次,也是宁夏环保部门首次承担全国性的标准制定任务,充分表明了环保部对宁夏环保工作的信任和支持。因此,一定要抓住机遇提升宁夏环保在全国的影响力,并以此为契机锻炼培养队伍,探索和积累承担全国性重大课题研究的经验和做法,努力提高科研水平和实战能力。二是以求真务实的作风,科学严谨的态度切实做好标准的制定工作。要以科学发展观为指导,以实现经济、社会可持续发展为目标,以国家环境保护相关法律、法规、规章、政策和规划为依据,严格按照《国家环境保护标准制定工作管理办法》的规定制定本《标准》。三是要加强领导,精心组织,周密部署,通力合作,全面完成课题任务。整个工作自始至终要在宁夏环保厅标准制定领导小组的统一领导下进行。各课题承担单位、合作单位、协作单位,要通力合作,严格按照工作方案所规定的时间、方法、步骤及进度要求,组织强有力的科研人员,圆满完成标准制定工作。
  • 乐枫推出实验室纯水预过滤增强型活性炭-RephiAC
    使用过实验室纯水系统的人都了解,预过滤系统中都常配活性炭。作为一种环境友好型吸附剂,活性炭安全易得,具有比表面大,吸附容量大,吸附能力强等诸多优点。在预过滤中,主要担任去除进水中余氯、臭氧等强氧化物的角色。自来水中残留的氧化物质,会氧化实验室纯水设备的纯化元件,对设备的正常运行造成危害。通常,纯水系统中的RO膜,EDI模块都要求在去除氧化剂的条件下使用,这些氧化剂物质会破坏RO膜的活性层或EDI模块的树脂,从而导致RO膜、EDI模块等元件的工作效率下降,故障率上升,寿命缩短。如果出现了不可恢复的损失,无法修复,就只能更换,不但影响用户的使用,还会产生额外的运行和售后成本。所以,在纯水系统中,进水必须在预处理阶段除掉余氯等氧化物质,而活性炭就是担当这一重任的关键性预过滤材料。虽然是个小环节,却至关重要。活性炭去除氧化物被认为是吸附作用和化学反应共同作用的结果。活性炭与水中剩余氧化物接触的初期,主要以吸附作用为主;达到吸附平衡后,化学反应开始起作用,氧化物含量还会继续下降,接触时间越长,反应就会越充分,活性炭去除余氯、臭氧的效果就越好。另外,去除效果还与活性炭的物理及化学性质有关,活性炭的比表面积和空隙构造会直接影响吸附能力。好的材质,如比表面积越大、炭孔径与余氯、臭氧分子大小愈接近,去除效率也会更高。乐枫最新推出了增强型活性炭RephiAC,与目前市场上通用的活性炭材料相比,其去除余氯、臭氧等氧化剂的能力可高达10倍,能有效彻底地去除进水中的剩余氧化物质。通过一个小实验可以了解到RephiAC的强大吸附性能:可以观察到,等量RephiAC和普通活性炭加入相同体积的水后,装有普通活性炭的烧杯中,表面尚有不少残留水分,表示活性炭已完全耗尽,而装有RephiAC的烧杯中,水分已经毫无踪影,说明已经被牢牢吸附住了。乐枫将RephiAC用在其预过滤系统中,可真正为纯水系统中的RO膜,EDI模块或其他纯化元件建立起一道安全可靠的保护屏障,并达到延长实验室纯水系统中RO膜,EDI模块的使用寿命,加强他们使用稳定性的目的。换用新的增强型活性炭RephiAC,看似改变的是预处理中的一个细节,却让系统故障率下降,维护更简单了,而且可避免不必要的维修费用,让用户可以更合理,更科学地管理系统运行成本。 关于上海乐枫生物科技有限公司上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。
  • 海南省生态环境厅公开征求《海水 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》(征求意见稿)等3项地方标准意见
    为贯彻《中华人民共和国环境保护法》,规范我省生态环境监测工作,按照海南省《地方标准制修订工作规范》(DB46/T74-2021),我厅组织编写《海水 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》(征求意见稿)等3项地方标准,现公开征求意见。征求意见稿及编制说明可登录我厅网站(http://hnsthb.hainan.gov.cn/)、海南省市场监督管理局网站(https://amr.hainan.gov.cn/)检索查阅。各机关团体、企事业单位和个人均可提出意见和建议。有关意见建议请书面反馈我厅,电子文档请同时发送至联系人邮箱。征求意见截止时间为2024年11月22日。联 系 人:海南省生态环境监测中心 何书海通讯地址:海南省海口市美兰区白驹大道98号邮政编码:570203电话号码:(0898)65679715电子邮箱:heshuhai1981@163.com附件.zip:1.征求意见单位名单2.海南省地方标准《海水 阴离子表面活性剂的测定流动注射-亚甲基蓝分光光度法》(征求意见稿)3.海南省地方标准《海水 阴离子表面活性剂的测定流动注射-亚甲基蓝分光光度法》(征求意见稿)编制说明4.海南省地方标准《海水 挥发性酚的测定 流动注射-4-氨基安替比林分光光度法》(征求意见稿)编制说明5.海南省地方标准《海水 挥发性酚的测定 流动注射-4-氨基安替比林分光光度法》(征求意见稿)编制说明6.海南省地方标准《海水 氰化物的测定 流动注射-异烟酸-巴比妥酸分光光度法》(征求意见稿)编制说明7.海南省地方标准《海水 氰化物的测定 流动注射-异烟酸-巴比妥酸分光光度法》(征求意见稿)编制说明8.海南省地方标准征求意见表海南省生态环境厅2024年10月23日(此件主动公开)
  • 关于发布《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法》(HJ917-2017)等13项国家环境保护标准的公告
    环保部标准《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法》(HJ917-2017)于2017年12月29日正式颁布,并于2018年4月1日正式生效,而相关标准的陆续出台为2017年8月16日正式生效的《关于汞的水俣公约》履约提供了有效手段。LUMEX公司作为汞专家,是该标准制定采用的分析方法和仪器,为固定污染源废气汞监测提供了便捷的方法和有效的监督执法手段。该方法标准参照US EPA30B活性吸附管烟气检测方法作为烟气汞汞排放检测的参考方法,在美国为燃煤电厂、工业锅炉、水泥、有色金属冶炼,及环境监测等行业广为使用。环保部颁布实施的该项标准也意味着我国在汞履约以及燃煤、锅炉等行业汞污染排放中也具备行之有效的监督执法手段。 该方法标准参照US EPA30B活性吸附管烟气检测方法作为烟气汞汞排放检测的参考方法,采用LUMEX高频塞曼测汞仪RA-915及活性炭吸附管作为分析仪器和检测手段。该方法采用吸附管捕集烟气中的汞进行吸附采样,再解吸进行浓度分析,可测得烟气排放总气态汞的浓度和分类汞的浓度,即(Hg0+Hg2+),测量结果比 30A 法准确。技术方案-LUMEX公司推出的30B吸附管方案包现已广泛用于常规在线烟汞监测系统CEMS的有效性验证,也多次用于国家和国际研究项目包括UNEP联合国汞项目,美国EPA称LUMEX汞监测方案为汞污染排放“监测工具包”(Toolkit),该套Method 30B为固定污染源废气检测提供了高效便捷的监测方案包。烟道气采样检测系统主要涉及汞吸附采样(EPA Method 30B Sorbent Trap)、热解析(EPA7473)和塞曼效应原子吸收光谱法(ZEEMAN-AAS)。该系统可实现目前燃煤电厂汞排放检测试点工作分析所涉及的全部监测项目。包括:废气、废水、固体废物,燃煤以及飞灰烟气等汞含量监测。适用于固定汚染源废气、燃煤电厂、工业锅炉、有色金属等行业汞减排各个环节的监控。 --OLM30B烟气汞采样系统:通过采用LUMEX活性炭吸附管,通过过采样器进行烟气汞采样; ---OLM30B活性炭吸附管:Ohiolumex生产的标杆30B活性炭吸附管,用于烟气汞富集 --汞分析检测单元RA-915;采用高频塞曼热裂解法直接测定烟气中的汞。(来源:LUMEX分析仪器)
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 宁夏化学分析测试协会批准发布《废活性炭中汞含量的测定 固体进样-冷原子吸收测汞仪法》等3项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《煤基厨灶用液体燃料》等3项团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年6月30日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA0215-2023煤基厨灶用液体燃料2023-06-142023-06-302T/NAIA0216-2023煤基矿车用燃料2023-06-142023-06-303T/NAIA0217-2023废活性炭中汞含量的测定固体进样-冷原子吸收测汞仪法2023-06-142023-06-30 宁夏化学分析测试协会 2023年6月14日
  • 我国将制定18项钢铁、有色金属检测新标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知。其中中国钢铁工业协会、中国有色金属工业协会、国家标准化管理委员会将主管制定18项钢铁、有色金属检测标准,其中涉及的仪器以电感耦合等离子体光谱法和电感耦合等离子体质谱法为主。另外还将修订17项钢铁、有色金属产品检测标准。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准制定   《钢板 抗凹性能试验方法》   本标准规定了金属板材抗凹性试验方法的试验原理、术语、试样、试验设备、试验程序、试验说明和试验报告。本标准规定了评价金属板材成形后部件抗凹性试验方法,主要用于汽车冲压件选材和优化,其他行业可参考使用。本标准适用于测定厚度0.2mm~3mm的金属板材。   《钢铁及合金 钙和镁含量的测定 电感耦合等离子体质谱法》   钢铁中痕量镁和钙元素多是由冶炼过程中的炉渣、炉衬及原材料等引入的,也有的是特意加入的,虽然其含量甚微,却起到十分微妙的作用。在钢的冶炼控制技术和钢洁净度不断提高的今天,优化和准确掌握钙、镁加入含量,严格控制、准确赋值钢铁中痕量的镁和钙含量具有重要的意义。   《高合金钢 多元素含量的测定 X-射线荧光光谱法(常规法)》   X射线荧光光谱法具有分析速度快、样品前处理简单、可分析元素范围广且不破坏样品、曲线线性范围宽、光谱干扰少等优点,应用范围非常广泛。与其他光谱分析方法相比,对于测定高含量元素和基体元素,具有独特的优势。因此,用X射线荧光光谱法测定高合金钢已为实验室普遍应用,但目前尚无国家标准和行业标准。为此,有必要制订高合金钢的国家标准分析方法,以填补此项空白,并与产品标准相适应。   《金属材料 高应变率扭转试验方法》   目前金属材料高应变率剪切性能主要采用分离式霍普金森扭杆试验技术测试,各研究者均基于相同的试验原理。但由于还没有试验方法的规范,各研究者在具体的处理方式上存在一定的差别,导致试验结果的不一致。通过本标准的制定和实施,可以提高金属材料高应变率下扭转力学性能测试结果的一致性和可比性,有利于提升对材料动态力学性能的认识,提高工程结构冲击响应的分析评估水平。   《活性炭吸附金容量及速率的测定》   目前国内外尚没有直接测定活性炭吸金性能的国家/行业方法标准,而是通过测定其它吸附参数(如碘吸附值、亚甲基蓝吸附值等)间接反映活性炭的吸金能力。但由于活性炭吸附金的机制与吸附碘等分子的机制存在明显的区别,因而采用间接碘值参数无法准确而有效的反映出活性炭的实际吸附金的能力。因此,亟需建立测定活性炭吸附金容量(Q值、K值)及吸附速率的方法标准,以便准确地评价活性炭吸附金的性能,为生产提供可靠的数据指标,有效的指导生产。   《纯铑化学分析方法 铂、钌、铱、钯、金、银、铜、铁、镍、铝、铅、锰、镁、锡、锌、硅的测定 电感耦合等离子体质谱法》   含铑系列合金和铑化合物及铑粉,在电子工业、军工、催化、测温、化工及首饰行业中具有不可替代的重要作用和广泛用途。这些产品大都需要以纯铑为原料来制备,铑的纯度直接影响和制约产品的使用性能及加工工艺。因此,制订电感耦合等离子体质谱法测定铑中杂质元素是非常迫切和必要的。   《工业硅化学分析方法 第X部分:汞含量的测定氢化物发生-原子荧光光谱法》   为了满足工业硅国家标准中增加汞元素的控制要求的需要,特提出制定工业硅中汞元素的测试方法标准。目前国内原子荧光光谱仪越来越普及,且该分析技术也越来越成熟,利用原子荧光光谱法能快速准确地测定工业硅中的汞元素含量,采用该方法制定统一的工业硅分析标准具有十分重要的现实意义。   《工业硅化学分析方法 第X部分:六价铬含量的测定 二苯碳酰二肼分光光度法》   随着工业硅生产工艺不断发展,伴随加工产品要求的不断提高及产品出口量的日益增加,越来越多的工业硅,尤其是单晶硅,多晶硅作为重要的原材料应用在电子行业。因此国内外客户对工业硅产品中有毒有害元素的限制要求越来越高。从客观上对我国工业硅产品的出口设立了绿色的壁垒。为了应对这一形势,提高我国工业硅在国际市场上的竞争力,规范六价铬等有害元素的检测,赢得国际用户对我国标准检测结果的认可势在必行。   《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》   由于铝合金建筑型材具有多种表面处理方式,而且又存在着大量的性能项目和试验方法,到底该选择何种表面处理方式,需要进行何种性能项目检测以及该选择何种试验方法进行评价,这些问题一直困扰着建筑工程师和铝合金建筑型材生产企业的技术人员,但目前还无相关的国家标准和其他权威技术资料以供使用,尽快制订《建筑用铝及铝合金表面阳极氧化膜及有机聚合物涂层、性能检测方法的选择》标准是十分必要的。   《铑化合物分析方法 第1部分:铑量的测定 硝酸六氨合钴重量法》   铑具有高熔点、高稳定性、高硬度和强耐蚀抗磨性等特性, 铑主要用作高质量科学仪器的防磨涂料和催化剂,而铑化合物在催化、电镀、有机合成制药、新能源的开发等方面有广泛的应用,铑化合物作为贵金属均相催化剂,已广泛用于氢甲酰化、加氢、羰基合成等重要的化工过程中。本项目的目的在于建立可靠的分析方法,准确测定铑化合物中的铑含量,为铑化合物产品的质量控制及其产品交易提供可靠的依据。   《区熔锗锭化学分析方法 第1部分 砷含量的测定 砷斑法》   区熔锗锭为锗的主要产品,世界产量每年大概在80吨左右,国内产量每年大概在60吨左右,其中约有70%左右,约42吨左右出口到美国、日本、比利时、德国等发达国家,国内最大的锗产品生产及供应商为云南临沧鑫圆锗业股份有限公司,其区熔锗锭的产销量占到了全国产销量的60%以上,其次为云南驰宏锌锗等8家公司在生产。随着锗材料应用领域的不断拓展,区熔锗锭的使用厂商要求生产单位提供区熔锗锭化学成分(杂质成分)检测数据,因此需要制定出相应的化学成分的检测方法标准。   《铜及铜合金软化温度的测定方法》   随着铜及铜合金产品在军工、航天航空、核电、船舶、冶金和高铁工业的广泛应用,特别是许多材料在高温环境下使用,材料在高温下的抗软化性能显得尤为重要。软化温度是指合金保温一小时后的硬度下降至原始硬度的80%时所对应的加热温度。软化温度的高低是评价合金材料抗高温软化性能的量化指标,目前国内外还没有测定铜及铜合金材料软化温度的方法,在高温下使用铜材的软化温度都是未知数 。因此有必要起草铜及铜合金软化温度的测定的国家标准。   《铅精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   《铜精矿化学分析方法 铊量的测定 电感耦合等离子体质谱法》   《锌精矿化学分析方法 铊量测定 电感耦合等离子体原子发射光谱法》   由于铊在自然界中含量很低,但对环境的污染和中毒的报道常有报道。随着科学技术的不断进步,近几年,铊被大量用于电子、化工、冶金、通讯等方面,具有很大的潜在危险。铊是一种稀散元素,以微量存在于铁、锌、铅等硫化物矿中,在冶炼过程中会产生废气、废水、废渣而进入环境,不可忽视。为对铊进行有效控制,建立矿物中铊的检测很有必要。   《铱化合物分析方法 第1部分:铱量的测定 硫酸亚铁电流滴定法》   铱的高熔点、高稳定性使其在很多特殊场合具有重要用途,新材料镀铱铼管用于国家航天军工事业,而铱化合物是重要的化工催化剂及制备其它铱试剂的原料。氯铱酸用于制造涂层电极,氯碱行业电解槽,也是重要的化工催化剂及铱试剂原料 三氯化铱是显示器的液显颜色材料 四氯化铱用于防腐涂料 Ir[Ⅲ]化合物是1-3-丁二烯的聚合催化剂,也是N2H4分解的催化剂,用于卫星姿态控制。本项目的目的在于建立可靠的分析方法,准确测定铱化合物中的铱含量,为铱化合物产品的质量控制及其产品交易提供可靠的依据。   《铱化合物分析方法 第2部分:银、金、铂、钯、铑、钌、等杂质元素的测定电感耦合等离子体发射光谱法》   铱化合物在催化行业中具有重要作用和广泛用途。铱化合物的纯度直接影响和制约产品的使用性能及加工工艺,国内已有多家单位生产。目前,铱化合物中无机杂质元素的测定没有统一的标准分析方法。为保证分析结果的准确和分析方法的标准化,制订电感耦合等离子体发射光谱法测定铱化合物中杂质元素是非常必要的。   《球墨铸铁件 超声波检测》   统一国内球墨铸铁件内部缺陷的检测方法,对铸件和检测仪器作出一些可探测要求的规定,同时对球墨铸铁缺陷的记录和评定也达成统一的认识。 适用大型球墨铸铁件(如风电类铸件)和小型球墨铁件(如压缩机类铸件)。 2014年第一批国家标准制修订计划之钢铁、有色金属检测标准修定
  • 蓝菲光学助力火星生命探测计划
    从人类第一次抬头仰望星空时,对宇宙的好奇心便永远种在了我们心底。浩瀚宇宙,除了人类还有其他智慧文明的存在吗?火星2020任务NASA火星漫游者毅力号于2020年7月从佛罗里达州卡纳维拉尔角空军基地发射升空,2021年2月在杰泽罗陨石坑登陆火星。这次任务预计将持续至少一个火星年(687个地球日)。该任务是火星探测计划的一部分,计划内容是对这颗红色星球进行长期的机器人探测。此次科学任务优先的目标,涉及包括火星是否存在生命等关键问题。这次任务还试图收集证据,展示未来人类探索火星所需的技术。其中包括测试从火星大气中产生氧气的方法,确定其他资源(如地下水),改进着陆技术,描述天气、灰尘和其他可能影响未来在火星生活和工作的宇航员的潜在环境条件。2021年2月18日,火星漫游者毅力号在一个巨大陨石坑的表面完美着陆。全副武装的漫游者毅力号装载了29个摄像头作为眼睛,这些摄像机分别负责帮助它寻找着陆点、检查降落伞的,或是帮助它安全地在火星地面行进...其中,承担研究火星地形任务的桅杆安装式摄像机系统“Mastcam-Z”双摄像头系统,负责对火星上的近处和远处的物体进行详细检查。“ Mastcam-Z”可以放大(因此称为“ Z”)、对焦并以各种比例拍摄3D图片和全景图,能有效提升火星生命探索的效率与准确性。通过观察整个景观并识别出其他仪器值得仔细观察的岩石和土壤(杂岩),“ Mastcam-Z”协助漫游者号进行其他实验。他们还将为漫游者号发现重要的岩石,以便在火星表面进行采样和储存,从而将来把样品带回地球。作为火星2020任务的“两只眼睛”,研究人员在早期就发现由于处在火星的低光照度环境下(约为地球光照度的44%),摄像系统的成像品质将大打折扣。为解决这一问题,英国豪迈旗下的蓝菲光学联合亚利桑那州立大学研究出一套光源校准方案。蓝菲光学为Mastcam-Z提供了积分球光源,用于完美校准每个摄像机。Mastcam-Z团队通过蓝菲光学的积分球均匀光源准确地校准摄像机灵敏度,并将亮度设置为火星上典型的太阳光照射场景的相同水平。这一方案大幅提升了Mastcam-Z的成像品质,向基地输送了超高清晰度的影像数据。图 |Mastcam-Z摄像机正在对着蓝菲光学(Labsphere)积分球光源拍摄。 ASU地球与太空探索学院的Mastcam-Z首席研究员Jim Bell在对飞行相机进行测试后说:“Mastcam-Z将是首台可变焦的火星彩色相机,能有以超高的分辨率拍摄3D图像。在测试和校准过程中,我们发现这款摄像机的性能非常好-达到或超过了所有性能要求。”深耕光学领域,蓝菲光学对技术的探索和创新从不间断。如你想了解更多关于蓝菲光学的资讯,可前往蓝菲光学官网查阅详情。
  • 广西防城港监测中心批量采购28台仪器
    广西壮族自治区防城港生态环境监测中心采购28台仪器设备,用于生态环境监测实验室和生态环境现场监测使用,需要货比三家,要求分几个档次:国产高端的,国产畅销的、进口畅销的,均需要报价,且在广西有经销商或代理商,售后服务需要能跟的上。具体仪器名单如下,请能提供的厂商联系报价:产品名称仪器用途核心配置及参数要求采购数量便携式溶解氧测定仪现场水质溶解氧测定1.符合《水质 溶解氧的测定 电化学探头法》HJ 509-2009测定要求;2.范围:(0.00~50.00)mg/L;3.最小分辨率 0.01 mg/L;4.电子单元示值误差 ±0.10mg/L;5.仪器示值误差±0.30mg/L;4柱状采样器现场地表水石油类采样1.符合《HJ494-2009水质采样技术指导》及《2017年国家地表水环境质量监测网作业指导书》的要求,采集水面至水面以下300mm的柱状水样;2.自动电子判断300mm液位深度,无需浮球定位;3.可以一次性自动精确控制采样体积500ml左右,无需人工通过提拉速度控制采样量;4.整机防水,整机侵泡水中,不漏电,不短路,不损坏元器件;5.配专用采样瓶10个(500ml棕色玻璃瓶);3便携式抽滤机现场采样重金属等项目抽滤1.自带高容量电池,充满可续航15小时以上;2.进口真空泵,耐酸碱腐蚀,真空度高,使用寿命长;3.样品瓶材质不含金属离子;4.使用0.45微米水系微孔滤膜;5.电池余量液晶屏显示;2便携式离心机噪声监测现场校准1.94dB和114dB(以20uPa为基准)2.频率1kHz+5Hz ;3.声压级准确度1级,±0.2dB(+23℃),±0.3dB(-10℃~+504.总谐波失真≤1%(94 dB时);5.适用范围φ23.77mm(1英寸),φ12.7mm(1/2英寸)传声器及声学测量仪器;2声校准器1级水质采样现场离心沉淀1.符合HJ91.2-2022中地表水总磷现场前处理方法要求;2、转速:0~2000转/min;3、运行时间0~10min;4.单次离心总体积500ml以上;3便携式全自动紫外测油仪现场地表水石油类分析1.符合《水质 石油类的测定 紫外分光光度法(试行)》HJ 970-2018中石油类分析要求;2.一次充电可供电2h以上;3.自带控制系统:仪器自带平板电脑操作系统,携带操作方便;4.高精度注射泵:采用高精度进口注射泵,可根据客户要求,任意选定正己烷用量,准确注射,试剂注射、萃取、分离自动完成,自带反冲洗功能,无交叉污染;5.要求多通道陶瓷旋转阀和注射泵直接相接,中间不需要用管线连接,减少清洗试剂的用量;6.萃取方式:自动机械搅拌萃取,转速、萃取时间均可调,萃取率大于90%;7.采样瓶:采样瓶即做样瓶,可使用市售采样瓶,采样完成后无需转移即可上机做样;8.水样体积测量:仪器可自动测量水样体积,也可通过采样瓶刻度线人工读取水样体积;9.自动测量石油类:可自动测量石油类,自动使用硅酸镁柱吸附除去动植物油类等极性物质,并直接读取石油类含量,无需人工转移待测萃取液,电脑实时显示硅酸镁吸附余量;10.自动配制标准溶液、自动稀释:仪器可自动配制油类标样、质控样和标准曲线。超高浓度水样萃取测量超标,可自动进行萃取液的稀释,保证水样油类含量的准确测量;11.测量数据溯源:实验数据可实时查看,进行数据溯源,可获取样品数据的所有信息;1便携式叶绿素A测定仪(国标)叶绿素现场测定1.符合《水质 叶绿素a的测定 分光光度法》HJ 897-2017中分析方法要求;2.电极类型:高精度数字检测电极;3.屏幕尺寸:5寸彩色触摸屏;4.双电源供电:内置锂电池 ,适配器DC12V;5.电极线长:3-5M;6.量程范围:0-500μg/L(荧光法数字电极);7.精度:≤±5%;8.分辨率:0.01μg/L;9.打印:内置热敏打印机;10.数据对接:实时数据对接各监控平台;2便携式余氯测定仪现场余氯测定1.符合《水质 游离氯和总氯的测定 N,N-二乙基-1,4-苯二胺分光光度法》HJ 586-2010;2.光源 发光二极管(LED);3.检测器 硅光电二极管;4.波长准确度 ±2 nm 光谱带宽 15 nm滤波器带宽 吸光度范围 0 - 2.5 Abs;5.样品池 10mm(10 mL),25 mm(10 mL);6.数据存储:最近50 次测量;2全自动吹扫捕集进样器适用于饮用水、污水、地下水中的挥发性有机物质(VOC)的全自动分析1.适配安捷伦5977B-7890B型气质联用仪,吹扫装置能直接连接到色谱部分,并能自动启动色谱, 配备吹扫捕集样品浓缩仪主机、水样自动进样器。2.带有5ml的吹扫管 ,具备至少50个样品上样位置。3.捕集阱加热方式:直接电阻加热,捕集阱:室温至450℃(吹扫、脱附、烘焙三个阶段控温)。4.捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。1石墨COD智能回流消解仪用于COD水样的消解回流前处理1.适用于HJ828-2017《水质化学需氧量的测定 重铬酸盐法》标准要求。2.温度控制:室温至200℃,升温时间:5-8min。3.消解孔采用石墨材质铸成,均可单孔单控,设计加热温度与实际加热温度误差不超过±1℃。4.消解瓶容积约300ml,消解结束可直接在瓶内滴定,无需移液;数设定好后可一键启动,自动完成消解过程。2智能一体化蒸馏仪用于水质挥发酚、氰化物、氨氮等项目蒸馏预处理1.至少6个样品孔位,可单孔单控。2.实现定时定量自动蒸馏,设定范围:1-500ml “一体式内置”水箱+压缩机制冷,自动定量蒸馏,无需人工值守。3.有防倒吸功能,有自动清洗功能。2程控定量封口机用于水样中的总大肠菌群和粪大肠杆菌、肠球菌、菌落总数的快速检测,可野外携带、应急。适用于HJ 1001-2018 《水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法》固定底物技术(DST)酶底物法技术酶底物法。配套试剂、51孔定量盘或97孔定量盘一起封口使用。稳定性 连续工作24小时,无破孔无漏液。1氯离子含量快速测定仪快速测定水样中的氯离子1.适用于HJ 828-2017《水质化学需氧量的测定 重铬酸盐法》标准要求。2.用于实验室内快速测定氯离子浓度,出数据时间小于5min/1个水样。3.测定范围0~30000mg/L。4.仪器体积小、轻便。1翻转式振荡器用于固体废物前处理1.转速可调(满足30±2r/min),温时间可调节。2.配备2L具旋盖和内盖的广口瓶。提取瓶由不能浸出或吸收样品所含成分的惰性材料制成。1全自动流动注射仪适用于地表水、地下水、生活污水和工业废水中表面活性剂分析1.使用《水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》HJ 826-2017,方法原理:在线萃取亚甲基蓝光度法。2.配置阴离子表面活性剂分析模块,检测光程为10mm时,检出限<0.04mg/L(以LAS计),测定范围0.13mg/L~2.0013mg/L(以LAS计)。3.样品分析频率≥18个样品每小时,精密度<2%(连续7次测试 ),准确度误差±3%以内,加标回收90%-110%。 2.配置一体式自动进样装置,大于42个位置,其中载流位置两个,10ml样品位置不少于40个,50ml样品位置不小于2个。1采购单位:广西壮族自治区防城港生态环境监测中心联系人:张老师(技术保障科负责人)邮箱:149232629@qq.com (可发送资料及报价至邮箱中)联系信息:为避免过度打扰到张老师,请添加仪器信息网工作人员微信获取电话联系方式:
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 装修味太大 检测仪器“爆表”(图)
    疾控工作人员入户检测室内空气质量 检测室内空气质量的专用设备   连日来,由晨报《民心工程试验室》和烟台市疾控中心联合主办的,为市区内50户居民免费检测新房装修室内空气质量大型公益活动,目前已入户监测33家,截止到记者发稿前,已出监测结果的有22户,检测结果全部合格的仅有1户,合格率为4.55%。   监测时间:2014年6月18日地点:芝罘区金象泰温馨家园楼层:15楼面积:95平方米   装修完半年味儿太大,检测仪器爆表了   昨天上午,记者跟随烟台市疾控中心公共卫生监测与评价科工作人员,带着检测仪器来到位于芝罘区金象泰温馨家园的迟女士家。一走进迟女士所住的居民区楼道,记者和工作人员就被刺鼻的装修味熏得不敢正常呼吸。按照规定,需要进行空气质量检测的房间要关闭门窗12小时。当迟女士打开家门时,记者和市疾控中心的工作人员一下子就被室内明显的装修气味熏得待不住,眼睛、嗓子和鼻子顿时感到非常不舒服,几乎不敢喘大气。为了全面监测室内空气质量,市疾控中心的工作人员将检测仪器和大泡吸收管分别用支架安装在主卧室、次卧室和客厅三个采样点,采集时间为40分钟。就在工作人员迅速在三个采样点架设好检测仪器时,记者观察到,迟女士的家装修并不复杂。迟女士告诉记者,她家的门和门套都是实木的,鞋柜和大衣柜是买来生态板找木匠订做的,但熏人的气味却非常大。&ldquo 次卧室味儿太大了,简直没法待,仪器都爆表了,TVOC(总挥发性有机物)严重超标,这个卧室最好暂时不要住人。&rdquo 正在检测的疾控工作人员向迟女士建议说。   订做的大衣柜和小床甲醛超标10倍多   迟女士告诉记者说:&ldquo 我知道装修有污染,所以装得比较简单,而且装修用的板材都是我亲自去挑的生态板,沙发也没敢买布艺的,而是买了品牌的实木联邦椅,可谁知道装修完味道还是这么大。&rdquo 经现场检测,迟女士家订做的大衣柜和阳台放的小床甲醛超标10倍多。对此,于桂梅科长建议说,新房装修时,应尽量选择含胶量比较少的板材,如实木板材、集成材。尽量少选择用胶合板、压模板等板材加工制成的家具。市疾控中心专家曾对同一住户使用两种不同板材制作的家具进行监测,发现使用胶合板制成的家具甲醛超出国家标准10倍,而使用含胶量较少的实木板材家具低于国家标准。   另外,油漆和涂料最好选用水性的。新买的床垫、沙发、窗帘等布艺材料,能够拆洗的可以先清洗晾晒后再使用。不能拆洗的,搬入房中要多通风,以减少对室内空气的污染。入住前最好请专业检测机构检测合格后再入住。本报提醒入选50户免费检测室内空气质量的住户,6月5日前为新装修住宅监测的检测报告已经发出,市民可拨打0535-6700930查询具体结果。   专家支招 这样做可以减少室内空气污染   专家建议:1、加强室内通风换气。可以根据夏季气温高、污染物挥发快的特点,可以白天关闭门窗,随着室温的升高,污染物会挥发的更快,晚上进屋后再打开门窗让污染物充分地散发到室外。2、活性炭吸附。活性炭是国际公认的吸毒能手。活性炭口罩,防毒面具都使用活性炭。利用活性炭的物理作用除臭,去毒 无任何化学添加剂,对人身无影响。3、可选择植物去污。一般情况下,10平方米左右的房间,1.5米高的植物放两盆比较合适。比如:吊兰、虎皮兰等。   少用胶合板、胶水、油漆和壁纸   大家都知道,装修污染物主要来自于甲醛和甲苯超标。市疾控专家介绍说,要想减少装修污染,装修时就要从源头抓起,轻装修重装饰。   专家说,甲醛污染主要来自用作室内装饰的胶合板、细木工板、中密度纤维板和刨花板等人造板材,由于目前生产装饰板使用的胶粘剂以脲醛树脂为主,板材中残留的和未参与反应的甲醛会逐渐向周围环境释放。   苯系物的来源主要分为三大类:1.室内装修过程中使用的各类有机溶剂,如油漆、涂料、捻缝胶、粘合剂 2.居室建造过程中使用的建筑材料,如人造板、隔热板、塑料板材等 3.装修过程中的装饰材料,如壁纸、地板革、地毯、化纤窗帘等。
  • 北京工商大学孙宝国院士团队:综合多种方法探究芝麻香型白酒中二甲基三硫与香气活性化合物间的相互作用
    2023年1月,北京工商大学孙宝国院士团队在国际食品Top期刊Food Chemistry(Q1,IF: 8.8)发表题为“Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient”的研究性论文。北京工商大学硕士研究生杨世琪为第一作者,通讯作者为北京工商大学中国轻工业酿酒分子工程重点实验室副研究员李贺贺。芝麻香型白酒作为十二大香型之一,以其独特风味受到消费者的喜爱。但迄今为止芝麻香型白酒特征风味物质尚不明确,越来越多的研究推测芝麻香型白酒特征风味的形成源自于香气活性化合物间的相互作用。本研究以芝麻香型白酒中关键风味物质为研究对象,综合利用S型曲线法、OAV法、分配系数法等探究了芝麻香型白酒中二甲基三硫与酯类、醇类、酸类、醛类间的相互作用类型及规律。结果表明,物质的结构和特征香气是影响相互作用结果的重要原因之一,并且在52%乙醇-水溶液中,二甲基三硫与己酸乙酯、癸酸乙酯、糠醇香气的释放呈促进作用。分配系数法证明了二甲基三硫的添加会导致酯类化合物的峰面积和分配系数的变化,而化合物挥发性的变化是相互作用影响香气感知的原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。此外,初步提出了相互作用预测模型为 y = 2.0112 ln(x) + 0.1461,预测模型表明当酯类化合物的嗅觉阈低于33.80 μg/L时更易于二甲基三硫发生正向作用。本研究为风味物质间相互作用规律和影响因素的探究提供了新思路,有助于相互作用机制的揭秘,同时也为芝麻香型白酒特征风味物质的揭示以及国标的建立奠定了基础。研究亮点首次探究了芝麻香型白酒中关键风味物质间的相互作用。证明了结构和相比会影响二甲基三硫添加后酯类化合物挥发性的变化。首次建立了相互作用预测模型,实现了二元混合物间相互作用的快速判定。研究结论通过S型曲线法和OAV法明确了二甲基三硫与18种关键香气活性化合物间的相互作用类型,证明了二甲基三硫可以促进某些呈水果香气和烤香物质的挥发,如己酸乙酯、糠醇等。分配系数法结合OAV法和S型曲线法进一步证明了物质挥发性的变化是相互作用影响人体嗅觉感知的重要原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。如分配系数法证明二甲基三硫添加后己酸乙酯的峰面积与分配系数增大,同时S型曲线法与OAV法表明两者为加成作用;且随着体系相比的增加,己酸乙酯峰面积的增大程度逐渐加强。根据相互作用结果建立了二甲基三硫与酯类化合物间相互作用预测模型,实现了二元混合物间相互作用类型的快速判断。预测模型表明33.80 μg/L的酯类化合物嗅觉阈值浓度是二甲基三硫与酯类化合物之间相互作用类型变化的临界值。原文链接https://doi.org/10.1016/j.foodchem.2023.135451
  • 兰州化物所药用植物活性成分研究取得新进展 分离鉴定出全新抗肿瘤活性基团
    天然产物一直是药物研发的重要资源。据领域权威期刊Journal of Natural Products 报道,1981至2019年,近50%上市药物的分子结构或核心药效结构来源于天然产物。其中,全新碳骨架天然产物的发现往往是创新药物研发的第一步。中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室杨军丽研究员团队,利用现代分离技术、结构鉴定技术和药物筛选技术,从藏族习用药材甘松(Nardostachys jatamansi)中分离鉴定了1个具有全新碳骨架的17个碳的螺[2.4]-3/5/7三环的类愈创木烷型倍半萜内酯类化合物Narjatamolide(图1),通过X-射线单晶衍射和ECD实验确证其绝对构型为1R,4S,5R,6S,7R,16S。这是首次从甘松中分离鉴定了含有α-亚甲基-γ-内酯基的倍半萜结构,该片段被认为是抗肿瘤活性基团。Narjatamolide可抑制肝癌细胞株BEL-7402、HepG2和Huh-7以及宫颈癌细胞株HeLa的增殖(IC50 = 5.67 ± 1.43, 21.84 ± 1.62, 25.5 ± 3.14, 15.46 ± 0.69 μM)。进一步研究发现该化合物可将BEL-7402细胞周期阻滞在G2/M期(J. Org. Chem. 2021, 86, 11006)。近期,该化合物被天然产物化学领域顶级学术期刊《Natural Product Report》(Nat. Prod. Rep. 2021, 38, 1715)评选为热点化合物。图1 甘松中发现的新骨架化合物Narjatamolide上述研究工作得到了国家重点研发计划、国家自然科学基金面上项目、甘肃省杰出青年基金、中科院西部之光交叉团队项目、兰州化物所“一三五”重点培育项目和兰州化物所青年科技工作者协同创新联盟合作基金的支持。
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法
  • 冠亚快速水分测定仪为陕西昊田集团提高矿产煤炭检测效率
    冠亚快速水分测定仪为陕西昊田集团提高矿产煤炭检测效率 陕西昊田集团煤电冶化有限公司创立于2007年,是集煤焦电化综合开发、集约转化、循环利用型民营企业集团。公司注册资本20亿元,拥有总资产84亿元,职工3800多人。集团公司同时也是府谷煤业、煤化工、交建、能源四大集团参股股东,下辖昊华矿业、弘源兰炭、弘源发电、天利达镁业等多个子公司。2014年实现总产值44.45亿元,是府谷县民营企业纳税大户、榆林市百强企业。 2007年,集团公司依据陕西省煤炭资源整合方案,成为府谷县煤炭资源整合主体之一,将所属9处小煤矿整合为4处,整合技改完成后,年产原煤可达700万吨;同年,集团公司按照机制市场化、经营实体化、产业多元化的发展思路,投资22亿元在府谷县万家墩兰炭工业园区建成180万吨/年兰炭综合利用项目:160万吨洗选煤、180万吨兰炭,配套建设2×15MW尾气发电机组、2×50MW热电联产发电机组、22万吨电石、25万吨活性石灰、5万吨硅铁、2万吨金属镁、1.2亿块免烧砖,形成了“煤炭洗选—兰炭—焦油—煤气—发电”、“兰炭—电石—硅铁—金属镁”、“煤矸石、油渣—焦沫—蒸汽—发电、供热—免烧砖”三条循环产业链,吃干榨净,变废为宝,将单一的原煤转化为多种产品,实现资源的综合利用;规划在崇塔筹建海通物流园区。 近日陕西昊田集团订购冠亚快速水分测定仪为集团矿产煤炭水分检测提供了方便快捷,精准无误的检测,受到实验室和生产部门一致好评。已陆续为辖下子公司分批追加采购! 冠亚快速水分测定仪是一种新型快速水分检测仪器。水分测定仪在测量样品重量的同时,特制加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,终测定的水分含量值被锁定显示。与国际烘箱加热法相比,特制加热可以短时间内达到加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。欢迎广大业界朋友来电咨询。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 北京普立泰科仪器有限公司参加第三届中国国际环境检测仪器展览会
    2010年11月24日,第三届中国国际环境监测仪器展览会在北京国际展览中心如期举办,此次展览为期三天,此次展会适逢中国环境监测总站30周年站庆,各地环境监测中心、环境保护站等相关单位都参加了此次展览。 作为一家推广宣传国际实验室分析先进技术、专业产品以及提供相应技术支持和服务的专业公司,北京普立泰科仪器有限公司携带自主研发仪器、国外进口仪器参加了此次展会,展会期间,普立泰科展位上热闹非凡,国内外的前处理仪器及检测、在线仪器都引起了环境行业专业人士的极大关注,比如J2 Scientific凝胶净化系统、J2大体积水固相萃取系统、GPC-SPE-浓缩联用仪、ZOEX全二维气相色谱、torion便携式气质、lumex测汞仪、OI氰化物分析仪及总有机碳检测仪等独家代理的国外先进仪器。同时,此次也展出了公司自主研发的土壤干燥箱(专利)、样品自动消解前处理系统、斜吹式氮吹浓缩仪等。 田莉娟总经理向客户展示自主研发土壤干燥箱 老师们兴致盎然的在进行探讨 市场部经理与客户进行交流 这次普立泰科携带的全线产品得到了业内人士的一致好评,很多客户在参加完展会以后,又带着极大的热情参观了普立泰科公司位于北京总部的实验室,公司的先进产品如消解仪、固相萃取仪、浓缩仪等都得到了广大客户的推崇与赞赏! 自主研发全自动消解仪 全自动消解仪主要用于无机样品前处理中,可以替代那些用AA或ICP分析之前繁琐的处理手段,加酸、混匀、高温加热、赶酸、冷却、定容等步骤全都可以通过设置软件,让仪器自动完成,不仅保护了操作者的安全,而且大大提高了工作效率,减少了手工误差,使分析结果更为准确。 美国J2正压固相萃取仪 美国J2公司推出的正压固相萃取仪是具有高通量的样品前处理装置,可一次处理多达48个样品,是传统SPE及全自动SPE所不能实现的,具有方便灵巧的操作模式、大批量的处理能力,为实验室样品前处理工作提供了无法取代的支持和帮助,尤其提高了用户应对大批量工作和突发事件的能力。它克服常规的手动固相萃取操作费时、不能确保稳定的流速、不同人员操作结果偏差较大的问题,通过简单的控制消除人为操作的误差,保证在短时间内同时处理几十个样品并具有良好的重现性。 土壤干燥箱 土壤干燥箱是公司自主研发并申请专利的一款新型仪器,主要采用模拟室内空气流动模式,即风干模式进行土壤干燥。干燥空气是经过硅胶脱水和活性炭吸附的洁净干燥热空气,样品分室独立存放和干燥,避免样品交叉污染,节省空间,提高土壤干燥效率。不占用太大空间,使实验室更加美观干净,底部装有滚轮,方便移动。
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断
    总有机碳TOC (Total Organic Carbon),是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如GE的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。◆ ◆ ◆案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:1. 为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;2. 加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:a. 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;b. 在超滤后增加活性炭过滤器;c. 或在电除盐EDI前增加脱氧膜组;d. 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。◆ ◆ ◆为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。◆ ◆ ◆如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断案例
    总有机碳TOC (Total Organic Carbon)是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如苏伊士Sievers分析仪的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:01为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;02加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:- 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;- 在超滤后增加活性炭过滤器;- 或在电除盐EDI前增加脱氧膜组;- 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。◆ ◆ ◆
  • 地表水检测移动实验室仪器配置及监测项目一览
    p   随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。 /p p   日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。 /p p   我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。 /p p   标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下: /p p style=" text-align: center " strong 地表水检测移动实验室配置仪器设备 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 39" p style=" text-align:center " 序号 /p /td td width=" 157" p style=" text-align:center " 检测类别 /p /td td width=" 480" p style=" text-align:center " 仪器设备 /p /td /tr tr td width=" 39" rowspan=" 2" p style=" text-align:center " 1 /p /td td width=" 157" rowspan=" 2" p style=" text-align:center " 采样器、样品采集、存储类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯塑料桶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 单层采水瓶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 直立式采水器 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 在线自动监测设备 /a /p /td /tr tr td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 硬质玻璃瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯瓶 /a 等容器、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 无菌瓶 /a 等容器、 a href=" https://www.instrument.com.cn/list/main/03.shtml" target=" _blank" 车载冰箱 /a /p /td /tr tr td width=" 39" p style=" text-align:center " 2 /p /td td width=" 157" p style=" text-align:center " 试验类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 烧杯 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 试管 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 试剂盒 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 容量瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 量筒 /a 、 a href=" http://移液枪" target=" _blank" 移液枪 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 移液管 /a 等 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td td width=" 157" rowspan=" 3" p style=" text-align:center " 检测仪器类 /p /td td width=" 480" rowspan=" 3" p style=" text-align:center " a href=" http://五参数分析仪" target=" _blank" 五参数分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/1687.html" target=" _blank" 高锰酸盐指数分析仪 /a 、 a href=" http://氨氮分析仪" target=" _blank" 氨氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总磷分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" 可见/紫外分光光度计 /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1158.html" target=" _blank" 气相分子吸收光谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 原子发射光谱仪 /a 。 a href=" https://www.instrument.com.cn/zc/1650.html" target=" _blank" 重金属分析仪等在线自动监测仪 /a 、 a href=" https://www.instrument.com.cn/zc/646.html" target=" _blank" 重金属分析系统 /a 、 a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" 电感耦合等离子体质谱仪ICP-MS /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" 气相色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-飞行质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/143.html" target=" _blank" 培养箱 /a 等。 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr /tbody /table p   地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。 /p p style=" text-align: center " strong 地表水快速检测移动实验室监测项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 44" valign=" top" p style=" text-align:center " & nbsp /p /td td width=" 280" valign=" top" p style=" text-align:center " strong 必测项目 /strong strong /strong /p /td td width=" 314" valign=" top" p style=" text-align:center " strong 选测项目 /strong strong /strong /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 河 流 /p /td td width=" 280" valign=" top" p style=" text-align:center " 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ & nbsp & nbsp & nbsp 石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 集中式饮用水源地 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群 /p /td td width=" 314" valign=" top" p 三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 湖泊水库 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ & nbsp & nbsp & nbsp 根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 排污河(渠) /p /td td width=" 280" valign=" top" p style=" text-align:center " 根据纳污情况,参照表中工业废水监测项目 /p /td td width=" 314" valign=" top" p style=" text-align:center " & nbsp /p /td /tr /tbody /table p br/ /p
  • 王家海团队最新成果:开发纳米孔计数器检测甲基化基因方法 检测限达到1aM以下
    近日,化学化工学院王家海教授团队开发了基于纳米孔计数器检测甲基化基因的方法,成果以“Nanopore counter for highly sensitive evaluation of DNA methylation and application for in vitro diagnostics”为题发表在国际知名学术期刊Analyst上。1、研究背景 DNA甲基化是一种重要的表观遗传修饰,在维持正常细胞功能、染色体结构、胚胎发育和衰老方面发挥着重要作用。因此,DNA异常的甲基化水平被认为是重要的恶性肿瘤生物标记物之一,开发一种简单而灵敏的DNA甲基化水平检测方法是必要的。固态纳米孔是纳米孔技术中重要的组成部分,其对双链DNA(dsDNA)的检测具有无标记和超高灵敏度的特性。将DNA甲基化程度通过合适的转换机制,变换成特定长度双链DNA的浓度,有助于开发信号读出良好,灵敏度高的甲基化传感器。2、研究内容受此思路启发,王家海教授团队提出了一种过程简单,条件温和的甲基化监测方案——即通过纳米孔计数器对双链的读出能力,结合双限制性内切酶(BstUI/HhaI)消化策略和聚合酶链式反应(PCR)扩增将DNA甲基化转换为PCR扩增物的数量来评估DNA甲基化的程度。相比于传统亚硫酸氢盐转化方法,基于双甲基化敏感内切酶的消化策略结合纳米孔是更好的选择。首先,基于甲基化敏感的核酸内切酶的消化策略可以在更加温和的条件下特异性地消化未甲基化的DNA,这对于开发简单、通用的甲基化检测方法至关重要;此外,基于甲基化敏感的核酸内切酶消化策略的可以将非甲基化的DNA切碎,这可以大大减少背景信号,从而显著简化纳米孔传感器的数据分析,使得信号更加规整、好读。而加入PCR策略,是将信号灵敏度和选择性进一步提升,使其达到临床所需。图1 技术原理图:(a) 双内切酶系统可以消化未甲基化的DNA,但保留甲基化的完整DNA,完整的甲基化DNA可以通过PCR反应扩增并产生大量固定长度的双链DNA扩增子。(b) 通过玻璃纳米孔计数器直接检测PCR扩增子。由于PCR扩增子的规律性,信号是非常均匀、好读出的。3、工作亮点在本工作中,我们根据PCR扩增的效率以及产生信号的信号比优化了PCR产物的长度,使得传感器兼顾灵敏度以及读出信号的方便性。结合PCR技术产生固定长度扩增子后,该传感技术对DNA甲基化的检测达到了1aM以下的检测限,并且具有1aM~100pM之间(109倍)的超宽传感器线性区间:图2 PCR扩增子长度的优化。(a)扩增子的引物的位置。(b)凝胶电泳图,说明经过反应后,只有甲基化SEPT7基因可以保持完整,并成功产生不同长度的产物条带。(c)三种长度的PCR扩增子的易位信号,可以看出随着扩增子长度的增加,信噪比提升。(d) 317、406和806bp扩增子的信号幅度分布直方图,可以看到扩增子越长,信号率下降,传感器灵敏度下降。图3 纳米孔传感器对甲基化DNA的定量测试。(a)甲基化PUC57-SEPT9浓度范围为1 aM至100 pM时的校准曲线。(b)传感器的对数校准曲线。对数校准曲线的分段线性范围为1 aM至100 aM(c)和100 aM至100pM(d)。(e) 传感器在5秒内对不同浓度的甲基化PUC57-SEPT9的易位信号。此外,传感器具备优秀的选择性,能在大量非甲基化的基因中检测出仅有0.01%的甲基化基因。与其他现存技术相比,我们的技术在检测限及监测范围中有足够的优势。图4 传感器对DNA甲基化水平的测试。(a)用不同甲基化水平的DNA测试时的事件率。(b)测量的甲基化水平与实际输入甲基化水平之间的关系。结果显示即使在低至0.01%的浓度水平下也具有良好的一致性。表1 本文结果与其他甲基化检测方法的性能比较方法扩增手段检测范围检测下限fluorescenceOxidation damage base-based amplification100 fM-100 nM34.58fMelectrochemistryElectrochemical strategies for tetrahedral RCA amplification1 fM-1 nM100 aMchemiluminescenceSynergistic in situ assemblies of G-quadruplex DNAzyme nanowires1 aM-100 pM0.565 aMfluorescenceDual endonucleases digestion coupled with RPA-based CRISPR/Cas13a200 aM-20 pM86.4 aMfluorescenceFluorescence nanosensor based on Fe3O4/Au core/shell nanoparticles3.2 fM-800 fM310 aMNanopore(this work)Dual endonucleases digestion combined with PCR-based nanopore1 aM-100 pM0.61 aM4、研究相关 王家海教授为论文第一作者,团队成员陈达奇(广州大学讲师)为论文通讯作者,广州大学为第一通讯单位。文章链接: https://pubs.rsc.org/en/content/articlelanding/2023/an/d3an00035d
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍   糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。   二、检验标准的探讨   现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。   (一)样品的前处理   食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。   (二)还原糖测定和结果计算   GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。   直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):   X=   其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。   (三)计算公式的正确表达   1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。   2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:   X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。   (四)还原糖滴定法的注意事项   1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。   2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。   食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制