当前位置: 仪器信息网 > 行业主题 > >

材料微结构分析原理

仪器信息网材料微结构分析原理专题为您提供2024年最新材料微结构分析原理价格报价、厂家品牌的相关信息, 包括材料微结构分析原理参数、型号等,不管是国产,还是进口品牌的材料微结构分析原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合材料微结构分析原理相关的耗材配件、试剂标物,还有材料微结构分析原理相关的最新资讯、资料,以及材料微结构分析原理相关的解决方案。

材料微结构分析原理相关的资讯

  • 球差校正技术助力材料微结构与性能关系解析
    2021年10月30日,科学服务领域的世界领导者赛默飞世尔科技与中国分析测试协会高校分析测试分会合作,首次冠名设立的“赛默飞高校分析测试优秀青年人才奖”在线揭晓获奖名单。作为微纳结构分析室负责人和重庆大学分析测试中心的助理研究员,张斌博士凭借优秀的技术成果荣获赛默飞高校分析测试优秀青年人才奖二等奖。对此,仪器信息网走进重庆大学分析测试中心并特别视频采访了张斌。电子显微镜发明于上世纪30年代,距今已90年,电子显微镜有两大特点:第一是超强的空间分辨能力,可以达到纳米甚至原子尺度;第二个是强大的分析能力,可以分析一些化学成分、电子结构等。张斌从研究生起便开始了电子显微学的研究,主要从事相变存储材料、热电材料等功能材料的微结构研究。在此基础上,为了解决一些问题,投身开发一些新的显微学分析方法。这一路走来,丰富的研究经历奠定了他今后在电子显微学的研究方向:电子显微学方法的开发和应用,以及材料微结构与性能关系的解析。当谈及这次的获奖技术成果“基于透射电子显微分析的材料微结构定性/定量研究”时,张斌谦虚地表示,“获奖核心技术不能说是太好的一些成果,就是有一点点小的进步而已。”其中,图像分析、数据处理分析的技术最早被用于相变存储材料微结构研究中空位分布的解析,其主要利用图像上点阵的位置和强度来描绘空位可能的占据以及定量化的动态演变过程。去年张斌团队将这套方法加以改进,首次应用在原子尺度的构型解析实践上,并取得突破。另一个核心技术成果经典案例就是制样,在做显微学分析时,观测100纳米及以上的Cu5FeS4颗粒存在尺度太大的问题,通过超薄切片和引入酸刻蚀腐蚀等方法,张斌团队将其内部结构解析得更加清楚。正是通过这种制样方法,张斌团队发现了二十面体、五次孪晶结构和独到的核壳结构等一系列丰富的结构信息,对热电材料的性能提升带来很大帮助。科研技术的发展离不开仪器技术的发展。张斌表示,这些成果的取得离不开球差校正技术的突破和发展,因为大部分实验图像来源于赛默飞的球差校正电镜,所有的图像分析都是基于球差校正获得的HAADF图像,正是有了这些清晰的照片和先进的技术,才能获得更多的实验结果。采访最后,张斌向我们展示了他的“收藏品”——上万片承载研究观察样品的小铜环。这里的每一片铜环都代表着一个人一次研究的样品,张斌从电镜装好的那一天就开始把这些铜环收集到玻璃皿中,近4年的积累,如今铜环数量已达上万片。关于重庆大学分析测试中心重庆大学分析测试中心,于2014年正式挂牌成立,是面向学校和社会开放的校级仪器共享机构和学科交叉融合平台。2018年3月通过国家级实验资质认定,具备为社会提供公正、科学、准确数据的条件和资格,成为可提供具有法律效力检验检测报告的第三方检测基地。中心遵从源于需求、重在统筹、共建共享、优化资源、科学管理、高效运行的建设原则,致力于为校内科研工作的顺利开展提供高水平测试服务,同时也为重庆市高校、企业及科研院所自主创新能力的提升提供服务与支持。
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 力学所在镁基室温热电材料Mg3Bi2-xSbx半无序微结构预测方面取得进展
    热电材料是能够实现热能和电能直接相互转化的新型能源材料,在低品位废热发电、固态制冷、深空探测、局域空间精准温控等领域有重要应用。较低的转换效率是制约热电材料应用的瓶颈,Bi2Te3基化合物是目前唯一规模化应用的近室温热电材料,热电发电转换效率仅有~7% 。Mg基热电材料Mg3Bi2-xSbx具有低成本和在室温工作区的高热电性能,有望取代Bi2Te3基化合物成为下一代室温商用化材料。确定Mg基热电材料的微结构是认识和提升热电性能的前提。然而,Mg3Bi2-xSbx(0x(02-xSbx为题,发表在《计算材料学》(Computational Materials Science)上。研究工作得到国家重点研发计划和力学所力英计划等的支持。 图1. (a)用于有限尺寸化学无序材料结构预测的流程图,(b)用于准无限尺寸化学无序材料结构预测的流程图图2. (a) “辣搜”方法在Mg3Bi2-xSbx(x=0.5,N=90)体系搜索过程中总能量随搜索代数的演化;(b) 三种不同尺寸(N = 10、40和90)的搜索过程中第一性原理计算所需的时间;(c) 三种不同尺寸(N = 10、40和90)下Mg3Bi2-xSbx(0xSbx(02-xSbx(x=0.5)中Mg-Sb和Sb-Sb的径向分布函数(RDF)
  • 天美公司携爱丁堡产品参加第三届先进材料微结构与性能国际研讨会
    为促进学科学术前沿交流,推进一流材料学科建设,浙江大学材料科学与工程学院在 2018 年 5 月 25 日-29 日 40 周年院庆( 1978 年-2018 年)之际在浙江杭州召开“第三届先进材料微结构与性能国际研讨会暨 40 周年院庆材料创新论坛”。作为首屈一指的顶级荧光光谱仪生产制造商,天美公司携旗下爱丁堡仪器作为赞助商,全程参与了光子功能材料分论坛。  此次论坛围绕光子学材料领域的关键基础科学问题和应用技术进行深入研讨和广泛交流,探讨最新前沿,并展示相关技术创新、产学研等创新成果。会议期间,英国爱丁堡仪器CEO Roger fenske分享了爱丁堡公司仪器在光子材料领域的最新应用技术以及方案,精彩的报告吸引了很多老师到天美公司爱丁堡的展台进行咨询和问题讨论。     通过对论坛全面、积极的参与再次表达了对国家光子功能材料事业的支持与关注,同时也以其先进的技术及解决方案再次证明了天美及爱丁堡公司在光子功能材料分析领域的进步与实力。天美公司希望能通过与广大相关科学工作者、专家用户以及同行之间的交流,更加致力于科学仪器在光子功能材料研究中的应用,促进我国光子功能材料事业的发展。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡sgx主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 froilabo公司、瑞士precisa公司、美国ixrf公司、英国 edinburgh instruments公司等多家海外知名生产企业和布鲁克公司scion气相和气质产品生产线,加强了公司产品的多样化。
  • 2016年全国电子显微学学术年会之“能源、环境、信息等功能材料的微结构表征”分会场
    p    strong 仪器信息网、中国电子显微镜学会、中国电镜网联合报导: /strong 2016年全国电子显微学学术年会于10月13-15日在天津召开,在13号下午、14号以及15号下午同期举办八个分会场活动。由于8个分会场活动同时举办,仪器信息网编辑有选择性地参加了其中部分分会场,对其中的部分报告进行报道。13日下午,第二分会场举办的主题为能源、环境、信息等信息功能材料的微结构表征,一共九个报告,他们分别是: /p p   中国科学院苏州纳米技术与纳米仿生研究所的研究员张跃刚作题为“用模拟工作环境的电化学芯片实现原位显微表征”的报告,他介绍说,通过制备不同种类的液体芯片用于TEM和SEM的原位表征,成功观察到Li sub 2 /sub S电池的多硫化物在脱锂的溶解过程,有利于锂硫电池的新电极材料和充放电理论的研究。 /p p style=" text-align: center " img title=" IMG_4345_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/8dc9cab5-d4bf-4970-8c6b-bedb3664f415.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 中国科学院苏州纳米技术与纳米仿生研究所 张跃刚研究员 br/ /span /p p   中国科学院金属研究所的研究员张炳森在“纳米碳及碳载催化剂的电子显微学研究”的研究过程中,通过对纳米金刚石、金属碳载催化剂的电子表征研究,利用电子显微镜作为在微观尺度的表征作为辅助手段,筛选出催化剂性能更加优异的材料。 /p p style=" text-align: center " img title=" IMG_4348_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/12fa31a9-07d5-462e-894c-2b881b7d0f3f.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 中国科学院金属研究所 张炳森研究员 /span /p p   天美+日立高新技术的罗琴博士介绍了日立高端扫描电镜和联用技术。罗琴通过讲解石墨烯、聚合物以及钕铁硼材料的电镜表征,详细说明了日立的高端扫描电镜的特点,突出了日立针对不同样品推出的扫描电镜和原子力显微镜、扫描电镜和多种光谱的联用技术。 /p p style=" text-align: center " img title=" IMG_4366_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/9c8658c9-6704-4ee7-beca-8e4a737796f4.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 天美+日立高新技术 罗琴博士 /span /p p   上海复旦大学车仁超教授作题为“氧化铈多级微球一氧化碳氧化催化的原位气氛电镜研究”的报告。在报告的开头,车教授介绍了其课题组近年来在改造电镜附件实现多场合分析功能的一系列工作,随后他介绍了用电子显微镜表征一氧化碳氧化的氧化铈微球的微观研究工作及有关成果。 /p p style=" text-align: center " img title=" IMG_4369_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/7825c197-ddee-4f9a-a8b0-ceb8f7b1f2df.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 上海复旦大学 车仁超教授 /span /p p   浙江大学电子显微镜中心的吕丹辉报告的题目是“二维单层MoS sub 2x /sub X sub 2 /sub sub -2x /sub (X=Se,Te)合金的制备和原子结构表征”。吕丹辉在报告中介绍了MoS sub 2x /sub X sub 2 /sub sub -2x /sub (X=Se,Te)合金的相关分析原理和制备方法,并通过电镜表征的方法进行合金中Se、Te的掺杂研究。 /p p style=" text-align: center " img title=" IMG_4372_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/25bfa34d-5c58-4811-a27f-bc83b1bcb574.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 浙江大学电子显微镜中心 吕丹辉 /span /p p   中国科学院上海硅酸盐研究所研究员许钫钫报告的题目是“稀土掺杂& amp #946 -SiAON荧光材料的构效关系研究”。许钫钫提到,通过电镜表征稀土掺杂& amp #946 -SiAON荧光材料中稀土离子的结构位置,发现某些特定结构的材料有着良好的发光性能。 /p p style=" text-align: center " img title=" IMG_4376_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/8a075d7b-72d2-4a49-b5e3-54144a17ed20.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 中国科学院上海硅酸盐研究所 许钫钫研究员 br/ /span /p p   清华大学的副教授钟虓龑报告的题目是“应用电子磁圆二色谱原子尺度上研究磁性材料的构性关系”。钟虓龑用铿锵有力的语气介绍了电子的磁圆二色性的特点,通过电镜在原子尺度上的表征研究磁性材料的构性关系。 /p p style=" text-align: center " img title=" IMG_4380_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/c7dfba80-4746-42b1-924c-53980cb1a017.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 清华大学 钟虓龑副教授 /span /p p   天津理工大学教授罗俊的报告题目是“原子分辨的表面成分分布表征在催化剂研究中的应用”。罗俊教授通过超高分辨率电镜表征贵金属催化剂如Pt、Pd等催化剂的表面成分分布,结合材料催化活性的表征,研究两者的构效关系。 /p p style=" text-align: center " img title=" IMG_4382_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/d72a1146-29c5-4957-804d-c75b96bf170a.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 天津理工大学 罗俊教授 br/ /span /p p   国家纳米能源研究所副研究员李志鹏的报告主要介绍了铁电隧道结在硅上的外延生长的研究工作,通过原子尺度控制的薄膜生长技术,利用高分辨率电镜表征来研究材料的尺寸效应、界面和表面效应以及对于隧道结电输运机理的影响等。 /p p style=" text-align: center " img title=" IMG_4386_副本.jpg" src=" http://img1.17img.cn/17img/images/201610/insimg/3c8145a4-f0d3-4c52-bd33-e91de8e1794b.jpg" / /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " 国家纳米能源研究所 李志鹏副研究员 br/ /span /p
  • 1410万!济南大学材料科学与工程学院多尺度微结构表征系统等采购项目
    一、项目基本情况: 项目编号:SDGP370000000202302001459 项目名称:济南大学材料科学与工程学院科研与学科建设设备购置三 预算金额:850.0万元 最高限价:850.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A多尺度微结构表征系统 1 详见公告附件 850.000000 项目编号:SDGP370000000202302001464 项目名称:济南大学材料科学与工程学院科研与学科建设设备购置二 预算金额:560.0万元 最高限价:560.0万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A场发射物相分析仪 1 详见公告附件 560.000000 合同履行期限:合同签订之日起至质保期结束 本项目不接受联合体投标。二、获取招标文件: 1.时间:2023年5月8日8时30分至2023年5月15日16时30分,每天上午08:30至11:30,下午13:30至16:30(北京时间,法定节假日除外) 2.地点:海逸恒安项目管理有限公司 3.方式:第一步:供应商在中国山东政府采购网中完成项目备案。第二步:供应商在海逸恒安项目管理有限公司网站上录入单位名称、联系人及电话等信息;链接:http://www.sdhyha.cn/qpoaweb/prg/gys/baoming.aspx?id=34084ZETV。第三步:将采购文件工本费网银汇款截图或银行电汇凭证扫描件(备注供应商名称),发送至luanxiangru@sdhyha.com邮箱。 4.售价:300元/份,缴纳形式:电汇或网银,开户单位名称:海逸恒安项目管理有限公司,开户银行:中信银行济南龙奥支行。账号:8112501013101275518。注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。三、对本次招标提出询问,请按以下方式联系: 1、采购人信息 名 称:济南大学 地 址:济南市南辛庄西路336号(济南大学) 联系方式:0531-82765758(济南大学) 2、采购代理机构 名 称:海逸恒安项目管理有限公司 地 址:山东省省济南市市历下区县(区)工业南路68号号华润置地广场A5-6号楼26层、27层 联系方式:0531-82667532 3、项目联系方式 项目联系人:栾翔茹 联系人电话:0531-82667532
  • 小角X射线散射技术:研究纳米尺度微结构的重要手段
    本文由马尔文帕纳科医药行业应用专家陈丽供稿本文摘要本文将简单介绍研究纳米尺度微结构的重要手段:小角X射线衍射(Small Angle X-Ray Scattering, SAXS)技术原理及相关产品。X射线衍射与小角X射线散射 X射线是具备相应波长的电磁波或带有相应能量的光子束。X射线的波长和能量介于γ-射线和紫外线之间。其波长范围为0.01-10nm;对应的能量范围为0.125-125Kev。小角散射(Small Angle X-ray Scattering,SAXS):如果样本具有不同电子密度的周期性结构,X射线被不相干散射,散射 X 射线的角度就与入射 X 射线的角度相差很小(一般2θ≤ 5°),称为小角X射线散射效应。主要用于研究亚微米尺度的固态及液态样品结构。小角散射效益来自物质内部1~100nm量级范围内电子密度的起伏,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。广角散射(Wide Angle X-ray Scattering,WAXS):如果样本具有周期性结构(晶区),X射线被相干散射,入射光和散射光之间没有波长的改变,这个过程称为 广角X射线衍射。主要用于研究较晶体结构和非晶体结构。与小角散射相比,广角散射的散射角度较大,可以覆盖从几度到几十度的范围。通过检测广角散射信号,可以获得关于晶体晶格参数、晶胞体积、颗粒尺寸和颗粒形貌等信息。SAXS - WAXS表征Empyrean Nano版锐影Empyrean Nano版锐影多功能 X 射线散射系统基于Empyrean平台和Pre-FIX预校准概 念,为纳米材料研究/小角散射专家特殊定制的 高性能多功能散射研究平台操作简单,无需校准高性能散射研究平台,但不局限于散射(1D/2D SAXS/WAXS;USAXS;GI-SAXS;PDF;CT)多种配置可选多功能 X 射线散射系统Empyrean Nano版+PIXcel3D 基于铜靶应用Empyrean Nano版+GaliPIX3D 兼顾对分布函数(PDF)分析高分辨光管+聚焦透镜+ScatterX78+3D探测器2D WAXS, 最低2theta 0.1°, 最高±22°(PIXcel)或±30°(GaliPIX)变温毛细管样品架,温度范围5-70℃ Scatter X78 样品架能实现液体,固体,纤维等纳米材料分析,仪器自动校准光路,真空启动3分钟即可测试样品。
  • 第一届材料微结构与性能国际会议暨第八届郭可信电镜暑期班顺利举行
    5月26日至5月30日,由浙江大学电镜中心、硅材料国家重点实验室、材料学院和唐仲英传感材料及应用研究中心联合主办的第一届材料微结构与性能国际会议暨第八届郭可信电镜暑期班(The 1st International Conference on Microstructure and Properties of Materials (MPM-1) & The 8th K.H.Kuo Summer School of Electron Microscopy and Crystallography (KHK-8))于美丽的西子湖畔举行。大会为期四天,分为电镜、热电、MOFs、电池及生物材料五个分会场,共邀请来自8个不同国家和地区的专家学者120余位,与会人数达450余人。大会累计举行10场大会报告,120余场分会报告,是一场真正的高水平高层次多领域的材料科学盛会。   5月28日上午8点,MPM-1大会正式开幕,大会共同主席、中国科学院院士张泽,浙江大学常务副校长宋永华,国家自然科学基金委员会副主任高瑞平以及大会共同主席、材料科学与工程学院院长韩高荣等进行发言并预祝大会圆满成功,开幕式由大会共同秘书长、材料科学与工程学院副院长吴勇军主持。张院士首先感谢了与会专家的远道而来,并向大家介绍了本次大会的基本情况以及对材料微结构领域的研究展望。宋校长着重强调了材料科学作为一门基础学科的重要作用,介绍了浙大工学大类的发展现状并期待各领域加强交流、合作共赢。高主任介绍了国家自然科学基金委对材料科学发展的支持与资助情况,鼓励各机构积极创新、加强交流。韩院长则表达了对与会人员与各方支持的感谢。四位嘉宾简洁而不失幽默的发言赢得了阵阵掌声。   张泽院士致欢迎辞   宋永华副校长致辞   国家自然科学基金委高瑞平副主任致辞   韩高荣院长致辞   大会秘书长吴勇军教授主持开幕式   在5月28日、29日上午举行的大会报告中,组委会共邀请了10位材料领域的顶尖专家作大会邀请报告。分别是佐治亚理工学院王中林教授的&ldquo Nanogeneratorsas New Energy Technology and Piezotronics for Smart Systems&rdquo IBM华盛顿研究中心Frances M. Ross 教授的&ldquo A DynamicView of Nanowire Growth&rdquo 新加坡国立大学吕立教授的&ldquo High conductivity NASICON structured solid electrolyte material synthesized by Sol-Gel method&rdquo 德累斯顿工业大学 Carsten Werner 教授的&ldquo Biofunctional Polymer Matrices for Stem Cell Bioengineering&rdquo 中山大学陈小明院士的&ldquo Coordination Polymers&Metal-Organic Frameworks:Yesterday & Today&rdquo 德州A&M大学周宏才教授的&ldquo Recent synthetic approaches for exceptionally stable MOFs&rdquo 日本筑波大学Yukio Nagasaki 教授的&ldquo Redox Nanotherapeutics for Antioxidative Treatments&rdquo 浙江大学张泽院士的&ldquo In-situ atomic resolution TEM study of anomalous mechanical property of nano-scale materials&rdquo 美国西北大学 Mercouri G. Kanatzidis 教授的&ldquo All scale hierarchical Thermoelectrics for Power Generation&rdquo 上海硅酸盐研究所陈立东教授的&ldquo Strategies and approaches for cost-effective thermoelectricity: from materials to devices&rdquo 。其中,我校张泽院士以幽默风趣的语言为大家展现了我校电镜中心在原位电镜观察纳米材料方面的研究进展,张院士严谨的学术态度和高超的学术水平获得了大家的掌声。每个报告结束后,与会代表们与报告人展开了广泛交流和热切讨论,深入探讨学术问题,努力探索合作机会。   其后在5月28日下午至30日上午举行的各分会报告中,各领域的专家齐聚一堂,畅所欲言,教授和学生们都积极交流各自的研究进展以及存在问题,现场氛围十分热烈,可称得上是材料科学领域的华山论剑。   28日中午举行的poster分会中,来自Osaka University、西安交通大学、浙江大学的Keju Sun、丁明帅、吴杭隆、张秋红、王步雪获得了优秀poster奖。   5月30日中午,最后三场分会报告结束,为这次高水平高层次多领域的材料科学盛会画下了圆满的句号。   Poster现场   大会报告现场
  • 能源、环境和信息等功能材料的微结构表征分会场日程安排-2018年全国电子显微学学术年会
    p   2018年全国电子显微学学术年会将于10月23-27日(28日离会)在成都市禧悦酒店召开。能源、环境和信息等功能材料的微结构表征分会场日程安排如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f6e574b7-d99e-4e25-ba87-c4f74e488c43.jpg" style=" " title=" 01.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/04c3433d-f097-4b3a-b0c4-fdaf5051e921.jpg" style=" " title=" 02.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/20e81d43-885c-4534-a0a0-61fdd487e727.jpg" style=" " title=" 03.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/b98f1e39-4d64-41d1-bebc-91568a742223.jpg" style=" " title=" 04.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/bdaee0b9-17ae-4ed5-9eac-b0e6145438e6.jpg" style=" " title=" 05.jpg" / /p p br/ /p
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • Polymer Char将参加高分子微结构表征新仪器分析
    Polymer Char将参加9月25到28在美国举办的有关高分子微结构表征新仪器分析的会议,相关信息请参加Polymer Char 官方网站。
  • 那些神奇脑洞,再次惊艳了我们!—— “微世界之光”全国大学生微结构摄影大赛
    微结构大赛艺术创新组作品着重于对所拍摄图片的学术背景、艺术美化效果和寓意等的重点考察,虽然已经见识过不少历届优秀作品,但是看到本届获奖作品后,还是令人直呼脑洞大开,确确实实再一次被惊艳到了。2018年6月至10月,历时四个多月,第四届“微世界之光—新时代与新材料”全国大学生微结构摄影大赛终于落下帷幕,本届大赛共收到了来自28所高校、研究院所的230余幅作品,经过一轮轮严格的资格审查、专家遴选以及激烈的网络投票,最终角逐出20幅艺术创新组作品和8幅技术创新组作品进入决赛环节。10月21日,第四届全国大学生微结构摄影大赛决赛暨“材料显微结构表征技术”学术论坛在南昌大学举办,最终进入大赛决赛的28位参赛选手对各自参赛作品进行了7分钟的介绍,经过四个多小时的答辩评审,本次大赛最终决出艺术创新组特等奖1名、二等奖5名、三等奖14名,技术创新组一等奖4名、二等奖4名,大赛主办方为获奖选手现场颁发了丰厚的现金奖励! 第四届全国大学生微结构摄影大赛决赛现场本次微结构摄影大赛也受到了TESCAN公司的大力支持,作为电子显微领域联用创新技术及“微分析综合解决方案”引领者,TESCAN作为冠名赞助商之一倾情赞助了本次微结构大赛。更令人惊喜的是,本次大赛艺术创新组特等奖作品“石墙上的舞者”及二等奖作品“腐草为萤”、“地月之吻”等均采用TESCAN扫描电子显微镜拍摄。大赛艺术创新组作品着重于对所拍摄图片的学术背景、艺术美化效果和寓意等的重点考察,虽然已经见识过不少历届优秀作品,但是看到本届获奖作品后,还是令人直呼脑洞大开,确确实实再一次被惊艳到了。那么本次大赛中到底有哪些采用TESCAN扫描电子显微镜拍摄的令人惊奇的脑洞作品呢?一起来看看吧~作品《石墙上的舞者》作者:张建飞 导师:王波 西安交通大学 一缕轻柔的阳光顺着石墙洒落在这女子身上,她鸭蛋脸面,俊眼修眉,粉面上一点朱唇,神色间意气风发,一袭墨黑淡雅长裙,红发侧披如瀑,素颜清雅面庞淡然笑;她张开双臂,纤足轻点,衣决飘飘,宛若仙子一般,在阳光下旋转、跳跃。此刻,她是自由的,她冲破这象征着世俗与偏见的石墙,拥抱阳光,翩翩起舞。生命中有许许多多有形无形的石墙,它很坚硬,因为它代表着名利、世俗和心底的恐惧,打破它吧,寻找真正的自我。( 在盯着右侧这张原始电镜图片长达几个小时之后,我还是没有看出来有丝毫“在石墙上翩翩起舞的女郎”的影子...不就是不同灰度的成分衬度么......求留言区真相,难道我是一个人。。。) 原图材料:碳化硅-环氧树脂复合材料样品在常温、高真空的环境中,借助钨灯丝扫描电子显微镜使用背散射电子对碳化硅-环氧树脂复合材料断口进行拍摄。如图所示,穿插于图中的亮白色网格线为β-SiC相,经过原位碳热还原反应得到的多孔SiC完整保留了松木的多孔结构,在复合材料中形成连续的导热网络和承载骨架;填充在SiC之间的暗灰色部分为环氧树脂,碳化硅和环氧树脂界面结合紧密,结构完整有序。环氧树脂的内部有一些不规则的阴影和亮线,这是由于环氧树脂断裂所致。作品《腐草为萤》作者:张念、邵杭婷 导师:李明 上海交通大学 《礼记月令》:“季夏之月.腐草为萤.”在古代人们认为是草腐烂后化为了萤火虫,在盈盈的黑夜里发光,从春日里的盎然生机,到黑暗中的星星之火,这也许就是一场重生吧。“作品名字”从一片绿意盎然的颜色,经过岁月热情的炙烤,逐渐融化,重生,像黑夜里的萤火虫,渺小而温暖,又像石岩上青苔里窜出的小花,倔强又美好。这或许就是生命的过程吧。初如一片稚嫩的绿荫,在慵懒的暖风里成长,随着时间的车轮碾过,伤痕累累,却终究不会臣服于苦难,化为夜里的萤火,化作峭壁的野花,经过沉淀,换了一种新的姿态,更好的存在。 (...夜里的萤火?峭壁的野花?......为什么我只看到了“某种材料”的边缘形貌。。。) 原图材料:Ni的石墨片此图为扫描电镜下观察到的镀覆Ni的石墨片的边缘形貌。通过此图可以看出,石墨片的镀层较均匀,未出现明显包覆不周的现象。 作品《地月之吻》作者:何丹阳 导师:曹丽云 陕西科技大学 宇宙浩瀚,星汉灿烂。从陆地到太空,这是探索,更是长征。在寥廓而深邃的宇宙中,温文尔雅的“地才子”和聘聘婷婷的“月佳人”时而窃窃私语,时而深情对望,上演了一段浪漫且饱含中国韵味的“地月童话”。 作品描述:仰望星空,北斗环绕,嫦娥伴月,神州起航,天舟穿梭。让“地月”擦出爱的火花,为持续的改变点赞,向未知的寰宇继续进发!( 看到这里,就突然明白了为什么我只能做一只“技术汪”了。。。)原图材料:MoSi2-ZrB2复合粉末图中的近似球形粉末呈现出明暗相间的纹理脉络,白灰两相分别为ZrB2相(白)与MoSi2相(灰),且白色相犹如粒粒白珍珠镶嵌在灰色相中,错落有致,呈现出材料之美。(更多作品请详见全国大学生微结构摄影大赛官网或大赛微信网络投票通道。)更多详情内容,请关注“TESCAN公司”微信公众号。
  • ACAIC2024同期论坛:下一代材料结构与界面分析技术论坛
    下一代材料结构与界面分析技术论坛高新材料产业是国家重要的基础性、战略性、先导性产业。要在这片蓝海占据先机,必须发展面向高精度、多尺度、动态和界面材料的下一代材料表征方法。在当前材料科学领域,对材料微观结构与表界面性质进行多维、精确表征已成为科研和工业界共同追求的重要目标。本次论坛分为上下场,分别围绕“分子结构分析”与“表界面表征”,涵盖新材料领域所需的代表性表征技术及其发展趋势,深入剖析包括中子散射大科学装置在内的散射技术、电化学扫描显微镜、等离子体表面成像、电子显微镜、石英晶体微天平、原子力显微镜等多种独特材料结构和界面表征装置的最新研究进展与动态,深入分析这些技术在材料表征领域的应用现状及其所面临的挑战,基于此讨论这些技术在未来的应用领域和方向,为科研和工业界提供有价值的参考。此外,论坛将着重探讨基于大科学装置的材料表征技术这一全新发展方向,以推动材料表征技术的持续创新与发展,有效促进材料科学领域的全新的合作和学术交流方式。 组织机构:华南理工大学材料科学与工程学院散裂中子源科学中心(高能所东莞研究部)广州市仪器行业协会论坛主席:华南理工大学材料科学与工程学院 张广照教授论坛召集人:华南理工大学材料科学与工程学院 龚湘君教授散裂中子源科学中心(高能所东莞研究部) 程贺研究员专题论坛日程安排:时间报告人报告主题14:00-17:00Section 1:材料结构表征大科学装置中国科学院高能物理研究所童欣研究员、孙志嘉研究员等中国散裂中子源极化中子、探测器和谱仪的研制与应用进展系列报告中国科学院上海高等研究院李娜研究员同步辐射溶液散射装置在生物制药领域的应用案例Section 2:材料表面分析表征技术东华大学陈前进研究员基于扫描电化学成像的单颗粒分析华南理工大学电镜中心王宇教授化学键强耦合半导体超结构的制备与原位电镜表征上海交通大学余辉长聘副教授用于表界面过程分析的超灵敏超分辨表面等离激元显微成像技术南昌大学王涛副教授石英晶体微天平的表征原理及应用创新广州中医药大学科技创新中心钱露高级工程师原子力显微镜探针改性及在新材料领域的应用论坛主席简介:张广照,华南理工大学教授、博导,国家杰青,长江学者,973首席科学家。长期从事高分子溶液与界面的工作,发展了QCM-D、微量量热等高分子表征方法,发现了阴离子杂化共聚反应。以此为基础,在海洋防污高分子材料方面取得突破。先后主持国家自然科学基金重点项目(3项)、973项目、军科委项目等国家级项目10余项。发表学术论文140余篇(通讯/第一作者),出版专著2部、译著1部。获授权中外发明专利60余件(美、日、新、澳大利亚专利5件)。担任国际海洋材料保护研究常设委员会(COIPM)委员, 国际标准化组织和国际电工委员会(ISO/IEC)海洋污损专家组成员。以第一完成人获广东省技术发明一等奖、教育部科技进步一等奖、广东省专利金奖等。分论坛召集人简介龚湘君,华南理工大学材料科学与工程学院教授,博导。2014年加入华南理工大学材料学院任副教授,2017年至今任教授。研究兴趣为设计高精度动态显微成像技术研究颗粒、微生物、细胞、生物和环境分子在界面附近的动态行为和物理化学现象。包括:(1)三维动态光学显微镜的研制;(2)颗粒、气泡、微生物和细胞的相互作用表征、附着机制和运动策略;(3)生物分子和环境污染分子在界面的动态和迁移行为;(4)颗粒、气泡、微生物及细胞筛选、识别和控制技术。发表SCI论文40余篇,授权专利10项(美国专利1项),主持国家自然科学基金等纵向及横向科研项目19项。获2023年中国仪器仪表协会朱良漪分析仪器青年创新奖。程贺,散裂中子源科学中心(中国科学院高能物理研究所东莞研究部)研究员,微小角中子散射谱仪科学家。中国材料与试验标准委员会(CSTM)下属科学试验技术领域委员会(FC98)委员、中国晶体学会小角散射专业委员会委员、中国化学会高分子学科委员会分子表征专业委员会。目前主要研究方向:一先进中子散射谱仪设计及关键部件研发;二中子散射研究软物质多相多尺度动态学和动力学。在先进谱仪设计研发方面,作为子课题主要参与者,建设我国第一台基于反应堆的小角中子散射谱仪,填补国内空白,该谱仪已于2012年10月通过科技部和中国科学院的验收;物理设计并组织建成世界上第1台基于散裂中子源的微小角谱仪,该谱仪已于2023年7月通过广东省科技厅组织的专家验收;使用散射方法,研究软物质——聚合物溶液和聚合物共混物中多相多尺度结构的动力学和动态学行为,已发表60余篇SCI论文、2篇专著。报告人简介及报告摘要报告题目:中国散裂中子源极化中子、探测器和谱仪的研制与应用进展系列报告 报告人1:中国科学院高能物理研究所 童欣研究员 童欣,中国科学院高能物理研究所研究员、散裂中子源科学中心副主任、中国科学院大学博士生导师、国家重点研发计划首席科学家、百千万人才工程国家级人选、中国散裂中子源学术委员会主任。2018年获中国科学院重大人才工程项目资助,加入中国科学院高能物理研究所,负责组建中国散裂中子源极化中子中心,领导并规划极化中子领域的建设与发展。获国家自然科学基金、科技部、中国科学院、广东省科技厅等十余项项目支持,获广东省自然科学基金杰出青年项目资助。获2020年度李氏基金会杰出成就奖,获橡树岭国家实验室重大事件奖多次,入选东莞市第九批创新创业领军人才。报告摘要:利用光泵的方法可将氦三原子核的极化进行累积,形成超极化态。超极化氦三气体在中子散射、医疗器械、粒子物理、精密测量等多个领域的应用。在报告中,本人将讲述氦三气体极化器的研制过程,研制的极化器解决了卡脖子问题,仪器性能指标达到国际先进水平。报告人2:中国科学院高能物理研究所 孙志嘉研究员孙志嘉,研究员是国家重大科技基础设施-中国散裂中子源探测器研发团队负责人和学科带头人,现任国家重点研发计划首席科学家和广东省高精度射线探测技术重点实验室主任,主要从事射线探测技术与方法研究,长期致力于高端科研仪器装备研发。近五年来,先后主持了国家自然科学基金重大科研仪器和重点项目、国家重点研发计划项目和广东省重点项目。在国内外核技术领域著名期刊发表高水平论文80余篇,获授权发明专利30余项。先后担任了中国核学会电离辐射计量分会、中国核学会核电子学与核探测技术分会、中国计量测试学会电离辐射专业委员会等多个核技术学术组织的理事和委员,2018年入选中国科学院青年创新促进会优秀会员,2023年入选中国人民政治协商会议第十四届全国委员会委员(科学技术界),为实现我国科技高水平自立自强建言献策。报告摘要:中国散裂中子源(CSNS)是“十二五”期间重点建设的大科学装置,是国际前沿的高科技、多学科应用的大型科研基础设施。探测器作为中子谱仪重要核心设备之一,长期以来严重依赖进口,并受制于发达国家的技术封锁,已成为制约我国中子谱仪建设与运行的“卡脖子”问题。探测器团队依托大科学工程CSNS建设,围绕中子谱仪的紧迫需求,通过对探测器、电子学、数据获取和实时控制等全技术链条的长期系统研究,解决了探测器多项共性的关键技术,建立了工程化大规模应用的探测器体系,先后完成了多台中子谱仪探测器的研制任务。未来将继续完善中子谱仪探测器研发体系,朝着更大面积、更高空间分辨、更高探测效率以及更高集成度四方向发展,促进我国中子科学与技术蓬勃发展。报告人3:中国科学院高能物理研究所 陈洁研究员陈洁,博士,中国科学院高能物理研究所研究员,中国散裂中子源能量分辨中子成像谱仪负责人。中国晶体学会固体局域结构与全散射技术专业委员会委员,国家重点研发计划课题负责人。2017年入选中国科学院青年创新促进会,2021年入选中国科学院基础研究领域青年团队,东莞市特色人才(二类),获2023年创新东莞科技进步奖一等奖(排名第二)。主要从事中子谱仪技术、中子衍射与成像实验方法学及其应用等研究。近年科学合作在Science Advances、Nature Communications、Advanced Materials、JACS、Nano Energy、Acta Materialia、Corrosion Science等学术期刊上发表论文30余篇。报告摘要:中国散裂中子源(CSNS)能量分辨中子成像谱仪(ERNI)是国内首台的高分辨成像与衍射相结合的中子成像谱仪。ERNI可探测材料和器件内部数厘米深处的结构信息,具备多尺度、多维度、多模态耦合的表征手段:常规中子照相和中子CT可提供试样内部的缺陷、孔洞、裂纹等信息;布拉格边中子成像和中子衍射可获得材料内部晶体结构、磁结构和应力应变的二维/三维空间分布;中子光栅成像可对材料内部的磁畴结构进行3D可视化。ERNI将服务新能源、新材料、高端装备制造等领域中,材料和器部件的研发与设计、加工制造、运行与服役性能评价等研究与应用,同时将应用于文化遗产和考古、植物生理学、地质、深海等特色研究领域。报告人4:中国科学院高能物理研究所 康乐正高级工程师康乐,中国科学院高能物理研究所东莞研究部(散裂中子源科学中心)正高级工程师,硕士生导师。现任职散裂中子源科学中心合作谱仪机械总工程师,南方科技大学合作谱仪——高压中子衍射仪项目负责人,散裂中子源二期工程副总工程师。2005年在中国科学技术大学精密机械与精密仪器系取得学士学位,同年保送硕博连读,2010年在中国科学技术大学国家同步辐射实验室取得核科学与技术专业博士学位。2010年入职中国科学院高能物理研究所,参与大科学装置-中国散裂中子源建设工作,主要从事中子散射技术,中子谱仪物理、工程设计,中子及同步辐射光学工程方面的研究工作。报告摘要:中国散裂中子源是国家“十一五”期间重点建设的十二大科学装置之首,是我国首台基于散裂反应的加速器驱动脉冲中子源,于2018年8月23日顺利通过国家验收,为材料科学、生命科学、资源环境、新能源等方面的基础研究和高新技术研发提供了强有力的研究平台,对满足国家重大战略需求、解决前沿科学问题、解决瓶颈问题具有重要意义。基于高压中子散射探针在新能源、功能材料、凝聚态物理、地球物理及生命科学方面的重大需求,南方科技大学联合散裂中子源科学中心在中国散裂中子源建设一台兼具衍射和成像功能的高压粉末中子衍射仪,将实现多种服役条件下对矿物、陶瓷、水合物、有机物等物质结构性能的研究。报告人5:中国科学院高能物理研究所 缪平研究员缪平, 中国科学院高能物理研究所研究员、博导、中国散裂中子源(CSNS)高分辨中子衍射仪负责人。在CSNS主持建设我国首台超高分辨中子衍射仪,并且创新探索高分辨中子衍射技术的多学科交叉应用,在磁性反常热膨胀、量子自旋液体、铁基超导以及有机质子导体材料等领域,产出多项成果。报告摘要:中国散裂中子源高分辨中子衍射仪(TREND)由中国散裂中子源与北京大学深圳研究生院合作建设,其最佳分辨率设计指标达到≤0.05%的超高水平,将成为我国首台、世界第三台的超高分辨中子衍射仪。同时,为了满足小样品测试以及动态原位观察的需求,样品处中子通量也将达到较高水平,其设计指标为1×106n/s/cm2@100kW。该谱仪的应用领域如下:(1)凝聚态物理领域里细微结构变化引发的物性变化以及临界行为;(2)精确解析功能材料复杂晶体结构;(3)功能材料原位实验高精度测量结构变化、及其对性能的影响;(4)金属材料的晶粒和晶格微应力测量;(5)晶体学方法学研究,比如非公度晶体结构、非公度磁结构等。报告人:中国科学院上海高等研究院 李娜研究员报告题目:同步辐射溶液散射装置在生物制药领域的应用案例李娜,研究员,同步辐射生物小角X-射线散射线站科学家、上海光源BL19U2同步辐射溶液散射线站负责人,主要研究方向为同步辐射溶液散射技术方法学开发及其在软物质领域中的应用研究。现已以第一作者、通讯作者和共同作者的身份在国际知名期刊发表论文83篇;作为项目负责人主持科技部、中科院、上海市各类科研项目合计14项。现已提交专利申请8项,获批5项。现已出版科普译著3部、专著1部;同时参与撰写学术专著1部;主持完成学术译著1部。2017年入选中国科学院青年创新促进会会员,2021年入选中国科学院特聘研究岗位“骨干研究员”。2022年入选上海市青年科技人才协会。2023年入选中国科学院“关键技术人才”(工程技术类)。现任Frontiers in Molecular Biosciences学术期刊编审,同时作为Scientific Reports,Biochimica et Biophysica Acta特约审稿人。报告摘要:溶液小角散射实验方法是表征溶液体系多尺度时空结构的研究利器,在软物质研究领域已得到广泛应用。位于上海同步辐射光源的BL19U2生物溶液小角X-射线散射(SAXS)线站,具有光通量高以及准直性好的特点。从应用研究需求出发,线站自主开发了多元化的溶液SAXS原位实验装置,同时线站配备有快速数据采集探测器以及自动散射数据分析处理程序,使得弱散射体系的小角散射测量以及结构演化动力学时间分辨测定更为方便。本报告将分享BL19U2线站最新实验装置方法学研究进展以及在生物制药领域的应用研究案例。报告人:东华大学 陈前进研究员报告题目:基于扫描电化学成像的单颗粒分析陈前进,东华大学研究员,国家高层次青年人才。本科和博士分别毕业于四川大学和香港中文大学,随后在美国犹他大学和德州大学奥斯汀分校从事博士后研究。2018年加入东华大学化学与化工学院,任特聘研究员、博士生导师。独立工作以来以通讯作者在PNAS, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Anal. Chem.等期刊发表SCI论文 30余篇。主持国家自然科学基金面上/青年、上海市自然科学基金探索/面上等项目。2022年获中国颗粒学会自然科学奖二等奖(唯一完成人),受邀担任中国颗粒学会理事会理事,《中国化学快报》等期刊青年编委。主要研究方向为电分析化学,单颗粒分析,电化学成像。报告摘要:高效低廉的电催化剂合成和开发是电化学研究的重要方向之一。传统方法主要将纳米催化剂与导电碳粉、粘合剂等混合制备复合电极,所获得的结果是一种系综平均,难以反应催化剂个体的真实活性和反应异质性。我们发展了基于微液滴方法的扫描电化学成像技术,实现了电化学过程的单粒子水平研究。(1)单个纳米晶颗粒及其有序组装体的电催化反应过程,从单个颗粒水平建立其本征尺寸、晶相、结构、组成和电催化活性的构效关系;(2)在亚个体水平识别空间反应活性位点,明确活性分布与贡献;(3)基于电化学析气反应产生局域气体过饱和条件实现单个纳米气泡动态行为的实时电化学监测,在单个气泡水平理解界面异相成核行为,定量描述了表面纳米拓扑结构-气泡成核能垒的关系。报告人:华南理工大学电镜中心 王宇教授报告题目:化学键强耦合半导体超结构的制备与原位电镜表征王宇,华南理工大学电镜中心与前沿软物质学院双聘教授,珠江青年拔尖人才。本科毕业于南京大学基础学科强化部,博士毕业于厦门大学化学系,曾于美国阿克伦大学、加州大学伯克利分校、劳伦斯伯克利国家实验室从事博士后研究,2021年加入华南理工大学。长期从事可控组装及催组装的方法学发展以及组装原位表征技术发展。开发原位液相透射电镜表征方法,创制高通量电镜智能操作与分析系统,开发电镜成像模拟算法,将人工智能用于图像及物相分析。通过(催)组装构建功能材料并发展智能电子显微镜技术,以材料制备与表征方向的创新推动光电、催化、及电池领域。近年来,发表通讯或第一作者论文包括Nature Communications (3)、JACS (3)、Science Advances、Chemical Society Reviews 在内的科学论文十余篇。报告摘要:半导体超晶格中强电子耦合则有望带来超原子晶体、超导、超高电荷迁移率材料等新物理和新材料突破。自组装过程中量子点的配体演化决定超晶格中的电子耦合强度,能否实现新物理的关键,但因缺少高分辨原位表征手段,人们对该过程的认知仍十分匮乏。我们针对纳米粒子自组装体系设计了原子分辨率透射电镜液相原位池,研究半导体量子点自组装形成超晶格过程中的配体物理化学,获得量子点原子分辨率实时成像,揭示了不同化学环境下配体移除所导致的迥异自组装动力学及其对超晶格中电子耦合强度的影响。基于原位表征获得的配体物理化学认知,我们开发了一类新的强电子耦合超晶格及其制备方法,通过高效率配体移除将二维量子材料组装成界面强电子耦合的扭角超晶格,通过电子能谱与理论计算共同揭示了此类扭角超晶格中可在室温下涌现出新能带结构,为超原子晶体和信息存储提供一类新材料。本报告也将简单涉及人工智能在原位电镜图像及物相分析中的应用。报告人:上海交通大学 余辉长聘副教授报告题目:用于表界面过程分析的超灵敏超分辨表面等离激元显微成像技术余辉,上海交通大学生物医学工程学院长聘副教授,博士生导师。本科与博士均毕业于浙江大学,并先后在香港科技大学和美国亚利桑那州立大学开展研究工作。2017年回国担任独立PI,带领团队开展光学成像技术、光学传感技术及体外诊断技术研究,在无标记动态光学成像、生物标志物检测等方向取得创新成果,在PNAS等顶级期刊发表学术论文40余篇,申请/授权专利10余项。担任十四五国家重点研发计划专项课题负责人、基金委国家重大科研仪器研制项目子课题负责人、国自然面上项目负责人,入选上海市浦江人才计划。报告摘要:对微纳米尺度材料表界面的动态分析至关重要,已有技术在灵敏度与分辨率上仍存在关键局限。表面等离激元是存在于金属与介质界面处的倏逝波,并仅对界面附近纳米级区域内的折射率变化敏感,是非标记动态分析界面过程的有效工具。表面等离激元显微成像技术结合了表面等离激元的高灵敏度与光学成像的高分辨率,为界面处分子相互作用分析、单颗粒催化过程分析、电化学成像等领域提供了独特的研究手段。本报告将介绍表面等离激元显微成像技术应用与表界面分析的基本原理、技术及系统,并汇报本课题组近年来在进一步发展超灵敏与超分辨表面等离激元显微成像技术方面所取得的研究进展。报告人:南昌大学 王涛副教授 报告题目:石英晶体微天平的表征原理及应用创新王涛,2013年博士毕业于中国科学技术大学高分子化学与物理专业,2016年加入南昌大学,获得江西省首批“双千计划”项目,主持国家自然科学基金3项,江西省自然科学基金1项,主要研究方向包括高分子材料界面化学与物理、界面功能材料和高分子能源材料等。本人主要涉及的表征仪器为耗材型石英晶体微天平(QCM-D),研究内容从研究高分子材料在界面上的构象与性能的关系,逐渐扩展界面功能材料、纳米材料等方面的应用,尤其是近几年开展了基于电化学石英晶体微天平(EQCM-D)在储能材料界面性质的研究。
  • 金属材料的微观结构分析——用合适的样品制备获得最佳结果
    微结构用于描述金属材料的主要特征,它在很大程度上决定了产品的性质和性能。 微观方法分析是材料科学的基本技术,以研究其状态和对材料特性的影响。 为了通过金相技术对微观结构进行最佳的描述,合适的样品制备起到了核心作用。微观结构的重要性及其分析无论是悬索桥的钢缆、涡轮机的叶片还是人体的人工髋关节,所有产品都有一个共同点:它们的特性不仅仅来自材料及其化学成分,而是来自内部结构的特殊排列[1]。这是指材料的微观结构,微观结构可以由不同的成分组成,如晶粒、晶界、沉淀或杂质。许多材料性能取决于这种微观结构,例如钢缆的强度或涡轮叶片在极端操作条件下的长期稳定性[2]。金相学是研究微观结构的最重要方法之一,它允许通过定性和定量分析方法对整个微观结构以及单个成分进行微观可视化。金相学的一个重要组成部分和中心作用是样品制备,这取决于材料的类型、条件以及检验方法。如果准备不足或执行不当,后续检查可能会导致错误的结果和对材料性能的错误评估。因此,了解具有特定材料要求的合适试样制备标准并正确实施尤为重要。以下将解释金相制备的基本程序,并以钛为例阐明具体材料要求的明确细节。适当的样品制备及其挑战图1显示了样品制备过程,包括以下步骤:样品切片和切割、样品安装、研磨和抛光,最后对样品进行蚀刻。每个单独的步骤都是相关的,并且会影响制备的金相截面的后续质量。图1 金相制备方法的示意图第一步是确定从整个零件上移除一个截面,有计划的调查研究将在该截面上进行,因为在许多情况下,关注的不是整个零件及其微观结构,而是特定区域。对于通过机械切割方法进行的拆卸,建议使用湿磨料切割机,包括工件的主动冷却。这减少了输入工件的热量,防止了不必要的微观结构变化,并冲洗掉了磨损的颗粒。切割钛时,通常使用碳化硅和合成树脂粘结制成的切割轮。第一步是确定从整个部分的整个部分的去除,在其上,这些部分将在许多情况下进行,而不是整个部分,并且其微观结构是感兴趣的,而是只有一个特定的区域。为了通过机械切割方法去除,推荐使用包括工件的主动冷却的湿磨削切割机。这将输入的热量减少到工件中,防止不希望的微观结构改变并冲洗擦除磨损的颗粒。对于切割钛,通常使用碳化硅与合成树脂键合的截止轮。在样品切片和切割后,将零件以正配合嵌入合成树脂基体中。这种嵌入简化了进一步的试样处理,便于制备机械上特别敏感的试样,允许将多个试样组合在一个金相截面中,并能够使用自动研磨和抛光设备。根据工艺温度,区分冷安装和热安装。温热嵌入期间产生的温度非常低,对试样的任何影响和可能的微观结构变化通常可以忽略不计。如果还要通过扫描电子显微镜检查试样,则必须注意嵌入介质中是否含有导电成分(例如石墨)。在下一步中,可以开始通过研磨和抛光进行准备。由于嵌入试样的表面质量通常较差,研磨过程首先以粗粒度开始,以提高质量并使试样平整。随后,以越来越细的粒度重复研磨过程,以去除粗研磨过程中产生的加工痕迹和划痕。重要的是确保足够的水供应,以消除金属磨损,并防止试样过热。对于钛,当使用碳化硅砂纸时,从P120的砂砾开始,继续使用P240、P320、P600、P800、P1200和P2400。在随后的抛光过程之前,试样应没有深划痕和大的机加工痕迹。如果计划对试样进行机械抛光(例如,电解或振动抛光工艺),则在第一步中使用细绒布和抛光剂。抛光可以手动或自动完成。自动设备的优点是节省时间和使用规定的接触力,因为过大的力会快速导致变形或划痕,尤其是在敏感材料上。在同步条件下,钛用金刚石悬浮液(3µm)在15-25 N的接触力下抛光约10分钟。如果金相断面质量足够且无划痕,则可继续进行最终抛光。为了控制目的,可通过使用暗场过滤器的光学显微镜进行目视检查。在这种情况下,质量良好的表面呈深色,而划痕和凹痕呈浅色。对于钛的精细抛光,使用由粒径为0.06µm(2 x 10 min)的胶体二氧化硅组成的悬浮液,并逐滴添加水。由于钛的高氧亲和力,建议使用30%的过氧化氢溶液作为润滑剂,以避免在制备的部分表面上形成氧化层。根据计划的检查,可能必须重复进行最终抛光。对于光学和大多数扫描电子显微镜检查,一个过程通常就足够了。例如,如果计划通过电子背散射衍射(EBSD)进行分析,则最终抛光应重复数次(最多六次)。图2 用克罗尔(Kroll)试剂蚀刻Ti-6al-4V的EBSD分析,显示相位分布(左)和彩色代码(b)[3]在每次研磨和抛光步骤后,应对制备部分进行彻底清洁,以防止可能遗留的磨损颗粒和污染物。在研磨和抛光步骤之间,至少应用水冲洗。在从研磨过程过渡到抛光过程之前以及最终抛光之后,应在超声波浴中额外清洁准备好的部分几分钟,然后在自来水下冲洗,最后用酒精冲洗。金相切片的干燥是在热气流中进行的,结果应该是镜像和无污染的表面。通过显微方法进行微观结构分析的最终准备步骤是通过蚀刻对比微观结构。这应在最终抛光后立即进行,因为表面上很快就会形成一层氧化物,尤其是钛,这会对蚀刻过程产生负面影响。例如,制备部分的蚀刻可通过化学或物理方式进行。如果钛基材料通过浸渍进行湿化学对比,则可使用克罗尔(Kroll)试剂进行蚀刻。蚀刻时间的持续时间因钛合金而异。纯钛的腐蚀时间为30-45秒,而Ti-6Al-4V合金的腐蚀时间可达60秒。另一种蚀刻剂是由氢氧化钾(KOH)制成的碱溶液。这导致微观结构的不同对比度,从中可以获得更多信息。对于Ti-6Al-4V,此处的蚀刻时间为15-30s。微观结构的显微镜调查制备完成后,可使用各种成像和分析技术对微观结构进行显微镜检查。图2显示了使用EBSD的扫描电子显微镜的分析结果,该分析是在Ti-6Al-4V样品上进行的,该样品如前所述制备并用克罗尔试剂蚀刻。图3显示了使用替代KOH蚀刻试剂成功制备两个Ti-6Al-4V样品,其中可以看到具有篮织结构(左)和马氏体结构(右)的微观结构。当在光学显微镜下观察时,该蚀刻试剂允许微观结构的彩色可视化,并且特别适合于具有马氏体微观结构成分的钛合金,因为如图3(右图)所示,这些成分被清楚地突出显示[3]。图3 用KOH试剂蚀刻Ti-6Al-4V的光学显微镜照片,显示篮织结构(左)和马氏体微观结构组分(右)参考文献[1] Hornbogen, E. et al.: Metalle: Struktur und Eigenschaften der Metalle und Legierungen. 7th ed., Berlin, Springer Vieweg, (2019) ISBN 978-3-662-57763-9.[2] Gottstein, G.: Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen. 4th ed., Berlin, Springer Vieweg, (2014) ISBN 978-3-642-36602-4.[3] Pede, D. et al.: Additive manufacturing: metallographic analysis of microstructure. In Advances in metallography: proceedings of the 53rd Metallography Conference September 18-20, 2019 in Dresden, (2019), ISBN 978-3-88355-417-4.作者简介Dennis Pede(丹尼斯佩德):Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, Germany丹尼斯佩德在汉诺威莱布尼茨大学获得医学工程硕士学位。他目前是福特旺根大学材料科学与工程图特林根研究所(IWAT)的研究助理和博士生,由Mozaffari Jovein教授指导。他的研究活动集中于添加剂制造工艺、金属材料以及材料测试和分析。Lidija Virovac:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyLidija Virovac在富特旺根大学攻读学士学位时学习了医学工程,在硕士学位时学习了应用材料科学,并在学习期间获得了实用金相学的第一次经验。随后,她在Mozaffari Jovein教授的指导下,在Tuttlingen材料科学与工程研究所(IWAT)担任研究助理,加深了自己的知识。进一步的研究领域是添加剂制造和功能涂层的制备。Tobias Poleske:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyTobias Poleske在富特旺根大学攻读材料工程学士学位。自2017年以来,他一直是Tuttlingen材料科学与工程研究所(IWAT)的研究助理,在Mozaffari Jovein教授的指导下从事各种材料科学课题。他的工作重点是使用光学和扫描电子显微镜进行实用材料成像,以及对常规和附加制造部件进行材料分析。Hadi Mozaffari-Jovein:Institute of Materials Science and Engineering Tuttlingen, Furtwangen University, GermanyHadi Mozaffari Jovein在斯图加特大学攻读冶金学,并从斯图加特大学(马克斯普朗克金属研究所)获得博士学位。自2009年以来,他一直担任富特旺根大学材料科学教授和图特林根材料科学与工程研究所所长。他的研究涵盖各种材料科学主题,包括损伤分析、材料测试和分析、传统和添加剂制造工艺,以及材料开发和优化。原文;Microstructural analysis of metallic materialsMicroscopyLight Microscopy,15 November 2021(符斌 供稿)
  • 微观世界|第26期 贝壳结构中的电子显微结构
    序 言贝壳做为水边软体动物的外壳,由软体动物的一种特殊腺细胞的分泌物所形成的钙化物,具有保护动物本身的作用。一、贝壳的种类说到贝壳的种类,可以说是五花八门,主要分为五大纲:腹足纲(有法螺宝螺、蜒螺)、头足纲(鹦鹉)、多板纲、撅足纲(似象牙)、双壳纲(俩壳)。其形态也是千差万别,但是最有名的要数四大名螺了:万宝螺、唐冠螺、凤尾螺和鹦鹉螺。图1、四大名螺:万宝螺、唐冠螺、凤尾螺和鹦鹉螺二、贝壳的成分虽然贝壳的形态各自不同,但是其主要成份基本相同,分为95%的碳酸钙和少量的壳素。贝壳一般主要分为三层,褐色的角质层(壳皮),薄而透明,有防止碳酸侵蚀的作用,由外套膜边缘分泌的壳质素构成;中层为棱柱层(壳层),较厚,由外套膜边缘分泌的棱柱状的方解石构成,外层和中层可扩大贝壳的面积,但不增加厚度;内层为珍珠层(底层),由外套膜整个表面分泌的叶片状霰石(文石)叠成,具有美丽光泽,可随身体增长而加厚。图2是虎斑贝贝壳,可以看出斑点状的花纹。图2、虎斑贝贝壳三、台式电镜下的贝壳那么现在就让我们用coxem台式扫描电镜对我们常见的鲍鱼壳进行显微结构的观察,进一步了解其微观结构吧。图3是我们进行观察的鲍鱼壳,可以看出存在多个孔洞,表面显现出彩色的花纹。图3 、我们选择观察的鲍鱼壳的光学照片进一步我们用coxem台式电镜对鲍鱼壳的截面进行观察,可以看出片层状的结构(图4所示)。进一步放大可以看出片层状的文石结构以及不定形的有机结构颗粒。可以看出贝壳是由片层结构之间相互重叠组成的,其片层结构厚度大约为400nm(图5)。这些无机的片层状的结构的主要成份是CaCO3,提供了贝壳的强度性能,而存在于层状结构间隙的非定形结构的有机蛋白提供了贝壳的韧性,因此,这种砖块加水泥型的微观结构,造成了贝壳的既有一定的强度又有一定的韧性的特征。图4、贝壳的片层状图5、贝壳的片层结构的放大图后 记经过对贝壳的微观结构的观察,可以看出生物材料中的为微纳米结构的特殊排布,可以对材料的性能产生重要的影响,也使我们认识到应该进一步向自然界学习。
  • 微世界之光,第二届全国大学生微结构摄影大赛圆满收官!
    上海欧波同仪器有限公司特别赞助的第二届全国大学生微结构摄影大赛暨“‘材料表征与图像优化’博士生学术论坛”近日圆满收官。大赛历时半年多,征集筛选了全国高校材料相关专业的本科生、研究生的微结构摄影作品,通过展现材料之美,培养材料相关专业学生的微结构研究兴趣,提高其仪器使用水平与艺术鉴赏能力,同时促进各高校材料学科之间的相互交流,共同进步。 今年的微结构大赛力争作品数量和质量有较大的提升,共收到来自全国50所高校的200余件作品(其中,首次有作品来自海外高校学子投稿),由第二届微结构摄影大赛组委会特邀5名高职称专家组成评审小组,经过严谨的评判,对参赛作品从艺术性、学术性、专业性三个重要方面进行筛选,最终选出入围作品52份,进入终极决赛。 28日上午,欧波同作为本届大赛的特约赞助商,诚邀主办方各级领导老师及进入决赛的高校师生们来到蔡司实验室进行实地观摩,通过蔡司工作人员的悉心讲解,参观者身临其境感触到了德国品质的精确与严谨。 此次大赛的成功举办,欧波同获得了主办方的极大赞许。28日下午,第二届全国大学生微结构摄影大赛理事会议上,欧波同总经理皮晓宇先生代表微结构大赛赞助商参会,并与全体理事就材料显微科学领域进行深入交流与探讨。 决赛颁奖礼上,皮晓宇先生为获奖者颁奖,并表示,本次大赛立足材料科学本质,并把科学和艺术完美结合在一起,激发了广大材料学科学生的科研兴趣,充分体现了“微世界之光,浇铸材料之美”,并希望通过本次大赛的成功举办,能够与更多的高校达成战略合作,引导材料专业学子开展研究,挖掘和培养一批对材料研究有浓厚兴趣和专长的后备人才,为全国高校材料学科的发展贡献自己的绵薄之力。
  • 2019年7月-材料微观结构分析样品制备培训通知
    材料微观结构分析样品制备邀请函 尊敬的客户,您好!为更好的服务于客户,我们特别为金相技术员或者要学习先进制备工艺的金相学者设计了SumMet™ 材料微观结构分析样品制备课程。该课程通过理论学习和实践操作,涵盖了切割、镶嵌、研磨和抛光的知识,这些知识也是标乐在过去80多年历史中的经验累积。此外,学生还可学习有关硬度测试和微观结构解读方面的知识。 基本信息 培训时间:2019年7月8-10日(三天)培训主题:材料微观结构分析样品制备培训地点:标乐中国上海实验室(依工测试测量仪器(上海)有限公司)具体地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼 主要内容 三天的课程涉及多种材料的微观结构分析样品制备和硬度测试的知识。课程内容涉及到样品切割,镶嵌,研磨和抛光的技术知识,对于各种材料的样品制备提供大量实习课程。课程内容包括: 取样和切割(理论和实践) 样品镶嵌(理论和实践) 样品研磨和抛光(理论和实践) 硬度测试原理(理论)注:学员实践操作中可自行携带需要得到解决方案的样品。 特邀讲师 Dr. Mike Keeble 毕业于威尔士大学(The University of Wales),主修材料科学与工程。获得了钢的蠕变性能(creep properties of steels)博士学位及部分熔融铝合金的力学试验和有限元模拟(mechanical testing and FE modelling of partially molten aluminium alloys)硕士学位。Dr. Keeble 之前在英国国防评估和研究机构(现QinetiQ)担任先进金属材料研究员,研究新材料和制造工艺的疲劳、损伤容限和---失效分析。Dr. Keeble 目前在美国标乐担任美国实验室和技术经理的职务,他有超过12年的在金相分析方面提供技术支持和培训的工作经验。Dr. Keeble 曾在伯明翰大学(Birmingham University)担任荣誉讲师,并在华威大学(Warwick University)担任访问学者。Dr. Keeble 是 ASM 和 IMS 的成员,也是金相和硬度测试标准组织(Standards Organizations in metallography and hardness testing)的成员。【助教】 Leo-柳文鹏,标乐应用工程师毕业于西北工业大学材料学院,获得硕士学位。曾多年就职于英业达集团,负责电子材料的可靠性及失效分析;之后就职于德国双立人公司,担任主管金相工程师,主要负责金属材料金相分析及硬度测试;加入标乐公司后,每年前往美国总部接受金相制备高级课程培训,现担任标乐应用工程师,在汽车、航空航天及电子等行业积累了丰富的经验。 Kevin-程凯,标乐应用工程师毕业于河海大学材料科学与工程学院,曾就职于无锡鹰普集团,担任理化工程师、热处理工程师;此后分别就职于通标标准服务(上海)有限公司(SGS),担任金相工程师;莱茵技术(上海)有限公司(TUV Rheinland),担任高级金相工程师。主要负责金相及硬度实验室的所有测试及管理。在金属材料检测以及失效分析方面都有较丰富的经验。现任标乐公司应用工程师,为亚太用户提供全面的技术支持,解决金相制备方面的难题,在原材料、汽车、电子等行业样品的制备积累了丰富的经验。注:课程全英文教学,全程有中文翻译。 费用说明 费用:5000RMB/人说明:费用包含:SumMet教材、培训期间中餐,以及9日晚宴,其他住宿交通等费用自理。汇款账号:名称:依工测试测量仪器(上海)有限公司开户行:农业银行上海浦江支行 行号:103290003237账号:03408800040017687 报名方式 烦请可以填写下方报名回执后发送 info.cn@buehler.com,本次培训小班教学,名额有限,先到先得! 住宿交通 (住宿仅供参考,请学员自行预定)培训地点:依工测试测量仪器(上海)有限公司培训地址:上海市闵行区漕河泾开发区新骏环路88号13A二楼附近交通: 浦东机场:打车:距离35.3KM,打车约138元,约30min;公交:磁悬浮地铁16号线796路(鹤坡塘桥站下), 约134min 虹桥机场:打车:距离30.9KM,打车约108元,约47min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 虹桥火车站:打车:距离31.8KM,打车约111元,约45min;公交:地铁10号线地铁8号线796路(鹤坡塘桥站下), 约90min 上海火车站(上海站):打车:距离22.3KM,打车约77元,约34min;公交:地铁1号线地铁8号线796路(鹤坡塘桥站下), 约75min周边住宿(仅供参考,请学员自行预定) 名称:新奇士国际酒店(浦江店) 地址:浦江镇三鲁路3585号(近江月路) 名称:上海浦江智选假日酒店 地址: 浦江镇联航路1188号10号楼3楼H座诚挚地期待您的参加! 标乐市场部2019年5月20日 附件一 报名回执报名人员*单位*姓名*部门*职务*电话*邮件兴趣及关注项目 (如材料、零部件等):工作范畴 (如研究、品质控制、失效分析等):*单位业务范围 □ 金属 □ 航空/航天 □ 热处理 □ 电子 □ 政府研发/教育 □ 测试实验室(第三方实验室) □ 国防 □ 生物医药 □ 汽车/其他运输工具 □ 能源 □ 其他__________________________________说明:务必准确填写,其中 * 为必填项。填写完毕请发送至:info.cn@buehler.com 。
  • 我国科研人员在冷冻电镜解析神经突触超微结构方面取得重大突破
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/insimg/e2f81b1e-e30b-4ff6-8cc6-54a29e2ec276.jpg" title=" 20180211094445855.jpg" / /p p   记者10日从中国科学技术大学获悉,该校科研人员在利用冷冻电镜解析神经突触超微结构方面取得突破,解密了神经突触“黑匣子”。 /p p   国际学术期刊美国神经科学学会会刊《神经科学期刊》(《Journal of Neuroscience》)近日以封面形式报道了该项研究成果。 /p p   突触是大脑行为、意识、学习与记忆等功能的最基本结构与功能单元,同时也是多种脑疾病发生的起源。精确解析突触的分子组织架构及其在神经活动过程中的变化,被认为是解密大脑奥妙的最直接有效的方法,也是神经科学中最基础的研究工作之一。 /p p   早期,生化与分子生物学、电生理学等研究发现了突触中的各种大量分子和细胞器组份,并揭示了突触的各种功能特性和可塑性规则。然而,由于研究手段的局限,突触中的这些不同组件是如何组织成复杂的机器来执行不同的功能,还远远没有充分观察和解析。 /p p   中国科学技术大学合肥微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作,利用最新发展的冷冻电子断层三维重构技术(cryoET),结合自主研发的冷冻光电关联显微成像技术,实现了对中枢神经系统中两类最主要突触的定量化分析。通过将大鼠的海马神经元培养在冷冻电镜的特型载网上,课题组获得了一系列完整突触在近生理状态下的三维结构。 /p p   结合定量分析手段,首次报道了抑制性突触的均匀薄片状突触后致密区结构,并发现两类突触中均存在椭球状突触囊泡,结束了关于两类突触在突触囊泡和突触后致密区形态精细结构上的由来已久的争论。 /p p   随后,课题组进一步获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。 /p p   这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析。该工作一方面推动了对突触超微结构与功能这一“黑匣子”的解密,另一方面为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术难题奠定了基础。 /p
  • 国科大冷冻光电关联显微成像技术成功解析神经突触超微结构
    p style=" text-align: center "   img style=" width: 450px height: 300px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/3c8aab60dba745dba378baa58e3763e7.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p   2018年2月7日,国际学术期刊—美国神经科学学会会刊《Journal of Neuroscience》以封面形式报道了中国科大微尺度物质科学国家研究中心与生命科学学院毕国强、刘北明与周正洪教授合作课题组的研究成果—利用冷冻电子断层三维重构技术(cryo-electrontomography,cryoET)与冷冻光电关联显微成像技术(cryo- correlative light and electron microscopy, cryoCLEM)解析神经突触超微结构。 /p p   突触是大脑行为、意识、学习与记忆等功能的最基本结构与功能单元,同时也是多种脑疾病发生的起源。精确解析突触的分子组织架构,及其在神经活动过程中的变化被认为是解密大脑奥妙的最直接有效的方法,也是神经科学中最基础的研究工作之一。早期,生化与分子生物学、电生理学等研究发现了突触中的各种大量分子和细胞器组份,并揭示了突触的各种功能特性和可塑性规则。然而,由于研究手段的局限,突触中的这些不同的组件是如何组织成复杂的机器来执行不同的功能,还远远没有充分观察和解析。最新发展的冷冻电镜技术(cryoEM),尤其是cryoET技术能够实现对亚细胞乃至全细胞在纳米水平分辨率的三维成像,为突触分子组织架构的解析提供了契机。 /p center p style=" text-align:center" img style=" width: 450px height: 253px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/1a09c6615b644cab8d1b801fb8bf6375.jpeg" height=" 253" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p /center p   合作课题组利用cryoET结合自主研发的冷冻光电关联显微成像技术实现了对中枢神经系统中两类最主要突触-兴奋性/抑制性突触的精确区分以及结构特征的定量化分析。通过将大鼠的海马神经元培养在冷冻电镜的特型载网上,随后进行快速冷冻后并直接进行CryoET/CryoCLEM成像,课题组获得了一系列完整突触在近生理状态下的三维结构。结合定量分析手段,首次报道了抑制性突触的均匀薄片状突触后致密区结构,并发现两类突触中均存在椭球状突触囊泡,结束了关于两类突触在突触囊泡和突触后致密区形态精细结构上的由来已久的争论。进一步,利用当前最先进的结合了Volta相位板、电子能量过滤器和直接探测相机的冷冻电镜成像设备,合作课题组获得了突触在分子水平的精细组织架构,实现了在突触原位直接观察单个神经递质受体蛋白复合物及其与支架蛋白的相互作用。 /p center p style=" text-align:center" img style=" width: 450px height: 338px " title=" " alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/3d9159e6d55349468de507eb6529dbf6.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p /center p   这是当前国际上首次利用冷冻电镜技术对完整突触进行系统性定量分析。这一工作,一方面推动了对突触超微结构与功能这一“黑匣子”的解密,另一方面为突破冷冻电镜技术在复杂细胞体系中原位解析生物大分子复合物的组织结构这一技术挑战奠定了基础。 /p center img alt=" " src=" https://5b0988e595225.cdn.sohucs.com/images/20180225/45e3e783ec57412d8f858989386d1214.jpeg" height=" 454" width=" 356" / /center p   图: 利用CryoET解析离体培养海马神经突触三维结构的三维可视化渲染(Journal of Neuroscience 2018年2月7号封面) /p
  • 点亮微世界之光 | 第三届全国大学生微结构摄影大赛圆满收官
    12月11日,由欧波同(中国)有限公司冠名赞助的第三届全国大学生微结构摄影大赛暨“‘材料显微结构表征技术’学术论坛”圆满收官。此次比赛的赞助是欧波同助力科教发展的又一重要行动。本届大赛由中国材料研究学会、上海市显微学学会、上海交通大学联合主办,中国科学院上海硅酸盐研究所承办。大赛历时半年多,面向全国高校材料相关专业的本科生、研究生征集筛选微结构摄影作品,旨在通过展现微观世界之美,培养学生探索微观世界的兴趣,提高仪器使用水平与艺术鉴赏能力,同时促进相互交流,共同进步。决赛暨学术论坛现场 今年的微结构大赛在作品质量上有较大幅度的提升,共收到来自全国40余所高校的200幅优秀的微结构摄影作品,经过专家评审委员会的统一评审,最终筛选出25幅作品经过网上公示后进入决赛。 10日下午,与比赛同期举办的“材料显微结构表征技术”论坛上,欧波同(中国)有限公司产品部经理管玉鑫做了题为“蔡司显微成像系统及sem成像技巧介绍”的专题报告。欧波同(中国)有限公司产品部经理管玉鑫在进行报告 本次大赛分为艺术创新组和技术创新组,在决赛现场,参赛选手在经过作品阐述与提问答辩环节之后,最终决出了特等奖1名、一等奖4名、二等奖20名。学生现场在进行作品阐述与问题答辩 决赛颁奖礼上,欧波同(中国)有限公司总经理皮晓宇先生发表了致辞,并表示,本次大赛立足材料科学本质,并把科学和艺术完美结合在一起,激发了广大材料学科学生的科研兴趣,充分体现了“微世界之光,浇铸材料之美”,并希望通过本次大赛的成功举办,能够与更多的高校达成战略合作,引导材料专业学子开展研究,挖掘和培养一批对材料研究有浓厚兴趣和专长的后备人才,为全国高校材料学科的发展贡献自己的绵薄之力。欧波同(中国)有限公司总经理皮晓宇先生在颁奖典礼致辞欧波同(中国)有限公司副总经理于小涛先生宣读获奖名单颁奖图集 颁奖典礼后,上海交通大学材料科学与工程学院孙宝德院长、上海交通大学材料科学与工程学院党委副书记徐亦斌等领导与欧波同(中国)有限公司总经理皮晓宇先生进行了亲切交谈,孙院长对于欧波同此次积极赞助本次比赛表示了感谢并给予了高度的赞扬。上海交通大学领导与欧波同领导亲切交谈 未来,在国家提倡着力培养科技创新型人才的大背景下,欧波同将一如既往支持高等院校及科研院所的教学及科研事业,主动担负社会责任,为提升高校科研水平及人才培养贡献自己的一份力量。
  • 高性能陶瓷和超微结构国家重点实验室开放课题开始申请
    高性能陶瓷和超微结构国家重点实验室依托于中国科学院上海硅酸盐研究所,主要从事高性能无机非金属材料的设计理论及结构与材料性能关系、材料合成的物理化学与制备科学、新材料探索等方面的基础与应用基础研究。为了营造实验室创新、求实、开放交流的学术氛围,设置了高性能陶瓷和超微结构国家重点实验室开放课题基金。2011年开放课题申请事项如下:   一、资助方向:   1. 结构陶瓷与陶瓷基复合材料   2. 能源与环境材料   3. 生物医用材料   4. 超微结构与计算材料   二、申报条件:   1. 申请人应为具有博士学位、在岗高级技术职称的科研人员(含副高级职称),在相关领域有相当的技术积累,且有稳定的科研队伍支持项目执行。课题责任人年龄一般不超过45周岁,优先资助中青年学术骨干。   2. 申请人须根据实验室开放课题资助方向与高性能陶瓷和超微结构国家重点实验室在职科研人员联合申请。   3. 申请项目应具有创新的学术思想,解决的科学问题要明确,研究路线或技术方案可行,研究重点突出,考核目标明确。   4. 已作为课题责任人承担本实验室资助项目且尚未结题的申请人,原则上不予资助。   三、申请程序及说明   1. 申请人可以在“高性能陶瓷和超微结构国家重点实验室”网站,下载《开放基金申请书》(Word版本:《开放基金申请书》),并按规定的格式,认真、如实填写《开放基金申请书》。申请人所在单位学术主管部门应签署意见,单位领导在申请书上签字并加盖单位公章。   2. 所有申请均须报送电子申请书和纸质申请书原件(一式两份),电子申请书和纸质申请书的内容必须一致。难以电子化的附件材料随纸质申请书一并报送。所有书面文件请采用A4纸双面印和普通纸质材料做封面 不采用胶圈、文件夹等带有突出棱边的装订方式。   3. 评审将按照“依靠专家、发扬民主、公平公正、择优支持”的原则,由实验室学术委员会对申请者提交的申请书进行评审,确定资助项目和金额,并书面通知获得资助的申请人。   4. 项目批准之后,项目责任人全面负责项目的实施,并定期向本实验室汇报项目的执行和进展情况。如果项目不能如期完成或负责人发生出国/调离,无法按计划实施项目,实验室有权中止经费支持。   5. 由实验室资助的课题所发表的论文、论著、研究报告、资料、鉴定证书以及申报成果时,研究者署名前冠中文:高性能陶瓷和超微结构国家重点实验室 英文:State Key Laboratory of High Performance Ceramics and Superfine Microstructure,和研究者所在单位,且均须标注“高性能陶瓷和超微结构国家重点实验室开放课题基金资助”(Supported by the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure)中英文字样和项目编号。   6. 开放课题的研究期限一般为2年,每项开放课题的资助经费一般为5-10万元人民币。对于取得重要进展的课题,经实验室主任和学术委员会主任同意可以适当增加经费支持。   7. 2011年度开放课题的申请起始时间为2011年4月1日,截止日期为2011年4月30日(邮寄申请以邮戳为准)。   四、材料报送地址与联系方式:   联系地址:上海市定西路1295号(邮政编码:200050)   中科院上海硅酸盐研究所/高性能陶瓷和超微结构国家重点实验室   联系电话:021-52412610 传  真:021-52413122   联系人:步文博   E-mail地址:wbbu@mail.sic.ac.cn   实验室网址:http://www.sic.ac.cn/kybm/kybm1/   附件:国家重点实验室开放课题基金申请书 .doc
  • “第四届全国大学生微结构摄影大赛”TESCAN公司捐赠仪式圆满完成!
    2018年6月6日上午,“第四届全国大学生微结构摄影大赛”TESCAN(中国)公司捐赠仪式在上海交通大学材料学院顺利开启。上海交通大学材料学院党委书记单爱党、党委副书记徐亦斌、团委书记朱彦彦及TESCAN(中国)公司总经理冯骏、商务部总监Milan Hauser、技术总监焦汇胜、市场部经理顾群等出席了大赛捐赠仪式。 大赛捐赠仪式开启 仪式上,上海交通大学材料学院党委副书记徐亦斌首先介绍了“微结构大赛”的发展历史,回顾了大赛从无到有、从弱到强的过程。自2015年首届“全国大学生微结构摄影大赛”举办以来,经过几年的发展,微结构大赛已经发展成在全国范围内具有高度知名度和广泛影响力的赛事。大赛一直由上海交通大学主办,并受到了中国材料研究学会、上海市显微学学会等21个联盟单位的大力支持,从第一届19所院校的100幅作品发展到第三届,已有50余所院校的200多幅作品参赛。 今年,已经是“第四届全国大学生微结构摄影大赛”举办了,4月已在江西南昌大学举办了大赛第五次理事会,回顾及解析了评审标准,并对第四届大赛的赛制规则、奖项设置和承办规则等方面进行了讨论,第四届微结构大赛将由南昌大学材料学院承办。TESCAN致力于电子显微领域的前沿技术创新和应用,关注高等教育事业,倾力赞助了本次微结构摄影大赛。 随后,双方进行了捐赠协议的签署及支票捐赠仪式,大赛的主办方上海交通大学材料学院也为TESCAN公司回赠了证书和感谢状。 支票捐赠仪式及证书、感谢状回赠 ‘作为材料工作者,我们深知扫描电镜在材料科学领域发挥的重要作用,已广泛应用于金属材料、陶瓷材料、高分子材料、纳米材料、复合材料等,甚至通过原位加热和原位拉伸试样台,可实现样品微观组织的动态观察和成像,进而为材料研究和开发提供有力的数据。“好风凭借力”,材料学院近些年科研成果的取得,固然是学院教师、学生科研水平的体现,也与先进电镜设备的不断改良密不可分。’ 捐赠协议签署后,上海交通大学材料学院党委书记单爱党发表了感言,对扫描电镜的应用领域及TESCAN在设计、研发及制造扫描电镜方面的创新和成果表示了肯定。最后,单书记也表达了’希望双方在未来保持紧密的交流合作,共同致力于建设质量更精、层次更高、影响更广的微结构摄影大赛’的愿景。 上海交通大学材料学院党委书记单爱党致辞 TESCAN中国区总经理冯骏先生在捐赠仪式的致辞中也谈到了TESCAN与上海交通大学一直以来的深度合作关系,自2015年初TESCAN出资赞助的“徐祖耀基金”至去年联合实验室的建立及双方合作的应用文章的发表,TESCAN在中国的发展也离不开上海交通大学的大力支持。未来希望通过双方的进一步合作,能够为中国教学和科研工作做出更大的贡献。 TESCAN中国区总经理冯骏致辞 捐赠仪式结束之后,随即进行了电镜仪器的高级培训讲座,TESCAN市场部经理顾群先生为大家详细介绍了TESCAN综合分析技术以及其在扫描电镜、FIB技术领域的最新应用和创新,包括最新的电镜拉曼一体化技术和冷冻电镜技术。 扫描电镜培训讲座 TESCAN丨扫描电镜丨双束电镜丨联用电镜丨定制化方案
  • 西安交通大学张辉课题组《Materials & Design》:PμSL 3D打印花瓣状微结构表面实
    受自然生物学启发制备的具有不同润湿特性的功能性表面在液体收集、液滴操纵、减阻及油水分离和药物输送系统等领域蓬勃发展。值得注意的是,功能性拒水表面成为其中一个热门议题。荷叶上的超疏水现象表明由亲水材料制成的具有特殊微纳结构的表面可以实现疏水甚至超疏水特性。因此,越来越多的研究人员致力于设计和制造独特的微纳结构使得由亲水材料组成的表面呈现出超疏水的特性,进而实现更多特定的功能。随着3D打印技术的逐步发展,越来越多的复杂结构如蘑菇头状、重入蘑菇头状、打蛋器状及仿弹尾虫表面等被设计和制备以实现一定的拒水效果。尽管相关研究提出了具有各种形状的拒水微结构,但这些形状大多具有蘑菇状形式。设计3D 微结构并深入探索机理,从而进一步提高拒水及液滴承载性能仍然是一个挑战。最近,对猪笼草的研究表明,猪笼草口缘区域微腔结构的锐利边缘和弓形曲线具有将液体钉扎在弯曲结构上的超强能力,该能力甚至可以克服重力。据此,西安交通大学机械工程学院张辉副教授等提出了一种新型 3D 打印仿生超疏水花瓣状微结构表面,其灵感来自猪笼草口缘区域的水钉扎效应。该团队利用高精度3D打印技术(nanoArch P140,摩方精密)实现了花瓣状微结构表面的制备。具有花瓣状微观结构的亲水性树脂具有宏观超疏水性和优异的拒水性。与普通蘑菇形结构相比,优化后的花瓣状结构承载力最大增加率为58.3%。相应的机理分析表明,锋利的边缘效应和弓形曲线效应是造成这种超排斥性能的原因。然后团队进行了对几何特征(花瓣数量P、结构间隙S及花瓣结构占比K)对花瓣状微结构表面液滴承载能力影响的实验研究。覆盖微结构数、接触角变化和最大崩溃体积参数反映了不同参数表面的液滴承载能力。优化后的微结构阵列(花瓣数量P为4,结构间隙S为100 μm,花瓣结构占比K为0.5)与普通蘑菇形微结构相比,液滴承载力的最大增加率为58.3%。当滴加液滴至 3D 打印花瓣状微结构表面上时,液滴将覆盖多个花瓣状微结构组成的方形阵列区域。微结构顶面上的液滴呈现锯齿形边界。弓形曲线和花瓣状结构的锋利边缘的协同作用作为能量屏障,限制了水滴的铺展和崩溃。由于花瓣微结构材料本身具有亲水性,液滴沿花瓣拉伸形成凹形液体边界曲线,类似于液体在平行侧壁中的流动情况。相似的液体边界曲线形状和具有锐角边缘的弓形曲线导致花瓣状微结构表面具有较高的水约束力。花瓣状微结构表面具有优异拒水性可用于超大液滴承载、微反应器、无损液滴搬运、倾斜表面液滴快速脱附、油水分离、气泡保持和减阻等领域。图1 a 猪笼草口缘区域及其微腔结构;b 花瓣状微结构表面设计及3D打印模型;c 3D打印的平面表面接触角约为55°,具有花瓣状微结构的表面具有宏观超疏水性,其接触角约为160°,即使表面倒置,水滴也会粘附在表面上。图2 a 液滴在花瓣状微结构阵列的顶部沿微结构边缘呈现锯齿形边界;b 液滴与微结构之间的接触边界示意图;c 亲水花瓣微结构拉伸液滴以及平行侧壁间液体的粘附和拉伸效果。 图3 花瓣状微结构表面应用a超大液滴承载;b 微反应器;c 无损液滴搬运;d 倾斜表面液滴快速脱附;e 油水分离;f 气泡保持和减阻实验
  • 电子显微学在结构材料、功能性材料、生命科学中的应用(一)
    p style=" text-align: center " a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/bf49b4f2-1cbf-41ec-9025-83c67c780ab4.jpg" title=" 系列报道.jpg" / /a /p p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 10月18日下午,成都,2017年中国电子显微学术年会分会场开幕。仪器信息网编辑对3个分会场进行跟踪报道:结构材料及缺陷、界面、表面,相变与扩散 能源、环境和信息等功能材料的微结构表征 生命科学研究。3个分会场共安排了30场学术报告交流,会场座无虚席。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/1419cd0e-c152-48d1-aea0-ed6e1fa04e6b.jpg" title=" 4会场.jpg" / /p p style=" text-align: center "   结构材料相关分会场现场 /p p   结构材料及其相关研究分会场内容丰富多彩,第一个报告就是中国电子显微学会理事长韩晓东作《原位和非原位电子显微学在精确表征界面、表面、缺陷与结构等研究中的机遇与挑战》报告。报告中介绍 了“原子尺度材料力学性能实验系统”和相关技术,以及该技术在在原子尺度上对晶界和孪晶界的稳定性和不稳定性进行原位研究研究实例 报告中也以“揭示出单晶金属纳米线的塑性极限以单原子链终结”等实例,展示了Cs校正的HREM原位成像技术,ARMM的未来让人充满期待。韩晓东在报告中说到,只有电镜才能真正用于研究晶界处发生了什么,引起与会者共鸣。另一个令人瞩目的报告是“拿下了80后能拿下的所有荣誉”(主持人语)来自北京大学物理学院教授高鹏的《Atomic structure and chemistry of grain boundaries in complex oxides》。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/179f911c-59c1-4be2-80ec-b9a98da971c1.jpg" title=" 4-hxd.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国电子显微学会理事长韩晓东在分会场作《原位和非原位电子显微学在精确表征界面、表面、缺陷与结构等研究中的机遇与挑战》报告 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/dff8589d-df06-4f95-8e89-aa81e3d0787f.jpg" title=" 3会场.jpg" / /p p style=" text-align: center "   功能性材料相关分会场现场 /p p   能源、环境和信息等功能材料的微结构表征分会场精彩纷呈,“球差”、“原位”同样不容错过。代尔夫特理工大学徐强博士作《原位电镜显微解决方案》报告,报告中分享了提供不同环境的芯片实验室原位解决方案,如热-电一体芯片等。以可控原子层石墨烯生长原子级高清动态电影,展示芯片实验室原位检测超高的稳定性。报告中特别说到,从工艺、结构、性质、性能的价值链呈现一条“微笑曲线”,两端价值高,中间价值低 原位的价值所在,就是让电子显微镜从结构研究延伸到“工艺、结构、性质、性能”全价值链。“球差”也是第一天报告的重要关键词,南京大学教授王鹏作《球差电镜对在氧化物异质结微结构表征》报告,南方科技大学教授何佳清作《南科大环境球差电镜在能源材料中的应用》报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/443ea5de-e7f1-4aa3-90e0-29f5cab257b3.jpg" title=" 3-xuqiang.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   代尔夫特理工大学徐强博士作《原位电镜显微解决方案》 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/2fe944a2-d586-4e8e-83f0-e5d08e998ccd.jpg" title=" 8会场.jpg" / /p p style=" text-align: center "   生命科学研究分会场现场 /p p   生命科学研究分会场中,中国科学院生物物理研究所研究员孙飞作《HOPE:a new solution for non-integrated cryo correlative fluorescence and electron microscopy》报告。报告中介绍了所开发的基于高真空光学平台(HOPE)的非集成cryo-CLEM系统以及相关定位软件(ColorView)的新解决方案,以及建立的两种生物样品的基于HOPE的cryo-CLEM分析流程。与常见cryo-CLEM系统相比,HOPE系统具有高稳定性、减少污染、并在传输过程中最小化样品损伤的优点,更加适应cryo-CLEM实验。此外,该高真空光学平台可适用于各种荧光显微镜和电子显微镜。报告中还提到,下一步,将把HOPE系统与cryo-FIB技术结合,以扩大cryo-CLEM对较厚样品的分析能力;此外,将把HOPE技术与cryo-SIM成像技术适配,从而提高光学分辨率。“植物”是第一天生命科学研究分会场的一个重要关键词,共安排了中国科学院植物研究所教授张辉《植物材料中的金属元素亚细胞结构中的定性和定量分析技术探索》、中国科学院植物研究所研究员金京波《SUMO 化修饰调控植物免疫反应的分子机制研究 》、北京大学生命科学学院教授贺新强《植物管状分子分化的分子机制》、云南省农科院生物所研究员张仲凯《植物病毒超微形态组的构建》、河南师范大学生命科学学院教授李景原《植物叶表皮角质层与花青素消长发育生物学意义探讨》5个报告。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/883b17cb-a23c-4506-90d3-1efa1f8b4b9c.jpg" title=" 8-sunfei.jpg" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 333px " / /p p style=" text-align: center "   中国科学院生物物理研究所研究员孙飞作《HOPE:a new solution for non-integrated cryo correlative fluorescence and electron microscopy》 /p p   此外,学术年会还组织部分企业代表与学术代表进行产品、技术交流。泰思肯公司顾群博士作《拉曼图像一体化在扫描显微分析上的应用》报告,Thermo Fisher Scientific/FEI潘锡江博士作《生命科学最新进展》报告,岛津公司陈强博士作《调频模式原子力显微镜在液体环境下对生物样品的高分辨观察》报告。 /p p   19日下午、20日全天,更多的分会场精彩报告将依次登场,后续详细报道敬请关注! /p
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
  • 直播预告!第四届材料表征与分析检测技术网络会议之结构与形貌分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/结构与形貌分析主题专场会议日程:报告时间报告题目报告人专场三:结构与形貌分析(12月15日)09:00--09:30电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕09:30--10:00牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏10:00--10:304D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文10:30--11:00布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波11:00--11:30电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳11:30--12:00现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合直播抽奖:30元京东卡5个嘉宾介绍:上海科技大学研究员 于奕于奕,上海科技大学助理教授。2008年获得北京科技大学材料物理学士学位,2013年获得清华大学材料科学与工程博士学位,2013-2017年在美国加州大学伯克利分校和劳伦斯伯克利国家实验室从事博士后研究工作,2017年至今任上海科技大学助理教授、研究员、博士生导师。于奕博士从事材料微观结构的像差校正电子显微学研究,迄今发表科研论文60余篇,引用5000余次,部分重要成果以通讯或第一作者形式发表在Nature,Science,Nano Letters,J.Am.Chem.Soc等期刊。目前于奕博士的研究聚焦在辐照敏感能源材料的原子尺度电子显微分析。【摘要】 透射电子显微技术是表征和分析材料微观结构与成分的重要手段。对于不耐电子束辐照的材料,在进行显微观察的过程中,电子束会对样品的本征结构产生破坏,导致原始结构、特别是纳米和原子尺度的精细结构难以得到表征。这是一个现有技术手段还无法有效解决的难题。在本报告中,我们以辐照敏感的卤化物钙钛矿半导体材料和锂金属材料为例,介绍我们在显微样品制备、显微成像和谱学分析过程中探索到的能够缓解材料辐照损伤的一些方法,并利用这些方法实现对这两类材料的高分辨原子尺度结构解析。牛津仪器科技(上海)有限公司应用科学家 杨小鹏杨小鹏,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。【摘要】 牛津仪器一直致力于推动 EBSD 技术的发展,最新发布了第三代 Symmetry EBSD探测器 S3,最快采集速度超过5700花样/秒。同时更新的还有高性价比的C-Nano+ 和C-Swift+ EBSD探测器,最快速度分别达到 600 花样/秒及2000 花样/秒。所有三种型号探测器都可以配置高温荧光屏,满足原位加热EBSD的需求。在软件方面,新发布了花样匹配标定技术 MapSweeper,相比传统EBSD标定技术,对质量差的花样也能标定,提高标定率,改善对大变形样品和TKD样品的分析。MapSweeper还能提高EBSD数据的精度,帮助区分伪对称、相似相、倒反畴界等,这些应用需要对花样进行精细的识别。南开大学教授 付学文 付学文,南开大学物理学院教授,博士生导师,天津市杰出青年基金获得者,入选国家四青人才,南开大学“百名青年学科带头人”,担任国家重点研发计划青年项目首席科学家。2014年获北京大学凝聚态物理博士学位(导师:俞大鹏院士),曾荣获北京市优秀博士毕业生、北京大学优秀博士毕业生和优秀博士论文奖。曾先后在美国加州理工学院(诺贝尔奖得主Ahmed Zewail教授研究组)和美国布鲁克海文国家实验室 (Yimei Zhu教授研究组)做博士后和助理研究员。2019年受聘于南开大学物理科学学院担任教授,牵头建立了南开大学超快电子显微镜实验室。长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究。在Science、Science Advances(3篇)、Nature Communications、Advanced Materials、PNAS、ACS Nano(5篇)、Nano Letters等知名国际期刊发表学术论文40余篇,获授权发明专利1项。研究成果多次被 Science、Phys.org、Physicsword、Nanotechweb、Advances in Engineering等科学媒体选为研究亮点进行报道。【摘要】报告将主要介绍4D超快电子显微镜及其在低维材料非平衡态动力学中的应用。布鲁克纳米分析应用工程师 韦家波韦家波,布鲁克纳米分析应用工程师,负责EDS、EBSD、TKD等产品的技术支持工作,对电子显微镜的相关应用具有多年实操经验。【摘要】 主要分享布鲁克高分辨EDS, EBSD/同轴TKD等产品的技术优势及其在材表征方面的应用。北京工业大学副研究员 卢岳 卢岳,北京工业大学固体微结构与性能研究所副研究员、博士研究生导师。长期从事原位电子显微学、光电及光电催化材料与器件研究。作为项目负责人,承担多项国家自然科学基金和省部级以上科研基金,以第一作者或通讯作者在Joule, Nat. Commun., Adv. Mater., Appl. Catal. B-Environ., ACS Nano, Chem. Eng. J., Adv. Funct. Mater., J. Mater. Chem. A等国际期刊发表SCI论文40余篇。【摘要】报告中主要介绍电子显微学在光电材料及器件开发研究中的拓展应用。浙江工业大学副研究员 李永合李永合,男,副研究员,北京工业大学工学博士学位,德国卡尔斯鲁厄理工学院 (KIT)电子显微学研究室博士后。近年来,针对电池离子输运和催化剂活性反应的基础问题,集中发展工况材料动态结构演变的原位电子显微学可视化方法。以此研究基础,主持承担科技部重点研发子任务、国家自然科学基金青年项目、浙江省自然基金探索项目3项,完成德国洪堡基金项目1项,曾入选德国“洪堡学者”和校高层次人才培育计划。【摘要】 扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,FIB-SEM重构进一步实现材料形貌的三维重构可视化,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,本报告将着重介绍1)发展的STEM-in-SEM方法和FIB-SEM三维重构在弱衬度材料表征应用,以及2)循环条件下,全固态电池失效行为的原位研究等工作。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 飞纳台式扫描电镜-浙江省电镜与微结构专业委员会交流会 2016 圆满成功
    2016 年 3 月,飞纳电镜与浙江省电镜与微结构专业委员会专家开展了关于飞纳台式扫描电镜最新产品介绍及其应用的学术交流会,通过本次交流,使得各位专家对飞纳电镜有了更深一步的认识,同时,对飞纳电镜的应用拓展也提出了许多专业宝贵的建议。在交流会上,还展出了飞纳电镜畅销产品:飞纳电镜能谱一体机Phenom ProX。会议中除了内容丰富的技术演讲之外,还举行了形式多样的技术交流活动,会议现场气氛热烈。本次学术交流会有幸邀请到了浙江省分析测试协会会长莫卫民老师,浙江省电镜与微结构专业委员会李吉学老师,浙江省电镜与微结构专业委员会张孝彬等专家。飞纳电镜基于 CeB6 灯丝高质量的测试效果,15 秒抽真空,防震设计,可放置在任意楼层,对不导电样品无需喷金直接观测,及操作维护简便,得到了与会专家的一致认可。飞纳台式扫描电镜大样品室卓越版Phenom XL 飞纳电镜为满足车辆,采矿,钢铁,文博考古等行业大样品无损测试的需求,于 2015 年发布了旗下大仓体台式扫描电镜——飞纳台式扫描电镜大样品室卓越版 Phenom XL,其最大样品尺寸可达 100mm x 100mm x 65mm,可满足各类大样品的分析。同时 Phenom XL 继承了飞纳电镜一贯的独家优势,高亮度、长寿命、低色差的 CeB6 灯丝,防震设计,快速抽真空,光学电子两级导航,配合全自动马达样品台,操作简便等,突破了台式电镜样品仓空间的限制,使得大样品仓需求的客户有了更适合的台式扫描电镜选择。飞纳台式扫描电镜大样品室卓越版 Phenom XL飞纳台式扫描电镜能谱一体机Phenom ProX 飞纳台式扫描电镜能谱一体机 Phenom ProX 是飞纳电镜系列中最畅销的机型之一,开创了台式电镜能谱一体化设计。经典的 15 秒抽真空源于专利样品杯及真空分级专利技术,Phenom ProX 同时还兼具了飞纳电镜高效的全自动马达样品台,及光学电子两级导航系统等特点。飞纳独家采用的高亮度 CeB6 灯丝,对不导电材料可无需喷金处理直接观测,针对不同形态样品有拓展的金相样品杯,温度控制样品杯,降低荷电效应样品杯等各类附件选择,能满足不同形态样品的测试需求。??飞纳台式扫描电镜能谱一体机 Phenom ProX 飞纳台式整合光电关联显微镜德飞 Delphi CLEM 飞纳台式整合光电关联显微镜德飞 Delphi CLEM 是荷兰扫描电镜制造商 Phenom-World 和荷兰荧光显微镜制造商 Delmic ,于 2015 年联合推出的全球首款,将荧光显微镜和台式扫描电镜高度整合在一起的设备。德飞 Delphi 采用光电关联显微技术(CLEM),荧光定位样品中感兴趣区域,扫描电镜接力高倍观察。通过在荧光图像中叠加电镜图像,在一张图像里可同时获得样品功能物质分布信息和高分辨结构信息。电镜不能感知荧光信号,光电关联显微技术的难点是在电镜里找回荧光所确定的感兴趣区域,德飞使用图像无缝切换技术,两种光路对同一位置点直接成像,彻底解决了这个难题。德飞 Delphi 的专利电子束自动校准技术,无需人工干预就能得到精度高达 50nm 的荧光和电子叠加照片,既节约了时间,又确保了叠加图像的可信度。德飞面向广大生物工作者,提供可信,高效,简便的生物图像解决方案,是连接荧光显微镜和扫描电镜的桥梁。飞纳台式整合光电关联显微镜德飞 Delphi CLEM 飞纳电镜专注于台式电镜的创新与突破,愿与您分享经验,交流心得。期待您的光临。
  • 科学仪器助力嫦娥五号月球土壤样品表面微结构研究
    数十亿年来,月球上的土壤受到微陨石轰击、太阳风、宇宙射线中的带电粒子辐射等太阳风化的作用,其表面微结构和化学组分与地球土壤有较大区别。我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。  近日,中国科学院物理研究所科研团队,与国家纳米科学中心、国家天文台、广州地球化学研究所等合作,对月壤中主要矿物铁橄榄石、辉石和长石开展了系统的表面微结构表征。在25个尺寸较小和外形规则的不同矿物样品中,科研团队仅在铁橄榄石表面观察到非常薄的SiO2非晶层(厚度约10纳米),其中包裹着大小为2-12纳米的晶粒。辉石和长石表面的化学组分与内部相同,表面不存在明显的非晶层。  在铁橄榄石边缘,最外层区域I是SiO2非晶层,区域II是SiO2非晶和FeO共存,区域III是SiO2非晶和铁橄榄石共存,这是首次在月球土壤中观察到此种特殊的微结构。  前期研究表明,太空风化使月球上的铁橄榄石和其他矿物表面形成厚的非晶层,厚度为50-200纳米,层内包裹着大量尺寸为2-10纳米的金属Fe颗粒。目前,关于金属Fe的形成机理存在争议,主要存在两种观点即铁橄榄石受微陨石等轰击直接热分解和带电离子辅助下的分步还原。  本研究发现的FeO纳米晶粒和分层的边缘微结构表明所研究的铁橄榄石可能处于热分解的中间阶段,支持了铁橄榄石在太阳风化作用下发生分步还原的观点。此外,化学元素和形貌分析发现辉石和长石的表面不包含非晶层和易挥发的外来元素(如硫、氯等),样品内部也没有出现太阳耀斑穿过的痕迹,表明所研究的样品可能处于太阳风化的中早期阶段。
  • 力学所孙成奇团队在微结构和损伤演化的准原位EBSD观测研究中取得新进展
    疲劳研究的一个核心问题是疲劳裂纹萌生和损伤演化的微观过程。因此,量化和表征不同取向晶粒/晶界的变形/损伤与循环周次之间的关系,对于揭示疲劳机理、建立准确的疲劳寿命模型具有极其重要意义。然而,现有的原位扫描电子显微镜(Scanning Electron Microscope, SEM)或原位电子背散射衍射(Electron Backscattered Diffraction, EBSD)方法,难以实现大载荷、高频率、不同应力比等条件下微结构和损伤演化研究。 力学所非线性力学国家重点实验室微结构计算力学课题组孙成奇研究员等将常规试验机(如MTS试验机)与EBSD观测技术相结合,发展了一种可以实现大载荷、高频率、不同应力比下微结构和损伤演化的准原位EBSD观测方法,并研究了深海载人潜水器耐压舱用钛合金和增材制造钛合金在(保载)疲劳载荷下的变形和损伤行为。 研究发现,α晶粒中是否能形成孪晶取决于晶粒的晶体学取向和加载条件,一定程度的保载应力促进可以发生孪生的α晶粒中孪晶的形成(图1a);观测到随着循环周次增加α晶粒中取向差增大和亚晶粒的形成(图1b),以及α晶粒中由于孪生而形成亚晶粒的过程(图1c),为循环载荷下位错滑移和孪晶的形成都可以诱导晶粒的细化提供了直接证据。 研究也表明,一定程度的最大应力保载有利于脆性微裂纹的形成,但如果保载应力高或保载时间长,保载引起的塑性变形会抑制脆性微裂纹的增长,并诱导延性破坏模式。该研究从微观尺度解释了保载应力和保载时间不同而导致的不同失效机制。     图1 a: 发生孪晶的α晶粒c轴与施加轴向应力之间夹角和柱面滑移施密特因子(Schmid Factor, SF)关系; b:α晶粒内取向差变化和亚晶粒形成;c: 孪晶增长和亚晶粒形成相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)等支持。部分研究结果与北交大合作完成,主要研究成果发表在Int. J. Fatigue 2023, 176: 107897;Int. J. Fatigue 2023, 175: 107821
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制