当前位置: 仪器信息网 > 行业主题 > >

浮游荧光仪测定原理

仪器信息网浮游荧光仪测定原理专题为您提供2024年最新浮游荧光仪测定原理价格报价、厂家品牌的相关信息, 包括浮游荧光仪测定原理参数、型号等,不管是国产,还是进口品牌的浮游荧光仪测定原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合浮游荧光仪测定原理相关的耗材配件、试剂标物,还有浮游荧光仪测定原理相关的最新资讯、资料,以及浮游荧光仪测定原理相关的解决方案。

浮游荧光仪测定原理相关的仪器

  • ▇ 产品简介ZR-5031型浮游菌采样器校准仪采用孔口流量测量原理,是浮游菌采样器流量校准的专用设备,可对不同流量、不同接口的浮游菌采样器进行流量标定和校准,广泛适用于计量检定、洁净室检测、环境监测、劳保卫生、科研院所等部门。▇ 技术特点采用高精度压力传感器,保证了流量输出的精确性,测量精度高;校准仪对浮游菌采样器造成的负载较低,不会影响采样器的正常工作;采用孔口流量测量原理,方便溯源;实时显示实际流量和标况流量;专用接口,方便与浮游菌采样器连接;体积小、重量轻、操作简便;内置锂电池,可交直流两用;反应迅速,数据1s更新一次;高亮度液晶显示屏,读数方便;可选配蓝牙打印机,具有数据存储和导出功能。▇ 执行标准JJF 1826-2020《空气微生物采样器校准规范》JJG(冀)164-2019 《空气浮游菌采样器校准规范》GB/T 16293-2010 《医药工业洁净室(区)浮游菌的测试方法》
    留言咨询
  • mini-FIRe浮游植物荧光仪在实验室和海洋中构建用于测量浮游植物生物量、生理学和光合作用的高级荧光系统1. 研究目的和内容 研究目的 该项目的目的是建造一种小型的台式仪器,称为F荧光I诱导和R驰预(mini-FIRe)系统,用于离散样品分析和连续测量浮游植物在海洋中的丰度和生理状况。与Rutgers团队发明和开发的前代FRRF和FIRe荧光仪不同,新仪器将表现出增强的灵敏度(约10倍),可实时提供更多生理参数。新仪器的极端灵敏度使得它们对于在公海的实地工作有巨大价值。 研究内容 使用可变荧光技术对浮游植物和其他光合作用生物的光合作用活性的评估 - 光合作用生物的生理状态的快速和无损评估依赖于使用快速重复率荧光学 (FRRF) 及其技术后续荧光感应和放松 (FIRE) 技术。这项技术是由Rutgers团队发明和开发的。评估光合作用生物生存能力的基本方法依赖于叶绿素"可变荧光"剖面的测量和分析,叶绿素是光合作用机构特有的特性(Falkowski等人于2005年对此进行了审查)。"可变荧光"技术依赖于叶绿素荧光与光合作用过程效率之间的关系,并提供了一套全面的荧光和光合作用参数的有机体。光学测量是灵敏的,快速的,无损的,可以实时和原位完成。 这种专利方法和已实现的仪器学原理是在同行评审文献中确立的(Falkowski and Kolber 1995 Kolber at al., 1998 Gorbunov et al., 2000, 2001 Gorbunov and Falkowski 2004)。最初是为研究水柱中的浮游植物而开发的,FRR技术提供了前所未有的信息,说明浮游植物群落的运作以及控制海洋初级生产力的环境因素的影响(e.g., Falkowski and Kolber 1995 Falkowski and Raven 2007 Behrenfeld et al., 1996 Coale et al, 2004 Falkowski et al, 2004)。使用台式和潜水式FRR和FIRe荧光仪成为美国和世界上大多数生物海洋学项目不可分割的一部分。 已开发出F荧光I诱导和R驰预(FIRe)技术 ,以测量光合作用生物的一套全面的光合作用和生理特征(Gorbunov and Falkowski 2005)。 FIRe 技术基于对由一系列激发闪光引起的荧光瞬态的记录和分析,这些闪光的强度、持续时间和间隔精确控制(图 1 和 Gorbunov and Falkowski 2005)。 该技术提供了一套全面的参数,这些参数的特点是光合作用采光过程、光系统 II (PSII) 中的光化学以及光合作用电子传输到碳固定。由于这些过程对环境因素特别敏感,FIRe 技术为识别和诊断自然(营养限制、光化学和光刺激、热应力等)和人为应激因素(如污染)提供了基础。图1。FIRe 荧光瞬时的例子。荧光产量的动力学记录为微秒时间分辨率,包括四个阶段:(第一阶段,100 ms)100 ms的强短脉冲(称为单周转闪光,STF)适用于累积饱和PSII,并测量从Fo到Fm(STF)的荧光感应:(第二阶段,500ms)弱调制光用于记录500ms时间尺度上荧光产量的放松动能:(第三阶段,50 ms)50ms 持续时间的强长脉冲(称为多周转闪光,MTF)用于饱和 PSII 和 PQ 库:(第 4 阶段,1 s) 弱调制光用于记录 PQ 库在 1s 的时间尺度内再氧化的动力学。 第 1 阶段的分析提供:最低和最大荧光产量(Fo,Fm);PSII光化学电荷分离的量子效率Fv/Fm(STF);PSII 的功能横截面,σPSII 和连接因子(p)。第 2 阶段为 PSII 接收方的电子传输提供时间常数(即Qa 受体侧再氧化)。第 3 阶段提供 Fm(MTF)和 Fv/Fm(MTF)。第 4 阶段揭示了 PSII 和 PSI 之间的电子传输时间常数(PQ 库的再氧化)。 可变荧光技术的生物物理背景- 在室温下,叶绿素荧光主要产生于PSII。当PSII反应中心处于开放状态(Qa氧化)时,荧光产量极小,Fo。当 Qa 还原(例如,通过暴露在强光下)时,反应中心关闭,荧光产量增加到其最高水平 Fm。为了检测Fo和Fm,FIRe技术记录了由强烈的饱和脉冲光(~100 μs,称为单周转闪光,STF)引起的荧光感应(图1第1阶段)。荧光感应率与PSII的功能吸收横截面成正比,而荧光上升的相对幅度Fv/Fm则由PSII光化学的量子效率来定义。荧光感应的形状由单个光合作用单元之间的激发量转移控制,并由"连接因子"(Kolber et al. 1998)定义。因此,在没有能量转移(p = 0)的情况下,荧光感应呈指数级,当p 增加到 ~0.5 到 0.7 的最大值时,就会变成反曲线。 PSII 受体侧电子传输的动能(即Qa再氧化)是通过 STF 之后的荧光驰预动力学分析(图 1 第 2 阶段)评估的。荧光动力学由几个部分组成,因为Qa再氧化的速度取决于第二个电子受体Q b的状态,Qb作为移动双电子受体工作:Qa- Qb → Qa Qb- (150 - 200 ms) (1)Qa- Qb- → Qa Qb= (600 - 800 ms) (2)Qa- _ → Qa- Qb → Qa Qb- (~ 2000 ms) (3) 反应 (3) 与 Qb 最初脱离 D1 蛋白结合位点时的条件相对应。此外,一小部分电子传输受损的失活反应中心可能有助于驰预动力学中最慢的组件。FIRe 软件使用 3 组件分析处理驰预动力学,以检索电子传输的时间常数(即 Q 氧化 tQa)。 PSII 和 PSI 之间的电子传输的时间常数 tPSII-PSI 是从多周转闪光(MTF,图 1 中的第 3 阶段和第 4 阶段)之后的荧光驰预动力学分析中检索到的。 在大多数生理条件下,这个时间常数是由质体醌(PQ)库再氧化的速度决定的,并且是一个数量级比tQa慢一个数量级。 测量一系列环境光强的FIRe荧光参数,可以重建光合作用电子传输的速率,Pf,作为光强的函数(光合作用与光强曲线)(Kolber and Falkowski, 1993)。Pf 与光照产物和环境光下测量的光化学量子产量成正比(DF' /Fm' )。分析这些光合作用与光强曲线提供了光合作用最大电子传递速率(Pmax)和光饱和系数(Ek)。光合作用与辐射测量使用 FIRe 的光化光源 (ALS) 进行,该光源通过 FIRe 数据采集软件由计算机控制。 研发背景和专业知识 – Rutgers团队的成员在可变荧光技术和方法的研发方面积累了超过 20 年的经验。他们发明并开发了10多项生物物理研究的独特仪器(参见相关专利和同行评审出版物的附录参考清单),包括: ● Pump-and-Probe Fluorometer (Kolber and Falkowski, 1986) ● Pump-and-Probe LIDAR (Gorbunov et al. 1991) ● Fast Repetition Rate (FRR) Fluorometers (Kolber at al. 1993 1998) ● Single-Celled FRR Fluorometer (Gorbunov et al. 1999) ● Diver-operated FRR Fluorometer (Gorbunov et al. 2000) ● Moorable FRR Fluorometer (Gorbunov et al. 2001) ● FIRe System (Gorbunov and Falkowski 2005) ● Diving-FIRe System (Gorbunov 2012) ● Mini-FIRe System (Gorbunov 2013). 2. 仪器介绍 mini-FIRe基于与之前台式FIRe仪器相同的生物物理原理(Gorbunov and Falkowski 2005),但新仪器更紧凑3倍,灵敏度提高10倍。叶绿素浓度的下限低至 ~0.005 mg/m3,这使得mini- FIRe对于在公海进行现场采样非常有价值。 在这里,Rutgers团队提议建造一个mini-FIRe(图2)该仪器将用于离散样品分析(例如,从站点的尼斯金瓶收集的样品)和/或在海洋中持续进行取样。仪器将配备一个流经的样品室,用于连续绘制浮游植物生物量和光合作用特性。以下是mini-FIRe记录的生理参数列表和仪器技术规格mini-FIRe(图2)。该仪器将用于离散样品分析(例如,从站点的尼斯金瓶收集的样品)和/或在海洋中持续进行取样。该仪器将配备一个流经的样品室,用于连续绘制浮游植物生物量和光合作用特性。以下是mini-FIRe记录的生理参数列表和仪器技术规格。图2 mini-FIRe荧光仪,具有增强的灵敏度。测量参数:●暗适应后最小和最大荧光产量(Fo, Fm)●光适应下有效、最小和最大荧光产量(F' , Fo' , Fm' ) *●光系统II、PSII 中光化学最大有效量子产量(Fv/Fm 和DF' /F m))●三波长下功能性PSII吸收截面积(sPSII)●光合作用单元之间的能量转移效率("连接因子")●PSII 受体侧电子传递时间常数(Q a 到Qb,Qa 到 Qb-)●PSII 和 PSI 之间的光合作用电子传输时间常数●电子传递速率,ETR,作为光强的函数 *●光化学淬火系数 (qP)和非光化学淬火系数 (NPQ) *●最大光合速率、初始斜率和光合作用周转时间(从 F 与 E 曲线得到)●这些参数是使用光化光源 (ALS) 测量,并记录为光强曲线。mini-FIRe 系统的技术规格:●极端灵敏度:0.005 - 100 mg/m3叶绿素a(可通过添加中性密度减压过滤器提高采样浓度)●激发光源:蓝色(峰值波长450 nm,30 nm带宽),绿色(峰值波长530 nm,40 nm带宽),橙色(峰值波长590 nm,30 nm带宽),用于选择性激发不同功能组的浮游植物。●发射检测:680 nm(叶绿素a)和880 nm(细菌叶绿素a),其他波长可使用可更换的发射滤光片进行选择。●尺寸: 10 x 5 x 12 英寸 References related to methodology Peer-Reviewed Publications:Behrenfeld, M. J., A. J. Bale, Z. S. Kolber, J. Aiken, and P. G. Falkowski. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508-511.K.H. Coale, K.S. Johnson, F.P. Chavez, K.O. Buesseler, R.T.. Barber, M.A. Brzezinski, W.P. Cochlan, F.J. Millero, P.G. Falkowski, J.E. Bauer, R.H. Wanninkhof, R.M. Kudela, M.A. Altabet, B.E. Hales, T. Takahashi, M.R. Landry, R.R. Bidigare, X.Wang, Z.Chase., P.G. Strutton, G.E. Friederich, M.Y. Gorbunov, V.P. Lance, A.K. Hilting, M.R. Hiscock, M.Demerest, W.T. Hiscock, K.A. Sullivan, S.J. Tanner, R. M. Gordon, C.L. Hunter, V.A. Elrod, S.E. Fitzwater, S. Tozzi, M. Koblizek, A.E. Roberts, J. Herndon, J. Brewster, N. Ladizinsky, G. Smith, D. Cooper, D. Timothy, S.L. Brown, K.E. Selph, C.C. Sheridan, B.S. Twining, and Z.I. Johnson (2004) - Southern ocean iron enrichment experiment: Carbon cycling in high- and low-Si waters. – Science, 304 (5669): 408-414.Falkowski PG, Koblizek M., Gorbunov M, and Kolber Z., (2004). Development and Application of Variable Chlorophyll Fluorescence Techniques in Marine Ecosystems. In: “Chlorophyll a Fluorescence: A signature of Photosynthesis” (Eds. C.Papageorgiou and Govingjee), Springer, pp. 757-778.Falkowski, P.G., and Z. Kolber. (1995). Variations in the chlorophyll fluorescence yields in the phytoplankton in the world oceans. Aust. J. Plant Physiol. 22: 341–355.Falkowski, P.G. and J.A. Raven. (2007). Aquatic Photosynthesis (2nd edition). Princeton University Press. Princeton, 484 pp.Gorbunov M.Y., Fadeev V.V., and Chekalyuk A.M. (1991) Method of remote laser monitoring of photosynthesis efficiency in phytoplankton. - Moscow University Physics Bulletin. 46(6): 59?65.Gorbunov M.Y., Kolber Z., and Falkowski P.G. (1999) Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. - Photosynthesis Research, 62(2-3): 141-153.Gorbunov M.Y., Falkowski P.G. and Kolber Z. (2000) Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer. - Limnol. Oceanogr., 45(1):242-245.Gorbunov M.Y., Z. Kolber, M.P. Lesser, and P.G. Falkowski P.G. (2001) Photosynthesis and photoprotection in symbiotic corals. - Limnol. Oceanogr., 46(1):75-85.Gorbunov MY, and Falkowski PG. (2005). Fluorescence Induction and Relaxation (FIRe) Technique and Instrumentation for Monitoring Photosynthetic Processes and Primary Production in Aquatic Ecosystems. In: “Photosynthesis: Fundamental Aspects to Global Perspectives” - Proc. 13th International Congress of Photosynthesis, Montreal, Aug.29 – Sept. 3, 2004. (Eds: A. van der Est and D. Bruce), Allen Press, V.2, pp. 1029-1031.Kolber, Z., and Falkowski, P.G., (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ, Limnol. Oceanogr., 38, 1646-1665, 1993.Kolber, Z., O. Prasil, and P.G. Falkowski (1998). Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochem. Biophys. Acta 1367: 88-106.Lin H., Kuzminov F.I., Park J., Lee S.H., Falkowski P.G., and Gorbunov M.Y. (2016) The fate of photons absorbed by phytoplankton in the global ocean – Science, 351(6270), pp. 264-267. Park J., Bailleul B., Lin H., Kuzminov F.I., Yang E.J., Falkowski P.G., Lee S.H., and Gorbunov M.Y. (2017) Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica – Limnology and Oceanography, DOI: 10.1002/lno.10565.Thamatrakoln K., Bailleul B., Brown C.M., Gorbunov M.Y., Kustka A.B., Frada M., Joliot P.A., Falkowski P.G., Bidle K.D. (2014) Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability - Proc. Natl. Acad. Sci USA, vol. 110, no. 50: 20123-20128. doi:10.1073/pnas.1304727110.
    留言咨询
  • 世界上第一台活体浮游植物分类和生物量在线测量系统 与市场上常见的测量快速荧光,通过经验标定曲线得到浮游植物的分析和生物量不同,延迟荧光技术已成为研究热点。延迟荧光是在PS II 黑暗中的电子逆流过程中,电子和洞穴共同释放的。只有具备光合功能的细胞才能释放延迟荧光,而快速荧光技术测量的是所有能释放荧光的物质,包括死的浮游植物和腐殖质。)、硅藻(包括硅藻门、金藻门、黄藻门等)和隐藻类,增强型配置可以分到六类,从而把潜在的有害藻类蓝藻区分开来,精确地检测水华的爆发和消失。下图为2003年在欧洲Balaton湖监测到的数据。DF浮游植物延迟荧光测量单元主要特点如下:具触延迟荧光技术可有效屏蔽再悬浮、死的生物和腐殖质对测量精度的干扰,其它荧光测量技术无法实现。延迟荧光仪可精确探测藻类和水华的形成和消亡。延迟荧光技术和普通快速荧光技术的这一不同对浅水湖或河流能起到决定性的作用,特别是那些经常发生再悬浮和洪浪,从而将一定量的退化藻类或没有光合功能的藻类带入水体的区域。 功能: l 测量藻类浓度l 标准配置可识别蓝包括蓝藻、绿藻(包括绿藻、裸藻等)、硅藻(包括硅藻、金藻、黄藻等)和隐藻类 4种藻类,可扩展到6中藻类。l HAB 识别l 野外自动测量光合速率动态变化 技术指标:测量参数:4种浮游植物及生物量,可选增强型群落识别及光合速率-光曲线测量频率:每小时6-10次生物量分辨率:1-5ug CHl-al-1 (3-4个数量级)种类检测分辨率:4种藻类(可扩展到6种)精度±5%采样: 12VDC 采样泵工作模式:自动/手动用户界面:触摸屏,可以显示所有运行参数通信:USB口,可以很方便地用USB盘下载数据。也可通过英特网远程控制、数据下载乃至 硬件诊断,对Windows操作系统和苹果Mac操作系统都兼容其它:带GPS卫星定位系统,可以方便地定位,从而实现定位、定性和定量监测 2003年在欧洲Balaton湖的监测数据参考文献: Istvánovics V., Honti M., Osztoics A., H. M. Shafik, Padisák J., Y. Yacobi and W. Eckert (2005) On-line delayed fluorescence excitation spectroscopy,as a tool for continuous monitoring of phytoplankton dynamics and itsapplication in shallow Lake Balaton (Hungary). Freshwater Biology 50:1950-1970.Honti M., Istvánovics V. and Osztoics A. (2005) Measuring and modelling in situ dynamic photosynthesis of various phytoplankton groups. Verh. Internat. Verein. Limnol. 29: 194-196.Honti M., Istvánovics V. and Osztoics A. (2007) Stability and change of phytoplankton communities in a highly dynamic environment ? the case of large, shallow Lake Balaton (Hungary). Hydrobiologia 581: 225-240.Honti M., Istvánovics V. and Kozma Zs. (2008) Assessing phytoplankton growth in River Tisza (Hungary). Verh. Internat. Verein. Limnol. 30 (1):87-89.Istvánovics V. and Honti M. (2008) Longitudinal variability in phytoplankton and basic environmental drivers along Tisza River, Hungary.Verh. Internat. Verein. Limnol. 30 (1): 105-108.
    留言咨询
  • ISIIS浮游动物影像仪 400-860-5168转3571
    仪器简介 ISIIS浮游动物影像仪采用水下光学扫描技术,捕获高分辨率的浮游动物原位剪影图像,如鱼卵及其它小型胶状生物,这些生物构成了海洋食物链的基础。 浮游动物影像仪搭载在水下拖体上,研究者通过调查船以5节的速度拖行设备,实时采集水下的图像数据,用以连续原位观测浮游动物,持续时间可以从几小时到几周。研究范围从小型、高丰度的浮游生物到比较大的幼鱼等种类,也可以选配高速模块(10节速度)。仪器不仅配置拖体及相机系统,实时获取浮游生物的水下原位图像数据,也可以根据研究需要配置多种传感器,如CTD、叶绿素、溶解氧等,实现图像数据与环境监测参数数据的协同测定,对于进行综合性的生态调查、环境风险评估等工作具有重要意义。工作原理 ISIIS浮游动物影像仪基于背光摄影技术,采用阴影拍摄获取浮游生物的原位剪影图像数据。光源通过反射发出平行光柱,使光线充满整个图像区域,实现被拍摄的生物的图像达到远心镜头效果:目标物的尺寸不会由于其在视野中的位置变化而改变其大小,图像没有放大及畸变,确保目标物以实际大小呈现。 ISIIS浮游动物影像仪使用的是工业级的高精度远心镜头。为了拖曳采样需要,标准配备为线性扫描相机,可以获取监测水体的连续图像数据;如果用户需要进行水下站的固定位置监测或慢速垂向监测图像,也可以配备传统的区域扫描相机。 图像分辨率取决于成像面积(光学镜头尺寸)及相机分辨率。例如,使用325px视野的镜头及2048分辨率相机获取的图像其像素分辨率约为63μm(325px / 2048 pixels)。大多数情况下,图像分辨率需要达到10~15像素才能有效分辨或识别出目标生物。因此,对于1毫米大小的水生生物,63μm的像素分辨率是辨识生物的合适选择。对于景深1250px\视野325px的镜头,在水中以5节的速度拖曳浮游生物原位图像系统,可以实现每秒167升水的滤水速度(2.57 m/sec x .13m x .50m = 167 liters/sec)。 采用传统的区域扫描相机时,仍旧采用了相同的像素定义方式。不过,此时浮游生物原位图像系统获取的图像为以固定间隔拍摄的延时图像。标准的ISIIS图像 350px高(2048像素)的连续图像,1250px景深(更高的分辨率可选) 35kHZ线性扫描率,记录为2kb x 2kb框图,约18帧/秒(70 kHZ线性扫描率可选)剪影图像,像素分辨率<70μm 有效的过水面积(5kts): 160L/sec(可以选择10kts速度匹配的镜头)技术优势 原位,高分辨率的未扰动样品图像,显示生物种类及空间的分布关系 线性扫描镜头技术,可以采集连续的图像信息,框图间无延时 专利的光学结构提供出色的1250px景图像视野结合高船速,观察大体积水域 BellaMare拖体提供可选配置用于配合浮游动物原位图像系统 超大负载能力可以增加互补性探头,实现图像数据与环境参数数据的同时采集 拖体动态可控,用于要求严苛的调查计划 电机光纤拖缆摆脱了传统的数据及能源传输限制 数据的实时显示及反馈控制可以实现自适应调查管理ISIIS浮游动物影像仪 ISIIS系统包括镜头舱,甲板数据管理子系统和连接线缆。两个ISIIS水下舱体包含有镜头、光学器件、控制器及照明系统,适用水深200米。舱体定位于光学校准,防止水动力扰动样品。甲板单元站提供能源、系统控制、数据存储(速度达到80mb/s)功能。图像数据存储区于可扩展的RAID硬盘内。 电机光纤拖缆提供甲板单元与水下拖体间的连接。双图像系统 ISIIS浮游动物影像仪标配的相机为视野325px、景深1250px,适合于对大体积水域进行监测,通常拍摄体积大于1mm的稀有生物种群。很多情况下,体积较小的种群其丰度较高,为了获取此类种群生物的高分辨率图像数据,需要采用视野和景深更小的相机。此时,用户可选配微型相机系统(60 mm FOV×85 mm FOV,45μm像素),实现双相机采集数据。双相机系统采集不同大小的浮游生物图像数据,可以用于观察或评价不同生物种群间的相互关系(例如捕食关系)。 双系统图像数据也可简化图像数据的分析及分类工作。可以使用微型相机采集的高分辨率图像研究体积较小、丰度较大的种群,而不用再利用标准相机对相同种群获取的低分辨率图像。BellaMare拖体 拖体采用模块化设计,根据需要更改配置,满足不同的负载需要,既可以实现在预定深度范围内的完全动态的波动飞行控制,避免船体尾波影响,也可以仅是被动拖曳。 ISIIS-2 ROTV型拖体,是最先进的主动型水下拖曳载体平台,良好的设计有效减少了环境因素对拍摄过程的干扰,尤为重要的是,此拖体具有预编程能力,可以实现按用户预定深度进行水下波动飞行,或按设定的海拔高度随着海底轮廓而运动。 ISIIS-2 ROTV型拖体提供了不同深度水中生物分布的良好刻度辨识率,其流体动力学设计有效减少了影响图像分辨率的振动,提供了接近完全无扰动的浮游生物原位观察功能。 ISIIS-1 ROTV型拖体是一个被动型水下载体平台,其释放深度及运行轨迹完全取决于系于其上的绞车电缆。其可搭载与ISIIS-2 ROTV型拖体完全相同的拍摄系统及环境探头。BellaMare集成系统 拖体可以根据需要装配许多环境参数探头,整合为一套环境参数综合监测系统,补充ISIIS浮游生物图像系统或其它调查设备的应用。目前可集成的探头包括CTD、叶绿素、溶解氧、Par、透射率等探头。软件 BellaMare拖体控制软件,采用便捷的图像控制界面,可以实现环境参数实时监测及拖体的飞行控制。所有的原始数据通过单模式光纤导缆及时地传输到甲板控制单元,系统软件可以实现数据采集、图像记录、拖体状态显示及控制功能。技术参数参数/型号 ISIIS-2 ROTV浮游动物影像仪 ISIIS-1 ROTV浮游动物影像仪观察生物 1mm-130mm大小的浮游动物、鱼卵、幼鱼等生物滤水量 162L水/秒拖曳速度 5Knot(10Knot可选)设计 四舱体,流线型,减少扰动 双舱体,流线型,减少扰动数据传输 实时数据传输,速率 80Mb/sec数据存储能力 16TB(标配),可扩展为64TB甲板控制台 用户友好型控制及显示界面拖体控制 主动控制,手动或自动控制拖体波浪运行 被动拖曳工作谁说呢 200米深度范围主相机 线性扫描相机,分辨率2048像素,35kHZ焦距及景深 125mm FOV ×400 mm FOV照明 逆光照明技术图像 记录为2kb x 2kb框图,约18帧/秒图像分辨率 像素分辨率<70μm可选微型相机 60 mm FOV×85 mm FOV,45μm像素内置传感器 CTD(盐度、温度、深度)、间距及滚动传感器间流量计 电导率: 范围0-9 s/m,精度± 0.0003,分辨率0.00005温度: 范围-5——35°C,精度± 0.002,分辨率0.0001深度: 范围0-600m,精度全量程± 0.1%,分辨率全量程0.002%可选传感器 荧光(Wetlab ECO):ex/em: 470/695 nm,范围0--125ug Chl, 灵敏度0.02 μg/l 溶解氧(SBE43):120% 饱和溶解氧,精度± 2% 饱和溶解氧, PAR(QCP2300):带宽400-700 nm透射率(Wetlab C-Star):波长470, 530 or 650 nm,带宽20nm, 线性99% R2导航控制 多普勒雷达(速度、间距、滚动、海拔、方位)电源: 350 伏特直流 DC 电,1.0 Amp /350 伏特直流 DC 电,0.6 Amp线缆 数据传输通过单模式光纤导缆尺寸(cm) 228(W)×203(L)×152(H) /116(W)×218(L)×97(H)重量(空气中) 490Kgs / 226 Kgs系统组成 水下拖体及数据采集部分,甲板单元供电部分,甲板控制系统。
    留言咨询
  • CytoSense&mdash &mdash 全球第一台便携式浮游植物分析流式细胞仪这是全球第一款专业做浮游植物研究的流式细胞仪,可对大小在0.4 mm-4 mm的浮游植物进行分析。仪器整合式设计,结构坚固,适合野外使用,且仪器移动后无需另外校准。1) 可在室内或调查船上使用2) 防溅水设计3) 可升级为CytoSub和CytoBuoy4) 特殊版本CytoSense GV可直接测量带气囊的浮游植物(如微囊藻) 工作原理细胞/颗粒流过流动池(1)的检测区域时,被激光照射(2)。样品被中空针管(3)注入锥状注射器(4)中,被不含任何颗粒的鞘液(样品的滤液,由仪器自动过滤提供)(5)包裹着流过1000 mm2石英毛细管。鞘液包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列(6),依次通过检测区域。这个过程中,颗粒(7)间的距离被拉开,当颗粒被与之呈90度角的激光束(2)照射(8)时,颗粒的散射光和荧光会被检测系统(9)检测。入射到检测系统的光束(10)被收集物镜(12)、光谱反射镜(13)处理后被检测器(11)检测。流动单元 鞘液的供给量由泵精确控制。特制的鞘液入口大大降低了鞘液的剪切力,有助于保持脆弱细胞(或群体)的完整性。特制的两步注入系统有效防止了由于船或浮标的波动引起的样品流偏移,同时也为空气留了一个通路。鞘液系统是一个自我循环系统,不需额外添加,不需废液收集瓶。过滤生产鞘液的滤膜可以持续工作数月。特制齿轮泵用于为过滤鞘液施加压力。CytoSense GV型&mdash &mdash 可分析带气囊的浮游植物有些浮游植物(如微囊藻)带有气囊。气囊会改变光散射,从而会改变这类浮游植物的&ldquo 光学指纹&rdquo 。通过施加瞬间高压可以打破气囊,从而消除由于气囊引起的光散射变化,修复&ldquo 光学指纹&rdquo 。通过两次测量可以方便的区分出带气囊的种:第一次直接测量,第二次施加高压破坏气囊后测量。那些在施加高压后改变了光散射的种就是带气囊的种。CytoSense的特殊版本&mdash &mdash CytoSense GV型可以满足上述要求。CytoSense GV型就是在CytoSense的基础上增加一个高压模块。这个高压模块可以提供瞬间高压用于破坏气囊。这个过程可以由软件自动完成。CytoSense应用于高浊度水体的对策 针对我国很多水体浊度高、泥沙含量高的特点,根据国内用户需求,泽泉科技有限公司与荷兰CytoBuoy公司合作提出如下解决方案:1)进样筛选 水样被进样器采集后,在进样器内部经过筛选排除空气和砂粒(图1)。进样器内部设计非常独特,从上到下有三个出水口,其中上边的出水口用于排除空气,多数砂粒由于沉降速率较大会经下部出水口排除,只有中间的出水口用于采集浮游植物、浮游动物和与它们密度相差不大的砂粒进行流式细胞计数和其它分析。 如果水中砂粒粒径很大,可以在进样器中增加一个不锈钢筛网,用于滤除粒径大于1 mm的泥沙颗粒。 对于多数粒径大于50-100 um的砂粒而言,它们的沉降速率大于CytoSense的进样流速(1-2 cm/s),因此不会被进样器吸入。2)外置鞘液系统 CytoBuoy系列浮游植物流式细胞仪(包括CytoSense、CytoBuoy和CytoSub)的一个重大创新就是不用外加鞘液,而是直接采用水样的过滤液作为鞘液,这样既节省了用户的成本,也省去了更换鞘液的麻烦,同时还避免了流路发生生物污染的可能。但是由于样品过滤生成的鞘液量不是很大,在测量高浊度水体样品时,就难于避免水体中黄色物质发出的荧光的影响。另外,对于类似我国黄河水体、或者洪水期的长江水体而言,泥沙颗粒非常多,可能每100个颗粒中只有1-5个浮游植物细胞(甚至有可能每1000个颗粒中只有1个浮游植物细胞),其它都是泥沙颗粒,这极大增加了浮游植物计数的难度。但即使是这样的水样,CytoSense也是可以测量的。为了达到更好的分析效果,建议采用如下的外置鞘液系统。 外置鞘液系统的鞘液采用蒸馏水或市场上购买的桶装水皆可。自来水由于含氯,对浮游植物活性有影响,因此不建议使用。其它类似PBS缓冲液等也可作为鞘液,只是比蒸馏水或桶装水的获取更麻烦,成本更高。鞘液桶采用容量20-30升的塑料桶即可。根据工作模式,可分为外置非循环鞘液系统和外置循环鞘液系统。 外置非循环鞘液系统(图2):鞘液一次性使用,用完即排出不在使用。连续工作1小时约需5升鞘液,工作1天约需50升鞘液。 外置循环鞘液系统(图3):鞘液使用后经循环过滤系统可重复利用,大大节省了鞘液用量。由于循环使用鞘液,水体样品中的黄色物质会流入鞘液中,尽管被稀释,但还是会产生微弱的荧光。因此建议鞘液桶足够多(20-30升),以尽量降低黄色物质荧光引起的误差。同时建议每天更换新的鞘液。 通过以上这些设计,CytoSense完全可以直接测量高浊度水体样品(如洪水期的长江水样、长江口水样),可以对水中总颗粒进行计数。通过样品是否发出荧光,可以区分浮游植物和其它颗粒。通过多色荧光,可以对浮游植物进行聚类分析。通过浮游植物专家库,可以对多数非球状西部鉴定到种。当然,如果结合GV模块(自动破碎微囊藻的囊),还可以对微囊藻(不需预处理)直接测量。
    留言咨询
  • 一、JYQ-IV浮游细菌采样器产品概述: 根据颗粒撞击的原理,参照美国SAT型浮游细菌采样器,我们研制成QT型缝隙式浮游细菌采样器,可直接测到1立方米气体中的细菌个数,有效地配合我国“GMP”规格的贯彻。该产品结构合理,技术性能指标在地位,其中采样流量达到100L/min,仪器整体水平达到产品水平,填补大流量狭缝式浮游细菌采样器空白。应用成降法测定菌落数,该方法不能直接得知单位体积中的细菌数,已经不适合我国“GMP”规格的要求。 JYQ-IV型浮游空气尘菌采样器是一种的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部为控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大、性能稳定,操作简便,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。二、JYQ-IV浮游细菌采样器主要特点: 1、采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误。 2、可编程,采样量从0.01-6.0立方米任意设定。 3、LCD显示采样量,采样时间等参数。 4、可将采样量,采样时间等参数按组储存,可储存256组数据。 5、造型独特,使用方便。 6、更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15)三、JYQ-IV浮游细菌采样器技术参数: 采样流量:100L/min 采样口流速:0.4米/秒与洁净室内奉速基本相同(等速采样) 采样周期:任意设定 培养皿规格:Φ90×15mm 工作环境:温度10~35℃ 相对温度20~75%RH 外形尺寸:Φ120 x 300mm 电源:交直流两用,可充电电池DC6V,充好电后可连续工作4小时 功耗:20W 重量:2kg
    留言咨询
  • 浮游菌检测仪 400-860-5168转4275
    产品简介 空气微生物采样检测一体机可用于生物应急突发事件现场快速采样检测;还可广泛用于疾病预防控制、环境保护、制药、发酵工业、食品工业、生物洁净以及公共场所等环境的空气浮游菌采样检测,也可用于有关教学、科研等机构进行空气中微生物采样检测。 空气微生物采样检测一体机产品优势 1.空气微生物采样检测一体机集大流量采集模块、快速荧光检测模块、清洗模块等于一体,实现了全自动无人值守检测(可每天定时多时段检测),省却了人工单独采样,采样完成再转换到实验室检测的过程; 2.安卓系统RAM2G+ROM16G; 3.大流量空气采样装置(干壁气旋固气分离原理) 4.采用MPPT硅光电倍增管检测器 5.可每天定时多时段检测; 6.检测完自动报讯数据; 7.可wifi联网将数据无线上传至云平台; 8.配置数据管理平台,可进行长短期评估管理分析; 9.交直流两用,可方便长时段监测,也可方便流动检测; 10.可选配4G模块,定位模块 空气微生物采样检测一体机原理简介 基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)活体微生物体内的ATP含量较为恒定,通过检测发光值来确定ATP含量,从而可确定样品中活体微生物的含量,首先通过大流量空气采样模块将空气中的微生物富集到蒸馏水里面,然后向液体中加入定量的酶液,充分反应后,经过快速荧光检测模块测试相对发光度,根据发光的强度可以测算出对应的微生物含量。 产品参数 系统:安卓Android7.1 空气采样流速:245L/min 空气采样流量:10-750L/min 检测时间:2-180S 检测范围:0-9999999RLUs。 ATP检出限:10-10到10-12molATP 温度范围:18-45度 采集效率:92% 待机时间:=10H 平均功耗:6W 电源:12V直流供电 电池:12V/10000mAH 体积:337*163*480mm 重量:8KG
    留言咨询
  • FlowCamMacro采用先进的流体分析、显微成像、荧光监测、智能数据分析技术,实现水体中浮游生物的半自动识别及分类、计数功能。全球有超过300套FlowCam系统在为用户提供服务,进行测定、识别和研究浮游植物以及小型的浮游动物样品。新的FlowCam Macro浮游动物自动分类系统采用了前沿的颗粒成像技术,更新、更高分辨率的镜头(1200*1920像素),具有更快的帧率(高达100fps),更加适合于浮游动物或其它大颗粒的研究(最大5mm)。仪器可以实现浮游动物的数量统计及种类统计。应用:浮游动物分类浮游动物计数颗粒物分析水生态研究海洋生态监测
    留言咨询
  • 一、JYQ-IV浮游细菌采样器产品概述: 根据颗粒撞击的原理,参照美国SAT型浮游细菌采样器,我们研制成QT型缝隙式浮游细菌采样器,可直接测到1立方米气体中的细菌个数,有效地配合我国“GMP”规格的贯彻。该产品结构合理,技术性能指标在地位,其中采样流量达到100L/min,仪器整体水平达到产品水平,填补大流量狭缝式浮游细菌采样器空白。应用成降法测定菌落数,该方法不能直接得知单位体积中的细菌数,已经不适合我国“GMP”规格的要求。 JYQ-IV型浮游空气尘菌采样器是一种的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部为控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大、性能稳定,操作简便,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。二、JYQ-IV浮游细菌采样器主要特点: 1、采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误。 2、可编程,采样量从0.01-6.0立方米任意设定。 3、LCD显示采样量,采样时间等参数。 4、可将采样量,采样时间等参数按组储存,可储存256组数据。 5、造型独特,使用方便。 6、更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15)三、JYQ-IV浮游细菌采样器技术参数: 采样流量:100L/min 采样口流速:0.4米/秒与洁净室内奉速基本相同(等速采样) 采样周期:任意设定 培养皿规格:Φ90×15mm 工作环境:温度10~35℃ 相对温度20~75%RH 外形尺寸:Φ120 x 300mm 电源:交直流两用,可充电电池DC6V,充好电后可连续工作4小时 功耗:20W 重量:2kg
    留言咨询
  • 浮游生物培养器 400-860-5168转2703
    名称:浮游植物培养器 | 浮游动物培养器 型号:PLR | PR 产地:欧洲 介绍: PLR培养器用于在实验室内培育藻类等浮游植物。当光照、CO2和营养等条件持续充沛,培养器内的微藻生长迅速,24小时内总量可扩增四倍。淡水和海水类浮游植物都可以在PLR培养器中进行培养。 PR培养器可进行海水或淡水类浮游动物的培养。在最佳条件的藻类养料供应下,轮虫(Brachionus)等浮游动物的生物量在4天中可增长一倍。 PLR和PR配置相同,唯一区别在于PLR培养器拥有照明系统。培养器使用时需固定在墙上。 技术参数 容积:2.5L 内径:80mm 长度:80cm 管接口:6mm 照明单元:18W荧光灯(PLR浮游植物培养器配备) 主要配置: 培养器,墙托,气泵接口,固定夹,充气泵,照明系统(PLR培养器专属)
    留言咨询
  • 空气浮游菌采样器Bio-Mark,撞击法原理采集空气中的浮游菌。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果。浮游菌采样器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部为控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大、性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。 产品编号产品描述产品说明BM18-40采集流量:采集口流速: 测定体积范围:适用培养皿直径:重量:尺寸:显示:电池使用时间:100L/min0.4m/s,与洁净室内风基本相同(等速采样)10-6000升90mm2.5KG120×195×300mm采样量、采样时间6-8h
    留言咨询
  • LabSTAF -浮游植物初级生产力评估浮游植物初级生产力(PhytoPP)的单周转量主动荧光法(STAF)LabSTAF是下一代基于STAF的仪器,用于评估浮游植物的初级生产力。该系统具有无与伦比的灵敏度和宽动态范围,允许在所有环境中进行测量:从水库、湖泊到开阔的海洋。 LabSTAF概述根据研究 单通量主动荧光法(STAF)是一种已建立的浮游植物光合作用定量评价方法。重要的是,它允许评估浮游植物的初级生产力(PhytoPP),为我们进一步了解全球碳循环提供有价值的数据。LabSTAF是在nerc资助的OCEANIDS计划中开发的新一代研究级主动荧光计中的第一个。此外,工作人员发展的持续资金是通过欧盟资助的海洋传感技术方案提供的。包含的基于windows的RunSTAF软件提供了广泛的实验设置,手动控制或高度自动化的操作,实时数据分析和方便地访问csv格式的主要数据。 系统控制标准的LabSTAF具有高动态范围,允许从极端少营养到中营养甚至一些富营养条件的测量。LabSTAF的高生物量(HB)版本将动态范围的高端扩展了十倍。这就打开了将STAF应用于例如持续评估藻类生长池内生物量积累的机会。 LabSTAF特性关键特性在大多数情况下,使用高性能硬涂层光学滤光片消除了滤液空白校正的需要。 提供两个荧光检测波段,允许通过双波段测量(DWM)对包装效应进行量化和校正。包含7个荧光激发LED波段,通过生成光化学激发剖面(PEP)实现快速和高度自动化的光谱校正。集成光化光源,提供10至 1600µ mol光子m-2 s-1。光源由直流驱动,以避免与脉宽调制(PWM)相关的测量伪影的可能性。样品室块包括一个循环水套,避免与所有光路相交,以允许使用正在进行的水来控制样品温度。 FLC自动化包括使用连续评估Ek参数的新方法对FLC协议进行动态优化。 除了标准FLC参数外,实时数据分析还提供39个荧光参数,并包括基线荧光校正选项。 广泛的导出功能,提供对主要数据的访问。它们可用于从单个文件或跨多个文件提取数据。 与FastOcean和Act2系统的比较 LabSTAF代表了切尔西建立的FastOcean快速重复率荧光计(FRRf)和Act2实验室系统的重要更新,用于运行flc。一个重要的变化是从FastOcean中采用的2µ s间距上的1µ s FRRf“闪光”切换到LabSTAF中使用的固体激发脉冲。这有助于灵敏度提高十倍以上,并将标准单次转换(ST)脉冲从200µ s减少到100µ s。减少ST脉冲的长度将双击率从27%左右降低到12%左右,这使得在更高的频率上应用ST脉冲成为可能。 应用程序直接测量浮游植物的光合速率,单位体积,单位时间,允许评估PhytoPP。 自主获取高分辨率的STAF数据,有可能有助于核实基于卫星的PhytoPP模型。利用闪烁小瓶对浮游植物样品进行快速光生理筛选。 跟踪藻华的发展和群落结构的变化。 浮游植物光合作用和细胞代谢的日循环分析。 科研船和便利船的自主连续航行测量。实时评估环境变化对浮游植物光合作用的影响,包括环境光、温度、养分富集和污染事件。 LabSTAF深度活性氟量计 用于探测光合作用的两种最常见的基于荧光的方法是单次翻转主动荧光法(STAF)和多次翻转脉冲幅度调制(PAM)方法。迄今为止,STAF方法是对浮游植物的光学薄悬浮液(如在世界海洋和大多数湖泊和河流中发现的)进行测量的最佳选择,而PAM方法适合于光密度高的样品(如大型藻类和海草)。 荧光曲线(FLC)对于许多用户来说,LabSTAF最重要的应用是从培养物或自然样品中全自动获取一致的荧光光曲线(FLC)数据。LabSTAF硬件和RunSTAF软件的结合允许高度自动化的flc采集,具有实时轻步调整,自动样品交换和系统清洗的选项。例如,这些特性已被用于连续运行LabSTAF系统数周,同时在研究船上的供水系统中进行探测。 快速筛选多个样品尽管在FLC自动化的开发上已经付出了大量的努力,但该系统允许运行更短的自动化协议。用户还可以使用手动控制选项。当使用这些功能时,大样品室提供了一系列选择。一种选择是将10至20毫升的样品直接倒入样品室。或者,可以从闪烁小瓶内的较小样品进行快速测量。 LabSTAF,初级生产力和双重孵育法 在全球范围内,浮游植物的初级生产力(PhytoPP)约占光合作用固定碳的一半。虽然海洋颜色的卫星遥感在尽可能广泛的空间尺度上运行,并且可以说是在全球生化循环和气候背景下评估PhytoPP的唯一手段,但用于从卫星数据中估计PhytoPP的算法依赖于大量的原位测量数据集。直接定量PhytoPP的既定参考是基于14C示踪剂的方法,该方法无法提供所需时间和空间分辨率的数据。原位PhytoPP测量的缺乏限制了PhytoPP遥感算法的发展和验证,并阻碍了区域和全球生态系统和气候模型的充分参数化。staff作为一种光学方法,可以以更高的空间和时间分辨率自主评估PhytoPP,成本仅为基于14C示踪剂的方法的一小部分。 虽然基于14C示踪剂的方法直接测量碳固定,但STAF测量的是由光系统II (PSII)光化学提供的碳固定所需的还原力的速率。RunSTAF经过优化,提高了对该速率的估计,并结合了高度自动化的协议,允许通过应用光化学激发剖面(PEP)进行包效应校正(PEC)和光谱校正。RunSTAF中还包括用于校正基线荧光(来自光化学活性PSII复合物以外的来源)的其他数据处理工具。 PSII光化学的STAF衍生值可以通过电子与碳的比率(Φe,C)转化为碳固定率。该比值的测定需要基于STAF的PSII光化学测量和基于14C示踪剂的碳固定测量。并入LabSTAF的大样品室允许使用24 mL闪烁小瓶,使14c加标样品可用于评估碳同化与STAF测量并行。这种“双重孵育”方法的发展消除了许多方法上的不一致性,这些不一致性阻碍了对固定每个碳(通过14c固定评估)所需电子数量的实际评估(通过STAF评估)。虽然这种双孵育不能在高分辨率下进行,但在特定环境中进行的代表性测量将提供提高PSII光化学和碳同化之间转换精度的值。LabSTAF规范LabSTAF单元的基本规格电力供应140 - 400ma 24 V (3.4 - 9.7 W)尺寸(毫米)236(高)× 328(宽)× 429(深)质量(约)8.1Kg样品室样品体积10- 20ml,用闪烁瓶降至4ml激发波段(波长)中心波长:416、452 x2、473、495、534、594、622 nm光化光源蓝色增强,直流输出从10到>1600 μmol光子m-2 s-1检出限是否能以相当于叶绿素a的0.001 mg m-3在452nm激发下产生的荧光信号的振幅来分辨FIP评级IP64(防任何方向的水雾)LabSTAF电源组的基本规格功率要求市电(110 ~ 220v AC)尺寸(毫米)259(宽)× 201(深)× 114(高)质量(约)2Kg关闭时的IP等级IP64(防任何方向的水雾)使用时的IP等级IP40(防止工具进入,但不防潮)LabSTAF备件套件的基本规格尺寸(毫米)424(宽)× 340(深)× 173(高)质量(约)5.2 Kg关闭时的IP等级IP64(防任何方向的水雾) LabSTAF备件包的内容蠕动泵,包括泵机组,泵头带6mm内径安装油管,电源线,接口电缆电磁阀单元,包括电缆流经装置和流经搅拌器装置校准塞样品室盖Surface Go 3,包括键盘和电源线额外的备件,包括油管,O型圈,硅脂
    留言咨询
  • 浮游菌采样器 400-860-5168转6216
    浮游菌采样器一、产品描述根据颗粒撞击的原理,参照美国SAT型浮游细菌采样器,我们研制成JYQ型缝隙式浮游细菌采样器,可直接测到1立方米气体中的细菌个数,有效地配合我国“GMP”规格的贯彻。该产品结构合理,技术性能指标在国内处地位,其中采样流量50L/min,仪器整体水平国外八十年代同类产品水平,填补国内大流量狭缝式浮游细菌采样器空白。应用成降法测定菌落数,?该方法不能直接得知单位体积中的细菌数,已经不适合我国“GMP”规格的要求。JYQ-IV型浮游空气尘菌采样器是一种的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果。  本仪器结构新颖,分上下两部分,上部分采集口和采样座及气泵,下部为控制器及电池。采样口和外壳采用航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能,采样量大、性能稳定,操作简便,同类产品水平,是各制药厂、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。2、 主要特点:1.采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误2.可编程,采样量从0.01-2.0立方米任意设定3.LCD显示采样量,采样时间等参数4.可将采样量,采样时间等参数按页储存,多可储存256页数据5.造型,使用方便6.更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15)三、参数采样流量:0-6000L/min采样口流速:0.4米/秒与洁净室内奉速基本相同(等速采样)外形尺寸:Φ120 x 300mm电源:交直流两用,可充电电池DC6V,充好电后可连续工作4小时重量:4kg四、维护、保养及使用注意事项1、不得抽取有毒有腐蚀性气体,不得在有强酸强碱环境中使用,不得在粉尘浓度大于0.3mg/m?的环境中使用。2、没有卸下“保护盖”时不得按“采样”键。3、显示屏显示电池图案时,表示电池电量不足,充电后再使用,否则采样流量偏小,采样量不准确。4、安装培养皿时,培养皿到位且应卡住,并将培养皿调整为基本水平。5、一定要使培养皿调整为基本水平,调节定位杆,使定位杆上刻线与培养基上表面在同一水平面上。6、每次使用完毕后,须用酒精将“采样头”和“保护盖”搽洗干净,并将“保护盖”盖好在“采样头”上。7、长时间不使用时,应放于包装箱内,并每月至少使用,每次不少于10分钟。五、常见故障处理常见故障故障原因处理方法打开电源开关,显示屏不显示1.电池无电2.保险丝熔断1.将随机配置的6V直流电源插上充电2.打开底盖换保险丝按“采样”键,采样泵不工作1.手柄内导线断2.采样泵电源坏3.采样泵坏1.手柄内导线连好2.换采样泵电源3.换采样泵采样流量小1.电池电压低2.采样头微孔堵塞3.培养皿内培养液过多1.插上电源充电2.清洗采样头3.培养皿内培养液调到位置打开电源开关,显示屏显示滥码或控制键不工作采样器内计算机死机将电源开关关断后过大于5秒钟后开机
    留言咨询
  • 一、概述 TW-FKC2 型浮游细菌采样器,为国内首款彩色触摸屏浮游细菌采样器,外壳采用 ABS 工程塑料一体成型制作,无清洁死角,产品美观大方。本产品严格按照我国新版 GMP 规范要求,根据安德森撞击原理并参照国外同类产品进行设计制造。它具有下列特点: 采样头为316 材质,共计397 个孔,直径φ0.7mm 微孔(直孔,无倒角),减少了细菌重叠,降低了微生物计数错误。可编程,采样量从1-9999L 任意设定。 可设置采样延时及采样间隔时间。 彩色触摸屏显示采样量,采样延时,采样间隔,采样流量等参数。 采样量,采样时间等参数按页储存。 可储存 5000 组数据。并有 USB 端口连接,可以数据导出。 自主研发采集芯片,采样流量更稳定。 更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿 φ90×15)二、技术指标: 1. 采样头为 SUS316L 制作,适用于大部分消毒方式 2. 采样流量:100L/min±5% 3. 采样延时:0-255S(可调) 4. 采样周期:0-9999S(可调) 5. 采样体积:0-9999L(可调) 6. 撞击速率:10.8m/s(安德森撞击等级第五级原理) 7. 电池使用时间:4 小时以上 8. 外形尺寸:155*190*155mm (W*D*H)重量:2.1Kg 9. 执行标准:ISO 14698-1/2,GB/T 16293-2010 三、使用条件、用途: 1.正常大气压环境 2.温度 10-60℃ 相对湿度 10-75%RH 3.电源 AC220V 转 DC16.8V2.浮游细菌采样
    留言咨询
  • 法国HYDROPTIC公司 ZooSCAN浮游动物图像扫描分析系统类别: 浮游动物自动鉴定系统型号: ZSCA04关键字: ZooSCAN,浮游动物图像扫描分析,浮游动物鉴定供应商: 青岛水德科技有限公司产品简介:ZooSCAN浮游动物图像扫描分析系统主要用于对液体中的浮游动物样品进行计数、大小测量以及种类鉴定。ZooSCAN浮游动物图像扫描分析系统是由ZooSCAN、ZooProcess和EcoTaxa网站等共同组成的,ZooSCAN是硬件部分,主要进行浮游动物样品扫描,对浮游动物鉴定形成数字图像。ZooProcess和EcoTaxa是软件部分,分别以标准化的程序处理原始图像、对不同个体的形态参数进行自动测量和对图像中的浮游动物进行自动分类和计数。详细介绍:法国HYDROPTIC公司——ZooSCAN浮游动物图像扫描分析系统 ZooSCAN浮游动物图像扫描分析系统主要用于对液体中的浮游动物样品进行计数、大小测量、种类鉴定以及生物量测定。ZooSCAN浮游动物图像扫描分析系统系统是由ZooSCAN、ZooProcess和EcoTaxa网站等共同组成的,ZooSCAN是硬件部分,主要进行浮游动物样品扫描,形成数字图像。ZooProcess和EcoTaxa是软件部分,分别以标准化的程序处理原始图像、对不同个体的形态参数进行自动测量和对图像中的浮游动物进行自动分类和计数。ZooSCAN浮游动物图像扫描分析系统工作流程: 1)扫描空白背景; 2)扫描样品,获得原始图片和元数据信息; 3)通过ZooProcess软件,标准化原始图片,提取并测量图片中不同个体的形态参数; 4)通过对形态学参数的提取与分析,可进一步获得样品的粒径组成、生物学体积等信息 5)过EcoTaxa网站已建立的图像培训数据库,针对已扫描的样品图像进行浮游动物的自动识别,获得不同类群浮游动物的数量。 ZooSCAN浮游动物图像扫描分析系统应用领域:生态学调查、渔业、水产养殖、教育。ZooSCAN浮游动物图像扫描分析系统原理: Microscope实验室ZooSCAN实验室+野外(现场)UVP野外(水下原位)ZooSCAN浮游动物图像扫描分析系统(CNRS专利)系统使用扫描仪技术,这项技术带有传统照明设备和一个用于放置液体的浮游动物样品水密的扫描室。ZooSCAN浮游动物图像扫描分析系统可以记录高分辨率的数字化图像,然后这些数字化的图像可以通过电脑程序进行研究。虽然这个数字化的浮游动物图像比使用一个双目显微镜获得的图片的分辨率要低,但这项技术已被证实,在有大型样品种类时使用是再适合不过了。通过与EcoTaxa网站上已有的浮游动物数据库进行对照,可以自动的识别、鉴定样品中浮游动物的种类。浮游动物识别、鉴定网站——EcoTaxaEcoTaxa网站主界面.EcoTaxa浮游动物分类界面为什么使用ZooSCAN浮游动物图像扫描分析系统? 传统分析方法(镜检)◇ 需要专业人员◇ 操作过程相当繁琐◇ 后期数据处理工作量极大 ZooSCAN浮游动物图像扫描分析系统(超高质量图像扫描)◇ 无需专业人员(建库之后)◇ 操作过程非常简单◇ 后期数据由软件自动处理 ZooSCAN浮游动物图像扫描分析系统规格:◇ 型号:ZSCA04◇ 规格 (LxWxH): 60 x 54 x 36 cm (关上盖子)◇ 质量: 25 Kg◇ 输入电压: 110 to 230 VAC, 50 to 60 Hz◇ 接口: USB 2.0ZooSCAN浮游动物图像扫描分析系统特性:◇ 应用(专):专门用于浮游动物研究◇ 功能(强):自动鉴定、分类、计数、计算生物量◇ 效率(高):快速批量分析大量浮游动物样品◇ 信息量(大):经纬度、采样深度、网型、网口面积等◇ 照明系统(优):确保图像的质量和对比度◇ 图像解析度(高):4800dpi◇ 图像分辨率(高):14150 x 22640 (3.2亿像素,1GB)ZooSCAN正在进行扫描回收ZooSCAN样品池中的样品浮游动物样品池,透明度佳ZooSCAN主机+ZooProcess软件
    留言咨询
  • 新Algacount F100、F200是迅数科技的升级版浮游生物计数仪,集藻类智能鉴定与计数、浮游动物计数于一体,是专门为水环境与海洋环境生物监测提供的智能图像分析工具。新F100采用了最新开发的浮游生物分析模块:全新扩容的浮游生物数据库和生物相似性高精度藻种智能搜索功能,实现了藻种的快速辅助鉴定。同时还配备了景深拓展拼接、生物量分析、单细胞微藻自动计数等多种藻类分析功能。 其中新F200则是在新F100的基础上,增加了藻类混沌智能分类计数和色素特征快选功能,实现不同藻类自动分割计数和色素体自动定量定位分析。生物相似性高精度藻类智能搜索鉴定生物相似性高精度智能搜索是迅数新一代藻类智能鉴定的核心技术,通过“形态相似性”与“生物相似性”的有效结合,准确提取并融合藻种的生物特征,并使用支持向量机的分类器进行训练,极大地提高了藻类搜索精度,使得快速藻类鉴定成为可能。 全新扩容的浮游生物数据库系统建立了11个门、862属、8093个种的藻类形态数据库。所有藻种的显微照片、手绘图和文字描述,都经过藻类专家的校验,力求全面、准确地反映藻类的形态特征。同时分设海洋藻、淡水藻数据库(海洋藻270属,2818种;淡水藻622属,5275种),允许用户对藻类库进行扩容。用户可用多种方式进行藻种搜索和查询,如生物相似性高精度智能搜索、形态学搜索、分类学查询和常见藻查询等。 系统内设23大类浮游动物形态数据库。每种以中文、拉丁文双命名,辅以真实的显微照片、手绘结构图和详尽的形态文字描述。用户可以通过中文名或拉丁文名搜索某个具体的生物,或按门(类)、属、种的分类学次序进行搜索。混合藻自动分类计数混沌智能分类计数是迅数在藻类自动分类计数研究方面的重大技术突破,初步实现了形态、色泽差异大的多类藻细胞自动分类计数。 单细胞微藻自动计数为了促进新能源、新食品原料微藻的研究和生产工艺控制,迅数开发了“卵形细胞辅助计数”和“复杂细胞辅助计数”两种图像分割算法,可以快速实现微藻细胞浓度测定。 多细胞分析(胶被群体、链状体)针对用户渴望准确分析微囊藻、直链藻的子细胞数量,“迅数”研究了专门的算法,为类似的胶被群体和链状体藻类研究,提供了方便、快速的分析工具。 流程式操作、浮游生物分类计数、优势种自动排序连续自动拍摄多个视野的浮游生物图片,点击标记不同种类,快速实现多个视野中相同种自动累加计数,轻松实现不同生物种的分类计数、自动总数累计、优势种自动排序和优势类群所占比例分析。 显微测量、生物量分析、色素体研究为满足用户对藻类微观形态的研究,系统提供了专门的显微分析工具。透明数字标尺可在不同物镜倍率下实现显微测量;生物量分析模块可根据显微测量数据、藻类几何模型,快速计算当前藻种的生物量;“色素特征快选”工具,可以依据藻色素特征,对色素体自动定量、定位。 主要功能与技术指标一、显微数字成像 1)科研级彩色CCD相机,大视场显微图像动态观察、静态捕获 2)手动、自动双模式控制拍摄 3)多维景深融合焦:扩展高倍物镜景深,显现不同液层细胞 4)超视野拼接:适合丝状、链状藻类的观察分析二、浮游生物专家数据库 1)数据库内容:浮游生物形态、文字介绍、手绘图、显微照片;允许用户完善、补充图库和文字 2)浮游植物类群:蓝藻、绿藻、硅藻、裸藻、黄藻、褐藻、甲藻、隠藻、金藻、红藻、轮藻共11个门、862属、8093个种 的藻类,其中海洋藻2818种,270属;淡水藻5275种,622属。 3)浮游动物类群:原生动物鞭毛虫、原生动物肉足虫、原生动物纤毛虫、轮虫、枝角类、桡足类、被囊类、等足类、端 足类、浮游多毛类、浮游螺类、浮游幼虫、管水母类、介形类、糠虾类、涟虫类、磷虾类、毛颚类、 十足类、水螅水母类、头足类、樱虾类、栉水母类,共23大类 4)智能查询:分类学、中文名、拉丁名、水华、赤潮、有毒藻、海洋藻、淡水藻、关键词三、藻类智能鉴定1. 生物相似性高精度智能搜索 1)生物特征信息提取:获取藻细胞的颜色、形态、纹理特征 2)智能搜索:将特征信息融合为藻细胞图像的特征向量,使用支持向量机的分类器进行训练,实现对藻细胞图像的分类鉴 别搜索。2. 形态学搜索 1)一级形态:单细胞、多细胞群体、不分枝丝状体、分枝丝状体、膜状体、管状体、链状体、网状体 2)二级形态:细胞形态、细胞结构、群体形态、母细胞壁、子细胞排列与数量、藻丝结构与分枝等四、浮游生物计数与分析1. 流程式计数 1)浮游生物分类标记:采用不同颜色、不同大小的色圈标记 2)浮游生物分类计数:对不同视野按类别点击、自动累积计数 3)浮游生物总数统计:对样本各种浮游生物的总数进行自动累计 4)优势种自动排序、按门(类)排序、优势群落组成百分比分析 5)藻密度、浮游动物丰度自动换算 6)藻类胶被群分析:对胶被包围的多细胞群体,自动解析换算子细胞数 7)藻类链状体分析:对链状多细胞群体,自动解析换算,估算出链状细胞数2. 单细胞微藻自动计数 1)卵形细胞辅助计数:对轮廓清晰的单细胞微藻,动态调节、分割计数 2)复杂细胞辅助计数:对背景清晰、形态复杂的单细胞微藻分割计数3. 混合藻自动分类计数 1)混沌智能分类计数:基于混沌原理,对混合藻实现模糊判断和自动分类计数4. 色素体分析、测量及生物量分析 1)色素体定量:依据藻色素特征,对色素体自动定量、定位 2)标尺测量:具有透明、不透明2种标尺,可用鼠标拖动标尺,对浮游生物快速测量 3)任意测量:鼠标点击划线测量浮游生物 4)生物量分析:依据浮游生物形态数学模型,测量、计算生物量五、数据管理、报表打印 1)标注:可在已拍摄的浮游生物图片上,进行任意的文字、尺寸标注 2)数据库:自动保存每批显微照片、统计标识和统计数据 3)报告编辑、打印:提供报告编写模板、文本输入、打印预览 4)数据导出:浮游生物统计数据、图片导出到EXCEL六、仪器规格与配置 1)科学级彩色CCD(2580×1944) 2)浮游生物智能鉴定计数软件 3)品牌商务液晶电脑 4)用户自配:显微镜和摄像接口
    留言咨询
  • 新Algacount M500菌落计数/浮游生物分析联用仪是迅数科技的升级版高端多功能生物监测仪,集菌落计数、藻类鉴定与计数、浮游动物计数、显微分析四大功能于一体,是专门为淡水、海洋环境生物监测提供的智能图像分析工具。新M500搭载了最新的浮游生物分析模块,采用了全新扩容的浮游生物数据库和迅数最新开发的核心技术:生物相似性高精度藻种智能搜索、混沌智能辅助分类识别,实现快速的藻种辅助鉴定和不同藻自动分割计数。同时还具备景深拓展拼接、生物量分析、单细胞微藻自动计数等多种藻类分析功能。 浮游生物分析全新扩容的浮游生物数据库系统建立了11个门、862属、8093个种的藻类形态数据库。所有藻种的显微照片、手绘图和文字描述,都经过藻类专家的校验,力求全面、准确地反映藻类的形态特征。同时分设海洋藻、淡水藻数据库(海洋藻270属,2818种;淡水藻622属,5275种),允许用户对藻类库进行扩容。用户可用多种方式进行藻种搜索和查询,如生物相似性高精度智能搜索、形态学搜索、分类学查询和常见藻查询等。系统内设23大类浮游动物形态数据库。每种以中文、拉丁文双命名,辅以真实的显微照片、手绘结构图和详尽的形态文字描述。用户可以通过中文名或拉丁文名搜索某个具体的生物,或按门(类)、属、种的分类学次序进行搜索。 生物相似性高精度藻类智能搜索鉴定生物相似性高精度智能搜索是迅数新一代藻类智能鉴定的核心技术,通过“形态相似性”与“生物相似性”的有效结合,准确提取并融合藻种的生物特征,并使用支持向量机的分类器进行训练,极大地提高了藻类搜索精度,使得快速藻类鉴定成为可能。 流程式操作、浮游生物分类计数、优势种自动排序连续自动拍摄多个视野的浮游生物图片,点击标记不同种类,快速实现多个视野中相同种自动累加计数,轻松实现不同生物种的分类计数、自动总数累计、优势种自动排序和优势类群所占比例分析。 混合藻辅助分类识别混沌智能辅助分类计数是迅数在藻类识别研究方面的重大技术突破,利用藻细胞在颜色、尺寸、形状等方面的差别,初步实现了形态、色泽差异大的多类藻细胞辅助分类计数。 单细胞微藻自动计数为了促进新能源、新食品原料微藻的研究和生产工艺控制,迅数开发了“卵形细胞辅助计数”和“复杂细胞辅助计数”两种图像分割算法,可以快速实现微藻细胞浓度测定。 显微测量、生物量分析、色素体研究为满足用户对藻类微观形态的研究,系统提供了专门的显微分析工具。透明数字标尺可在不同物镜倍率下实现显微测量;生物量分析模块可根据显微测量数据、藻类几何模型,快速计算当前藻种的生物量。“色素特征快选”可以依据藻种色素特征,对色素体进行自动测量和描述,方便用户通过色素体形状、分布和数量来估计藻类生产力的强弱。 菌落计数全封闭照明采用全封闭、宽光带照明技术,符合人体工学的舷窗门设计,隔绝环境光的干扰,彻底消除杂散光在玻璃培养皿折射形成的光斑、光环现象。采用长寿命、低功耗、环保型三色LED混合光,可以还原真实的菌落色泽,消除白光LED照明成像偏蓝的问题。 智能菌落计数以国际前沿的图像分割技术“水平集活动轮廓模型”为核心,针对微生物菌落多样性创造性地开发出一键式智能计数、多项高级统计和分析工具,为水资源卫生质量监测提供了便捷、高效的分析工具,可以轻松实现细菌总数、总大肠菌群、粪大肠菌群、粪链球菌等的精确计数。 主要功能与技术指标一、菌落数字成像1. 光源 1)可见光:高亮三色LED结构光 2)254nm紫外:用于腔体消毒、紫外诱变2. 光路与照明控制 1)全封闭暗箱:消除环境杂散光干扰 2)上光源:场景式360°柔性无影光照明 3)下光源:晶锐悬浮式暗视野照明 4)上光、下光、双光、紫外,自由切换,光强可调 3. 光电转换 1)标清工业定焦镜头:8mm、 2.0 mega-pixel、1/2"、Distortion 1%、 F1.4~F32、C-Mount 2)专业型CMOS相机:1/2.5"color CMOS sensor、8 Mega Pixels、C-Mount二、菌落计数模块1. 基本菌落计数功能 1)平皿类型:倾注、涂布、膜滤、3M纸片 2)一键智能计数(6模式):较大菌落、微小菌落、灰白菌落、蔓延菌落、特定菌落、多色混杂菌 3)全皿菌落统计:菌落总数统计,并按25档尺寸分类显示 4)区域选择统计:可选择半圆、矩形、扇形、任意圈定区域进行统计 5)直径分类统计:设置直径范围,统计特定大小的菌落 6)鼠标点击统计:快速标记、添加菌落,适合培养皿边缘菌落的计数 7)菌落粘连分割:自动分割相互粘连的菌落,链状菌落由用户选择分割或不分割2. 高级菌落统计功能 1)动态调节统计:可对统计结果进行动态调节修正,快速获取最佳统计效果。 2)偏差预估统计:适用于菌落颜色多且复杂的情况。 3)水平集多模型算法:搜索运算,获取最佳图像分割效果,适应培养基背景变换 4)特定菌落统计:根据菌落色泽、大小、轮廓特征,识别特定菌落 5)反式统计:适合菌落类型极其复杂而培养基背景均匀 6)杂菌、杂质剔除:根据形态、尺寸、颜色的区别,进行自动杂菌、杂质剔除3. 网格滤膜与3M测试片 1)黑色实线网格一键统计 2)3M细菌总数测试片、3M金黄色葡萄球菌测试片:一键统计 3)3M大肠菌群测试片、3M大肠杆菌/大肠菌群快速测试片:一键统计+人工选择4. 专项分析 1)防霉检测:定量分析防霉等级5. 高级工具 1)网格清除:消除滤膜网格背景干扰 2)人工计数修正:添加或删除菌落 3)排除污染区域:鼠标勾勒任意污染区域,自动剔除污染区域的菌落数 4)背景文字消除:自动消除记号笔干扰 5)人工粘连分割:手动分割多重粘连菌落 6)参数自动换算:培养皿直径、样本稀释度输入,实现自动换算6. 标定与测量 1)仪器标定:仪器自带标定、人工修正标定 2)一键式快速测量:一键测定大菌落,适合真菌、放线菌的单菌落分析 3)全皿自动测量:全皿菌落的等效直径、面积、长短径、周长、圆度分析 4)手动精确测量:长度、角度、弧度、面积、弧线、任意曲线7. 数据库模块 1)数据存储、智能查询 2)数据导出:统计结果以Excel表导出 3)数据安全:操作者使用权限,数据修改权限设置三、显微数字成像 1)科研级彩色CCD相机,大视场显微图像动态观察、静态捕获 2)手动、自动双模式控制拍摄 3)多维景深融合:扩展高倍物镜景深,显现不同液层细胞 4)超视野拼接:适合丝状、链状藻类的观察分析四、浮游生物专家数据库 1)数据库内容:浮游生物形态、文字介绍、手绘图、显微照片;允许用户完善、补充图库和文字 2)浮游植物类群:蓝藻、绿藻、硅藻、裸藻、黄藻、褐藻、甲藻、隠藻、金藻、红藻、轮藻共11个门、862属、8093个种 的藻类,其中海洋藻2818种,270属;淡水藻5275种,622属。 3)浮游动物类群:原生动物鞭毛虫、原生动物肉足虫、原生动物纤毛虫、轮虫、枝角类、桡足类、被囊类、等足类、端 足类、浮游多毛类、浮游螺类、浮游幼虫、管水母类、介形类、糠虾类、涟虫类、磷虾类、毛颚类、 十足类、水螅水母类、头足类、樱虾类、栉水母类,共23大类 4)智能查询:分类学、中文名、拉丁名、水华、赤潮、有毒藻、海洋藻、淡水藻、关键词五、藻类智能鉴定生物相似性高精度智能搜索 1)生物特征信息包含:藻细胞的颜色、形态、纹理特征 2)智能搜索:将特征信息融合为藻细胞图像的特征向量,使用支持向量机的分类器进行训练,实现对藻细胞图像的分类鉴 别搜索。形态学搜索 1)一级形态:单细胞、多细胞群体、不分枝丝状体、分枝丝状体、膜状体、管状体、链状体、网状体 2)二级形态:细胞形态、细胞结构、群体形态、母细胞壁、子细胞排列与数量、藻丝结构与分枝等六、浮游生物计数与分析流程式计数 1)浮游生物分类标记:采用不同颜色、不同大小的色圈标记 2)浮游生物分类计数:对不同视野按类别点击、自动累积计数 3)浮游生物总数统计:对样本各种浮游生物的总数进行自动累计 4)优势种自动排序、按门(类)排序、优势群落组成百分比分析 5)藻密度、浮游动物丰度自动换算 6)藻类胶被群分析:对胶被包围的多细胞群体,自动解析换算子细胞数 7)藻类链状体分析:对链状多细胞群体,自动解析换算,估算出链状细胞数单细胞微藻自动计数 1)卵形细胞辅助计数:对轮廓清晰的单细胞微藻,动态调节、分割计数 2)复杂细胞辅助计数:对背景清晰、形态复杂的单细胞微藻分割计数混合藻辅助分类识别 1)混沌智能辅助分类计数:基于混沌原理,对混合藻实现模糊判断和分类计数色素体分析、测量及生物量分析 1)色素体定量:依据藻色素特征,对色素体自动定量、定位,色素RGB构成分析 2)标尺测量:具有透明、不透明2种标尺,可用鼠标拖动标尺,对浮游生物快速测量 3)面积测量:视野面积、藻群体面积、浮游动物个体面积测量 4)线条、角度测量:细胞直径、藻丝、鞭毛长度、浮游动物体长及触角、分枝角度测量 5)生物量分析:依据测量数据和浮游生物形态数学模型,智能计算生物量七、图像处理 1)自适应增强:分辨增强处理,突显细胞显微特征 2)图像调整:图像亮度、对比度、饱和度、RGB三色任意调节,灰度图、负相图的转换 3)图像补偿:通过线性补偿,对数补偿,贝尔补偿等多种数学方法对图像的失真部分进行补偿,使图像更加清晰 4)图像锐化:通过增强图像的高频分量,使边缘变得更清晰 5)图像平整:通过图像平整处理,使图像背景均匀 6)图像滤波:高斯滤波、低通滤波、中值滤波等6种滤波方式有效提高图像清晰度 7)边缘检测:两种检测方式、三种算子结合多种检测选项更精确地提取浮游生物轮廓 8)形态学处理:腐蚀、膨胀、开启、闭合等非线性数学形态学处理八、数据管理、报表打印 1)标注:可在已拍摄的浮游生物图片上,进行任意的文字、尺寸标注 2)数据库:自动保存每批显微照片、统计标识和统计数据 3)报告编辑、打印:提供报告编写模板、文本输入、打印预览 4)数据导出:浮游生物统计数据、图片导出到EXCEL九、仪器规格与配置 1)新M500菌落计数/浮游生物分析联用仪 主机1台 2)菌落分析软件、浮游生物智能鉴定计数软件、MIC分析软件 3)显微摄影科学级彩色CCD(2580×1944) 4)品牌商务液晶电脑 5)用户自配:显微镜和摄像接口
    留言咨询
  • 浮游生物网 400-860-5168转3571
    WP系列浮游生物网简介:浮游生物主要用于采集海洋、河流、湖泊等水体的浮游生物样品,通过绞车等工具将浮游生物释放到指定深度,然后垂直拖取样品到另一深度,通过南森释放系统关闭采样网。回收样品网,将收集到的浮游生物样品从网底管中转移到样品瓶即可。收集的水量通过网口流量计的读数计算可得。(A) “南森释放系统” (重型)通过此释放装置操作浮游生物网,释放0.9 kg使锤关闭浮游生物网。(B) 3 根尼龙绳 (直径6 mm), 带有系索和挂钩 (长:85 cm)。(C) 316不锈钢圈(带有3个线圈环),线圈环用于系缚绳缆,其中两个线圈环可以用于固定网口流量计(可选),通常网口流量计安装于网口部中间处。(D) 316不锈钢网袋固定夹钳。(E) 网底管基于Hensen原理设计而成,聚丙烯材质,直径160 mm,带有一个塑料排水阀门;带有开口窗,用200微米316不锈钢网衣覆盖。1个圆形网底管支撑架,上有3个线圈环,用于系缚铅块。 技术指标: 网口直径: 20 cm, 30 cm, 50 cm, 60cm,75 cm. 网口尺寸:1 sq. m, 2 sq. m,或用户定制长度比例: 3:1, 4:1, 5:1或用户定制形状:圆锥形, 管状/圆锥形.晒卷孔径: 5 ——1800 微米(用户指定).附件:不锈钢圈网底管,PVC材质,直径10-15cm,15-30cm长 3轴支撑
    留言咨询
  • 浮游微生物采样器 400-860-5168转2689
    浮游微生物采样器  浮游微生物采样器/浮游菌采样用途:  用于制药GMP厂房、乳制品厂房、医院手术室、生物洁净、发酵工业等洁净室和无菌环境中的空气微生物检测以及有关研究教学部门作空气微生物的采样研究。  浮游微生物采样器/浮游菌采样原理:  HKM-Ⅲ型浮游微生物采样器基于安德森撞击原理(撞击法),采集口风速与洁净室内风速基本一致的等速采样理论设计,直接采样,空气浮游微生物高速通过微孔被撞击在培养皿内的琼脂表面,保证大于1 微米的颗粒全被捕获收集。  浮游微生物采样器/浮游菌采样操作方法:  使用前先用浸湿 75%乙醇的医用脱脂棉花擦拭采样器表面、培养皿托座和采样头等位置,启动仪器空转运行不少于 5 min, 使仪器中的残余消毒剂蒸发。根据洁净度级别设定采样量等参数,放入含培养基的培养皿,盖上多孔采样头,放置离地面0.8m--1.5m高度的水平面上,启动仪器直接采样。  浮游微生物采样器/浮游菌采样特点:  1)自动流量补偿:内置实时流量监测传感器,全自动流量补偿,避免因培养皿倾注培养基高低引起的流量偏差。(HKM-ⅢB型)  2)等速采样设计:采集口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。优化了撞击速度,使假阳性结果得到控制,从而保证了微生物采集效率   3)操作界面友好直观:全中文显示菜单,大屏幕LCD显示采样量(0.01-6.0m³ )、设置采样地点代码、采样延迟时间、屏幕背光时间、语言(中、英文)、日期,轻触式键盘及简单易懂的操作界面   4)高效开放性系统:无需购买特殊的试纸平板或滤纸;  5)采样方向可调:采样头可从水平到直立90度调整,满足多角度取样,也可安装三角架在不同环境下使用(三脚架支撑模块为选配件)   6)多孔采样头:采样时有效减少了尘菌重叠的可能,降低了微生物计数误差。通过Feller校验,开孔数量越多,则平皿上的菌落数越接近于实际空气中的含菌量   7)强可追溯性:每次采样运行后都自动生成的记录储存在采样器,最多可储存8000页数据,可快速查询采样记录:时间、地点、采样量等参数。HKM-ⅢA型采样器还可以用数据线连接到电脑,通过HKM采样器软件允许数据下载到电脑上,用于报告和采样分析   8)超长使用时间:可连续使用约长达15小时,大容量、可充电聚合物锂电池,无容量记忆效应、安全、耐用   9)95%的采样效率:跟据ISO14698-1附录B和附录C,建立一个物理采样效率实验,对于直径从0.8到19.0微米粒子的物理采样效率可达95%以上。如下:  10)仪器符合标准:   GMP 药品食品生产质量管理规范   ISO14698-1/2 洁净室及相关控制环境的生物污染控制   GB/T 16293-2010 医药工业洁净室(区)浮游菌的测试方法  11)性能稳定可靠:主要元件为进口元件。技术参数:型号HKM-III-100HKM-IIIA-100HKM-IIIB-100流量100升/分钟设定体积范围10-6000升流量监测传感器无全自动流量补偿电脑数据传输无HKM采样器软件程序循环采样有手机小程序有适用培养皿直径90mm误差范围2.5%2%重量2.6KG尺寸110×115×330mm外壳材质银白,亮蓝色铝合金显示器3.5寸高清液晶触控屏幕电池可充电聚合物锂电池(连续使用长达8小时)充电器110-240V,50-60Hz(全球通用电压锂电池专用充电器)
    留言咨询
  • FKC-1浮游菌采样器 手持式 浮游菌微生物采样器、FKC-1浮游菌采样器 手持式 浮游菌微生物采样器FKC-I浮游细菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果。 本仪器结构*新颖,分上下两部分,上部分采集口和采样座及气泵,下部为控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大、性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。FKC-I浮游细菌采样器采用撞击法机理,针孔式采样器是气流通过一个金属盖吸入,盖子上是密集的经过机械加工的特制小孔,通过风机将收集到的细小的空气流直接撞击到平板培养基表面,附着的活微生物粒子经培养后形成菌落。符合标准GMP 药品食品生产质量管理规范 ISO 14698-1/2 洁净室及相关控制环境的生物污染控制GB/T 16293-2010 医药工业洁净室(区)浮游菌的测试方法FKC-I浮游细菌采样器主要要特点:1.采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误。2.可编程,采样量从0.01-6.0立方米 (1-6000L)任意设定.3.LCD显示采样量,采样时间等参数.4.可将采样量,采样时间等参数按页储存,最多可储存256页数据.5.造型*,使用方便.6.更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15)FKC-I浮游细菌采样器主要技术参数:采样量:100L/min采样周期:任意设定采样口流速 :0.38m/s培养皿规格: Φ90×15mm 工作环境:温度10~35℃ 相对温度20~75%RH电源:交直流两用最大功耗:20W重量:2kg外形尺寸:120×300mm标准配件:电源适配器,培养皿 2 个,说明书,合格证,出厂检验报告,保修卡第三方检测环境实验室需要些仪器?环境检测仪器包括:大气、职业卫生、噪声、振动、辐射检测仪器。  大气检测仪器有:大气采样器、颗粒物采样器、大气颗粒物综合采样器、氟化物采样器、挥发性有机物采样器、烟尘烟气采样器、非甲烷烃采样器、皂膜流量计  职业卫生检测仪器:高流量、中流量、低流量大气采样器、防爆大气采样器、粉尘浓度检测仪、防爆粉尘采样器、辐射热计、温湿度计、微波漏能检测仪  噪声检测仪器:倍频声级计、多功能声级计、个人声暴露计、矿用噪声检测仪、防爆噪声检测仪  振动检测仪器:环境振动检测仪、机械振动检测仪、多功能振动分析仪、手传振动测定仪、振动校准器  辐射检测仪器:场强检测仪、个人剂量报警仪、α β γ表面污染测量仪、αβ表面污染测量仪、χ、γ剂量仪、低本底α β测量仪、低频电磁辐射检测仪、高频电磁辐射检测仪路博大类主推:  生物安全柜质量检测仪   自动降雨降尘采样器  微生物气溶胶浓缩器  综合大气采样器  烟尘烟气测试仪  烟气分析仪厂家  低浓度恒温恒湿称重系统  低浓度颗粒物称量设备  全自动恒温恒湿称量系统  便携式油烟检测仪  油气回收多参数检测仪  在线水质采样器  超标留样水质采样器  污水验毒水质采样器  便携式明渠流量计  超声波明渠流量计  全自动高锰酸盐指数分析仪  VOC检测仪  便携式水质采样器  便携式非甲烷总烃分析仪  便携式VOCS检测仪  热成像VOCS泄露检测仪  TOC总有机碳分析仪  水质监测岸边站  在线COD氨氮总磷总氮  PID检测仪  多气体分析仪公司代理品牌:德国德图 德国菲索 英国离子 英国凯恩 美国华瑞 美国盟莆安 美国英思科 英国梅思安 日本新宇宙 加拿大BW等等品牌的总代理了解产品价格资料详情等请致电青岛新业环保单礼美。购买仪器须知:1. 仪器不会选型,自己却无从插手?我们有专业的销售团队,每个团队有专业的销售人员,他们可以根据您的现场需求来推荐仪器,确保仪器符合要求!2. 会担心采购,仪器的质量?青岛新业环保是一家集环保科研,设计,生产,维护,销售和系统集成一体的综合性高科技企业。AAA技术企业,注重诚实守信!3. 担心仪器,买回去不会使用?青岛新业环保我们有专业的技术团队,免费提供视频通话来进行指导,特殊情况可去现场培训! 服务承诺:客户的需求放在首位,“今天的质量、明天的市场、服务到永远”是我们新业环保公司为客户服务的准则,并将其贯穿到研发、生产、安装、销售及售后服务的各个环节中。公司郑重承诺:完善沟通协调机制:通过加强沟通交流,提高信息传递的及时性,准确性,深入市场,倾听用户心声了解客户仪器设备的需求。 我公司承 诺:按质、按量、按时完成所供产品的生产任务,并及时将产品运到用户需求现场,确保正常运转。全过程监控:客户只需一个电 话,售后服务部采用一站式模式、全面负责制、全程监控实施并跟踪处理结果,确保客户满意。 青岛新业环保科技有限公司是一家集环保科研,设计,生产,维护,销售为一体的综合性实地厂家。青岛凌恒环境科技有限公司属于江苏凌恒环境科技有限公司青岛分公司,主要业务范围:在线水质监测仪销售服务。
    留言咨询
  • 浮游空气尘菌采样器 400-860-5168转4379
    浮游空气尘菌采样器产品简介:  YT-FKC1浮游细菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面 这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果 仪器支持历史数据记录,数据U盘导出方便数据查看。  YT-FKC1浮游细菌采样器具有采样量大、性能稳定、操作简便等特点,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。  YT-FKC1浮游空气尘菌采样器符合标准:  1、GMP药品食品生产质量管理规范   2、ISO14698-1/2洁净室及相关控制环境的生物污染控制   3、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法   YT-FKC1浮游细菌采样器主要要特点:  1.采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误   2.可编程,采样量可以从1-9999L(可调)0.001-9.999m³ 任意设定   3.LCD显示采样量,采样时间等参数   4.可将采样量,采样时间等参数按页储存,最多可储存256页数据   5.造型独-特,使用方便   6.更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15)   YT-FKC1浮游细菌采样器主要技术参数:  采样量:100L/min   采样周期:任意设定   采样口流速:0.38m/s   培养皿规格:Φ90×15mm   工作环境:温度10~35℃   相对温度:10~90%RH   电源:交直流两用   最大功耗:20W   重量:2kg   外形尺寸:120×300mm   标准配件:电源适配器,培养皿2个,说明书,合格证,出厂检验报告,保修卡   可以通过全国各地计量院检测认证,放心采购。
    留言咨询
  • 万深 藻类和浮游动物自动分类计数仪(AlgaeAC+ZooCC-22PF4型)Automatic identification and classification counter for Algae & Zooplankton, Model AlgaeAC+ZooCC-22PF4 1、分析规范▲1)符合《水生态监测技术指南 河流水生生物监测与评价(试行)》HJ 1295-2023、《水生态监测技术指南 湖泊和水库水生生物监测与评价(试行)》HJ 1296—2023、《海洋监测规范》GB17378-2007、《海洋调查规范》GB/T12763-2007中关于藻类和浮游动物的监测规范和要求,及HJ 1216-2021《水质 浮游植物的测定0.1mL计数框-显微镜计数法》和HJ 1215-2021《水质 浮游植物的测定 滤膜-显微镜计数法》的要求。水样经前处理而置于计数框后,一键化自动完成藻类和浮游动物识别与分类计数分析全过程(自动移动视野对焦扫描拍照、自动分类识别计数、自动生成统计报表)。2)模仿人工显微镜检测藻类的过程,可按全片计数法、对角线计数法、行格计数法、随机视野计数法等5种计数方式做自动成像分类计数。2、藻类和浮游动物自动分类计数▲1)成像通量≥4个0.1mL藻类计数框或4个1mL浮游动物计数框,4片0.1mL藻类计数框的的自动对焦拍照时间≤10分钟(20X物镜、各100个视野、2000万像素高分辨率相机,可同时进行2组平行样品测试)。成像支持50X或40X、20X、10X、4X等全系列物镜。具有不少于20层景深融合连续自动扫描特性,拍摄层数和层间距可调设定。可自动无缝拼接400个拍照视野以上成30亿像素以上超视野大图,有效避免藻类或浮游动物被各视野的边缘切碎。电动XYZ显微自动平台由获产品质量管理体系ISO13485认证书的企业生产。▲2)系统内含常见的160+个属种淡水藻类的自动分类识别库,可勾选去掉识别库中在当地没有的藻属,以确保最大识别涵盖能力的前提下,有效避免混淆误判。内含57个以上淡水浮游动物大类或属的自动分类识别库。▲3)用户可根据当地水样自行学习扩展识别库属种。支持识别库在线更新。4)一键操作到底直接出报告的全自动识别分析系统。可自动分类分析3~1000μm的藻类,4片藻类计数框各100个视野的自动识别分析时间≤20分钟,检测范围为10^4-1.25*10^11个细胞/升(cells/L)。可自动分类分析20~2000μm的浮游动物,4个1mL浮游动物计数框的自动扫描成像+自动拼超视野大图+自动分析时间约40分钟(视野数可选)。2个平行样本的计数结果相对偏差≤10%。当地水样分类识别优势种自动识别率≥90%,综合自动识别率≥80%,可按形状或面积自动排序后做目标的多选快速交互修正来获得更高最终识别率。3、大水量的浮游动物自动分类计数模块1)、成像系统:以6400dpi扫描获得高分辨率的透扫正片图像,能包含上千个完整的浮游动物。具有浮游动物清晰度自动增强功能。自动存储高分辨率浮游动物扫描原稿。2)、自动分析指标:(1)一键化自动完成浮游动物的目标提取、人工智能Ai增强深度学习分类识别35个大类150um以上的浮游动物(目前可分海水的大类较多些)、计数分析全过程。内置淡水常见浮游动物等分类识别库,用户可自建当地标准识别库,支持识别库在线更新。(2)可自动分类分析≥150μm以上、水样量≥35mL的浮游动物。综合自动识别率≥80%,重复性误差≤5%,具有辅助目标分割、分类修正特性。(3)能自动计算香农-威纳指数、均匀性指数、丰富度指数、个体密度、生物量等。3)、数据报表:自动给出分类计数统计报告,标示优势类别和优势度,并按优势种排序。可根据采集地地理坐标在地图上定位及标注,支持高德地图、高德卫星地图、谷歌地图、谷歌卫星地图等多种地图源。4、藻类和浮游动物智能鉴定系统▲1)中文、拉丁文双语显示的浮游生物专家图库:藻类共15个门、1719个属、15832个种;浮游动物共26大类、2002个属、9846个种。涵盖中国各流域、海域的常见藻类、浮游动物。已有有效图库量29.305万张以上,各图库属种和内容可自行扩充。▲2)一键化以图搜图方式按相似度从高到低排列展示相近物种。能按P5胸足以图搜图搜索鉴定桡足类。物种智能鉴定模块与全自动分类计数系统为同家企业产品,以实现系统之间无缝衔接的便捷操作。能以图搜图智能搜索鉴定藻类、浮游动物、以及花粉、真菌等一些易出现在样品中的非浮游生物。5、供货配置清单1、万深藻类和浮游动物自动分类计数仪软件(含浮游生物智能鉴定系统) 1套2、自动数字显微影像扫描系统(研究级三目生物显微镜(含机架、三目观察筒、物镜转盘、镜臂、上海光学50X复消色差物镜或奥林巴斯40X平场半复消色差物镜、10倍宽视场可调目镜,舜宇20X、10X和4X平场半复消色差物镜)、4片通量的高精度电控XYZ自动扫描平台+控制器+2000万像素相机)1套3、超高分辨率、高性能A4幅面影像扫描仪 1套4、高透明大容量水样盘 2个5、分析工作站(13代酷睿i7 CPU /32G内存/含支持CUDA的8G及以上GPU卡/ 1T硬盘以上/ 23”彩显,1个USB3.0口+3个USB2.0口,运行环境Windows 10或11专业版) 1台6、服务1)、厂家提供协助免费建立1个当地分类初始识别库服务。2)、免费提供远程协助指导服务。注:本技术标书中打▲款项必须响应,否则为重大偏离。
    留言咨询
  • Biotrak 实时浮游菌粒子计数器在空气浮游菌粒子实时检测的激动人心的全新领域具有同类产品最优的特点及功能。 Biotrak 粒子计数器可实时检测总尘埃粒子数及浮游菌粒子数,其集成了 TSI经过现场验证并具有其专利的激光诱发荧光( LIF )技术来判定粒子活性。 TSI 公司的 Biotrak 实时浮游菌粒子计数器将浮游菌粒子实时检测,总尘埃粒子实时检测,浮游菌收集三项功能集于一体 实时浮游菌粒子检测可实现:污染事件的即时通知隔离潜在受污染产品即时污染源调查即时检测控制 浮游菌粒子水平趋势分析为提高生产工艺制程提供必要信息 (PAT) 为制程风险管理提供必要信息 (ICH Q9) 为净化服及无菌制程培训提供反馈信息 TSI BioTrak实时浮游菌粒子计数器将 浮游菌粒子实时检测、总尘埃粒子实时检测、浮游菌收集 三项功能集于一体创新点如下: (1) 可实时同时检测尘埃粒子数及浮游菌粒子数(市面上无此功能)(2) 可实时判断尘埃粒子数中有多少浮游菌粒子数(市面上无此功能)(3) 将浮游菌粒子实时检测、总尘埃粒子实时检测、浮游菌采样收集三项功能集于一体,并且实现同源检测 (市面上同类产品无此功能)(4) 大采样流量28.3升/分钟(市面上只有小流量4升/分钟)(5) 专利激光诱发荧光三维技术判定粒子活性(市面上仪器最多二维) 特性和优点:粒径范围为0.5 至 25 μm 最多可同时测量六个通道总粒子数及浮游菌粒子数专利激光诱发荧光技术判定粒子活性集成粒子收集过滤器用于离线培养分析符合ISO 21501-4所有规范1.0 CFM (28.3 L/min) 采样流量拥有OPC粒子计数器全部功能 直观图标操作触摸屏用户界面 菜单式存储及采样数据回放 可生成ISO-14644-1, EU GMP Annex 1, FS209E符合性报告 10,000个采样数据存储, 999个位置 以太网和USB输出 可独立操作或集成于在线监控系统 最高显示三种环境参数 不锈钢外壳 规格BIOTRAK? 实时浮游菌粒子计数器 型号9510-BD0.5 to 25 μm 0.5, 0.7, 1.0, 3.0, 5.0, 10 μm 15% @ 0.5 μm (符合 ISO 21501-4) 0.5 μm 时 50%,粒径大于0.75 μm 时100%(符合ISO 21501-4 和 JIS)2个荧光通道和1个粒径通道来判定集成可装37mm过滤片收集器大于40,000/ft3 时最高损失5%5 分钟1 个(符合ISO 21501-4 和 JIS B9921)1.0 CFM (28.3 L/min)± 5% (符合ISO 21501-4 和JIS B9921)使用TSI可溯源NIST的校正系统建议每年一次ISO 21501-4, CE, JIS B9921 685纳米二极管激光光源用于粒径检测405纳米二极管激光光源用于激光诱发荧光粒子活性检测电子自动闭合回路(专利流量控制技术)长达3m内置,距离1 米时大于85dB(可调整)内置HEPA 过滤器内置泵干触点,报警时闭合VGA 5.7-in. 14.5-cm 厘米高清触摸屏可选内置热敏打印机19 in. x 10.5 in. x 11.7 in. (48.3 cm x 26.7 cm x 29.7 cm) 37 lbs (16.8 kg) 110 至240VAC,通用电源41? to 95?F (5? to 35?C), 20% to 95% RH 不结露32? to 122?F (0? to 50?C), 最高98% RH 不结露不锈钢异丙醇, 氯化溶液, 过氧化氢支持TSI风速,温湿度探头User Interface and Communication 采样模式手动,自动,蜂鸣。累计/差值 计数或浓度采样时间1 秒至99 小时采样频率1 至9999 循环或连续数据存储10000 个数据记录,包括日期,时间,六个通道,流量,样品ID,采样流量,通过USB传递数据或使用TRAKPROTM软件下载状态指示流量,激光警报限值可对所有通道进行设定(包括总粒子数和浮游菌数) 语言简体中文,英语,日语,德语,法语,西班牙语和意大利语软件TrakPro? Lite Secure, 可选FMS software 打印输出可以支持所有语言打印输出设备ID 可配置IP地址安全二级密码保护(用户登录和设置)位置ID 高达999个位置 16个字符长度报告可提供ISO 14644-1, EU GMP, 和FS209E符合性报告通讯模式Modbus? TCP 协议基于以太网或USB 配件包含配件快速启动手册,CD-ROM 操作手册,电源适配器,等动力探头,三角架,气管,调零过滤器,USB 线和TrakPro? Lite Secure软件,浮游菌收集器,校正证书可选配件电子过滤扫描探头,基本款过滤扫描探头,TSI 风度探头,温湿度探头,等动力探头,采样管,硬质便携箱,打印纸,浮游菌收集器,浮游菌收集过滤片,FMS软件
    留言咨询
  • JYQ-Ⅱ型浮游细菌采样器浮游细菌采样器应用沉降法测定菌落数,该方法不能直接得知单位体积中的细菌数,已经不适合我国“GMP”规格的要求。根据颗粒撞击的原理,参照美国SAT型浮游细菌采样器,我们研制成JYQ型缝隙式浮游细菌采样器,可直接测到1立方米气体中的细菌个数,有效地配合我国“GMP”规格的贯彻。该产品结构合理,技术性能指标在国内处优异地位,其中采样流量达到50L/min,仪器整体水平达到国外八十年代同类产品水平,填补国内大流量狭缝式浮游细菌采样器空白。欢迎广大用户选用JYQ型浮游细菌采样器,它可为你们的药品质量升级作贡献。 JYQ-Ⅱ型浮游细菌采样器采样量:50L/min采样周期:1~10、20、30、40、50、60、70、80、90共十八档采样参数:狭缝宽度≤50mm×0.38mm 流速≥38m/s培养皿规格:Φ150×15mm或Φ90×15mm工作环境:温度10~35℃ 相对温度20~75%RH电源:AC 220V 50Hz功耗:100W重量:10kg外形尺寸:280×350×280连接导管:φ10×1.5。
    留言咨询
  • 浮游菌检测仪 400-860-5168转4275
    HM-KF型浮游空气尘菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。 采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;采集完成后把琼脂培养皿盖好,这些活体微生物在培养过程中,发生动能再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部分控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大,收集效率高,性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所的检测部门理想的浮游尘菌浓度采集器。 主要特点: ●新型手持式外观,美观大方,使用方便。 ●彩色触屏控制,操作更加高效快捷。 ●LCD显示采样量,采样时间等参数。 ●可将采样量,采样时间等参数按组储存。 ●更换培养皿简便,拿下采样口即可更换培养皿。 ●带上位机软件,数据可导出电脑,方便历史分析。 ●交直流两用,内置6000mAh大容量锂电池,可连续采样8小时。 ●程序支持中英文切换。 相关标准: 1、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法; 2、ISO14698-1/2洁净室及相关控制环境的生物污染控制; 3、GMP药品食品生产质量管理规范; 技术参数 采样流量:100L/min±5% 采样孔撞击风速:17m/s 采样口流速:0.4m/s在洁净室内等速采样 设定采样量范围:0.01-9999L可调 琼脂培养皿:标准ɸ 90mm*15mm 屏幕尺寸:3.5寸触摸屏 数据通讯接口:USB 体积:Φ120*300 重量:1.6kg 尺寸:22×14×25cm 标准配件:培养皿2个,热敏打印纸1卷,电源适配器,说明书,合格证
    留言咨询
  • 浮游菌检测仪 400-860-5168转4275
    HM-KF型浮游空气尘菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。 采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;采集完成后把琼脂培养皿盖好,这些活体微生物在培养过程中,发生动能再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部分控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大,收集效率高,性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所的检测部门理想的浮游尘菌浓度采集器。 主要特点: ●新型手持式外观,美观大方,使用方便。 ●彩色触屏控制,操作更加高效快捷。 ●LCD显示采样量,采样时间等参数。 ●可将采样量,采样时间等参数按组储存。 ●更换培养皿简便,拿下采样口即可更换培养皿。 ●带上位机软件,数据可导出电脑,方便历史分析。 ●交直流两用,内置6000mAh大容量锂电池,可连续采样8小时。 ●程序支持中英文切换。 相关标准: 1、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法; 2、ISO14698-1/2洁净室及相关控制环境的生物污染控制; 3、GMP药品食品生产质量管理规范; 技术参数 采样流量:100L/min±5% 采样孔撞击风速:17m/s 采样口流速:0.4m/s在洁净室内等速采样 设定采样量范围:0.01-9999L可调 琼脂培养皿:标准ɸ 90mm*15mm 屏幕尺寸:3.5寸触摸屏 数据通讯接口:USB 体积:Φ120*300 重量:1.6kg 尺寸:22×14×25cm 标准配件:培养皿2个,热敏打印纸1卷,电源适配器,说明书,合格证
    留言咨询
  • PHYTO‑ PAM 全球第一款可自动对浮游植物分类的荧光仪有害藻华(HABs)监测/预警的强大工具主要功能1)对自然水体中的蓝藻、绿藻和硅/甲藻自动分类(定性)2)自动测量水样中蓝藻、绿藻和硅/甲藻的叶绿素a含量(定量)和总叶绿素a含量3)一杯自然水样,同时获得蓝藻、绿藻和硅/甲藻的光合活性:* 光合效率和光合速率(相对电子传递速率)* 快速光曲线并进行拟合* 藻类的潜在最大光合效率(&ldquo 生长潜能&rdquo )* 藻类的光保护能力* 藻类耐受强光的能力4)用户可做自己的参考光谱应用领域主要用于水生生物学、水域生态学、海洋学、湖沼学、水质预警、微藻生理学、微藻抗逆性等领域,对于了解自然水体中藻类种群的动态变化、水华预警、野外水体中光合作用的时空变化、校正初级生产力的计算等有较大帮助。特别适于浮游植物动力学研究和有害藻华(HABs)的早期预警。测量参数Fo, Fm, F, Fm' , Fv/Fm, Y(II)=&Delta F/Fm' , ETR, a, Ik, Pm, PAR、蓝藻Chla含量、绿藻Chla含量、硅/甲藻Chla含量、总Chla含量等特点1) 全世界第一台可对浮游植物自动分类的调制叶绿素荧光仪2) 4波长光源:470、520、645和665 nm3) 对蓝藻、绿藻和硅/甲藻进行分类4) 可选配室内系统(I)、野外系统(II)和测附着藻类/大型藻类的系统(III)5) 灵敏度高,检测限为0.1 &mu g L-1 Chl6) 专业PhytoWin操作软件,数据收集、分析和存贮功能强大7) 用户可利用培养的微藻做参考光谱,非&ldquo 黑匣子&rdquo 8) 可在野外测量后根据水体藻类组成利用优势种(一种或多种)的参考光谱校对实验结果利用PHYTO-PAM进行水华预警的原理藻类的生长靠光合作用,藻华的爆发是在特定的环境条件下(富营养、高光、高温)由藻类短期快速暴增造成的,这其间藻类必须具备极强的光合作用才能快速生长。监测叶绿素a含量可以了解目前水体中的藻类生物量,但这只代表历史(如果营养盐很低,即使当前藻类生物量高,也不具备发生藻华的可能);而监测藻类的光合作用活性可以了解藻类的&ldquo 生长潜能&rdquo ,结合其它环境条件可以预测未来(富营养条件且高光高温下,即使当前藻类生物量不高,但只要光合作用活性强,就具有极大的发生藻华的可能)。由于PHYTO-PAM可以测量自然水样中蓝藻、绿藻和硅/甲藻各自的光合作用,就可以对藻华发生时不同藻类类群进行分析。利用PHYTO-PAM测量不同藻类叶绿素a含量和光合作用活性的功能,可以长期监测自然水体中浮游植物种群生物量的动力学变化和不同类群光合作用潜力的变化趋势,这对于藻华的预警具有重要参考价值。推荐阅读:有害藻华(HABs)监测/预警的新解决方案PHYTO-PAM最常用的光合作用参数 Fv/Fm,浮游植物的潜在最大光合效率(&ldquo 生长潜能&rdquo ) Y,给定光强下浮游植物的实际光合效率 NPQ,浮游植物将过剩光能耗散为热的能力,即光保护能力 ETR,给定光强下浮游植物的实际光合速率 ETRmax,浮游植物的潜在最大光合速率 a,浮游植物对光强的利用能力 Ik,浮游植物耐受强光的能力 快速光曲线,结合水体光场可用于计算水体初级生产力利用PHYTO-PAM对水体长期监测的方法设计为大时间尺度,采样频率为每月一次,频率越高越好。采样时可设计多个样点,每个样点都分层采样测量。这样就可测量蓝藻Chla、绿藻Chla、硅/甲藻Chla、总Chla、Fv/Fm、Ik、NPQ等的时间和空间动态变化,获知三大类群的浮游植物生物量、&ldquo 生长潜能&rdquo 、耐受强光的能力、光保护能力等的时空动态变化,提前预判其变化趋势,结合其它水质气象指标,进行早期的藻华预警。应用实例一:太湖蓝藻水华成因分析2007年,太湖发生了严重的蓝藻水华,在国内外引起广泛关注。蓝藻水华爆发的一个重要原因是周边地区往太湖中排污过多,造成湖泊严重富营养化,在适宜的光照和温度条件下藻类疯长形成水华。但是太湖中的藻类不仅仅包括蓝藻,也有绿藻、硅藻、甲藻等,为什么总是爆发蓝藻水华,其它藻并不形成水华呢?中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室科研人员利用可对自然水体中的藻类定性、定量并测量光合作用活性的浮游植物荧光仪PHYTO-PAM,探讨了蓝藻在太湖中爆发水华的原因。主要研究结果如下:光作为藻类生长的重要能量来源,浮游藻类光利用效率的不同对水体中浮游藻类初级生产力、群落组成以及种群演替具有重要影响。本研究发现蓝藻、绿藻、硅/甲藻三种具有不同的对光照和垂直混合的响应策略,蓝藻的强光耐受能力以及对过剩光能的耗散能力均超过其他两种藻;同时蓝藻主要聚集在表层到0.3 m的深度,而在此深度藻类具有更高的生长速率,绿藻和硅/甲藻则由于垂直混合和自身调节等作用的作用下,不具备蓝藻这一优势,这可能是富营养化水体中蓝藻占据优势的原因之一。(Zhang M, Kong FX, Wu X, Xing P. Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing. Hydrobiologia 2008, 603:267-278.)应用实例二:微囊藻低温弱光环境下过冬机理经常发生水华的微囊藻在冬天会沉降到底泥中进行越冬。底泥属于低温弱光环境,在这么苛刻的环境下微囊藻是怎么越冬的,目前了解的不多。中国科学院水生生物研究所淡水生态与生物技术国家重点实验室科研人员利用人工培养的单细胞铜绿微囊藻、群体铜绿微囊藻和斯尾栅藻进行了低温弱光环境下的耐受力和复壮实验,其中光合作用活性的测量利用浮游植物荧光仪PHYTO-PAM进行。结果发现经过30天的低温弱光环境处理后,栅藻的光合活力受到显著抑制,而微囊藻仅受到轻微影响,且群体微囊藻细胞比单细胞微囊藻的耐受力更强。复壮培养后,栅藻的回复速度和生长潜力明显低于微囊藻。这对于分析微囊藻的越冬机理和水华机理具有重要参考意义。(Wu Z, Song L, Li R. Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus Hydrobiologia 2008, 596:47-55.)选购指南● 基础配置○ 可选配置系统I(实验室版) 系统II(野外版) 系统III(光纤版) 主机PHYTO-C●●●测量光LED阵列PHYTO-ML● 光化光LED阵列PHYTO-AL● 光电倍增管PM-101P● 光学单元ED-101US/MP● 工作台ST-101● 激发-检测单元PHYTO-ED ● 光纤型激发-检测单元PHYTO-EDF ●微型磁力搅拌器PHYTO-MS○ 球状微型光量子探头US-SQS○○○温度控制器US-T○ 搅拌器WATER-S ○ 主要技术参数测量光:波长470、520、645和665 nm的测量光LED。光化光:波长655 nm的LED;光化光强度0~2000 &mu mol m-2 s-1 PAR(系统I和II)或0~1300 &mu mol m-2 s-1 PAR(系统III)。饱和脉冲:波长655 nm的LED;饱和脉冲强度4000 &mu mol m-2 s-1 PAR(系统I和II)或2600 &mu mol m-2 s-1 PAR(系统III)。信号检测:光电倍增管,带短波截止滤光片(&lambda 710 nm);选择性锁相放大器。测量参数:Ft, F(或Fo), Fm(或 Fm&rsquo ), &Delta F, Y(&Delta F/ Fm&rsquo 或Fv/Fm), ETR和Chl浓度等。环境温度:-5~+45 ℃,已在极地成功应用。部分文献1.Guasch H, Atli G, Bonet B, Corcoll N, Leira M, Serra A: Discharge and the response of biofilms to metal exposure in Mediterranean rivers. Hydrobiologia2010:in press.[PHYTO-PAM]2.Liu Y, Wang W, Zhang M, Xing P, Yang Z: PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux Biochemical Systematics and Ecology2010:in press.[PHYTO-PAM]3.Pesce S, Margoum C, Montuelle B: In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Research2010, 44:1941-1949.[PHYTO-PAM]4.Soares MCS, Lü rling M, Huszar VLM: Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. Journal of Plankton Research2010:in press.[PHYTO-PAM]5.van Ruth PD, Ganf GG, Ward iM: The influence of mixing on primary productivity: A unique application of classical critical depth theory Progress In Oceanography2010:in press.[PHYTO-PAM]6.Wang H, Liu L, Liu ZP, Qin S: Investigations of the characteristics and mode of action of an algalytic bacterium isolated from Tai Lake. Journal of Applied Phycology2010:in press.[PHYTO-PAM]7.Zhu J, Liu B, Wang J, Gao Y, Wu Z: Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion Aquatic Toxicology2010:in press.[PHYTO-PAM]8.任秋芳, 阿依巧丽, 智朱, 张义方, 波曾: 三峡库区季节及养分对铜绿微囊藻生长的影响&mdash &mdash 模拟乌江回水区水环境的研究. 重庆师范大学学报2010, 27(1):1-4.[PHYTO-PAM]9.Aikawa S, Hattori H, Gomi Y, Watanabe K, Kudoh S, Kashino Y, Satoh K: Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan Polar Science2009, 3(1):57-72.[PHYTO-PAM]10.Dimier C, Brunet C, Geider R, Raven J: Growth and photoregulation dynamics of the picoeukaryote Pelagomonas calceolata in fluctuating light Limnology and Oceanography2009, 59(3):823-836.[PHYTO-PAM]11.Franklin D, Choi CJ, Hughes C, Malin G, Berges JA: Effect of dead phytoplankton cells on the apparent efficiency of photosystem II. Marine Ecology Progress Series2009, 382:35-40.[PHYTO-PAM]12.Hall SR, Becker CR, Simonis JL, Duffy MA, Tessier AJ, Cá ceres CE: Friendly competition: evidence for a dilution effect among competitors in a planktonic host&ndash parasite system. Ecology2009, 90(6):1441-1448.[PHYTO-PAM]13.Izagirre O, Serra A, Guasch H, Elosegi A: Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure. Science of The Total Environment2009, 407(21):5694-5700.[PHYTO-PAM]14.Lee Y, Kang C, Kwon K, Kim S: Organic and inorganic matter increase related to eutrophication in Gamak Bay, South Korea Journal of Environmental Biology 2009, 30(3):373-380.[PHYTO-PAM]15.Lee YS, Kim JD, Lim WA, Lee SG: Survival and growth of Cochlodinium polykrikoides red tide after addition of yellow loess. Journal of Environmental Biology2009, 30(6):929-932.[PHYTO-PAM]16.Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet F, Murphy MEP, Maldonado MT, Armbrust EV: Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature2009, 457:467-470.[PHYTO-PAM]17.Morin S, Pesce S, Tlili A, Coste M, Montuelle B: Recovery potential of periphytic communities in a river impacted by a vineyard watershed Ecological Indicators2009, 10(2):419-426.[PHYTO-PAM]18.Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM: An Integrated Analysis of Molecular Acclimation to High Light in the Marine Diatom Phaeodactylum tricornutum. PLoS ONE2009, 4(11):e7743. doi:7710.1371/journal.pone.0007743.[PHYTO-PAM]19.Pesce S, Margoum C, Montuelle B: In situ relationships between spatio-temporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Research2009, 44(6):1941-1949.[PHYTO-PAM]20.Serra A, Corcoll N, Guasch H: Copper accumulation and toxicity in fluvial periphyton: The influence of exposure history Chemosphere2009, 74(5):633-641.[PHYTO-PAM]21.Serra A, Guasch H: Effects of chronic copper exposure on fluvial systems: Linking structural and physiological changes of fluvial biofilms with the in-stream copper retention. Science of The Total Environment2009, 407(19):5274-5282.[PHYTO-PAM]22.Serra A, Guasch H, Martí E, Geiszinger A: Measuring in-stream retention of copper by means of constant-rate additions Science of The Total Environment2009, 407(12):3847-3854.[PHYTO-PAM]23.Shi S, Tang D, Liu Y: Effects of an Algicidal Bacterium Pseudomonas mendocina on the Growth and Antioxidant System of Aphanizomenon flos-aquae Current Microbiology 2009, 59(2):107-112.[PHYTO-PAM]24.Wu Z, Shi J, Li R: Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae Harmful Algae 2009, 8(6):910-915.[PHYTO-PAM]25.Yang Z, Kong F, Yang Z, Zhang M, Yu Y, Qian S: Benefits and costs of the grazer-induced colony formation in Microcystis aeruginosa. Ann Limnol - Int J Lim2009, 45(3):203-208.[PHYTO-PAM]26.陈元, 赵洋甬, 潘双叶, 徐运, 蒋蕾蕾: PHYTO-PAM对浮游植物中叶绿素的分类测定. 现代科学仪器2009(4):100-104.[PHYTO-PAM]27.朱晓敏, 黄清辉, 李建华: 咸水藻水华期溶解有机质光谱特征变化的模拟. 中国环境科学2009, 29(1):68-72.[PHYTO-PAM]28.Brussaard CPD, Timmermans KR, Uitz J, Veldhuis MJW: Virioplankton dynamics and virally induced phytoplankton lysis versus microzooplankton grazing southeast of the Kerguelen (Southern Ocean) Deep Sea Research2008, 55(5-7):752-765.[PHYTO-PAM]29.Howeth JG, Leibold MA: Planktonic dispersal dampens temporal trophic cascades in pond metacommunities. Ecology Letters2008, 11(3):245-257.[PHYTO-PAM]30.Ingleton T, Kobayashi T, Sanderson B, Patra R, Macinnis-Ng CMO, Hindmarsh B, Bowling LC: Investigations of the temporal variation of cyanobacterial and other phytoplanktonic cells at the offtake of a large reservoir, and their survival following passage through it. Hydrobiologia2008, 603(1):221-240.[PHYTO-PAM]31.Schmitt-Jansen M, Altenburger R: Community-level microalgal toxicity assessment by multiwavelength-excitation PAM fluorometry Aquatic Toxicology2008, 86(1):49-58.[PHYTO-PAM]32.Timmermans KR, Veldhuis MJW, Laan P, Brussaard CPD: Probing natural iron fertilization near the Kerguelen (Southern Ocean) using natural phytoplankton assemblages and diatom cultures. DeepSeaResearch2008, 55(5-7):693-705.[PHYTO-PAM]33.Wang G, Chen K, Chen L, Hu C, Zhang D, Liu Y: The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants Ecotoxicology and Environmental Safety2008, 69(1):150-157.[PHYTO-PAM]34.Wu Z, Song L, Li R: Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus Hydrobiologia 2008, 596(1):47-55.[PHYTO-PAM]35.Wu Z-X, Song L-R: Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia2008, 47(1):98-104.[PHYTO-PAM]36.Zhang M, Kong FX, Wu X, Xing P: Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing. In: Hydrobiologia. vol. 603 2008: 267-278.37.胡智泉, 刘永定, 肖波: 微囊藻毒素对几种淡水微藻的生长和光合活性的影响. 生态环境2008, 17(3):885-890.[PHYTO-PAM]38.康丽娟, 潘晓洁, 常锋毅, 李敦, 沈银武, 刘永定: HCO3-碱度增加对铜绿微囊藻光合活性和超微结构的影响. 武汉植物学研究2008, 26(1):70-75.[PHYTO-PAM]39.康丽娟, 潘晓洁, 常锋毅, 李敦海, 沈银武, 刘永定: 碱度增加对蛋白核小球藻光合活性与胞外多糖的影响. 湖泊科学2008, 20(2):251-256.[PHYTO-PAM]40.林燊, 彭欣, 吴忠兴, 李仁辉: 我国水华蓝藻的新类群&mdash &mdash 阿氏浮丝藻(Planktothrix agardhii)生理特性. 湖泊科学2008, 20(4):437-442.[PHYTO-PAM]41.苏彦平, 李敦海, 王坎, 刘永定: 念珠藻葛仙米生理生化特性对不同低温胁迫的响应. 武汉植物学研究2008, 26(3):310-314.[PHYTO-PAM]42.Alsterberg C, Sundbä ck K, Larson F: Direct and indirect effects of an antifouling biocide on benthic microalgae and meiofauna Journal of Experimental Marine Biology and Ecology2007, 351(1-2):56-72.[PHYTO-PAM]43.Dimier C, Corato F, Saviello G, Brunet C: Photophysiological properties of the marine picoeukaryotePicochlorum RCC237 (Trebouxiophyceae, Chlorophyta). Journal of Phycology2007, 43(2):275-283.[PHYTO-PAM]44.Dimier C, Corato F, Tramontano F, Brunet C: Photoprotection and xanthophyll-cycle activity in three marine diatoms. Journal of Phycology2007, 43(5):937-947.[PHYTO-PAM]45.Domis LNDS, Mooij WM, Huisman J: Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia2007, 584:403-413.[PHYTO-PAM]46.Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J: Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresource Technology2007, 98(11):2220-2228.[PHYTO-PAM]47.Schmitt-Jansen M, Altenburger R: The use of pulse-amplitude modulated (PAM) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity Toxicological and Environmental Chemistry2007, 89(4):665-681.[PHYTO-PAM, WATER-PAM, MICROSCOPY-PAM]48.Shen H, Song L-R: Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia2007, 592:475-486.[PHYTO-PAM]49.Tang D, Shi S, Li D, Hu C, Liu Y: Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress Journal of Arid Environments2007, 71(3):312-320.[PHYTO-PAM]50.Wu Z-X, Gan N-Q, Huang Q, Song L-R: Response of Microcystis to copper stress - Do phenotypes of Microcystis make a difference in stress tolerance? Environmental Pollution2007, 147:324-330.[PHYTO-PAM]51.Xing W, Huang W-M, Li D-H, Liu Y-D: Effects of Iron on Growth, Pigment Content, Photosystem II Efficiency, and Siderophores Production of Microcystis aeruginosa and Microcystis wesenbergii Current Microbiology 2007, 55:94-98.[PHYTO-PAM]52.Zhang M, Kong F, Xing P, Tan X: Effects of Interspecific Interactions between Microcystis aeruginosa and Chlorella pyrenoidosa on Their Growth and Physiology. International Review of Hydrobiology2007, 92(3):281-290.[PHYTO-PAM]53.陈丽芬, 郑锋: 叶绿素荧光技术快速测定水体藻类生物量的应用. 城镇供水2007(6):51-52.[PHYTO-PAM]54.康丽娟, 刘永梅, 李敦海, 刘永定: 不同盐度下水华束丝藻对CO2浓度倍增的生理响应. 水生生物学报2007, 31(5):671-674.[PHYTO-PAM]55.刘永梅, 刘永定, 李敦海, 沈银武: 氮磷对水华束丝藻生长及生理特性的影响. 水生生物学报2007, 31(6):774-779.[PHYTO-PAM]56.吴晓东, 孔繁翔, 曹焕生, 张民, 刘桂民, 赵巧华: 越冬浮游植物光合作用活性的原位研究. 湖泊科学2007, 19(2):139-145.[PHYTO-PAM]57.张曼, 曾波: PhytoPAM浮游植物分析仪用于微藻光合作用研究中几种参数设定的优化. 植物生理学通讯2007, 43(1):148-152.[PHYTO-PAM]58.张曼, 曾波, 王明书, 吴国平, 任秋芳: 温度升高对高光强环境下蛋白核小球藻(Chlolorella pyrenoidosa)光能利用和生长的阻抑效应. 生态学报2007, 27(2):662-667.[PHYTO-PAM]59.Ban A, Aikawa S, Hattori H, Sasaki H, Sampei M, Kudoh S, Fukuchi M, Satoh K, Kashino Y: Comparative analysis of photosynthetic properties in ice algae and phytoplankton inhabiting Franklin Bay, the Canadian Arctic, with those in mesophilic diatoms during CASES 03-04. Polar Biosciences2006, 19:11-28.[PHYTO-PAM]60.Bontes BM, Pel R, Ibelings BW, Boschker HTS, Middelburg JJ, Donk EV: The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake. Biogeosciences2006, 3:69-83.[PHYTO-PAM]61.Hilt S, Ghobrial MGN, Gross EM: In situ allelopathic potential of Myriophyllum verticillatum (Haloragaceae) against selected phytoplankton species. Journal of Phycology2006, 42(6):1189-1198.[PHYTO-PAM]62.Liang Y, Beardall J, Heraud P: Changes in growth, chlorophyll fluorescence and fatty acid composition with culture age in batch cultures of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Botanica Marina2006, 49(2):165-173.[PHYTO-PAM]63.Lü rling M, Geest Gv, Scheffer M: Importance of Nutrient Competition and Allelopathic Effects in Suppression of the Green Alga Scenedesmus obliquus by the Macrophytes Chara, Elodea and Myriophyllum Hydrobiologia 2006, 556(1):209-220.[PHYTO-PAM]64.Mulderij G, Smolders AJP, van Donk E: Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biology2006, 51(3):554-561.[PHYTO-PAM]65.Quigg A, Kevekordes K, Raven JA, Beardall J: Limitations on microalgal growth at very low photon fluence rates: the role of energy slippage Photosynthesis Research2006, 88(3):299-310.[PAM-2000, PHYTO-PAM]66.Roessink I, Belgers JDM, Crum SJH, van den Brink PJ, Brock TCM: Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field. Ecotoxicology2006, 15(5):411-424.[MINI-PAM, PHYTO-PAM]67.Bontes BM, Pel R, Ibelings BW, Boschker HTS, Middelburg JJ, Donk Ev: The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow turf lake. Biogeosciences Discussions2005, 2:997-1031.[PHYTO-PAM]68.Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, Miralto A: Growth inhibition and toxicity of the diatom aldehyde 2-trans, 4-trans-decadienal on Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology2005, 41(1):7-20.[PHYTO-PAM]69.Fietz S, Bleiß W, Hepperle D, Koppitz H, Krienitz L, Nicklisch A: First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from lake Baikal. Journal of Phycology2005, 41(4):780-790.[PHYTO-PAM]70.Heraud P, Roberts S, Shelly K, Beardall J: Interations between UV-B exposure and phosphorus nutrition. II. Effects on rates of damage and repair. Journal of Phycology2005, 41(6):1212-1218.[PHYTO-PAM]71.Jakob T, Schreiber U, Kirchesch V, Langner U, Wilhelm C: Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynthesis Research2005, 83:343&ndash 361.[PHYTO-PAM]72.Shelly K, Roberts S, Heraud P, Beardall J: Interactions between UV-B exposure and phosphorus nutrition. I. Effects on growth, phosphate uptake, and chlorophyll fluorescence. Journal of Phycology2005, 41(6):1204-1211.[PAM-2000, PHYTO-PAM]73.van derGrinten E, Janssen APHM, Mutsert Kd, Barranguet C, Admiraal W: Temperature- and light-dependent performance of the cyanobacterium Leptolyngbya foveolarum and the diatom Nitzschia perminuta in mixed biofilms. Hydrobiologia2005, 548(1):267-278.[PHYTO-PAM]74.Wang G, Chen L, Li G, Li D, Hu C, Chen H, Liu Y, Song L: Improving photosynthesis of microalgae by changing the ratio of light-harvesting pigments. Chinese Science Bulletin2005, 50(15):1622-1626.[PHYTO-PAM]75.Hu Z-Q, Liu Y-D, Li D-H: Physiological and biochemical analyses of microcystin-RR toxicity to the cyanobacterium Synechococcus elongatus. Environmental Toxicology2004, 19(6):571-577.[PHYTO-PAM]76.van der Grinten E, Janssen M, Simis SGH, Barranguet C, Admiraal W: Phosphate regime structures species composition in cultured phototrophic biofilms. Freshwater Biology2004, 49:369-381.[PHYTO-PAM]77.van der Grinten E, Simis S, Barranguet C, Admiraal W: Dominance of diatoms over cyanobacterial species in nitrogen-limited biofilms Archiv fuer Hydrobiologie 2004, 161(1):98-111.[PHYTO-PAM]78.Verspagen JMH, Snelder EOFM, Visser PM, Huisman J, Mur LR, Ibelings BW: Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? Journal of Phycology2004, 40(2):260-270.[PHYTO-PAM]79.李阔宇, 宋立荣, 万能: 底泥中微囊藻复苏和生长特性的研究. 水生生物学报2004, 28(2):113-118.[PHYTO-PAM]80.Lurling M: Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnology and Oceanography2003, 48(6):2214-2220.[PHYTO-PAM]81.Lü rling M, Verschoor AM: Fo-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia2003, 491:145-157.[PHYTO-PAM]82.Mulderij G, Van Donk E, Roelofs2 GM: Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia2003, 491:261-271.[PHYTO-PAM]83.Verschoor AM, Takken J, Massieux B, Vijverberg J: The Limnotrons: a facility for experimental community and food web research. Hydrobiologia2003, 491:357-377.[PHYTO-PAM]84.Young EB, Beardall J: Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. Journal of Phycology2003, 39(5):897-905.[PHYTO-PAM]85.Kö rner S, Nicklisch A: Allelopathic growth inhibition of selected phyplankton species by submerged macrophytes. Journal of Phycology2002, 38:862-871.[PHYTO-PAM]86.Schreiber U, Gademann R, Bird P, Ralph PJ, Larkum AWD, Kü hl M: Apparent light requirement for activation of photosynthesis upon rehydration of desiccated beachrock microbial mats. Journal of Phycology2002, 38:125-134.[PHYTO-PAM]87.Nicklisch A, Kö hler J: Estimatin of primary production with Phyto-PAM-fluorometry. Ann Report Inst Freshw Ecol Inland Fish Berlin2001, 13:47-60.[PHYTO-PAM]88.Varotto C, Pesaresi P, Maiwald D, Kurth J, Salamini F, Leister D: Identification of Photosynthetic mutants of Arabidopsis by automatic screening for altered effective quantum yield of photosystem 2. Photosynthetica2000, 38(4):497-504.[PAM-100, PHYTO-PAM]89.Schreiber U: Chlorophyll fluorescence: new instruments for special applications. In: Photosynthesis: Mechanisms and Effects. Edited by Garab G, vol. V. Dordrecht: Kluwer Academic Publishers 1998.90.Kolbowski J, Schreiber U: Computer-controlled phytoplankton analyzer based on 4-wavelengths PAM chlorophyll fluorometer. In: Photosynthesis: from light to Biosphere. Edited by Mathis P, vol. V. Dordrecht: Kluwer Academic Publishers 1995: 825-828.
    留言咨询
  • 浮游空气尘菌采样器 400-860-5168转4275
    产品简介: HD-FKC1浮游细菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;这些活体微生物在培养过程中,发生动态再水化过程,高速生长,从而更快得出结果;仪器支持历史数据记录,数据U盘导出方便数据查看。 HD-FKC1浮游细菌采样器具有采样量大、性能稳定、操作简便等特点,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所等的检测部门理想的浮尘菌浓度采样仪器。 HD-FKC1浮游细菌采样器符合标准: 1、GMP药品食品生产质量管理规范; 2、ISO14698-1/2洁净室及相关控制环境的生物污染控制; 3、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法; HD-FKC1浮游细菌采样器主要要特点: 1.采集口为无数微孔,减少了尘菌重叠,降低了微生物计数错误; 2.可编程,采样量可以从1-9999L(可调)0.001-9.999m³ 任意设定; 3.LCD显示采样量,采样时间等参数; 4.可将采样量,采样时间等参数按页储存,最多可储存256页数据; 5.造型独特,使用方便; 6.更换培养皿简便,拿下采集口即可更换培养皿(使用标准通用培养皿直径90*15); HD-FKC1浮游细菌采样器主要技术参数: 采样量:100L/min; 采样周期:任意设定; 采样口流速:0.38m/s; 培养皿规格:Φ90×15mm; 工作环境:温度10~35℃; 相对温度:10~90%RH; 电源:交直流两用; 最大功耗:20W; 重量:2kg; 外形尺寸:120×300mm; 标准配件:电源适配器,培养皿2个,说明书,合格证,出厂检验报告,保修卡; 可以通过全国各地计量院检测认证,放心采购。
    留言咨询
  • 浮游菌采样器 400-860-5168转4275
    HM-KF型浮游空气尘菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。 采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;采集完成后把琼脂培养皿盖好,这些活体微生物在培养过程中,发生动能再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部分控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大,收集效率高,性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所的检测部门理想的浮游尘菌浓度采集器。 主要特点: ●新型手持式外观,美观大方,使用方便。 ●彩色触屏控制,操作更加高效快捷。 ●LCD显示采样量,采样时间等参数。 ●可将采样量,采样时间等参数按组储存。 ●更换培养皿简便,拿下采样口即可更换培养皿。 ●带上位机软件,数据可导出电脑,方便历史分析。 ●交直流两用,内置6000mAh大容量锂电池,可连续采样8小时。 ●程序支持中英文切换。 相关标准: 1、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法; 2、ISO14698-1/2洁净室及相关控制环境的生物污染控制; 3、GMP药品食品生产质量管理规范; 技术参数 采样流量:100L/min±5% 采样孔撞击风速:17m/s 采样口流速:0.4m/s在洁净室内等速采样 设定采样量范围:0.01-9999L可调 琼脂培养皿:标准ɸ 90mm*15mm 屏幕尺寸:3.5寸触摸屏 数据通讯接口:USB 体积:Φ120*300 重量:1.6kg 尺寸:22×14×25cm 标准配件:培养皿2个,热敏打印纸1卷,电源适配器,说明书,合格证
    留言咨询
  • 浮游菌采集器 400-860-5168转4275
    HM-KF型浮游空气尘菌采样器是一种高效的多孔吸入式尘菌采样器。它根据颗粒撞击原理和等速采样理论设计,采样直接,采样口风速与洁净室内风速基本一致,能更准确地反映洁净室内的微生物浓度。 采样时,带尘菌空气高速通过微孔,被撞击在培养皿内的琼脂表面;采集完成后把琼脂培养皿盖好,这些活体微生物在培养过程中,发生动能再水化过程,高速生长,从而更快得出结果。 本仪器结构独特新颖,分上下两部分,上部分采集口和采样座及气泵,下部分控制器及电池。采样口和外壳采用优质航空铝制造,表面闭孔处理,便于使用前的灭菌消毒。本仪器功能强大,采样量大,收集效率高,性能稳定,操作简便,达到国际同类产品先进水平,是各制药厂、医院、生物制品、食品加工、公共场所的检测部门理想的浮游尘菌浓度采集器。 主要特点: ●新型手持式外观,美观大方,使用方便。 ●彩色触屏控制,操作更加高效快捷。 ●LCD显示采样量,采样时间等参数。 ●可将采样量,采样时间等参数按组储存。 ●更换培养皿简便,拿下采样口即可更换培养皿。 ●带上位机软件,数据可导出电脑,方便历史分析。 ●交直流两用,内置6000mAh大容量锂电池,可连续采样8小时。 ●程序支持中英文切换。 相关标准: 1、GB/T16293-2010医药工业洁净室(区)浮游菌的测试方法; 2、ISO14698-1/2洁净室及相关控制环境的生物污染控制; 3、GMP药品食品生产质量管理规范; 技术参数 采样流量:100L/min±5% 采样孔撞击风速:17m/s 采样口流速:0.4m/s在洁净室内等速采样 设定采样量范围:0.01-9999L可调 琼脂培养皿:标准ɸ 90mm*15mm 屏幕尺寸:3.5寸触摸屏 数据通讯接口:USB 体积:Φ120*300 重量:1.6kg 尺寸:22×14×25cm 标准配件:培养皿2个,热敏打印纸1卷,电源适配器,说明书,合格证
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制