当前位置: 仪器信息网 > 行业主题 > >

手持应变仪工作原理

仪器信息网手持应变仪工作原理专题为您提供2024年最新手持应变仪工作原理价格报价、厂家品牌的相关信息, 包括手持应变仪工作原理参数、型号等,不管是国产,还是进口品牌的手持应变仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持应变仪工作原理相关的耗材配件、试剂标物,还有手持应变仪工作原理相关的最新资讯、资料,以及手持应变仪工作原理相关的解决方案。

手持应变仪工作原理相关的资讯

  • 从口感到数据:手持式辣度检测仪的工作原理与应用
    辣椒的独特辣味为美食增添了无数风味,那么如何快速准确测量不同辣椒计辣椒制品的辣度呢?手持式辣度检测仪通过电化学测量方法,将辣味从主观感受转化为可量化的数据,为食品加工和质量控制提供了有力支持。了解更多手持辣度检测仪产品详情→https://www.instrument.com.cn/show/C578542.html工作原理:电化学测量辣味手持式辣度检测仪的核心在于其电化学测量原理。辣椒素类物质是辣味的主要来源,其中包括辣椒素和二氢辣椒素,它们共同构成了辣椒素类物质的90%左右。检测仪利用一次性三电极片,在电位作用下,辣椒素在工作电极表面富集,然后在特定的工作电压下进行氧化还原反应。这个过程中,辣椒素得失电子所产生的电流信号,会在显示器上呈现出相应的氧化还原峰。通过对峰电流大小的分析,仪器可以精确地定量检测出样品中辣椒素的含量,从而提供一个客观的辣度数据。优势:便捷、快速、可靠手持式辣度检测仪以其便捷性和快速性,显著提升了辣度检测的效率。首先,仪器设计紧凑、便于携带,适合在实验室外进行现场检测。其次,电化学测量方法使得检测过程不再依赖复杂的前处理步骤,只需简单操作即可获得准确结果。再者,检测仪的高灵敏度使得它能够对辣椒素进行精准的定量分析,这对于食品生产商在进行产品配方调整和质量控制时至关重要。应用:从田间到餐桌的全程监测手持式辣度检测仪还能适应各种辣椒及其制品的检测需求,无论是干辣椒、鲜辣椒还是辣椒粉,都可以通过这款仪器进行快速测定。对于辣椒种植者来说,仪器可以帮助他们在田间快速检测辣椒的辣度,以决定收获时机。食品加工企业则可以通过检测仪对原材料和成品进行质量控制,确保产品符合既定的辣度标准。在餐饮行业,手持式辣度检测仪还可以用于检测不同菜品的辣度,满足顾客对辣味的不同需求。总的来说,手持式辣度检测仪以其电化学测量原理和多功能应用,帮助行业实现了从口感到数据的科学转化。不仅提高了辣度检测的效率和准确性,更为食品行业的品质提升提供了重要的技术支持。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 金属所柔性应变传感器的手势识别应用研究取得进展
    基于手势识别技术的可穿戴柔性电子设备在医疗健康、机器人技术、人机交互和人工智能等领域颇具应用前景。研制性能优异的柔性应变传感器是实现高性能可穿戴设备应用的重要基础。感器的灵敏度决定可穿戴设备的感知精度,而在过载、瞬时冲击、多次循环弯曲/扭折等条件下的机械鲁棒性将影响可穿戴设备实际应用环境条件下的长期可靠服役。截至目前,采用简单方法制备兼具高灵敏度和机械鲁棒性的柔性应变传感材料颇具挑战性。如何将基础研究所获得的高性能柔性应变传感器推广应用到人机交互系统等实际应用场景中,将会为此类器件的研发提供全新思路。   近期,中国科学院金属研究所沈阳材料科学国家研究中心薄膜与微尺度材料及力学性能研究团队,在前期柔性基体金属薄膜力学行为研究的基础上,基于柔性器件传感的力学原理,提出将裂纹类传感器的传感机制引入高机械鲁棒性蛇形曲流结构中,通过对传感层进行巧妙的高/低电阻区调控实现高灵敏度传感的学术思想,研制出灵敏度与裂纹类传感器相当(GF 1000)且机械鲁棒性优异的柔性应变传感器。该传感器在过载、冲击、水下浸泡、高/低温等严苛环境条件的作用下表现出优异的循环稳定性,稳定响应周次达10000周。同时,该传感器具有响应和回复时间快(图2.柔性应变传感器的传感性能。a、高/低电阻区调控前的响应曲线;b、高/低电阻区调控后的响应曲线;c、在不同峰值应变下的循环响应曲线,极限检测应变;d、响应和回复时间。图3.柔性应变传感器的机械鲁棒性。a、循环稳定性;b、最大可承受应变;c-e:对严苛环境的耐受力。图4.可穿戴手语翻译系统。a、应用场景示意图;b、系统框架;c、手语手套;d、无线电路板;e、用户界面。图5.手语识别验证。a、6种由复合手势组成的手语;b、手语翻译系统对6种手语的识别准确率;e、手语翻译系统的各项性能汇总。
  • Vanta手持式光谱分析仪让您远离“眼镜”中毒
    眼镜中隐藏的安全隐患眼镜,再日常不过的生活用品。铅中毒?怎么可能和眼镜有关?你错了!人们日常佩戴的眼镜/太阳眼镜,的确也可能会存在安全上的隐患!在过去的2014年9月美国消费品安全委员会(CPSC)曾发布声明,当年市场上流通的21500副儿童太阳眼镜中,被发现在其表面涂料中,铅(Pb)的含量严重超标,需要予以回收,否则恐发生儿童因误食而导致的急性铅中毒事故。*万幸并没有发生过这类的事故对于眼镜镜架的部分,由于它长时间的和皮肤接触,若含有超出限值的有害元素,可能会对消费者的身心健康带来一定的危害。常见的眼镜镜架的材料有合金材料(如铜镍合金、钛合金)、树脂材料或者天然材料(如木制)。根据设计的需求,表面也会进行镀金、镀银工艺、或使用涂料等以增加其美观度。特别需要注意的是合金材料的镜架,它容易和面部的皮肤直接接触,若其中含有有毒有害物质,可能会为佩戴者带来健康上的隐患。眼镜上可能涵盖的主要有害元素包括但不限于铅(Pb)、镉(Cd)、汞(Hg)、铬(Cr6+)、砷(As)、镍(Ni)等。而对于身心还未发育完全的儿童而言,因为他们的自我防护意识较弱,有害元素可能会通过吞咽、咀嚼、舔舐、直接和皮肤接触等情况进入体内,对儿童的健康成长造成不容忽视的伤害。 有害物质限值法规为了保障环境和公众的安全, 全球都颁发了各自的有害物质限制(RoHS)法规,规定了在不同类型产品(包括电子电气设备、儿童产品以及消费品)中铅(Pb),镉(Cd),汞(Hg),六价铬(Cr6+),多溴联苯(PBB)和多溴联苯醚(PBDE)等等有害物质的限值,包括:• 欧盟RoHS指令(2011/65/EU)• 欧盟WEEE指令(2002/96/EC)• 中国RoHS指令(RPCEP)• 日本RoHS• 韩国RoHS指令• 美国消费品安全改进法案(CPSIA)(HR404)• 欧盟REACH指令 (EC 1907/2006) • 美国不含卤素的限制指令• 加州65号提案 X射线荧光光谱法在RoHS中的作用在RoHS指令检测程序文件IEC62321中,规定了测量有害元素在规定产品中的浓度的程序。其中,X射线荧光光谱法(XRF)是最为常用的筛选方法。得益于它可以在不破坏样品的前提下,快速精确的对样品中的铅、镉、汞、总铬、总溴的含量进行判断。奥林巴斯Vanta手持式光谱分析仪,用户可以在数十秒内完成对样品中有害元素的筛查。每台Vanta手持式光谱分析仪上都搭载了业已成熟的Axon技术,提供了较高的分辨率、计数率以及检测稳定性,从而为受监管的元素提供极低的检出限。同时,工程师精心设计的用户界面(UI)可以提供自定义的通过/失败判定,用户可以根据自身的企业标准或者行业标准修改受监管元素的限值大小。此外,通过搭配可选的Vanta便携式工作站配件,更加适合在实验室或者工厂使用,适用于长时间、大批次的检测作业。在检测进行时候,操作者有充分的自由去进行其他的工作。
  • 浪声仪器研发出手持光谱仪 三秒“扫”出金项链含金量
    p style=" text-align: center" img style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201702/insimg/5aa50910-9b98-4886-b12f-6e1dde051eec.jpg" title=" 1.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   这个像黄色电吹风的光谱仪,是国内唯一一款在测量时不需要采用样本标的的手持光谱仪产品。 /p p   不破坏物品,只要拿X光谱仪对准物品“扫一扫”,内部结构是什么,3秒钟一目了然。昨天,在苏州创业园,高新区领军人才、浪声(苏州)科学仪器有限公司总经理杜亚明向记者展示了他们研发的先进手持光谱仪,这是国内唯一一款在测量时不需要采用样本标的,而是采用PF——粒子滤波算法的手持光谱仪产品。 /p p   记者在现场看到,这个最新一代光谱仪像个电吹风,黄色的外壳加上一个清晰的数据显示屏。公司技术人员进行现场测试演示,用仪器瞄准一块金属币,不到 3秒,LED显示屏上立刻显示出这块金属币元素百分比含量,且数据精准到小数点后3位。工作人员又拿出一条金项链,当“电吹风”对准金项链的挂件“扫一扫”后,得出挂件含金量达99.6%以上,连接挂件的金项链链子的成分是金占76.122%、银占11.539%、铜占12.339%。这说明,该项链挂件部分接近纯金。 /p p   “我们的产品是通过物质吸收X 光后,通过分析荧光携带的材料组成,获得物质内部成分构成。”杜亚明说,X光可穿透物质对原子核外部电子产生影响,用仪器测定相应变化可鉴定出元素成分。 “里面的数字多道脉冲幅度处理器,决定了测量的准确性和稳定性 而我们的PF算法,便是将光谱直接‘翻译’成元素含量。”目前,这款仪器可以分析的合金材料超过1万种,还可将设备连入物联网,并可远程对仪器进行设置与检修 内置的光路设计,在无需充氮情况下,可显著提高轻元素的激发效果。 /p p   记者了解到,这种不破坏物品的检测仪非常实用。如在开矿中,对矿石“扫一扫”,马上能知道矿石中有哪些含量。两家药企都做“六味地黄丸”,为什么其中一家的疗效更好,里面什么成分更多一些?“扫一扫”,就能做定量分析。此外,还可应用于石化精炼、电力电站、化妆品等行业的材料及设备检测与验收。该仪器在技术上填补了中国同类产品无PF算法的空白,具备全球竞争力。一台的价格在15万元至30万元之间,是国外同类产品价格的60%左右。目前,该公司的分析仪器已销往伊朗、土耳其等地。 /p p   2015年,浪声(苏州)科学仪器有限公司获省高新技术企业认定,产品从软硬件到外观设计均拥有完全自主知识产权,已申请专利近30项。杜亚明说:“今年,我们公司正在积极筹备美国、俄罗斯展会,将进一步打开国际市场,展现苏企先进的技术与产品创新能力。” /p
  • 分布式光纤应变监测仪取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。& nbsp /p
  • “开一枪”三秒测得物质构成元素 浪声仪器:做中国手持光谱仪领导者
    苏报讯(施为)“我们的手持式X荧光分析仪器已经销往伊朗、土耳其等国家,在技术上填补了中国同类产品无FP (粒子滤波)算法的空白,具备了全球竞争力。”近日,记者从苏州创业园获悉,高新区领军人才企业浪声(苏州)科学仪器有限公司的第二代产品已经量产,只需要3秒钟就可以测出物质的构成元素。产品已申报30多项专利,是国内唯一一款在测量时不需要采用样本标的而是采用FP算法的手持光谱仪产品。采访当天,记者在浪声(苏州)科学仪器公司(以下简称“浪声公司”)看到,新一代手持光谱仪外观和一个电吹风类似,拥有明黄色流线型外壳,也像一把稍大一点的“手枪”。公司技术人员正在进行现场测试,只见他用仪器瞄准一块不锈钢金属片,扣动“扳机”,不到3秒,位于“手枪”后方的LED显示屏上立刻显示出这块金属的合金牌号和元素百分比含量,且数据精准到小数点后3位。据悉,这款仪器可以分析的合金材料超过一万种,是废旧金属回收再利用行业进行金属识别的有力工具,被广泛应用在石化精炼、制药、电力电站等行业材料设备的验收过程中。浪声公司创始人杜亚明告诉记者:“我们产品的核心技术在于其拥有数字多道脉冲幅度处理器和FP(粒子滤波)算法。”他解释,“X光可以穿透物质对原子核外部电子产生影响,用仪器测定相应变化可以鉴定元素成分。数字多道脉冲幅度处理器决定着测量的准确性和稳定性,而FP算法正是将光谱直接‘翻译’成元素含量的关键公式。”据悉,国内市面上的光谱测量仪基本没有FP算法,这意味着类似产品在测定物质含量时,需要先测量一个标准样本进行成分对比。如果选用的样本不准确,测量结果就会产生巨大误差。PF算法的技术攻克使得光谱仪实现了一键式检测,此外,仪器还搭配了云数据处理等功能,性能已达到国际一流水平,而价格只有国外同类产品的70%。浪声公司成立于2012年,2015年公司获得省级高新技术企业认定,产品从软硬件到外观设计均拥有完全自主知识产权,已经申请30多项专利,不同功能的产品可分别对合金、矿石、考古、土壤、化妆品等进行快速分析。产品主要销往各省市环保局、地质局、有色金属勘探院、市场监管局、重点大学以及中国石油等大型企业。杜亚明透露:“我们的生产线现在已经实现了半自动装配,半小时就可以完成一个产品装配,将来配上机器臂可以实现全自动生产。”今年,公司正在筹备参加美国和俄罗斯的展会,将进一步打开国际市场。
  • Nat. Nanotechnol.:范德华磁体中应变诱发的可逆磁相变——OptiCool、Montana低温光学设备大显神通
    晶体的机械形变会对其物理性质产生深远的影响。值得注意的是,即使是化学键几何形状很小的修改也可以完全改变磁交换相互作用的大小和符号,从而改变磁基态。来自华盛顿大学的徐晓栋教授课题组通过可以连续原位施加单轴张应力的装置在低温下使二维A型层状反铁磁半导体材料CrSBr产生了高达几个百分点形变。利用该装置,研究者实现了零磁场下应变诱导的可逆反铁磁-铁磁相变,及应变调控的自旋翻转过程。该工作为二维材料的磁性和其他电子态的应变调控创造了机会。该工作于2022年1月20日发表在nature nanotechnology上。该研究中涉及到了多种原位低温光谱的测量。为这些低温光学测量提供高稳定性低温及磁场环境的正是目前光学低温设备中的代表:OptiCool-超全开放强磁场低温光学研究平台和Montana超精细多功能无液氦低温光学恒温器。OptiCool-超全开放强磁场低温光学研究平台Montana超精细多功能无液氦低温光学恒温器全干式系统全自动软件控制,一键变温变场8个光学窗口超大磁场:±7T1.7K~350K全温区控温智能触摸屏,“一键式操作”2小时快速降温(300K-4.2K)5个光学窗口震动稳定性: ☛ 低温拉曼原位检测应变大小——基于OptiCool的低温拉曼测量研究者利用新的应变装置,通过对压电陶瓷施加电压来原位改变二维材料的单轴应变。为了估算CrSBr的应变大小,研究者比较了在应变区域和远离间隙的非应变区域的拉曼光谱。为此,该团队使用应变片异质结构校准了345 cm−1拉曼峰位(标记为P3)与压电陶瓷所加电压以及应变率之间的关系。校准得到的红移率为~4.2 cm−1每1%应变,与原理计算预测的~4.4 cm−1每1%应变相一致。图1:原位可调应变装置与拉曼测量应变率图2:应变诱导的反铁磁-铁磁相变☛ 低温PL光谱探测CrSBr磁性变化——基于Montana超精细多功能无液氦低温光学恒温器的PL光谱测量由于向RMCD对面外磁性比较敏感,而CrSBr是面内的A型反铁磁结构,因此用RMCD来测量磁性并不是一种好的方法,近期研究发现,激子光致发光(PL)和吸收谱对CrSBr的层间反铁磁和铁磁排列非常敏感。因此该工作中用低温PL光谱研究了CrSBr不同应变下的磁性态。图3:应变诱导的磁相变前后与磁场相关的PL光谱 ☛ 低温RMCD探测CrSBr自旋翻转过程——基于Montana定制型光学恒温器的RMCD测量在对CrSBr二维材料施加面外磁场时,自旋会逐渐翻转至面外方向。研究者发现,应变会导致自旋翻转过程发生剧烈的变化。利用低温限RMCD作为面外磁化的敏感探针,研究者测量了应力对自旋翻转的影响。图4:应变调控的面外磁翻转过程总结在此作中,研究者展示了新的技术手段以用来探测低温下原位可调的单轴应变对二维材料和异质结的影响。利用这一技术,研究者实现了对层状磁性半导体CrSBr磁性能前所未有的控制。研究结果表明利用自旋、电荷、晶格之间特的耦合作用可以用于制造二维器件,例如应力控制的磁阻开关、通过应变导致的磁性态反转对称性破缺实现调控二次谐波,或者零磁场下调控磁隧道结。利用应变的调控还可以扩展到范德瓦尔斯材料之外的其他二维材料、异质结、莫尔超晶格中,为应变调控开辟了广阔的前景。设备简介OptiCool超全开放强磁场低温光学研究平台OptiCool是Quantum Design于2018年2月新推出的超全开放强磁场低温光学研究平台,创新特的设计方案确保样品可以处于光路的关键位置。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场、部窗口90°光路张角让测量更便捷;控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验无限可能。OptiCool技术特点:▪ 全干式系统:完全无液氦系统,脉管制冷机。▪ 8个光学窗口:7个侧面窗口,1个部窗口;可升底部窗口▪ 超大磁场:±7T▪ 超低震动:Montana超精细多功能无液氦低温光学恒温器全球知名光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供性能的光学恒温器而广受好评。作为低温光学恒温器的旗舰产品,Montana Instruments近推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域研究研究方面更进一步。CryoAdvance 50新特色▪ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。▪ 模块化设计:多种配置可选,快速满足各种实验需求,后续升简单。▪ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。▪ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数▪ 自动控温:3.2K - 350K 样品台▪ 温度稳定性:▪ 样品腔空间:Φ53 mm ×100 mm▪ 光学窗口:5个光学窗口,可选光纤引入▪ 水平光路高度:140 mm▪ 窗口材料:多种材质可选▪ 基本电学通道:20条直流通道。▪ 接口面板:双RF接口+25DC接口
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 科迈斯手持光谱仪|海关法检的 “慧眼”
    在海关法检这个至关重要的领域,准确、高效地检测各类进出口货物的成分与特性是保障国家贸易安全、维护市场秩序的关键环节。手持式 X 荧光光谱仪,就像海关人员手中的 “慧眼”,在海关法检中发挥着不可忽视的重要作用。01手持光谱仪的工作原理手持光谱仪的工作原理主要基于X射线荧光(XRF)技术。手持光谱仪内部的微型X射线管发射X射线光束,这些光束与样品中的原子发生相互作用。当X射线与原子的内层电子发生碰撞时,会驱逐出一个内层电子,形成一个空穴,使整个原子体系处于不稳定状态。较外层的电子会跃迁到空穴中,如果这个过程中释放的能量被吸收,那么会逐出另一个次级光电子,这个过程称为俄歇效应。当外层电子跃入内层空穴时释放的能量以光子形式放出,产生X射线荧光。这些荧光光子的能量和波长与元素一一对应,因此可以通过测量这些荧光来确定元素的种类和含量。荧光X射线的强度与对应元素的含量之间存在一定的关系,据此可以进行元素定量分析。最后,X射线探测器将被测元件的X射线特征线的光信号转换为易于测量的电信号,从而得到被测元件的特征信息。通过这种方式,手持光谱仪能够快速识别金属材料的元素组成,并进行成分分析和质量控制。02科迈斯手持光谱仪在海关法检中的具体应用1金属材料检测金属制品成分验证在进口钢材的检验中,科迈斯手持光谱仪可以快速测定钢材中的各种元素成分,如锰、硅、磷、硫等。对于高等级的建筑用钢或汽车用钢,精确的成分控制是确保钢材性能的关键。海关人员利用手持光谱仪在码头或仓库现场就能检测钢材是否符合合同规定的标准,防止以次充好的钢材进入国内市场。对于各类金属合金制品,如铝合金门窗框架、铜合金的电子元件等,科迈斯光谱仪能够准确分析合金元素的比例。例如,铝合金中的铜、镁、锌等合金元素的含量直接影响其强度、耐腐蚀性等性能。海关通过检测可以确保进口的合金制品质量合格,符合相关行业的使用要求。贵金属鉴定在贵金属贸易日益频繁的今天,科迈斯手持光谱仪在海关对黄金、白银等贵金属制品的检验中发挥着重要作用。它可以快速、无损地检测贵金属的纯度。例如,在检测黄金饰品时,能够精确测量其中金元素的含量,同时检测是否存在其他杂质元素,有效防止假冒伪劣的贵金属制品混入合法的进出口贸易中,保护消费者和国内市场的利益。2矿产品检验矿石品位评估对于进口的铁矿石,科迈斯手持光谱仪能够在港口现场迅速检测铁元素的含量以及其他杂质元素(如硅、铝、磷等)的含量。矿石的品位直接关系到钢铁企业的生产成本和产品质量,海关通过准确检测可以确保进口的铁矿石符合我国钢铁行业的需求,防止低品位矿石的倾销。在稀土矿的进出口检测方面,由于稀土元素具有重要的战略意义,海关需要严格把关。科迈斯手持光谱仪可以检测稀土矿中的镧、铈、镨、钕等多种稀土元素的含量,确保稀土资源的合理进出口,保护国家的战略资源。矿产品分类鉴别有些矿产品外观相似,但化学成分和用途却有很大差异。例如,方解石和白云石在外观上较难区分,但手持光谱仪可以通过检测镁等元素的含量差异,准确地对它们进行分类。这有助于海关按照正确的矿产品类别进行征税和监管,避免因分类错误导致的贸易纠纷。3危险化学品管控成分筛查在进出口化工原料的检验中,手持式光谱仪可以作为快速筛查危险化学品的有效工具。它能够检测化工原料中的有害元素,如硫、重金属元素等。对于一些未明确标识成分的化工产品,该光谱仪可以初步判断其是否含有危险成分,为海关人员的进一步处理提供依据,保障海关工作环境和后续运输、储存环节的安全。合规性检查不同国家和地区对危险化学品的进出口有严格的法规要求。手持光谱仪可以帮助海关检查化工产品是否符合相关的国际和国内标准。例如,检测某些化学品中的重金属含量是否超过规定限值,确保进出口的危险化学品在环保、安全等方面符合要求,防止违规的危险化学品流入或流出本国市场。03科迈斯手持式光谱仪应用优势①便携式与现场检测科迈斯手持光谱仪体积小巧、重量轻,方便海关人员携带到各个工作现场,如港口码头、机场货运区、边境口岸等。这种便携性使得海关能够在货物装卸、转运的第一时间进行检测,无需将样品送到实验室等待漫长的检测结果,大大缩短了检测周期,提高了海关法检的工作效率。②快速准确的检测结果科迈斯手持光谱仪能够在短时间内(通常在几十秒到几分钟不等)给出检测结果,而且检测结果具有较高的准确性。这使得海关人员能够迅速判断货物的成分是否符合要求,及时做出放行、进一步检验或扣押等决策,确保海关监管的及时性和有效性。③非破坏性检测科迈斯手持光谱仪采用的是 X 射线荧光检测技术,属于非破坏性检测方法。不需要对物品进行取样或破坏,就能分析其元素组成,这对于海关法检中的许多贵重货物具有重要意义。
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 丹迪发布数字图像相关DIC应变测量仪新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec DIC Q-400丹迪公司研发生产的一款测量材料表面位移与应变的标准DIC设备,该设备不与被测物体表面发生接触,通过追踪物体表面的散斑图像,实现变形过程中物体表面三维坐标、位移场和应变场的测量。该设备几乎适用于任何材料且测量范围广、测量精度高。技术参数:测量维度:二维、三维测量区域:1mm×1mm—1m×1m(该区间外也可测量,但测量精度会相应下降)测量精度:位移(1μm),应变(0.01%)主要特点:精度高、测量范围广、无接触、方便使用创新点:1、新型的光学测量仪器,无接触测量材料的位移和应变 2、测量结果准确,每个结果均含有一个置信区间 3、测量时间短,系统操作简单、标定程序简单
  • 泡罩药板密封性测试仪的工作原理
    泡罩药板密封性测试仪的工作原理在医药包装、食品封装等领域,产品的密封性能直接关系到其保质期、安全性和使用效果。因此,对包装材料的密封性进行准确、高效的检测显得尤为重要。泡罩药板密封性测试仪,作为一种采用色水法原理的检测设备,凭借其直观、可靠的检测方式,在行业内得到了广泛应用。本文将详细介绍基于色水法原理的泡罩药板密封性测试仪的工作原理、操作流程及其在评估试样密封性能中的关键作用。一、工作原理泡罩药板密封性测试仪MFY-05S通过模拟包装物在特定条件下的压力变化,检测其密封完整性。其核心在于利用色水(常选用亚甲基蓝溶液以增强观察效果)作为介质,在真空室内形成一定深度的水层。当测试样品置于该水层之上,并对真空室进行抽真空操作时,样品内外形成显著的压力差。这一压力差促使空气(如果存在泄漏通道)从样品内部通过潜在泄漏点逸出,并在释放真空后,通过观察样品形状的恢复情况及色水是否渗入样品内部,来评估其密封性能。二、济南三泉中石的MFY-05S泡罩药板密封性测试仪操作流程准备阶段:首先,向真空室中注入适量的清水,并加入适量的亚甲基蓝溶液,搅拌均匀,使水呈现明显的蓝色,便于后续观察。同时,将待测样品按照测试要求放置在真空室上方的指定位置。抽真空过程:启动真空泵,对真空室进行抽气,直至达到预设的真空度。在此过程中,随着真空度的增加,样品内外压力差逐渐增大,可能存在的微小泄漏通道将被放大,使得空气或气体从样品内部向外逸出。保压与观察:在达到所需真空度后,保持一段时间(根据测试标准设定),以便充分观察样品在压力差作用下的反应。此时,若样品密封良好,则形状基本保持不变,色水不会渗入;若存在泄漏,则可能观察到样品形状发生变化,且色水会沿泄漏路径渗入样品内部。释放真空与评估:释放真空室内的真空状态,恢复至常压。仔细观察样品表面是否有色水渗入痕迹,以及样品形状的恢复情况。根据观察结果,结合测试标准,判定样品的密封性能是否符合要求。三、济南三泉中石的MFY-05S泡罩药板密封性测试仪优势与应用直观性:色水法的应用使得泄漏现象一目了然,无需复杂的数据分析即可快速判断样品的密封性能。高效性:测试过程简单快捷,提高检测效率。广泛适用性:不仅适用于泡罩药板包装,还可用于其他类型包装材料的密封性检测,如瓶盖、软管等。总之,济南三泉中石的MFY-05S泡罩药板密封性测试仪以其独特的色水法原理,为包装材料的密封性检测提供了一种高效、直观且可靠的解决方案。
  • 国瑞力恒发布手持式VOCs检测仪新品
    GR-3012型手持式VOCs检测仪1.产品概述 GR-3012型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。2.适用范围适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。3.依据标准HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》4.技术特点1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息 5.技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器20PPM0.001PPM优于±5%200PPM0.01PPM2000PPM1PPM10000PPM1PPM负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:GR-3012型手持式VOCs检测仪是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器;根据不同的需求可选配不同量程的传感器,配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测;内置上百种VOCs气体的校正系数,测量数据更准确;采用进口采样泵,负载能力强,使用寿命长;便携式,体积小、重量轻、使用寿命长,一次充电可连续工作8小时。手持式VOCs检测仪
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p   近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。 /p p   作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。 /p p   在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。 /p p   中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title=" LKsd-fyqtwzv2273554.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p style=" text-align: center " 与会专家合影 /p
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 三思纵横上海分公司成功研发专用扩展型应力应变测试仪
    为了解决客户在试验机使用过程中不方便使用引伸计而必须粘贴应变电阻片(应变计)进行应变测试的问题,近日,三思纵横上海公司成功研发了DSCC-5000K专用扩展型应力应变测试仪。   应力应变测试仪DSCC-5000K是与试验机配套的高速静态应变数据采集仪,同步采样频率60Hz,最小应变分辨率0.1&mu m,广泛应用于拉伸、压缩或弯曲等试验,能够精确测量材料变形,绘制力-变形、变形-时间、变形-变形等曲线。   该设备既可用于液压试验机,也可用于电子试验机,并可满足多通道应变采集与试验机加载力值采集同步。   三思纵横上海分公司研制成功的应力应变测试仪已经成功地应用于多家建筑工程质检公司。   更多新品资讯,请咨询三思纵横驻各地办事处销售人员或服务热线:400-882-3499。
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 百若仪器:慢应变速率应力腐蚀试验机的研发成绩斐然
    2014年,上海百若持续创新,研发再上新台阶。YYF-50系列慢应变速率应力腐蚀试验机产品的研发,填补了国内在材料应力腐蚀敏感性研究领域的空白,产品处于国内领先,可完全替代同类的进口产品。该产品已在高温高压的超临界水介质环境、高温铅铋液态介质环境、高温盐溶液介质环境、高温高压H2S介质环境、海水环境等腐蚀介质应用领域成功使用,可进行慢应变速率腐蚀拉伸、应力腐蚀、腐蚀疲劳、腐蚀裂纹扩展测量、精确裂纹预置、低周疲劳等试验。在腐蚀介质环境下进行材料的腐蚀裂纹扩展测量存在较大技术困难,传统的COD法已不能实现测量应用,DCPD方法是腐蚀介质环境下测量裂纹扩展普遍推崇的方案,上海百若耗时多年进行研发和测试,完成了腐蚀介质环境下通过DCPD法精确测量材料裂纹扩展及扩展速率计算。该技术已成功在设备上安装使用,获得了用户的高度评价和认可。不断地研发投入和全面的科学测试,上海百若在应力腐蚀试验设备的销售推广取得了骄人的成绩,在诸多领域提供了试验设备:1. 高温高压超临界水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。2. 高温铅铋溶液,慢应变速率拉伸,腐蚀疲劳。3. 高温盐溶液,慢应变速率拉伸,腐蚀疲劳。4. 高温高压H2S,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。5. 常温常压海水,慢应变速率拉伸。6. 微高温海水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。7. 硫氰酸溶液,慢应变速率拉伸,氢脆敏感试验。2014年,加氧测量与控制水化学系统完成了设计和组建,并成功运行,系统得到了用户肯定和赞许。用于测试金属在高温高压水环境下腐蚀速率的静态高压釜,在运行期间水化学一直变化,水中的溶解氧逐渐降低,溶解氢浓度逐渐升高,溶解进入的金属离子使水的电导率逐渐升高。这样,静态高压釜一次实验的时间越长,测得的实验结果偏差越大。给高压釜系统添加一套水化学回路对于保证高压釜内的水质稳定非常重要。该系统能够在线监测溶解氧、电导率、pH值,并实现控制调节。上海百若是慢应变速率应力腐蚀试验机的国内唯一专业性研发公司,在诸多技术难点方面取得了成功突破,并在设备安全和长期稳定性方面做了大量的研究和测试,此类设备运行时间从1周到1、2年不等,运行时间长,设备的安全、可靠是首要考虑因素,我们在设备的各个方面设计了安全监测与保护,保障操作者、设备和试验的安全。在设备的研发过程中,我们与高校和研究院合作,得到了上海交通大学、中国科学院、中国原子能科学研究院、上海应用物理研究所、厦门大学等单位的大力支持和帮助,使得设备的研发取得突破性进展。慢应变速率应力腐蚀试验机应用范围广泛,主要研究材料在腐蚀介质环境下的腐蚀敏感特性,这些应用领域有:核电的一回路、二回路材料,热电材料,石化行业,海洋行业,汽轮机,及其它腐蚀性介质应用领域。
  • 日本ATAGO(爱宕)PAL系列手持式折射仪让所有的检测工作一手掌握!
    PAL系列手持式折射仪让检测工作更高效更快捷 日本ATAGO(爱宕)的PAL系列迷你数显折射计一经面世,在用户中即引起了广泛的关注。PAL-1是这个系列中的一名代表。 PAL-1是全新的数字式手持折射仪,完全颠覆了过去用户对于手持式折射计的传统认知,采用迷你数显设计,仅手掌大小,重100g。 PAL-1的袖珍型大小将能让您随身携带,并且不论厂房内外均能使用。您将会对它的尺寸、设计、功能与性能感到惊奇!PAL-1将会扩展您检测范围的更多可能性。 PAL系列完全采用模块化设计,将光学分析模块与电子器件(包括模数转换,数据处理,显示器驱动,显示LCD板,按键等)部分完全分离,并采用共用模具设计制造工艺,使得一个检测仪器能够像消费类电子产品一样被大规模复制,设置不同的测试功能只是在工厂里重写Flash-ROM-BIOS数据,因而该仪器既能够被制造得小巧玲珑,又能够满足测试精度,还能够衍生出无数种不同参数的测试仪器,并且,价格还非常便宜。 目前PAL-1数字式折光糖度计的价格仅相当于过去买一只手持刻度式折光糖度计的价钱。 数字手持袖珍折射仪PAL-1荣获了2004年优秀设计奖Good Design Award,2004年技术创新奖,2005年食品工业技术进步奖! 特点: &bull 小巧轻便,仅重100g。 &bull 清水归零,操作简便。 &bull 单手便能进行测量,特殊设计的样本凹槽可以解决样本的溅出问题。 &bull PAL-1拥有让您惊奇的快速测量能力。只要将一滴样本溶液置于棱镜上,然后按「开始」键,糖度值(糖份/浓度)会在3秒之内显示。具有数字LCD显示面版,其它人也可以避免主观错误的数值判读(例如传统的模拟式折射仪) &bull 具有广泛的测量范围(糖度(Brix)0.0-53.0%),PAL-1适用于几乎任何果汁、食品与饮料的测量,例如汤、调味酱、蕃茄酱、低糖果酱或带皮果酱。 &bull PAL-1防护等级为IP65。你可以用水龙头直接冲洗样品凹槽,且本设计能让使用者轻易地将样品擦干。 &bull PAL-1的自动温度补偿功能(ATC)使您在读取数值时可以不用考虑周边的温度,可显示温度,测量温度高达100℃。 &bull PAL-1可以在样本加热或烹煮过程中做高温测量。(所测的糖度值在几次重复测量后会逐渐稳定。) &bull PAL-1具有专属的保管盒子,使用者可以将PAL-1妥善保管以避免损害或损失。 为了拓展PAL-系列的应用,ATAGO开发出了许多单参数的特殊标度PAL浓度测定仪,应用领域包括:糖液、各类含糖溶液、各种饮料果汁、蜂蜜、水果、果酱、调味酱、豆奶、盐度、拉面汤、盐水、海水、食品添加物、酒精、药剂、葡萄汁、消毒剂、漂白剂、碱性液体、融雪剂、冷冻剂、皮革鞣剂、纺织、糊状物、各种化学制品和溶剂浓度的测量等等。 欲了解更多详情可点击www.atago-china.com 或致电020-38108256 ATAGO(爱宕)中国分公司咨询。
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 远离烈日,FLIR T800让你躲在阴凉处也能高效完成工作!
    刘工 不管大型、小型巡检都不用愁,使用FLIR这款神奇,就可以让我免受太阳的暴晒,躲在远处的荫凉儿也可以清晰检测设备!26分钟前郑工,贾工,小菲张工:怪不得你每次检查都那么快,原来是有了得力助手!陈工:这么好的东西竟然还私藏,赶紧介绍给我们刘工所提到的FLIR神器——FLIR T800是近期新推出的产品主要包括FLIR T860和T865都是带有取景器的高性能红外热像仪它们为何能够让刘工的工作如此轻松呢?让小菲带你解密吧~FLIR T800热像仪采用倾斜式光学设计,支持非接触检测方法,简单易用,可以安全舒适地评估关键电气和机械设备的状况。01不怕烈日炫光,安全距离也能获得高清图片取景器+搭配6°长焦镜头FLIR T800搭载全新目镜取景器,使您无论处在室内还是室外,在任何亮度、光照环境下,都能做到不受太阳眩光干扰!搭配6°长焦镜头选件,在远离具有一定危险的现场环境,保护使用者的人身安全,降低风险。由于增长了焦距,菲力尔T800可观测更小的目标被测物,安全又便捷!红外分辨率高达640*480的全新FLIR T800让检测结果的细节更加清晰明了,直观点说就是让同一区域的检测目标增加了像素点☟在高危高压的工作环境中,越快越清晰地发现问题所在,并快速作出正确决策,越能保障我们的人身安全,具备如此硬核能力的FLIR T800,你确定不来一台?02无需人工对焦,大量目标可快速有序检测激光辅助自动对焦+FLIR巡检选项功能FLIR T800是单触式电平/跨度,使您只需单触屏幕一次,就可以在热图像中选择出小片的聚焦区域,而且热像仪还会根据图像中该位置的热对比度,自动调节电平和跨度,再加上激光辅助自动对焦等高级功能,不仅节约了手动调节的时间,还能确保热像仪每次都能准确测温。FLIR巡检选项(FLIRInspection Route)功能是专为需要定期检测大量目标物体的热像师设计,当电力工程师们需要对户外电气设备、室内设备检测、电缆线架、配电母线等进行大型巡检时,可以通过FLIR Route Creator编写巡检规划方案,然后下载到FLIR T800中,这样就可以按需规划好每天的巡检计划,优化巡检路线,还可以成批分类管理检查结果,极大简化了热像工程师们后续的工作流程!03FLIR T865——满足科研领域严苛要求测温范围广+测温精度高+可换镜头多FLIR T865拥有非常宽的测温范围,可以实现极限温度测量,可测-40°C,可测2,000°C,极宽的测温范围让它几乎可以检测所有目标!虽然T865的温度范围很宽,但是它的测量精度也没有打折扣哦~它的测温精度可达±1°C/±1%,让你看清故障细节,可以轻松快速的做出最正确的决策!作为高性能手持式红外热像仪,FLIR T865还兼容FLIR AutoCal™ 可更换镜头,既可用42°广角镜头轻松扫描宽广区域,也可用6°远摄镜头检查远距离目标,当然对于一般距离的检测目标,它还有14°镜头可选,满足了您多种多样的需求呀!强大性能的
  • 售价1万的手持式ATP荧光检测仪面世
    根据监测点的不同,ATP数值上下限也不同   下馆子,最怕碗筷、骨碟不干净,可肉眼又看不出&ldquo 猫腻&rdquo 。昨天,一款专门针对物体表面洁净度的快速检测仪在园区亮相。据介绍,只需用检测拭纸在餐具等物品表面轻轻擦拭,15秒后,就能检测出物品表面残留的细菌数量是否超标。   这款名叫手持式ATP荧光检测仪的高科技产品,由苏州工业园区纳米城的天隆生物科技公司自行研发生产,迄今已是第三代。该公司技术服务部经理黄发平告诉记者,所谓ATP指的是三磷酸腺苷,它是一切生命体能量的直接来源,存在于所有活的动植物细胞、细菌和食物残留中。ATP荧光检测法是根据萤火虫发光原理开发的快速检测技术。有氧条件下,虫荧光素酶催化虫荧光素和ATP之间发生氧化反应形成氧化荧光素并发出荧光,其强度与微生物数量呈比例关系。通过测试荧光信号的强度可得知待测目标被细菌、食物残留等污染的程度,因此检测ATP可以作为判断洁净的指标。   他表示,以往卫监部门抽查餐馆卫生状况是否达标,把样本带回实验室,经过细菌培养等复杂处理,少则48小时,多则一周才能出具检测结果。而他们生产的手持式ATP荧光检测仪只需要在物体表面轻轻一擦,15秒就能检测细菌数量是否超标,连接移动式手持打印机,实时出具结果。&ldquo 我们行业内有一个统一的ATP标准值,用来衡量细菌数量是否超标。&rdquo 他说,台面、菜刀、砧板等监测点不同,ATP上下限数值也是不一样的。   据悉,目前这台手持式ATP荧光检测仪市场售价在1万元左右,在西安、上海等地,该产品已被运用于各类医疗卫生机构卫生监督、食品安全现场快速抽检工作中。   天隆科技是一家针对医学诊断、食品安全、病原体检测和生物学医学科研等市场需求,进行分子诊断、核酸检测、POCT等检验仪器、医疗器械及体外诊断试剂的研发、生产和销售的高科技企业。公司和研发基地分布西安和苏州两地。昨天,天隆科技在园区独墅湖世尊酒店举办新产品发布会,除了手持式ATP荧光检测仪之外,现场还展示了新一代磁珠法核酸提取仪、基因扩增热循环仪器及四通道实时荧光定量PCR仪、多款PCR检测试剂等高科技产品。   据悉,未来2年,天隆科技还将建成医学诊断仪器与试剂的综合性生产基地,仪器产品种类将扩展到8大类20余项产品,覆盖从大型自动化监测工作站到小型便携式快速诊断仪器,配套试剂品种将达到百种以上,形成完整、成熟的分子诊断类产品线。2015年项目达产后将达到3亿元的年产值。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制