当前位置: 仪器信息网 > 行业主题 > >

智能溶出试验仪标准

仪器信息网智能溶出试验仪标准专题为您提供2024年最新智能溶出试验仪标准价格报价、厂家品牌的相关信息, 包括智能溶出试验仪标准参数、型号等,不管是国产,还是进口品牌的智能溶出试验仪标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能溶出试验仪标准相关的耗材配件、试剂标物,还有智能溶出试验仪标准相关的最新资讯、资料,以及智能溶出试验仪标准相关的解决方案。

智能溶出试验仪标准相关的资讯

  • 全国塑料标准化技术委员会2023年年会暨标准审查会:仕家万联出席并展示智能化熔融指数仪等产品
    11月14日,全国塑料标准化技术委员会2023年年会暨标准审查会在海南省琼海市博鳌亚洲湾国际大酒店正式召开,仕家万联作为塑料标委会观察员成员之一,荣幸受邀参加,并在现场为大家展示讲解智能化熔融指数仪等多款产品;随着智慧实验室建设发展,实验室对智能化技术与全自动设备的需求日渐迫切。但在实际应用层面,操作复杂化、试验过程难以连续、数据重复性不理想等问题让许多用户对“自动设备”望而却步。为契合行业需求,我司致力于持续推动智能化精密物性分析设备拥抱市场,帮助企业用户更好地应对发展挑战,加速科技创新。此次大会上,我司展示讲解的智能化熔融指数仪特有智能化机械手系统,可连续进行12~50组样品自动循环测试,自动进样自动加载和切换砝码、自动测试、自动切割、自动称重计算、自动清洗等完全智能化测试过程,吸引了众多业内人士参观交流。
  • 征集智能实验室仪器设备国家标准起草专家
    p style=" text-align: center " strong 关于征集《智能实验室仪器设备 气候环境试验设备的数据接口》与 /strong /p p style=" text-align: center " strong 《智能实验室仪器设备 通信要求》国家标准起草工作组专家的通知 /strong /p p 各位委员: /p p   检测实验室涉及到设备、人员、耗材、方法和环境等多个要素,而随着社会的发展,实验室人员快速增加,设备和耗材越来越庞大,所使用的方法越来越精密高效,对仪器设备的要求也越来越高。现代信息技术的发展,给我实验室仪器设备的智能化提供了先进技术手段,利用物联网、云计算等新一代信息技术促进实验室仪器设备智能化,使得实验室管理更加规范高效,成为了实验室建设者和管理者重要的任务。 /p p   为解决智能实验室仪器设备通信技术领域的标准缺失,为智能实验室的建设提供数据支撑,全国实验室仪器及设备标准化技术委员会计划组织开展《智能实验室仪器设备 气候环境试验设备的数据接口》与《智能实验室仪器设备 通信要求》2项国家标准的起草工作,现征集标准起草工作专家组成员,欢迎在设备研发、信息化技术等领域从事相关工作的单位积极参加。 /p p   请拟参加标准起草工作组的专家,于2018年4月5日前,将盖章后的专家报名表(见附件1)寄回标委会秘书处,或扫描后通过电子邮件发至秘书处。 /p p   联系人:机械工业仪器仪表综合技术经济研究所 王成城 /p p   地 址:北京西城区广安门外大街甲397号 邮编:100055 /p p   电 话:010-63461918 传真:010-63490489 /p p   Email:18511696673@163.com /p p   附件1: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/5ad7a786-9c30-4ad0-b75d-d1f7df244b54.doc" 专家报名表.doc /a /p p style=" text-align: right "   全国实验室仪器及设备标准化技术委员会秘书处 /p p br/ /p
  • 人工智能加速融入医学检测 精准检测揪出“捣蛋”细胞
    p   对普罗大众来说,谈起医学检验大家也许只想象到,发烧等身体不适时在医院做的检验。然而,在医学界,检验是一项专门的学科,而且对医生的诊断和治疗起着极其重要的作用。同时,在我国大健康战略下,国内第三方医学检验研究领域正在高速发展。坐落于广州国际生物岛的金域医学是全国领先的第三方医学实验室集团,他们将大数据、人工智能等新一代信息技术加速融入到医学检测上,目前其检测项目达到2500多项,是目前国内提供检验项目较全的医疗机构之一,年检测标本超5000万例,相当于40个大型三甲医院的年标本检验数量。 /p p   今年6月我国首批罕见病目录公布,当中有121种疾病纳入该目录当中。这份目录意义重大,业界指出,目录的出台将提高药企对罕见病的研发积极性,加快罕见病药品上市进程。专家表示,采用了大数据、人工智能等新一代信息技术的智慧检验,可助力罕见病的诊断、预防以及“孤儿药”的研发。另外,基因测序更为精准医疗“打下”夯实的基石。 /p p   数据回顾 /p p   全国首份121种罕见病检测数据 /p p   累计检出3万例阳性样本检测数据 /p p   基因及基因组技术检出的阳性标本数达2万余例 /p p   色谱质谱及酶学方法检出的阳性标本数为6000余例 /p p   创建具广州特色的 /p p   检验检测大数据研究院 /p p   数据与医学检验的关系密不可分,在医学检验的“大概念”中则是包含了病例数据和检验数据。一般而言,一个大型的医学检验机构每年都会检测并积累庞大的数据,而这些检测数据更是覆盖了人类生命的每个周期。 /p p   作为全国领先的第三方医学实验室集团,金域医学每年的标本量就超5000万。5000万是一个怎样的概念?金域医学首席科学官于世辉博士表示,广州有十多家大型的三甲医院,以上的检测量相当于40个三甲医院的年标本检验数量。检测数据可为疾病防治提供依据,“面对如此庞大的数据量,最重要的是,如何把这些庞大的数据量转化成科学的数据,依靠这些科学的数据去判断或者预测”。 /p p   2009年,宫颈癌被列入我国“两癌筛查”项目,全国开始对农村妇女实施宫颈癌筛查。宫颈细胞学检测是指通过采集脱落细胞进行制片观察,从而判断宫颈是否存在病变。截至目前,金域团队在过去近十年时间累计做了约3400万筛查标本,这个数据量相当于中国人群宫颈癌筛查量的约15%。 /p p   筛查是为了科学的诊断、预防,不仅如此,多年来筛查所积累的数据更可增进对国内宫颈癌流行病学现状的了解。实验室通过对这些数据进行科学的统计分析后发现,中国女性感染HPV病毒的亚型和欧洲群体有不同。 /p p   于世辉博士进一步解释,我国在进行子宫颈癌疫苗的生产,疫苗是针对不同的HPV亚型,感染的亚型不同,疫苗所起到的作用、针对性也不同,利用大数据科学分析就能知道真正中国人群主要感染的HPV亚型有哪些,未来如何指导厂家去开发疫苗,专门针对中国人比较常发或者多发的亚型来进行疫苗研发。 /p p   全媒体记者了解到,刚过去的9月,金域医学与我国科技巨头华为达成战略合作,双方在第三方检验、病理诊断和基因分析的信息化、自动化和智能化,以及智慧城市、智慧医疗建设方面开展深度合作。也就说,这些庞大的检测数据、病例数据未来将会传送到“云端”,一方面可大大提升存储数量级,另一方面利用云计算的特性,加快其运算速度以及便于数据“共享”。 /p p   尽管目前医学检验的大数据在部分疾病的研究上已获得阶段性成果,但专家坦言,目前的数据仍不足够大,更需要的是上升到国家层面,因为许多数据都必须国家来主导。更重要的是打破数据壁垒,每个医院、大学、研究所都有自身的数据库,且数据的标准不一致,导致了“共享”时会出现问题。因此,未来数据如何有效地打通,是需要考虑的问题。 /p p   日前,国务院印发了《关于促进和规范健康医疗大数据应用发展的指导意见》,金域医学正式创建具有广州特色的“精准医疗”检验检测大数据研究院。其所依托的是,覆盖全国90%以上的人口所在地区、年服务医疗机构22000多家和超5000万例年标本量,包括全国不同地域、不同民族、不同年龄层次的海量医疗检测样本数据。 /p p    strong 人工智能可辅助医生 /strong /p p strong   对病情进行诊断 /strong /p p   拥有了具规模的数据库,利用人工智能对样本进行筛查,甚至诊断是AI+医疗发展的一个大方向。去年,央视节目《机智过人》中,人工智能和15名来自全国三甲医院、有着15年工作经验、阅片量在20万张以上的医生“过招”,结果是人工智能获胜。 /p p   据了解,金域医学实验室早在四年前已将AI“带入”到检验领域中。在四年前,实验室与香港应用科学研究院建立了合作的关系,通过该研究院研发的软件进行子宫颈癌的初筛。如接收到一万份子宫颈癌样本,实验室利用人工智能,把其中确定正常的样本排除,剩下的是“软件”看得不太清楚或可能有病的。随后,再让医生来进行诊断。相比传统方式,这大大地降低了病理医生的工作量。实际上,当下人工智能在医学检验上主要是对样本的初步筛查。于世辉博士认为,即便未来,人工智能也是无法取代病理医生,它更多的是帮助病理医生减少工作量。 /p p   然而,医疗是一个相当宽广的领域,在部分疾病诊断例如眼病、肺炎等,人工智能发展得相对较快。今年2月,广州市妇女儿童医疗中心基于深度学习开发出一个能诊断眼病和肺炎的人工智能系统,该研究成果以封面文章登上当月的世界顶级期刊《细胞》。据了解,这项人工智能成果能根据影像资料,给医生提出诊断建议,并解释判断的依据。比对实验发现,该系统在诊断眼疾的准确率达96.6% 在区分肺炎和健康状态时准确率达92.8%。数据显示,从一张胸部CT上找到肺结节,一名经过训练的医生平均需要3~5分钟,而依靠人工智能则仅需3~5秒。 /p p   据透露,金域医学已与我国人工智能“大咖”张康教授以及南方医院的侯凡凡院士进行合作,将人工智能“融入”大数据,尝试对膜性肾病进行研究。当下,人工智能已从病理,包括细胞病理的子宫颈癌、组织病理的肺癌和肾脏系统疾病,延伸到基因测序及微生物检测等,比如幽门螺旋杆菌。 /p p   “目前在医疗领域中,人工智能仍是单独针对一个项目、一个领域,希望未来能把病理与基因整合在一起,再把其他的大数据融合,最后真正地实现病理和检测的智能化。”于世辉表示。 /p p   放眼全球,IBM、谷歌、微软等科技巨头近年都在布局人工智能医疗。如IBM Watson能快速筛选癌症患者记录,为医生提供可供选择的循证治疗方案 谷歌在糖尿病、神经性疾病诊疗等研究方面发力。 /p p   据麦肯锡则预测,到2025年,全球智能医疗行业规模将达到总254亿美元,约占全球人工智能市场总值的1/5。 /p p    strong 精准检测罕见病 /strong /p p strong   提供治疗方式 /strong /p p   今年5月,国家卫生健康委员会、科技部、工信部、药监总局、中医药管理局5部门联合公布《第一批罕见病目录》。首批目录纳入了血友病、白化病、肌萎缩侧索硬化(俗称“渐冻人症”)等121种疾病。国家卫健委有关负责人表示,该目录根据我国人口疾病罹患情况、医疗技术水平、疾病负担和保障水平等,参考国际经验,由不同领域权威专家按照一定工作程序遴选产生。 /p p   罕见病,又称“孤儿病”,是发病率很低的疾病,通常病情严重,甚至危及生命。按照中华医学会医学遗传学分会提出的定义,罕见病为患病率低于1/500000或新生儿发病率低于1/10000的疾病。 /p p   随着这份《第一批罕见病目录》对外公布,金域医学不仅已开展相关检测服务,而且均检测到阳性病例,同时亦发布了罕见病检测数据,针对新生儿及儿童,前者累计检出阳性样本数达3万例。这些检测数据意味着什么?于世辉博士解释道,尽管这些是初步数据,但根据这些数据可以知道这些罕见病究竟有哪些,在中国的各个地区分布的情况,病基因的改变是由什么原因引起以及它的类型是怎样,哪些可治哪些不能治& #8230 & #8230 这些数据对于病人是非常有意义的。 /p p   业内人士指出,《第一批罕见病目录》的出台将提高药企对罕见病用药的研发积极性,加快罕见病药品上市进程,从而改善罕见病患者的生活质量,并将为罕见病药物纳入医保提供参考依据。 /p p   据透露,金域医学积累了数十万例其他阳性罕见病检测数据,这些数据具有广泛的地域和人群代表性,对中国人群中罕见病的发病率、检出率及特有遗传变异类型的临床研究具有重要的科学价值 对于罕见病产前检测、新生儿筛查、产后患儿罕见病的诊断及“孤儿药”的研发等都具有重大意义。 /p p   针对罕见病中占主要比重的单基因遗传性疾病的产前筛查,该医学团队还与NIPT之父卢煜明教授团队开展深度合作 并与基因测序巨头Illumina公司联手,将MiniSeq测序仪普及到基层医院,助力我国罕见病的精准检测。 /p p    strong 基因测序为精准治疗打好基础 /strong /p p   除了预防与诊断“罕见病”,基因测序更为“精准医疗”打下基础。精准医疗,狭义概念是在基因和基因组基础、检测基础上的一种医疗,它更是疾病诊断和治疗的重要发展方向之一。而基因测序是一种新型基因检测技术,它通过分析测定基因序列,可用于临床的遗传病诊断、产前筛查、罹患肿瘤预测与治疗等领域。据业内专家表示,无论是细胞治疗还是基因治疗,首先要通过基因测序诊断病情才能设计方案。而在实施精准医疗方案过程中,需要大量的细胞和分子级别的检测。 /p p   于世辉博士表示,人类除了外伤以外所有的疾病都与基因、基因组有关,例如肿瘤无一例外全都是基因、基因组变化,罕见病当中的80%都是基因、基因组的变化。 /p p   目前,精准医疗在临床上应用得最多的是肿瘤方向。这与以往的肿瘤治疗有所不同,例如以往有病人得了癌症住院,一般治疗手段是通过外科手术,将肿瘤切除。切除后再进行化疗、放疗等,这是传统的手段,精准医疗的到来则是大大地改变传统的这些治疗手段。 /p p   “病人去到医院首先是检测病人的基因发生了怎样的改变”,于世辉博士解释道,而不是按照传统的治疗过程来进行了。也因为全球医学水平的高速发展,科学家们在过去这些年中发明了一些专门针对不同的基因变化进行治疗的药物,也就说在对疾病的治疗上,可通过靶向药物而非手术、化疗等传统方式进行。 /p p   相比部分国家和地区,我国的精准医疗仍处于刚起步的阶段,目前,全球精准医疗更多地集中在人类对恶性肿瘤的早期诊断和治疗上,基于个体基因检测的肿瘤个体差异化治疗成为重要趋势。根据前期部署的中国精准医疗计划,将于2030年前在精准医疗领域投入600亿元。 /p p   根据互联网医疗健康产业联盟早前发布的《2018医疗人工智能技术与应用白皮书》指出,基因检测就是通过解码从海量数据中挖掘有效信息,目前高通量测序技术的运算层面主要为解码和记录,较难以实现基因解读,所以从基因序列中挖掘出的有效信息十分有限。人工智能技术的介入可改善目前的瓶颈。通过建立初始数学模型,将健康人的全基因组序列和RNA序列导入模型进行训练,让模型学习到健康人的RNA剪切模式。之后通过其他分子生物学方法对训练后的模型进行修正,最后对照病例数据检验模型的准确性。 /p
  • 关于征集《智能实验室 信息管理系统 功能要求》国家标准起草工作组专家的通知
    p style=" text-indent: 2em " strong 全国实验室仪器及设备标准化技术委员会于2018年6月14日发布了关于征集《智能实验室 信息管理系统 & nbsp 功能要求》国家标准起草工作组专家的通知,通知内容如下: /strong /p p 各位专家: br/ /p p   实验室信息管理系统(LIMSIMS)基于物联网、大数据等新一代信息技术,能够实现系统与设备间的协调一致,以及对实验室安防、环境、资源等多方面统一控制,将实验室人、机、料、法、环等核心要素相互衔接并有机协作,促进实验室运行管理更加规范高效。 /p p   鉴于行业的强烈需求,全国实验室仪器及设备标准化技术委员会拟开展国家标准《智能实验室信息管理系统功能要求》(国家标准计划编号20180717-T-604)的起草工作,现征集标准起草工作专家组成员,欢迎在从事相关领域工作的专家积极参加。 /p p   请拟参加标准起草工作组的专家,于2018年7月15日前,将盖章后的专家报名表(见附件)寄回标委会秘书处,或扫描后通过电子邮件发至秘书处。 /p p br/ /p p 联系人:机械工业仪器仪表综合技术经济研究所 王成城 /p p 地址:北京西城区广安门外大街甲397号 邮编:100055 /p p 电话:010-63461918 传真:010-63490489 /p p Email:18511696673@163.com /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/91439beb-d238-4bcb-aa93-7459e31ddbf1.pdf" 附件:通知全文及专家报名表 /a /p
  • 国内首部智能家居地方标准出炉 或将促国标出台
    日前,国内首个地方性质的智能家居标准即将出炉。重庆市质监局联合经信委审查了智能家居监控系统的技术要求和测试规范,将于近期实施。对此,专家表示,有关部门一直在牵头制定智能家居行业标准,而首个地方性标准提前出炉,有望促进国家标准尽快颁布,为智能家居发展扫清道路。重庆通过两项智能家居地方标准评审。   据悉,此次重庆市政府部门通过审查的是《智能家居监控系统技术要求》和《智能家居监控系统测试规范》。由重庆市质监局和经信委邀请部分高校和科院院所专家,对两个标准逐一认真地评审,将于近期颁布实施,为重庆企业研发智能家居监控系统将有标可依。这两个智能家居地方性标准主要以产品的功能、性能、接口技术、信息安全、关键部件参数为着眼点进行研究,并提出相应的技术指标及测试方法,从而规范重庆市场该类产品的设计、生产、检测、使用、质检工作,为市场规范市场出台统一标准,也促进行业发展。事实上,在今年上半年的智能家居产业峰会上,智能家居产业联盟秘书长周军曾表示,该联盟正在撰写《智能家居标准体系》、《智能家居蓝皮书》、《智能家居发展研究报告》等文件,而且该标准在联盟内部已经可以基本实现互联互通。标准发布实施后,家电、安防、可视对讲、灯光控制以及控制芯片领域中不同厂家的诸多产品都将被囊括进智能家居系统里,有助于行业的发展。   智能家居行业标准出台促进市场普及   其实,自从物联网技术迅速崛起以来,智能家居迎来二次革命,尤其是智能化程度大幅提高,售后服务水平提高,使得智能家居能够快速走进寻常百姓家。今年2月国家工信部就发布了《物联网“十二五”发展规划》,将智能家居列入9大重点领域应用示范工程。此举更坚定了众多智能家居企业欲切蛋糕的信心。   南京物联传感作为智能家居行业标准的起草单位之一,该公司技术部负责人表示,智能家居标准的缺失制约了行业发展,主要原因在于包含的系统太多,而且又都是电子领域的各类子系统,因此标准的建立也非常麻烦。每个子系统都有自己的标准,比如布线,安防,音响等,想要全部整合在一起难度较大。   南京物联采用的无线ZIGBEE技术,作为国际流行的无线传感技术具有低功耗、低复杂度、低成本、近距离等特点。目前无线智能家居安装简易,无需密集布线,只要具备初中以上文化就可安装 自动组网,设备可扩展性强 售后服务方便,能够准确检测故障并及时修复。   物联网专家中国工程院院士邬贺铨认为,目前智能家居市场前景广阔,吸引众多外来行业涉足,但由于处于快速发展期,各家企业采用的技术标准不尽相同,分为有线传输和无线传输方式,无线传输中又有WIFI、蓝牙、ZIGBEE技术,虽然ZIGBEE凭借强大的组网能力在市场中占得上风,但由于缺少国家强制性统一规范,拓展时市场时仍遭遇阻力,如今重庆地方性智能家居标准出台,有望促使行业标准尽早颁布,为智能家居快速发展提供技术支撑和保障。
  • 国家智能制造标准体系建设指南(2018年版)印发 提及仪器仪表
    p   近日,工信部、国家标准委共同组织制定并印发《国家智能制造标准体系建设指南(2018年版)》,以加快推进智能制造发展,指导智能制造标准化工作的开展。以下为指南全文。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/28470e18-f993-4f54-a1ef-41d090899ded.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 工业和信息化部 /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 国家标准化管理委员会 /span /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 关于印发国家智能制造标准体系建设指南(2018年版)的通知 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 工信部联科〔2018〕154号 /span /p p   各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、质量技术监督局(市场监督管理部门),有关标准化技术组织、标准化专业机构,有关中央企业、行业协会,有关单位: /p p   为加快推进智能制造发展,指导智能制造标准化工作的开展,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》,现予印发。 /p p style=" text-align: right "   工业和信息化部 /p p style=" text-align: right "   国家标准化管理委员会 /p p style=" text-align: right "   2018年8月14日 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 国家智能制造标准体系建设指南 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " (2018年版) /span /strong /p p   制造业是国民经济的主体,是立国之本、兴国之器、强国之基。智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。 /p p   为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。 /p p   按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。 /p p   span style=" background-color: rgb(255, 255, 255) "   /span span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 一、总体要求 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong (一)指导思想 /strong /span /p p   进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)基本原则 /strong /span /p p   按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,加强与相关国家和地区间的技术标准交流与合作,开展标准互认,共同推进国际标准制定。 /p p    span style=" color: rgb(0, 112, 192) " strong (三)建设目标 /strong /span /p p   按照“共性先立、急用先行”的原则,制定安全、可靠性、检测、评价等基础共性标准,识别与传感、控制系统、工业机器人等智能装备标准,智能工厂设计、智能工厂交付、智能生产等智能工厂标准,大规模个性化定制、运维服务、网络协同制造等智能服务标准,人工智能应用、边缘计算等智能赋能技术标准,工业无线通信、工业有线通信等工业网络标准,机床制造、航天复杂装备云端协同制造、大型船舶设计工艺仿真与信息集成、轨道交通网络控制系统、新能源汽车智能工厂运行系统等行业应用标准,带动行业应用标准的研制工作。推动智能制造国家和行业标准上升成为国际标准。 /p p   到2018年,累计制修订150项以上智能制造标准,基本覆盖基础共性标准和关键技术标准。 /p p   到2019年,累计制修订300项以上智能制造标准,全面覆盖基础共性标准和关键技术标准,逐步建立起较为完善的智能制造标准体系。建设智能制造标准试验验证平台,提升公共服务能力,提高标准应用水平和国际化水平。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 二、建设思路 /strong /span /p p   国家智能制造标准体系按照“三步法”原则建设完成。第一步,通过研究各类智能制造应用系统,提取其共性抽象特征,构建由生命周期、系统层级和智能特征组成的三维智能制造系统架构,从而明确智能制造对象和边界,识别智能制造现有和缺失的标准,认知现有标准间的交叉重叠关系 第二步,在深入分析标准化需求的基础上,综合智能制造系统架构各维度逻辑关系,将智能制造系统架构的生命周期维度和系统层级维度组成的平面自上而下依次映射到智能特征维度的五个层级,形成智能装备、智能工厂、智能服务、智能赋能技术、工业网络等五类关键技术标准,与基础共性标准和行业应用标准共同构成智能制造标准体系结构 第三步,对智能制造标准体系结构分解细化,进而建立智能制造标准体系框架,指导智能制造标准体系建设及相关标准立项工作。 /p p   span style=" color: rgb(0, 112, 192) " strong  (一)智能制造系统架构 /strong /span /p p   《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)指出,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。 /p p   智能制造系统架构从生命周期、系统层级和智能特征三个维度对智能制造所涉及的活动、装备、特征等内容进行描述,主要用于明确智能制造的标准化需求、对象和范围,指导国家智能制造标准体系建设。智能制造系统架构如图1所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/69e999c9-14b7-45ea-b883-8b32d12690b4.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 图 1 智能制造系统架构 /p p   span style=" color: rgb(0, 112, 192) " strong  1. 生命周期 /strong /span /p p   生命周期是指从产品原型研发开始到产品回收再制造的各个阶段,包括设计、生产、物流、销售、服务等一系列相互联系的价值创造活动。生命周期的各项活动可进行迭代优化,具有可持续性发展等特点,不同行业的生命周期构成不尽相同。 /p p   (1)设计是指根据企业的所有约束条件以及所选择的技术来对需求进行构造、仿真、验证、优化等研发活动过程 /p p   (2)生产是指通过劳动创造所需要的物质资料的过程 /p p   (3)物流是指物品从供应地向接收地的实体流动过程 /p p   (4)销售是指产品或商品等从企业转移到客户手中的经营活动 /p p   (5)服务是指提供者与客户接触过程中所产生的一系列活动的过程及其结果,包括回收等。 /p p   span style=" color: rgb(0, 112, 192) " strong  2. 系统层级 /strong /span /p p   系统层级是指与企业生产活动相关的组织结构的层级划分,包括设备层、单元层、车间层、企业层和协同层。 /p p    strong (1) /strong strong 设备层是指企业利用传感器、仪器仪表、机器、装置等,实现实际物理流程并感知和操控物理流程的层级 /strong /p p   (2)单元层是指用于工厂内处理信息、实现监测和控制物理流程的层级 /p p   (3)车间层是实现面向工厂或车间的生产管理的层级 /p p   (4)企业层是实现面向企业经营管理的层级 /p p   (5)协同层是企业实现其内部和外部信息互联和共享过程的层级。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 智能特征 /strong /span /p p   智能特征是指基于新一代信息通信技术使制造活动具有自感知、自学习、自决策、自执行、自适应等一个或多个功能的层级划分,包括资源要素、互联互通、融合共享、系统集成和新兴业态等五层智能化要求。 /p p   (1)资源要素是指企业对生产时所需要使用的资源或工具及其数字化模型所在的层级 /p p   (2)互联互通是指通过有线、无线等通信技术,实现装备之间、装备与控制系统之间,企业之间相互连接及信息交换功能的层级 /p p   (3)融合共享是指在互联互通的基础上,利用云计算、大数据等新一代信息通信技术,在保障信息安全的前提下,实现信息协同共享的层级 /p p   (4)系统集成是指企业实现智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统集成过程的层级 /p p   (5)新兴业态是企业为形成新型产业形态进行企业间价值链整合的层级。 /p p   智能制造的关键是实现贯穿企业设备层、单元层、车间层、工厂层、协同层不同层面的纵向集成,跨资源要素、互联互通、融合共享、系统集成和新兴业态不同级别的横向集成,以及覆盖设计、生产、物流、销售、服务的端到端集成。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)智能制造标准体系结构 /strong /span /p p   智能制造标准体系结构包括“A基础共性”、“B关键技术”、“C行业应用”等三个部分,主要反映标准体系各部分的组成关系。智能制造标准体系结构图如图2所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/119fcc1f-42e0-461b-92c0-cc146bea2988.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " 图2 智能制造标准体系结构图 /p p   具体而言,A基础共性标准包括通用、安全、可靠性、检测、评价等五大类,位于智能制造标准体系结构图的最底层,是B关键技术标准和C行业应用标准的支撑。B关键技术标准是智能制造系统架构智能特征维度在生命周期维度和系统层级维度所组成的制造平面的投影,其中BA智能装备对应智能特征维度的资源要素,BB智能工厂对应智能特征维度的资源要素和系统集成,BC智能服务对应智能特征维度的新兴业态,BD智能赋能技术对应智能特征维度的融合共享,BE工业网络对应智能特征维度的互联互通。C行业应用标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。 /p p   智能制造标准体系结构中明确了智能制造的标准化需求,与智能制造系统架构具有映射关系。以大规模个性化定制模块化设计规范为例,它属于智能制造标准体系结构中B关键技术-BC智能服务中的大规模个性化定制标准。在智能制造系统架构中,它位于生命周期维度设计环节,系统层级维度的企业层和协同层,以及智能特征维度的新兴业态。其中,智能制造系统架构三个维度与智能制造标准体系的映射关系及示例解析详见附件2。 /p p    span style=" color: rgb(0, 112, 192) " strong (三)智能制造标准体系框架 /strong /span /p p   智能制造标准体系框架由智能制造标准体系结构向下映射而成,是形成智能制造标准体系的基本组成单元。智能制造标准体系框架包括“A基础共性”、“B关键技术”、“C行业应用”三个部分,如图3所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f73eeadb-c50e-41c5-a66b-b231643b6a2f.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " 图3 智能制造标准体系框架 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 三、建设内容 /span /strong /p p    span style=" color: rgb(0, 112, 192) " strong (一)基础共性标准 /strong /span /p p   基础共性标准用于统一智能制造相关概念,解决智能制造基础共性关键问题,包括通用、安全、可靠性、检测、评价等五个部分,如图4所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a8dfce4d-fac0-40e0-bedf-99ae0b46c421.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " 图4 基础共性标准子体系 /p p    span style=" color: rgb(0, 112, 192) " strong 1. 通用标准 /strong /span /p p   主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑。参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系。元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础。标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备互联网协议(IP)化、智能化等智能制造发展要求的智能制造标识体系。 /p p    span style=" color: rgb(0, 112, 192) " strong 2. 安全标准 /strong /span /p p   主要包括功能安全、信息安全和人因安全三个部分。功能安全标准用于保证控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致生产事故,包括面向智能制造的功能安全要求、功能安全系统设计和实施、功能安全测试和评估、功能安全管理等标准。信息安全标准用于保证智能制造领域相关信息系统及其数据不被破坏、更改、泄露,从而确保系统能连续可靠地运行,包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护及评估等标准。人因安全标准用于避免在智能制造各环节中因人的行为造成的隐患或威胁,通过合理分配任务,调节工作环境,提高人员能力,以保证人身安全,预防误操作等,包括工作任务、环境、设备、人员能力、管理支持等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 可靠性标准 /strong /span /p p   主要包括工程管理、技术方法两个部分。工程管理标准主要对智能制造系统的可靠性活动进行规划、组织、协调与监督,包括智能制造系统及其各系统层级对象的可靠性要求、可靠性管理、综合保障管理、寿命周期成本管理等标准。技术方法标准主要用于指导智能制造系统及其各系统层级开展具体的可靠性保证与验证工作,包括可靠性设计、可靠性预计、可靠性试验、可靠性分析、可靠性增长、可靠性评价等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 4. 检测标准 /strong /span /p p    strong 主要包括测试项目、测试方法等两个部分。测试项目标准用于指导智能制造装备和系统在测试过程中的科学排序和有效管理,包括不同类型的智能制造装备和系统一致性和互操作、集成和互联互通、系统能效、电磁兼容等测试项目标准。测试方法标准用于不同类型智能制造装备和系统的测试,包括试验内容、方式、步骤、过程、计算分析等内容的标准,以及性能、环境适应性和参数校准等。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 5. 评价标准 /strong /span /p p   主要包括指标体系、能力成熟度、评价方法、实施指南等四个部分。指标体系标准用于智能制造实施的绩效与结果的评估,促进企业不断提升智能制造水平。能力成熟度标准用于企业识别智能制造现状、规划智能制造框架与提升智能制造能力水平提供过程方法论,为企业识别差距、确立目标、实施改进提供参考。评价方法标准用于为相关方提供一致的方法和依据,规范评价过程,指导相关方开展智能制造评价。实施指南标准用于指导企业提升制造能力,为企业开展智能化建设、提高生产力提供参考。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)关键技术标准 /strong /span /p p   主要包括智能装备、智能工厂、智能服务、智能赋能技术和工业网络等五个部分。 /p p   span style=" color: rgb(0, 112, 192) " strong  1. 智能装备标准 /strong /span /p p   主要包括识别与传感、人机交互系统、控制系统、增材制造、工业机器人、数控机床及设备、智能工艺装备等七个部分,如图5所示,其中重点是识别与传感、控制系统和工业机器人标准。主要规定智能传感器、自动识别系统、工业机器人等智能装备的信息模型、数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决智能生产过程中智能装备之间,以及智能装备与智能化产品、物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7aa8a32a-4026-41f2-bb3f-10cec1a98bf8.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " 图5 智能装备标准子体系 /p p    span style=" color: rgb(0, 112, 192) " strong (1)识别与传感标准 /strong /span /p p   主要包括标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。主要用于在测量、分析、控制等工业生产过程,以及非接触式感知设备自动识别目标对象、采集并分析相关数据的过程中,解决数据采集与交换过程中数据格式、程序接口不统一的问题,确保编码的一致性。 /p p    span style=" color: rgb(0, 112, 192) " (2)人机交互系统标准 /span /p p   主要包括工控键盘布局等文字标准 智能制造专业图形符号分类和定义等图形标准 语音交互系统、语义库等语音语义标准 单点、多点等触摸体感标准 情感数据等情感交互标准 虚拟显示软件、数据等VR/AR设备标准。主要用于规范人与信息系统多通道、多模式和多维度的交互途径、模式、方法和技术要求,解决包括工控键盘、操作屏等高可靠性和安全性交互模式,语音、手势、体感、虚拟现实/增强现实(VR/AR)设备等多维度交互的融合协调和高效应用的问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (3)控制系统标准 /strong /span /p p   主要包括控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。主要用于规定生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、可编程自动控制器(PAC)、分布式控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等相关标准,解决控制系统数据采集、控制方法、通信、集成等问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (4)增材制造标准 /strong /span /p p   主要包括典型增材制造工艺和方法标准 设计规范、文件格式、数据质量保障、文件存储和数据处理等模型设计标准 增材制造设备接口标准 增材制造材料、设备和零部件性能的测试方法标准 增材制造服务架构、服务模式等服务标准。主要用于规范智能制造系统中增材制造相关技术、方法,确保增材制造与智能制造各环节、要素的协调一致及效能最优。 /p p   span style=" color: rgb(0, 112, 192) " strong  (5) /strong /span span style=" color: rgb(0, 112, 192) " strong 工业机器人标准 /strong /span /p p   主要包括集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。主要用于规定工业机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。 /p p    span style=" color: rgb(0, 112, 192) " strong (6)数控机床及设备标准 /strong /span /p p   主要包括智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。主要用于规范数字程序控制进行运动轨迹和逻辑控制的机床及设备,解决其过程、集成与协同以及在智能制造应用中的标准化问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (7)智能工艺装备标准 /strong /span /p p   主要包括成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。主要用于规范智能制造系统中铸造、塑性成形、焊接、热处理与表面改性、粉末冶金成形等热加工成形工艺装备相关技术、方法、工艺,确保成形制造与智能制造系统的协调一致。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能装备标准建设重点 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 识别与传感标准。 /strong /span 标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 控制系统标准。 /strong /span 控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 工业机器人标准 /strong /span 。集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 数控机床及设备标准。 /strong /span 智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能工艺装备标准。 /strong /span 成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。 /p p    strong 2. 智能工厂标准 /strong /p p   主要包括智能工厂设计、建造与交付,智能设计、生产、管理、物流和集成优化等部分,如图6所示,其中重点是智能工厂设计、智能工厂交付、智能生产和集成优化等标准。主要用于规定智能工厂设计、建造和交付等建设过程和工厂内设计、生产、管理、物流及其系统集成等业务活动。针对流程、工具、系统、接口等应满足的要求,确保智能工厂建设过程规范化、系统集成规范化、产品制造过程智能化。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/4d35ea79-85e2-4bba-b8e6-d2e7cfa91494.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " 图6 智能工厂标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)智能工厂设计标准 /strong /span /p p   主要包括智能工厂的基本功能、设计要求、设计模型等总体规划标准 智能工厂物联网系统设计、信息化应用系统设计等智能化系统设计标准 虚拟工厂参考架构、工艺流程及布局模型、生产过程模型和组织模型等系统建模标准 达成智能工厂规划设计要求所需的工艺优化、协同设计、仿真分析、设计文件深度要求、工厂信息标识编码等实施指南标准。主要用于规定智能工厂的规划设计,确保工厂的数字化、网络化和智能化水平。 /p p   span style=" color: rgb(0, 112, 192) " strong  (2)智能工厂建造标准 /strong /span /p p   主要包括建造过程数据采集范围、流程、信息载体、系统平台要求等建造过程数据采集标准 满足集成性、创新性要求、促进智能工厂建设项目管理科学化、规范化的建造过程项目管理标准。主要用于规定智能工厂建设和技术改造过程,通过智能工厂建造过程的控制与约束,确保智能工厂建设质量、建设周期、建设成本等预定目标的实现。 /p p    span style=" color: rgb(0, 112, 192) " strong (3)智能工厂交付标准 /strong /span /p p   主要包括交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。主要用于规定智能工厂建设完成后的验收与交付,确保建成的智能工厂达到预定建设目标,交付数据资料满足智能工厂运营维护要求。 /p p   span style=" color: rgb(0, 112, 192) " strong  (4)智能设计标准 /strong /span /p p   主要包括基于数据驱动的参数化设计、专业化并行/协同设计、基于模型的产品生命周期(定义MBD、制造和检验)标准以及产品设计全过程的标准化管理 试验方法设计、试验数据与流程的管理、试验结果的分析与验证、试验结果反馈等试验仿真标准。主要用于规定产品的数字化设计和仿真,以及产品试验验证过程仿真的方法和要求,确保产品的功能、性能、易装配性、易维修性,缩短新产品研制和制造周期,降低成本。 /p p    span style=" color: rgb(0, 112, 192) " strong (5)智能生产标准 /strong /span /p p   主要包括计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发与执行、设计与制造协同、制造资源动态组织、生产过程管理与优化、生产过程可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。主要用于规定智能制造环境下生产过程中计划调度、生产执行、质量管控、设备运维等应满足的要求,确保制造过程的智能化、柔性化和敏捷化。 /p p    span style=" color: rgb(0, 112, 192) " strong (6)智能管理标准 /strong /span /p p   主要包括供货商评价、质量检验分析等采购管理标准 销售预测、客户关系管理、个性化客户服务等销售管理标准 设备可靠性管理等资产管理标准 能流管理、能效评估等能源管理标准 作业过程管控、应急管理、危化品管理等安全管理标准 职业病危害因素监测、职业危害项目指标等健康管理标准 环保实时监测和预测预警能力描述、环保闭环管理等环保管理标准 基于模型的企业战略、生产组织与服务保障等基于模型的企业(MBE)标准。主要用于规定企业生产经营中采购、销售、能源、工厂安全、环保和健康等方面的知识模型和管理要求等,指导智能管理系统的设计与开发,确保管理过程的规范化和精益化。 /p p    span style=" color: rgb(0, 112, 192) " strong (7)智能物流标准 /strong /span /p p   主要包括物料标识、物流信息采集、物料货位分配、出入库输送系统、作业调度、信息处理、作业状态及装备状态的管控、货物实时监控等智能仓储标准 物料智能分拣系统、配送路径规划、配送状态跟踪等智能配送标准。主要用于规定智能制造环境下厂内物流关键技术应满足的要求,指导智能物流系统的设计与开发,确保物料仓储配送准确高效和运输精益化管控。 /p p    span style=" color: rgb(0, 112, 192) " strong (8)集成优化标准 /strong /span /p p   主要包括虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。主要用于规定一致的语法和语义,满足通用接口中应用特定的功能关系,协调使能技术和业务应用之间的关系,确保信息的共享和交换。 /p p    strong span style=" color: rgb(0, 112, 192) " 智能工厂标准建设重点 /span /strong /p p    span style=" color: rgb(0, 112, 192) " strong 智能工厂设计标准。 /strong /span 智能工厂参考模型、通用技术要求等总体规划标准 智能工厂信息基础设施设计、物联网系统设计和信息化应用系统设计等工厂智能化系统设计标准 虚拟工厂设计参考架构、虚拟工厂信息模型和虚拟工厂建设要求等虚拟工厂设计标准 达成智能工厂规划设计要求所需的仿真分析、工艺优化、工厂信息标识编码和设计文件深度要求等实施指南标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能工厂交付标准。 /strong /span 交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能生产标准。 /strong /span 计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发、协同生产、生产过程管理与优化、可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 集成优化标准。 /strong /span 虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息模型、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 智能服务标准 /strong /span /p p   主要包括大规模个性化定制、运维服务和网络协同制造等三个部分,如图7所示,其中重点是大规模个性化定制标准和运维服务标准。主要用于实现产品与服务的融合、分散化制造资源的有机整合和各自核心竞争力的高度协同,解决了综合利用企业内部和外部的各类资源,提供各类规范、可靠的新型服务的问题。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/40685663-9aef-47ef-af5d-bfc4038d52f0.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " 图7 智能服务标准子体系 /p p   span style=" color: rgb(0, 112, 192) "  (1)大规模个性化定制标准 /span /p p   主要包括通用要求、需求交互规范、模块化设计规范和生产规范等标准。主要用于指导企业实现以客户需求为核心的大规模个性化定制服务模式,通过新一代信息技术和柔性制造技术,以模块化设计为基础,以接近大批量生产的效率和成本满足客户个性化需求。 /p p    span style=" color: rgb(0, 112, 192) " (2)运维服务标准 /span /p p   主要包括基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。主要用于指导企业开展远程运维和预测性维护系统建设和管理,通过对设备的状态远程监测和健康诊断,实现对复杂系统快速、及时、正确诊断和维护,全面分析设备现场实际使用运行状况,为设备设计及制造工艺改进等后续产品的持续优化提供支撑。 /p p   span style=" color: rgb(0, 112, 192) " strong  (3)网络协同制造标准 /strong /span /p p   主要包括实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。主要用于指导企业持续改进和不断优化网络化制造资源协同云平台,通过高度集成企业间、部门间创新资源、生产能力和服务能力的相关技术方法,实现生产制造与服务运维信息高度共享、资源和服务的动态分析,增强柔性配置水平。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能服务标准建设重点 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 大规模个性化定制标准。 /strong /span 通用要求、需求交互规范、模块化设计规范和生产规范等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 运维服务标准。 /strong /span 基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 网络协同制造标准。 /strong /span 实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 4. 智能赋能技术标准 /strong /span /p p   主要包括人工智能应用、工业大数据、工业软件、工业云、边缘计算等部分,如图8所示,其中重点是人工智能应用标准和边缘计算标准。主要用于构建智能制造信息技术生态体系,提升制造领域的信息化和智能化水平。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f41f5cf5-1a95-47e7-b9e6-0f6b321ae332.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " 图8 智能赋能技术标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)人工智能应用标准 /strong /span /p p   主要包括场景描述与定义标准、知识库标准、性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。主要用于满足制造全生命周期活动的智能化发展需求,指导人工智能技术在设计、生产、物流、销售、服务等生命周期环节中的应用,并确保人工智能技术在应用中的可靠性与安全性。 /p p    span style=" color: rgb(0, 112, 192) " strong (2)工业大数据标准 /strong /span /p p   主要包括平台建设的要求、运维和检测评估等工业大数据平台标准 工业大数据采集、预处理、分析、可视化和访问等数据处理标准 数据质量、数据管理能力等数据管理标准 工厂内部数据共享、工厂外部数据交换等数据流通标准。主要用于典型智能制造模式中,提高产品全生命周期各个环节所产生的各类数据的处理和应用水平。 /p p   strong span style=" color: rgb(0, 112, 192) "  (3)工 /span /strong span style=" color: rgb(0, 112, 192) " strong 业软件标准 /strong /span /p p   主要包括产品、工具、嵌入式软件、系统和平台的功能定义、业务模型、技术要求等软件产品与系统标准 工业软件接口规范、集成规程、产品线工程等软件系统集成和接口标准 生存周期管理、质量管理、资产管理、配置管理、可靠性要求等服务与管理标准 工业技术软件化方法、参考架构、工业应用程序(APP)封装等工业技术软件化标准。主要用于促进软件成为工业领域知识、技术和管理的载体,提高软件在工业领域的研发设计、生产制造、经营管理以及营销服务活动中发挥的作用,指导工业企业对研发、制造、生产管理等工业软件的集成和选型,帮助工业企业开展工业技术软件化,对工业知识进行有效积累。 /p p   span style=" color: rgb(0, 112, 192) " strong  (4)工业云标准 /strong /span /p p   主要包括平台建设与应用,工业云资源和服务能力的接入与管理等资源标准 能力测评规范、计量计费、服务级别协议(SLA)等服务标准。主要用于构建工业云生态体系,指导工业云平台的设计和建设,规范不同工业云服务的业务能力,提升工业云服务的设计、实现、部署、供应和运营管理水平,指导开展各类工业云服务的采购、审计、监管和评价活动。 /p p    span style=" color: rgb(0, 112, 192) " (5)边缘计算标准 /span /p p   主要包括架构与技术要求、计算及存储、安全、应用等标准。主要用于指导智能制造行业数字化转型、数字化创新,解决制造业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,用于智能制造中边缘计算技术、设备或产品的研发和应用。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能赋能技术标准建设重点 /strong /span /p p   人工智能应用标准。场景描述与定义标准,知识库标准,性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。 /p p   边缘计算标准。架构与技术要求、计算及存储、安全、应用等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 5. 工业网络标准 /strong /span /p p   主要包括体系架构、组网与并联技术和资源管理,其中体系架构包括总体框架、工厂内网络、工厂外网络和网络演进增强技术等 组网与并联技术包括工厂内部不同层级的组网技术,工厂与设计、制造、供应链、用户等产业链各环节之间的互联技术 资源管理包括地址、频谱等,但智能制造中工业网络仅包括工业无线通信和工业有线通信,如图9所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7bdbbbf4-685a-40d3-b754-6d1914a40033.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " 图9 工业网络标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)工业无线通信标准 /strong /span /p p   针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准。 /p p    span style=" color: rgb(0, 112, 192) " strong (2)工业有线通信标准 /strong /span /p p   针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。 /p p   工业网络标准建设重点 /p p   工业无线通信标准。针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准 /p p   工业有线通信标准。针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。 /p p   span style=" color: rgb(0, 112, 192) " strong  (三)行业应用标准 /strong /span /p p   依据基础共性标准和关键技术标准,围绕新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业机械装备、新材料、生物医药及高性能医疗器械等十大重点领域,同时兼顾传统制造业转型升级的需求,优先在重点领域实现突破,并逐步覆盖智能制造全应用领域。行业应用标准体系如图10所示。 /p p style=" text-align: center "    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/6e36eb49-21b3-4cb8-bdd3-35383350d62b.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " 图10 行业应用标准子体系 br/ /p p   发挥基础共性标准和关键技术标准在行业应用标准制定中的指导和支撑作用,优先制定各行业均有需求的设备互联互通、智能工厂建设指南、数字化车间、数据字典、运维服务等重点标准。在此基础上,发挥各行业特点,制定行业亟需的智能制造相关标准。如:新一代信息技术领域的射频识别标准等。高档数控机床和机器人领域的机床制造和测试标准等。航空航天装备领域的复杂装备云端协同制造标准、航天装备数字化双胞胎制造标准等。海洋工程装备及高技术船舶领域的大型船舶设计工艺仿真与信息集成标准、海洋石油装备互联互通和运维服务标准等。先进轨道交通装备领域的轨道交通网络控制系统标准、车载信号系统标准、高速动车组智能工厂运行管理标准等。节能与新能源汽车领域的新能源汽车智能工厂运行系统标准等。电力装备领域的存储管理标准、数据智能采集标准、监测诊断服务标准等。农业机械装备领域的农机装备智能工厂平台化制造运行管理系统标准等。生物医药及高性能医疗器械领域的医疗设备质量追溯标准等。其他领域的标准包括:家电行业空调产品信息集成数据接口标准,石油石化行业智能设备互联互通标准,纺织行业智能装备网络通讯接口、系统集成与互操作标准,锂离子电池制造行业智能工厂标准,采矿、冶金、建筑专用设备制造行业高端工程机械可靠性仿真与协同制造标准等。 /p p   智能制造标准体系与机械、航空、汽车、船舶、石化、钢铁、轻工、纺织等制造业领域标准体系之间不是从属关系,内容存在交集。交集部分是智能制造标准体系中的行业应用标准。例如,船舶工业标准体系用于指导船舶相关产品设计、制造、试验、修理管理和工程建设等,智能制造标准体系中的船舶行业相关标准主要涉及到船舶制造环节中的互联互通等智能制造相关内容。 /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 四、组织实施 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 加强统筹协调。 /strong /span 在工业和信息化部、国家标准化管理委员会的指导下,积极发挥国家智能制造标准化协调推进组、总体组和专家咨询组的作用,开展智能制造标准体系的建设及规划。充分利用多部门协调、多标委会协作、军民融合等工作机制,凝聚各类标准化资源,扎实构建满足产业发展需求、先进适用的智能制造标准体系。 /p p    span style=" color: rgb(0, 112, 192) " strong 实施动态更新。 /strong /span 实施动态更新完善机制,随着智能制造发展水平和行业认识水平的不断提高,根据智能制造发展的不同阶段,每两年滚动修订《国家智能制造标准体系建设指南》。 /p p    span style=" color: rgb(0, 112, 192) " strong 加快标准研制。 /strong /span 基于“共性先立,急用先行”的原则,完善智能制造标准绿色通道,加快国家和行业标准的制定 推动标准试验验证平台和公共服务平台建设,为标准的制定和实施提供技术支撑和保障。 /p p    span style=" color: rgb(0, 112, 192) " strong 加强宣贯培训。 /strong /span 充分发挥地方主管部门、行业协会和学会的作用,进一步加强标准的培训、宣贯工作,通过培训、咨询等手段推进标准宣贯与实施。用标准引领行业实现智能转型。 /p p   加强国际交流与合作。加强与国际标准化组织的交流与合作,定期举办智能制造标准化国际论坛,组织中外企业和标准化组织开展交流合作,通过参与国际标准化组织(ISO)、国际电工技术委员会(IEC)等相关国际标准化组织的标准化工作,积极向国际标准化组织提供我国智能制造标准化工作的研究成果。 /p p   附件1:智能制造相关名词术语和缩略语 /p p   附件2:智能制造系统架构映射及示例解析 /p p   附件3:已发布、制定中的智能制造基础共性标准和关键技术标准 /p p br/ /p
  • 旷视、百度等12家单位共同起草国内首个智能测温标准
    p   4月10日,中关村标准化协会发布了国内首个智能测温标准——T/ZSA 76—2020《非接触式智能体温筛查系统技术规范》团体标准。该标准由北京旷视科技有限公司、中国电子科技集团公司第十一研究所、同方威视技术股份有限公司、北京百度网讯科技有限公司、北京久译科技有限公司、北京千方科技股份有限公司、北京格灵深瞳信息技术有限公司、北京必创科技股份有限公司、北京中科天云科技有限公司、北京质信标准咨询服务有限公司、北京电信技术发展产业协会、北京国检信泰检测认证有限公司十二家单位共同起草,并于4月11日正式实施。 /p p   标准中规定了非接触式智能体温筛查系统(以下简称系统)的通用技术要求和试验方法,适用于公共交通、商超、学校、社区等场景利用智能人体温度筛查与智能告警,实现发热人员的筛查区分。 /p p   该标准对体温筛查系统性能提出了具体要求: /p p    strong 体温筛查检出率 /strong /p p   a)对于单目标体温筛查系统,体温筛查检出率应不低于98%。 /p p   b)对于多目标体温筛查系统,体温筛查检出率应不低于95%。 /p p   注:体温筛查的目标包括正确佩戴口罩的受筛查人员。 /p p    strong 实验室测温误差 /strong /p p   在校准模式下,实验室测温误差最大值应不大于± 0.3° C。 /p p    strong 温度测量范围 /strong /p p   系统支持的温度测量范围为28° C到40° C。 /p p   平均测量时间完成体温筛查的平均测量时间应不大于1s。 /p p    strong 最大测温距离 /strong /p p   对于单目标体温筛查系统,最大测温距离应不小于1.5m。 /p p   对于多目标体温筛查系统,最大测温距离应不小于3m。 /p p    strong 最大并行筛查人数 /strong /p p   对于多目标体温筛查系统,支持最大并行筛查人数应不少于6人。 /p p    strong 人脸检出图分辨率 /strong /p p   人脸检出图应满足水平分辨率应不少于1280像素,垂直分辨率不少于720像素。 /p p    strong 佩戴口罩检测准确度 /strong /p p   当系统支持检测受筛查人员是否佩戴口罩时,佩戴口罩检测准确度应不小于90%。 /p p   新冠疫情发生以来,旷视、中电科11所、百度、格灵深瞳、久译、千方、同方威视等企业,推出了双光测温系统、非黑体测温系统、AI测温安检门、测温闸机、AI多人体温快速检测智能系统等多款红外智能测温产品,在疫情防控中发挥了重要作用。然而如果标准跟不上,限制相关技术产品化推广速度的同时,也会导致因技术及应用较为分散、产品差异较大,一定程度上限制相关技术的深入研究。因此,制定统一适用的标准显得尤为重要。 /p p & nbsp /p
  • 智能仪器仪表等相关26项拟立项标准公示
    p   近日,国家标准委公示26项拟立项推荐性国家标准,包括《生产过程质量控制 全生命周期管理》等。 br/ /p p   该批次公示的标准均为拟新制定标准,涉及智能制造、智能工厂、重要产品追溯等,其中仪器仪表相关标准共三项,分别为《智能仪器仪表的数据描述 定位器》、《智能仪器仪表的数据描述 属性数据库通用要求》、《智能仪器仪表的数据描述 执行机构》。 /p p   依据公示内容,此次意见征集截至到12月5日。具体项目如下。 /p p style=" text-align: center " strong 26项拟立项推荐性国家标准项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 7%" p style=" text-align:center " strong 序号 /strong strong /strong /p /td td width=" 65%" p style=" text-align:center " strong 标准名称 /strong strong /strong /p /td td width=" 17%" p style=" text-align:center " strong 公示截止日期 /strong strong /strong /p /td td width=" 10%" p style=" text-align:center " strong 操作 /strong strong /strong /p /td /tr tr td width=" 7%" p style=" text-align:center " 1 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 工业自动化和控制系统安全 第2-4部分:IACS服务提供商的安全程序要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 2 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 生产过程质量控制 全生命周期管理 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 3 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 生产过程质量控制 设备状态监测 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 4 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 过程工业能源管控系统技术要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 5 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 批控制 批生产记录 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 6 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 批控制 通用和现场处方模型及表述 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 7 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业控制异常监测工具技术要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 8 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业自动化系统工程描述类库 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 9 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 安全监测有效性评估方法 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 10 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 安全控制要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 11 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 属性数据库通用要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 12 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 定位器 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 13 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能仪器仪表的数据描述 执行机构 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 14 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂 工业自动化系统时钟同步、管理与测量通用规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 15 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造能力等级要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 16 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能工厂建设导则 第1部分: 物理工厂智能化系统 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 17 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造能力等级评价方法 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 18 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造 制造对象标识解析体系应用指南 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 19 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 智能制造 系统架构 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 20 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯术语 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 21 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯体系设计通则 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 22 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 追溯码编码规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 23 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 核心元数据 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 24 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 产品追溯系统基本要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 25 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 产品追溯信息管理平台建设规范 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr tr td width=" 7%" p style=" text-align:center " 26 /p /td td width=" 65%" p style=" text-align:left " a href=" javascript:void(0)" 重要产品追溯 交易记录格式总体要求 /a /p /td td width=" 17%" p style=" text-align:center " 2017-12-05 /p /td td width=" 10%" br/ /td /tr /tbody /table p br/ /p
  • 北京建材总院基地成功举办智能门锁企业标准“领跑者”宣贯会
    p    strong 仪器信息网讯 /strong 2019年10月14日,在中国标准化研究院和企标标准“领跑者”联盟的指导下,北京建材总院基地开放实验室国家建筑材料工业建筑五金水暖产品质量监督检验测试中心成功举办智能门锁企业标准“领跑者”宣贯会,来自首都科技条件平台成员单位代表、专业委员会、协会及企业的百余位代表参加了会议。会议内容包括:1、企业标准“领跑者”制度解读 2、介绍企业标准“领跑者”传播工程的相关情况 3、如何做好企业标准化体系建设及企业标准编写要点介绍 4、智能门锁企业标准现状及“领跑者”评估方案解读。 /p p   本次会议的召开扩大了首都科技条件平台基地的影响力,提高了企业标准“领跑者”的认知度,为智能门锁生产企业开展标准化工作奠定了基础。企业标准“领跑者”制度的实施必将激发企业创新活力,促进行业转型升级,引导产品和服务质量的全面提升,并为政府部门制定强制性标准和产业政策提供可靠的技术参考依据,进一步推动智能门锁行业快速健康的发展。 /p
  • 中国仪器仪表行业协会立项《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准
    各有关单位:我协会组织专家对由北京实安科技有限公司、青岛众瑞智能仪器股份有限公司、中国检验检疫科学研究院和中国计量科学研究院等4家单位分别提出的《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准建议项目进行了立项评审。通过质询和讨论,评审组专家认为有必要制定《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准,一致同意上述标准立项。经研究,我协会同意上述8项团体标准项目列入协会团体标准制定计划。特此批复。附件:团体标准项目表2024年3月27日相关标准如下:T/CIMA 0160.1 生物气溶胶实验仪器设备采样器 第1部分:通则T/CIMA 0160.2 生物气溶胶实验仪器设备采样器 第2部分:撞击式采样器T/CIMA 0160.3 生物气溶胶实验仪器设备采样器 第3部分:冲击式采样器T/CIMA 0160.5 生物气溶胶实验仪器设备采样器 第5部分:气旋式采样器T/CIMA 0161.1 生物气溶胶实验仪器设备发生器 第1部分:通则T/CIMA 0161.3 生物气溶胶实验仪器设备发生器 第3部分:单分散气溶胶发生器T/CIMA 0162 生物气溶胶实验仪器设备 紫外荧光粒谱仪T/CIMA 0163.1 生物气溶胶实验仪器设备 暴露装置 第1部分:通则
  • 精准对接,定制服务-智能实验室线上交流会
    6月29日上午,由仪器信息网买家服务团队组织的智能实验室线上交流会顺利召开。通过前期对接,仪器信息网买家团队了解到国标(北京)检验认证有限公司(以下简称“国标检验”)对实验室智能化非常感兴趣,希望通过智能化提高实验室的管理水平和生产效率。买家团队根据用户需求筛选出智能实验室领域的优质供应商(普析通用、上海汇像、常州磐诺和睿科集团)参加交流会,线上与国标检验展开了深入的沟通。普析通用市场开发部长 实验室数字化的技术与效果总结普析通用的数字化实验室(DLabs)产品利用物联网、分布式存储、智能算法技术,提升实验室的物联网化、数字化、智能化三个方面的能力。利用DLabs提供的各类标准化数据,构建的出的人、机、料、法、环的统计分析软件,可以准确评估与预测实验室检测任务潮汐变化的各类需求,同时大量的原始图谱信息构建的数据挖掘软件可以实现样品真伪鉴别分析、品质评价、未知风险分析等应用。汇像市场业务部总监 介绍理化检测自动化解决方案汇像将AI和生命科学及高通量实验相结合,为生命科学,制药,诊断与检测等领域提供全流程的自动化、智能化综合解决方案,产品范围涵盖从食品安全、药品安全到生命科学领域的智慧实验室自动化系统、智能机器人工作站系统、云端智慧操作系统以及配套的仪器设备及试剂耗材等。磐诺产品经理 介绍智慧实验室解决方案磐诺的智慧实验室解决方案,将人的智慧与科技融入到智慧实验室的建设管理中,基于物联网、互联网、大数据、人工智能、计算机技术搭建智慧管理平台,建立标准、安全、高效的智能化无人实验室。通过借助新技术、新理念发展数字化、提升智慧化实验室的前提下,减少人员的工作量,增加工作效率为导向。睿科产品经理 介绍iRay实验室体系睿科无人化智慧化实验室从1.0时期的单机设备起步,积累核心功能模块创新技术,在1.5时期构建可自由定制的全自动多功能样品制备前处理平台,实现不同模块之间的串联与协调。现在,睿科无人化智慧化实验室已经迈向2.0时期,全力打造集仓储体系、清洁体系、分析检测体系于一体的全流程智慧实验室。交流会结束后,国标检测张总表示:智能实验室是未来发展的趋势,目前在环境、食品和药品检测领域已有许多成功案例,希望各厂商未来能进一步拓展开发智能化在材料检测领域的应用,促进材料检测的高质量发展,也欢迎各位厂商代表来国标检测实验室实地考察交流,提供解决方案。张总非常感谢仪器信息网搭建了与厂商直接交流的线上平台,欢迎仪器信息网到国标检测考察。仪器信息网希望将来在国产仪器、仪器试用等方面为国标检测提供服务。各厂商代表对本次线上交流会也予以很高的评价。采购交流会是仪采通买家定制化服务之一,旨在根据买家真实的采购需求,精准推荐优质供应商;通过线上或线下会议的形式,为供需双方搭建集中交流平台,实现仪器采购降本增效。采购交流会优势采购交流会买家发起流程扫码免费报名采购交流会
  • 定制标准溶液专家——美国Inorganic Ventures公司中文网页重磅推出
    作为全球知名的无机标准溶液生产商,美国Inorganic Ventures公司(以下简称IV公司)在业界已享受盛名,不仅为客户提供固定的标准溶液,更可以根据客户的要求,进行定制服务,无论多少元素,多大浓度,都可以轻松为客户实现。在进入中国市场4年后今天,IV公司与作为中国区总代理的上海凯来实验设备有限公司联合推出中文版网页,以更饱满的诚意和信心为中国区的客户服务。 www.inorganicventures-cn.com 在IV中文版网页上,不仅可以直接浏览到IV的无机标准溶液产品,IV的公司资质等信息,更可以获取技术方面的各种信息,其中就包括: · 交互式元素分析周期表 对于分析化学工作者来说是*的在线工具,包括70多种元素的化学兼容性,更好的分析灵敏线,主要干扰物和其他数据。 · ICP操作指导 为每个人对样品制备和ICP标准操作进行16步在线指导,内容涵盖了所有操作人员日程所要求的工作。 · 可靠的检测指导 对化学分析人员进行重要的17步在线指导,几乎涵盖了所有知识,包括样品收集、前处理、检测以及数据分析指导。 · 样品前处理指导 扩充了数十种元素的在线指导,每个部分都包括了针对样品中感兴趣的具体前处理和化学溶解方法。 · 标准溶液的各种知识 作为标准溶液使用者的您需要知道的信息,包括如何考察标准溶液制造商的资质,标准溶液的保质期、储存时间、标准溶液如何储存等等。 · &hellip &hellip 想要探索更多的内容吗?请访问我们的网站www.inorganicventures-cn.com。 如果您对网站有更好的建议和意见,请与上海凯来市场部联系,021-58955731,58955762/63,届时我们会有小礼品相赠,以感谢大家对我们网站的关注。
  • 中国仪器仪表行业协会立项《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准
    各有关单位:我协会组织专家对由北京实安科技有限公司、青岛众瑞智能仪器股份有限公司、中国检验检疫科学研究院和中国计量科学研究院等4家单位分别提出的《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准建议项目进行了立项评审。通过质询和讨论,评审组专家认为有必要制定《生物气溶胶实验仪器设备 采样器 第1部分:通则》等8项团体标准,一致同意上述标准立项。经研究,我协会同意上述8项团体标准项目列入协会团体标准制定计划。特此批复。
  • 广西分析测试协会立项《化学分析实验室标准物质和标准溶液管理指南》团体标准
    各相关单位:根据《中华人民共和国标准化法》、《团体标准管理规定》和《广西分析测试协会团体标准制修订工作程序》的有关规定,广西分析测试协会于2024年2月组织专家对《化学分析实验室标准物质和标准溶液管理指南》团体标准进行了立项评审,经审查,上述申报的团体标准符合立项条件,现予立项。如有异议,请在公告之日起10个工作日(3月15日—3月28日)内实名以书面方式向我会秘书处反映,并请提供必要的证据材料和联系方式。联系地址:广西南宁市东葛路20-1号东葛大厦1102室电子邮箱:gxfxcsxh@163.com联 系 人:商榆 18677118331 广西分析测试协会2024年3月14日广西分析测试协会关于《化学分析实验室标准物质和标准溶液管理指南》团体标准的立项通知.pdf
  • 我国首个水溶性肥料行业标准即将出台
    据 “2010中国水溶性肥料高峰论坛”组委会发布的消息,我国第一个水溶性肥料行业标准即将出台。   随着我国农业的快速发展,我国水性肥料发展迅速。据国家化肥质量监督检验中心(北京)统计数据显示:近5年以来,中国登记的水溶肥料总计3433个,其中大量元素水溶肥产品有433个,中量元素水溶肥有50个,微量元素水溶肥有1195个,含氨基酸类水溶肥有1010个,含腐殖酸类水溶肥有745个。   由于我国缺少水溶性肥料的国家标准,现有水溶性肥料产品除了杂质过多、溶解率低之外,不少产品的物理性状也很难令人满意。为此,由全国肥料和土壤调理剂标准化技术委员会牵头,成都市新都化工股份有限公司参与起草的我国第一个水溶性肥料行业标准立项启动。据有关部门透露,成都市新都化工股份有限公司作为一家国内主要的复合肥生产企业,资源充沛,发展迅速,并于年底即将上市。该公司长期致力于水溶性肥料的研发,拥有强大的技术力量和品牌优势,因此作为唯一的企业起草单位参与此项标准的制定。   此次制定的水溶性肥料行业标准覆盖面广,不仅涵盖了大量元素水溶性肥料,还包括含氨基酸水溶性肥料、含腐殖酸水溶性肥料、微量元素水溶肥料等。标准还将严格限制水不溶物的比例,要求水不溶物0.5%,严格控制缩二脲,推广使用硝态氮,并对水溶性肥料中的有毒、有害物质和重金属成份指数做出了严格限制。这一标准的出台,将进一步强化水溶性肥料产品质量要求,规范水溶性肥料行业发展,促进市场良性竞争,为中国安全、高效农业的发展提供了有力保障,并将极大的促进中国水肥一体化技术的快速发展。
  • 华大智造项目成功入围2023年度智能制造标准应用试点项目
    近日,国家标准化管理委员会公示拟入选2023年度智能制造标准应用试点项目名单,全国共78个:智能工厂建设应用类项目50个、新模式实践应用类项目14个、供应量协同应用类项目6个、系统集成服务类项目4个、咨询规划服务类项目2个、新技术融合创新类项目2个。其中,与生命科学领域相关的是由武汉华大智造科技有限公司和深圳华大智造科技股份有限公司共同申报的“生命科学装备智能工厂标准应用试点”项目。本次试点项目申报工作旨在发挥标准支撑引领作用,引导制造业企业运用标准化方式组织生产、经营、管理和服务,形成一批标准化、高水平的系统解决方案,推动制造业高端化、智能化、绿色化发展。围绕智能制造标准在制造业各细分行业中的应用,优先试点已发布、研制中的国家标准,配套应用相关行业标准、地方标准、团体标准和企业标准,2023年在全国范围内遴选不少于70个具有代表性的标准应用试点项目,到2024年遴选出200个以上标准应用试点项目,形成一批推动智能制造有效实施应用的“标准群”,打造一批成熟典型的标准应用实施指南、解决方案、工具库和案例集。附件:2023年度智能制造标准应用试点项目名单
  • 口罩用熔喷布标准再出!将产品分为2类7等级
    p style=" text-align: justify text-indent: 2em " 5月21日,成都市医疗器械行业协会发布团体标准《口罩用熔喷非织造布》(T/CDAMEI 001-2020),并于5月22日起实施。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 250px " src=" https://img1.17img.cn/17img/images/202005/uepic/9bd99e1a-1296-4536-8443-505d048409f0.jpg" title=" 熔喷布.jpg" alt=" 熔喷布.jpg" width=" 450" height=" 250" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 据悉,目前我国有3项熔喷布相关标准,分别是: /p p style=" text-align: justify text-indent: 2em " 《纺粘/熔喷/纺粘(SMS)法非织造布》(FZ/T 64034-2014) /p p style=" text-align: justify text-indent: 2em " 《熔喷法非织造布》(FZ/T 64078-2019) /p p style=" text-align: justify text-indent: 2em " 《口罩用聚丙烯熔喷非织造布》(T/JSFZXH001-2020) /p p style=" text-align: justify text-indent: 2em " 其中, strong 《纺粘/熔喷/纺粘(SMS)法非织造布》 /strong 适用于以丙纶为主要原料,以热轧粘合方式加固的SMS产品; strong 《熔喷法非织造布》 /strong 适用于以熔喷法生产的非织造布,最终用途不限于口罩,标准仅对幅宽、单位面积质量等提出要求,过滤效率、透气率等关键指标的标准值规定由供需合同约定; strong 《口罩用聚丙烯熔喷非织造布》 /strong 系我国首次发布的口罩用熔喷布团体标准,围绕口罩用聚丙烯熔喷非织造布,规定了原料要求、产品分级、基本技术要求、专项技术要求、检验判定方法,并对产品标识提出了明确要求。 /p p style=" text-align: justify text-indent: 2em " 此次发布的 strong 《口罩用熔喷非织造布》 /strong 团体标准由成都市医疗器械行业协会提出并归口,规定了口罩用熔喷非织造布(简称“口罩熔喷布”)的术语和定义、产品分类、产品分级、技术要求、试验方法、标志、包装、运输和贮存。该标准按过滤性能分为KN和KP两类,KN类只适用于过滤非油性颗粒物,KP类适用于过滤油性和非油性颗粒物;根据过滤效率水平,产品分为KN30-KN80、KN90、KN95、KN100、KP90、KP95、KP100共7个等级。 /p p style=" text-align: justify text-indent: 2em " strong 附件: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/download/shtml/950493.shtml" target=" _self" style=" color: rgb(127, 127, 127) text-decoration: underline " span style=" color: rgb(127, 127, 127) " 《口罩用熔喷非织造布》(T/CDAMEI 001-2020) /span /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 18px " strong 标准详细内容: /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/45d4586e-31c1-449d-b5ca-539708e3d42a.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b4da0227-ef36-4f0c-9177-77b491d73041.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/7b96c791-5af2-4ad8-870f-906104a1b1f8.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/64b05009-3479-475c-a55f-7600e1528c18.jpg" title=" 表1.PNG" alt=" 表1.PNG" / img src=" https://img1.17img.cn/17img/images/202005/uepic/2e9aeb86-f4fb-4849-808d-a4183cb234cc.jpg" title=" 5.PNG" alt=" 5.PNG" style=" max-width: 100% max-height: 100% " / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/ed6295e6-8a20-479f-acaa-72cea870414c.jpg" title=" 6.PNG" alt=" 6.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/a5b04326-48d0-4338-ad54-09a98e5b6205.jpg" title=" 7.PNG" alt=" 7.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/bf9491c0-3c1e-4a02-b2aa-4a361ac68166.jpg" title=" 8.PNG" alt=" 8.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/b0f95eeb-268e-41bc-82ed-95a1d0b330cd.jpg" title=" 6试验方法.PNG" alt=" 6试验方法.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/33266e96-4094-4999-83b0-1c99692d5003.jpg" title=" 6.6.PNG" alt=" 6.6.PNG" / img src=" https://img1.17img.cn/17img/images/202005/uepic/395ffc2b-f7de-4478-8344-2d6205898dca.jpg" title=" 11.PNG" alt=" 11.PNG" style=" max-width: 100% max-height: 100% " / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/9e4156a7-6974-4e3a-ba6d-48fffbda251f.jpg" title=" 12.PNG" alt=" 12.PNG" / /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20200426/537042.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 我国首个口罩用熔喷布团体标准发布,按过滤效率产品分6级 /span /a /p
  • 《煤矿智能化标准体系建设指南》发布,加快技术装备等体系标准制定
    为深入贯彻《国家标准化发展纲要》有关部署,落实《关于加快煤矿智能化发展的指导意见》(发改能源〔2020〕283号)和《关于加快推进能源数字化智能化发展的若干意见》(国能发科技〔2023〕27号)重点任务,构建适应行业发展趋势、满足技术迭代要求、引领产业转型升级的煤矿智能化标准体系,加快推动重点标准研制,持续强化标准实施应用,全面提升智能化煤矿建设水平,培育发展新质生产力,支撑煤炭行业高质量发展,制定本指南。一、基本要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,落实“四个革命、一个合作”能源安全新战略,立足新发展阶段,完整准确全面贯彻新发展理念,构建新发展格局,以促进新一代信息技术和煤炭行业深度融合为主线,制定完善相关标准规范,推动建立系统完备、结构合理、衔接配套、科学严谨的煤矿智能化标准体系,切实发挥标准的基础性、引领性作用,全面提升煤矿智能化建设的科学化、标准化、规范化水平,为推动煤炭行业高质量发展提供有力支撑。(二)基本原则。坚持统筹规划,有序实施。建立健全分工明确、协同推进的煤矿智能化标准体系工作机制,加强顶层设计指导,统筹做好相关标准制修订计划,分年度分重点推进标准体系建设工作。坚持夯实基础,创新驱动。重点推进煤矿智能化基础共性和关键技术标准制定,加快科研创新成果向标准转化,助力智能化新技术新装备在煤炭行业落地。坚持急用先行,动态完善。有计划、分步骤推进煤矿智能化重点和急需标准制定,实行动态更新完善机制,根据煤矿智能化发展的不同阶段对标准体系进行滚动修订。坚持国际接轨,开放合作。加强同国际标准化组织的交流合作,推进煤矿智能化国际标准制定,推动国产煤矿智能化先进技术装备“走出去”。(三)建设目标。到2025年,推动100项以上煤矿智能化国家标准和行业标准制修订,加快数据编码、通讯协议、网络融合、数字化平台、智能感知、新型装备、新能源应用、人机协作、功能安全、信息安全、管理运维等重点标准制定,初步建立起结构合理、层次清晰、分类明确、科学开放的煤矿智能化标准体系,满足煤矿智能化建设基本需求。到2030年,煤矿智能化标准体系基本完善,在智能化煤矿设计、建井、生产、管理、运维、评价等环节形成较为完善的系列标准,逐步引领国际标准化组织(ISO)、国际电工委员会(IEC)煤矿智能化国际标准制定。二、标准体系框架综合考虑智能化煤矿建设周期和系统层级,煤矿智能化标准体系主要包括基础通用、信息基础、平台与软件、生产系统与技术装备、运维保障与管理5个标准子体系。其中,基础通用子体系为煤矿智能化标准体系底层,是其他子体系的基础;信息基础子体系、平台与软件子体系、生产系统与技术装备子体系涵盖煤矿智能化建设生产实践关键环节,是煤矿智能化标准体系的建设主体;运维保障与管理子体系服务于煤矿智能化建设关键技术标准,为装备和系统正常运行提供保障。本标准体系框架根据发展需要进行动态调整。煤矿智能化标准体系框架三、重点建设内容(一)基础通用。基础通用子体系对煤矿智能化领域的基础共性要求进行规定,包括基础标准、通用标准、设计标准、评价标准4个部分。1.基础标准,主要包括术语和定义、煤矿智能化体系架构、煤矿工业互联网平台体系架构等方面标准。2.通用标准,主要包括煤矿智能化设备通用要求与管理规范、煤矿电磁兼容要求、煤矿智能装备功能安全等方面标准。3.设计标准,主要包括煤炭工业智能化矿井设计、智能化生产系统建设、生产保障系统建设、智能化选煤厂建设、智能化园区建设技术规范等方面标准。4.评价标准,主要包括煤矿智能化验收评价标准、智能化质量评价、智能化效益评价、智能化数据管理能力成熟度评估、智能化煤矿互联网应用成熟度评估等方面标准。(二)信息基础。信息基础子体系对煤矿智能化系统信息传输和处理所需要的基础设施进行规定,包括信息网络、数据标准、数据中心、信息安全4个部分。1.信息网络标准,主要包括煤矿有线网络、无线网络、组网与网络设备、联网与接入设备、通信联络系统、通信协议、物联网等方面标准。2.数据标准,主要包括数据编码与标识、数据采集、数据治理、数据资产目录、数据质量、数据共享等方面标准。3.数据中心标准,主要包括智能化煤矿数据中心、云计算、边缘计算、云边协同管理等方面标准。4.信息安全标准,主要包括煤矿智能化系统建设信息安全评估、信息安全防护、信息安全管理、数据安全及数据分级定级、隐私保护等方面标准。(三)平台与软件。平台与软件子体系对煤矿智能化平台载体及应用软件涉及的架构、功能要求、开发管理等进行规定,包括地理信息平台、管控智能平台与煤炭工业软件、数据智能平台、算法智能平台与智能视频系统、数字孪生系统5个部分。1.地理信息平台标准,主要包括煤矿地测数据管理、地理信息软件系统、矿井地质建模、矿井电子地图服务、地理空间数据质量和安全、生产制图与简报产品规范等方面标准。2.管控智能平台与煤炭工业软件标准,主要包括煤矿智能化综合管控平台与煤炭工业软件的技术架构、功能要求、评估指标、应用管理等方面标准。3.数据智能平台标准,主要包括煤炭企业和煤矿大数据平台通用技术、数据采集与存储、数据分析、数据仓库、业务应用模型、数据服务与应用、数据备份与恢复等方面标准。4.算法智能平台与智能视频系统标准,主要包括煤炭行业人工智能以及智能视频监控系统涉及的应用平台架构、集成要求、软硬件产品、应用管理等方面标准。5.数字孪生系统标准,主要包括煤炭行业建设数字孪生系统在参考架构、信息模型、设备模型、数据接口及全矿井数字孪生服务应用等方面标准。(四)生产系统与技术装备。生产系统与技术装备子体系对煤矿智能化技术装备和系统的设计、制造、功能要求、测试等进行规定,包括井工煤矿智能化系统与装备、露天煤矿智能化系统与装备、智能洗选系统与装备3个部分。1.智能化系统与装备(井工)标准,主要包括智能地质保障、智能建井、智能掘进、智能开采、智能主运、智能辅运、智能通风、智能压风、智能供电、智能安全监控、智能灾害防治装备、智能矿压管理、智能供排水、智能水资源管控、智能辅助作业装备、煤矿机器人等方面标准。2.智能化系统与装备(露天)标准,主要包括智能地质测量开采保障系统、智能穿爆系统、单斗—卡车间断工艺智能化系统、半连续工艺智能化系统、轮斗连续工艺智能化系统、智能调度系统、智能灾害防治预警、智能辅助生产系统及露天煤矿机器人等方面标准。3.智能洗选系统与装备标准,主要包括智能生产控制、智能煤质检测、智能生产辅助、智能生产工艺、智能洗选筛分设备、智能储装运等方面标准。(五)运维保障与管理。运维保障与管理子体系对智能化煤矿的生产运行、经营管理进行规定,包括运行维护、设备状态保持、生产管理、智能化园区4个部分。1.运行维护标准,主要包括智能化矿井运维共性基础、信息网络平台运维、智能控制系统与装备运维、运行维护保障等方面标准。2.设备状态保持标准,主要包括面向设备全生命周期管理涉及的煤矿设备可靠性要求、设备故障诊断方法与系统、设备维修维护管理等方面标准。3.生产管理标准,主要包括煤矿智能化人员能力、人才建设、岗位设置、柔性生产管控、现场作业流程管理数字化、安全风险管控等管理过程及相配套的智能化系统等方面标准。4.智能化园区标准,主要包括指挥调度中心、智能仓储与物资调度、园区智能系统、园区安防系统、生态治理等方面标准。四、组织实施(一)健全工作机制。国家能源局牵头建立煤矿智能化标准体系工作机制,研究建立煤矿智能化领域标准化组织,在年度能源、煤炭行业标准立项中重点支持,统筹推进有关标准制修订。结合煤矿智能化技术发展水平和标准实施情况,适时修订完善煤矿智能化标准体系建设指南和政策文件,推动煤矿智能化发展迈上更高水平。(二)强化专业支持。煤炭行业标准化管理机构、有关标准化技术委员会要按照国家相关部署要求,跟踪分析煤矿智能化技术装备发展水平,研究提出标准制修订立项计划,组织标准计划项目的技术审查、报批等,统筹推进煤矿智能化国家标准、行业标准、团体标准制修订,推动符合条件的团体标准及时转化为国家和行业标准。(三)推动成果转化。煤炭企业、煤机装备制造企业、相关科研机构要加快煤矿智能化技术协同创新,积极参与适用性较强的关键性、基础性煤矿智能化标准制修订工作,及时总结固化煤矿智能化建设成熟经验,推动重要科技成果转化应用,提升标准合理性、可行性、先进性;要积极参与相关国际标准化组织交流活动,加速国内标准和国际标准的双向转化,提升煤炭领域国际标准化影响力。(四)加大宣贯实施。国家能源局结合煤矿智能化示范项目建设,强化相关标准宣贯实施。各产煤省区煤炭行业管理部门、有关中央企业要结合本地区、本企业煤矿智能化发展实际,加大煤矿智能化相关技术标准宣传培训,支持煤炭企业因地制宜推广应用先进技术标准。有关行业协会要搭建上下游企业交流合作平台,通过多渠道广泛宣贯,引导煤炭行业在设计、施工、生产、运维、管理等环节积极应用煤矿智能化标准。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 国家标准《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》征求意见
    国家标准计划《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》由 TC72(全国搪玻璃设备标准化技术委员会)归口 ,主管部门为中国石油和化学工业联合会。主要起草单位 江苏扬阳化工设备制造有限公司 、天华化工机械及自动化研究设计院有限公司 、苏州市协力化工设备有限公司 、太仓新工搪玻璃有限公司 、北京华腾大搪设备有限公司 。征求意见稿编制说明
  • 工信部发文,石化行业智能仪器装备将迎一批新标准
    据工信部11月21日消息,为切实发挥好标准对石化行业智能制造发展的支撑和引领作用,规范和引导石化行业向数字化、网络化、智能化发展,深入落实国家智能制造及标准化有关政策及要求,工信部组织编制了《石化行业智能制造标准体系建设指南(2022版)》(下称《指南》),并于近日印发。《指南》明确目标:到2025年,建立较为完善的石化行业智能制造标准体系,累计制修订30项以上石化行业重点标准,基本覆盖基础共性、石化关键数据及模型技术、石化关键应用技术等标准;对于原油加工等石化细分行业,优先制定新一代信息技术在生产、管理、服务等特有场景应用的标准,推动智能制造标准在石化行业的广泛应用。《指南》提到智能装备标准建设内容:主要包括传感器与仪器仪表、自动识别装备、控制系统、检验检测装备、人机协作系统、工业机器人、工艺过程装备等七个部分,如下图所示。主要用于规定智能传感器、智能仪表、工艺过程装备、工业机器人等智能装备的数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决生产过程中智能装备之间,以及智能装备与物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。智能装备标准子体系(1)传感器与仪器仪表标准:主要包括面向石化复杂生产过程中的微型化、智能化、低功耗传感器的数据编码与交换、系统性能评估等通用技术标准;温度、压力、流量、在线分析等智能仪器仪表的采集、分析、自诊断等接口、通信、集成标准。主要用于解决数据采集与交换过程中数据格式、程序接口不统一的问题。(2)自动识别设备标准:主要包括石化专有自动识别设备的数据编码、接口规范等标准。主要用于石化物流、仓储应用的自动识别设备及对象的数据采集和分析处理。(3)控制系统标准:主要包括石化专有生产过程控制系统标准。主要用于规定石化生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、分散型控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等,解决控制系统数据采集、控制方法、通信、集成等问题。(4)检验检测装备标准:主要包括石化专有检验检测装备标准。主要用于石化产品质量检测、泄漏检测、火灾检测等智能识别系统的互联互通和通信集成。(5)人机协作系统标准:主要包括用于石化防爆终端、操作屏等的高可靠性和安全性相关人机协作标准。(6)工业机器人标准:主要包括面向石化生产过程中智能装卸、产成品仓储、长输管线巡检、装置日常巡检等环节专用机器人的统一标识及互联互通、信息安全等通用技术标准;石化专用机器人与人、环境、系统及其他装备间的通信、接口、协同标准。主要用于规定石化专用机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。(7)工艺过程装备标准:主要包括炼油、乙烯等成套装备的数据接口、通信协议等通用技术标准。主要用于解决石化工艺过程装备相关的数据采集、集成等问题。附:石化行业智能制造现行和在研标准清单附件:《石化行业智能制造标准体系建设指南(2022版)》.pdf
  • 标准溶液与溶液的区别?
    什么是溶液,什么是标准溶液?事实上有很多人经常将两者混淆,常规来说,溶液指的是多种或最少两种物质组成的混合物,而标准溶液则是具有准确已知浓度的试剂溶液,但标准溶液是属溶液,虽然两者有着明显的区别。下面小编来给大家详细介绍一下标准溶液与溶液的区别。  标准溶液与溶液的区别:  溶液是由至少两种物质组成的均一、稳定的混合物,被分散的物质(溶质)以分子或更小的质点分散于另一物质(溶剂)中。物质在常温时有固体、液体和气体三种状态。  溶液的均一性包含密度,组成,性质都一样,除此外,溶液还分为饱和溶液和不饱和溶液。  标准溶液是容量分析中常用的一种滴定溶液,靠它测得待测物的含量。靠它求得未知溶液的浓度。在其他的分析方法中用标准溶液绘制工作曲线或作计算标准。  有些标准溶液由于很不稳定,以至难以配制和使用,因此是不能利用的。  这样的标准溶液包括硫化氢(H2S)、二氧-化氯(ClO2)、溶解氧(DO)和臭氧(O3)。液-氯标准溶液只能配制成高浓度溶液,所以必须加入高纯水进行稀释,并且使用不会消耗液-氯的玻璃器皿。  远慕专注标准物质研发与产,供应标准物质,标准品,标准溶液,对照品,标准样品,滴定标液,单标,混标定制服务。
  • 移动实验室标准待推出 或影响市场格局
    仪器信息网讯 据悉,由全国移动实验室标准化技术委员会(SAC/TC509)推动的涉及移运实验室的十项国标将陆续发布。   这十项国标分别为《食品安全移动实验室通用技术条件》、《移动实验室安全管理规范》、《移动实验室分类、命名及代号》、《移分理处实验室内部装饰的技术要求》、《移动实验室设计原则及基本要求》、《移动实验室仪器设备通用技术要求》、《移动实验室用温湿度控制系统技术要求》、《移动实验室用移动舱通用技术要求》、《移动实验室有害废弃物管理规范》和《移动实验室总体通用要求》等。   与普通实验室不同的是,移动实验室强调了“移动”,其基于移动检测车的各种检测设置,决定了所配备的仪器,对稳定性、快速性、功耗以及体积等方面有较多的特殊要求。而移动实验室相关标准制订工作的推进和落实,也将意味着移动实验室行为的合法化,并可能因此带来新的市场机会。   据悉,此十项标准只是目前拟推出的部分,随着工作的深入开展,将有更多相关标准制订并实施。   撰稿:孙立桐
  • 《智能检测装备通用技术要求》国家标准开始编制!
    7月2日上午,在淄博市举办了山东省智能检测装备产业高质量发展推进会暨《智能检测装备通用技术要求》国家标准起草工作组启动会,标志着我国智能检测装备领域的标准化和产业化发展迈出了重要一步。此次会议不仅开启了《智能检测装备通用技术要求》国家标准的编制工作,还展示了智能检测装备标准符合性公共服务平台,并吸引了行业院士、专家学者及领军人物就智能检测装备的未来发展趋势进行深入探讨。智能检测装备作为现代制造业的重要组成部分,其技术进步对提升工业生产的自动化和智能化水平至关重要。此次会议上介绍的标准规定了智能检测装备的系统架构、分类及智能感知、智能分析、人机交互、互联集成、故障诊断、数字化交付、适应优化等方面的技术要求,适用于指导制造商、用户、科研院所等相关机构开展智能检测装备的研发、制造与检测评估。此标准将有助于规范行业发展,还将促进智能检测装备技术的快速进步和应用拓展。前不久,江苏省智能检测装备产业创新发展推进会也在无锡市召开,工业和信息化部副司长汪宏强调了智能检测装备在新型工业化进程和新质生产力形成中的核心作用。他指出,通过创新驱动加快技术突破、需求牵引深化应用推广、统筹推进完善发展生态是智能检测装备产业高质量发展的关键路径。无锡市政府表示将出台行动方案,构建智能检测装备产业发展新高地,同时注重场景需求牵引,推动智能检测装备在高端装备等领域的规模化应用。智能检测装备的发展不仅受到地方政府的重视,也得到了国家层面的支持和引导。江苏省工信厅副厅长张星提出,江苏将智能检测装备作为重点发展方向,并将其纳入“1650”产业体系的重点产业链。此外,江苏省发布的创新产品目录和产业发展报告,以及供需对接活动的启动,均显示出该省在推动智能检测装备领域创新和产业化方面的决心和举措。智能检测装备的技术进步和应用拓展,对于提高制造业的生产效率、降低生产成本、保障产品质量具有显著影响。随着相关标准的制定和技术的不断突破,预计未来智能检测装备将在更多行业领域实现广泛应用,为我国制造业的转型升级和高质量发展注入新动力。参考资料:江苏推进智能检测装备创新发展.中国化工报,2024年7月3日。《智能检测装备通用技术要求》国家标准编制工作启动.博览新闻,2024年7月3日。
  • 《钢铁行业智能制造标准体系建设指南(2023版)》征求意见
    近日,工业和信息化部组织有关单位编制完成了《钢铁行业智能制造标准体系建设指南(2023版)》(征求意见稿),公开征求社会各界意见。征求意见稿提出,到2025年,建立较为完善的钢铁行业智能制造标准体系,累计研制45项以上钢铁行业智能制造领域标准,基本覆盖基础共性和装备层、车间层、工厂层、企业层、产业链协同层等各层级标准,优先制定基础共性标准以及绿色低碳、产品质量、生产安全等关键应用场景标准,突出标准在先进制造技术与新一代信息技术相互融合和迭代提升过程中的引导作用,积极参与国际标准研制,为世界钢铁工业可持续发展做出中国贡献。如有意见或建议,请填写《征求意见反馈信息表》发送至 KJBZ@miit.gov.cn (邮件主题注明:钢铁行业智能制造标准体系建设指南征求意见反馈)。时间:2023年5月23日-2023年6月23日;电话:010-68205261。附件:1. 钢铁行业智能制造标准体系建设指南(2023版)(征求意见稿).docx2. 征求意见反馈信息表.doc
  • 国网智能:牵头制定两项ISO国际标准,“领航”无人机检测行业
    国网智能公司是国内最早开展电力机器人研发和推广应用的高新技术企业,走进公司的展厅,两项刚发布的ISO国际标准尤其引人注目——该公司牵头制定的ISO 5286-2023《民用轻小型固定翼无人机系统飞行性能试验方法》和ISO 5332-2023《民用轻小型无人机低气压检测方法》两项国际标准于近期正式获批发布,这是国网公司首次在国际标准化组织主导发布标准,具有重要里程碑意义。国网智能公司是国网系统内最早开展无人机检测技术研究应用的单位之一,经过十余年的技术积累,在无人机性能检测方面建立了一整套体系方案,自主研发了多项无人机飞行性能与环境检测装置,建成了国内首个“无人机自然环境仿真实验室”,并主导编制了多项行业和国家标准,这也为其牵头制定ISO国际标准奠定了基础。国际标准化组织(International Standardization Organization,简称ISO)是世界上最大的非政府性标准化专门机构,ISO颁布的标准在世界上具有很强的权威性、指导性和通用性,对世界标准化进程起着十分重要的作用,所以各国都非常重视ISO标准。ISO国际标准最终形成要经历5个阶段,工作组草案(WD)→委员会草案(CD)→国际标准草案(DIS)→最终国际标准草案(FDIS)→国际标准(IS),周期长达3-4年时间。每一阶段都必须要在规定时间完成,并且要经过严格的审查流程。2019年11月,国网智能公司在国网山东省电力公司的指导下,在ISO TC20/SC16无人机分委会第九次全体上发起两项标准提案。ISO国际标准制定对语言、技术、经验等综合素质要求极高,由于是首次参与,对标准流程管理、会议组织等方面存在经验不足问题,编制组成员利用工作之余,积极参加语言培训和技能培训课程,对标准化能力提升起到了很大帮助。2020年9月,在各方积极努力下,国网智能公司提出的两项标准正式立项,这对所有人来说是莫大的鼓舞,也对标准编制工作充满了信心,但是在制定两项标准时,正值全球新冠疫情爆发时期,面临线下会议的全面取消和延期,可能无法按期完成的不利因素影响下,为确保相关技术内容的合理性和科学性,公司组织技术骨干人员,克服疫情困难,消化技术疑难,对核心技术指标进行了反复的分析和验证,并通过线上线下结合的形式与国内外相关领域专家进行技术研讨,并主持WG5检测与评价工作组会议就征集意见积极协调沟通,为后续各阶段投票环节奠定基础。ISO国际标准会议参会人员来自加拿大、美国、英国、日本、韩国、印度等国,视频会议时各国存在时差,北京时间一般为晚上开始,并且会一直持续到凌晨,国网智能公司编制组成员克服困难,白天完成本职工作,晚上参加视频会议与各国专家进行研讨。2022年4月,两项标准提案一路过关斩将,高票通过委员会草案阶段投票,同年11月,顺利通过问询阶段投票,并最终于2023年9月通过出版阶段投票,获批发布。配图说明:轻小型无人机在特高压换流站开展自主巡检。《民用轻小型无人机系统低气压环境试验方法》填补了国内外科学检测评价无人机低气压性能的空白,解决了低气压环境下民用轻小型无人机系统性能变化不明确、检测环境不可控、试验方法不统一等问题。《民用轻小型固定翼无人机系统飞行性能试验方法》统一了民用固定翼无人机系统的飞行性能测试方法,对保障无人机安全飞行起到重要作用。两项标准的发布建立了民用轻小型无人机系统国际统一的检测规则,有效规范了无人机市场准入,同时将我国相应检测方法与经验推送到国际,对提升全球无人机系统装备质量具有重要意义。
  • 《制造装备智能化通用技术要求》国家标准公开征集参编单位
    数字技术与装备技术的深度融合,正在推动装备智能化的快速发展。制造装备智能化是制造业发展的重要趋势和核心内容,是增强我国制造业核心竞争力、支撑数字经济发展的物质基础。在提升制造领域全要素生产率、带动数字化转型、促进生产力进步中的作用日益凸显。根据国家标准化委员会下达的2021年第四批推荐性国家计划的通知,由机械工业仪器仪表综合技术经济研究所牵头编制的国家标准《制造装备智能化通用技术要求》获批立项。该标准提出了制造领域装备智能化相关术语、通用技术要求,为推动制造装备智能化设计、优化、升级提供标准指导。按照《国家标准管理办法》和《全国工业过程测量控制和自动化标准化技术委员会章程》的有关规定,现公开征集该标准的参编单位。如果有意向的单位,请于2022年5月8日前将标准参编回执(见附件)发送至TC124秘书处。邮寄地址:北京市西城区广安门外大街甲397号邮编:100055联系人:方毅芳联系电话:15201312987Email:yifang@instrnet.com 国家标准计划号20214491-T-604项目名称制造装备智能化通用技术要求标准性质推荐制修订制定主管部门中国机械工业联合会归口单位全国工业过程测量控制和自动化标准化技术委员会内容摘要本标准规定了制造领域装备智能化相关术语、通用技术要求等,为装备智能化设计、优化、升级提供指导。附件:国家标准起草工作组参编回执表.doc
  • 最新!镁伽完成3亿美元C轮融资,深耕生命科学智能自动化,镁伽鲲鹏实验室颇具成效
    2022年6月15日,镁伽科技宣布完成3亿美元C轮融资,由高盛资产管理、亚投资本、纪源资本联合领投,老股东创新工场持续超额加注,新加坡蘭亭投资(Pavilion Capital)、史带资本(Starr Capital)、雨盟资本、鸿为资本、园丰资本、泰合资本等跟投。同时,国内一家生物科技领域的龙头企业也参与本轮融资,成为继CXO行业巨头和自动化行业巨擘后又一个牵手镁伽的战略投资人,双方已就生物大分子领域的自动化业务展开广泛合作。此次募集资金将继续深化镁伽在生命科学智能自动化领域的研发投入及产能扩充,同时积极拓展业务及加速国际化进程。 过去十年,中小型生物科技公司数目和体量不断增长,资本的加速助力,以及亚太地区行业规模日益扩大,也推进了生命科学领域的研发投入飞速增加。效率提升和资源优化成为行业发展亟待解决的核心痛点,而智能自动化是应对该挑战的必然解决方案,并且可能重塑下一代生命科学实验室的效率标准。 自2016年成立至今,镁伽为生命科学行业提供了一整套自动化解决方案,从简单的操作台工作流程自动化,到大型系统流程应用中处理复杂步骤的全自动解决方案,并延伸至赋能AI药物研发服务的下一代生命科学基础设施和系统。针对日益增长的劳动力需求和通量限制,镁伽的工作流程自动化将AI软件、分析仪器、实验室硬件和试验耗材整合于单一实验室系统之中,实现了多元场景下的流程和实验的智能协调。对比传统的实验室系统,镁伽在抗体选择、细胞系开发和分子筛选等各种生命科学应用领域中,可实现更高的效率、更稳定的实验结果,并且已在全球多个国家推出和投入使用。▲镁伽生命科学自动化系统与此同时,镁伽着力打造下一代生命科学基础设施——镁伽鲲鹏实验室,与多家领先的生命科学领域企业开展深度战略合作,构建优化研发流程、提高效率的基础设施和平台,积极探索生命科学前沿研究,并于多项生命科学垂直细分领域取得重要进展。在细胞基因治疗领域镁伽与安捷伦联合开发针对合成生物学、生物药研发等领域的自动化整体解决方案;与测简奕携手建立标准化、自动化的mRNA、病毒载体等检测和分析平台。在基因编辑领域镁伽通过自研MegaMolecule全自动分子实验平台构建了大规模CRISPR质粒库,结合MegaCell全自动细胞实验平台的细胞培养和成像系统,以数十倍于手工实验的速度积累标准化的细胞表型图像和组学数据。在中医药领域镁伽与中国中医科学院医学实验中心合作,成功建立起中药与疾病体外模型筛选的自动化实验与数据平台,共同开发中药靶点细胞库。在类器官领域镁伽携手赛拉达生物,实现高通量标准化大规模类器官培养和测试。目前已成功培养出具有 2 波段跳动和显著腔室结构的心脏类器官、具有脑室和清晰神经结构的脑类器官等数十种具有极高价值的类器官模型。除了在生命科学前沿领域的布局和探索外,镁伽一直积极投身于全球新冠抗疫一线,在短时间内开发出快速迭代的丰富产品组合,从高通量样品前处理系统、可实现“管式样本进-检测结果出”的全自动病毒核酸检测系统、全自动移动方舱实验室,到全自动高通量抗原试剂生产解决方案,在大幅提升检测效率和准确度的同时,减少一线医护人员感染风险。 镁伽首席科学家王承志博士表示:“镁伽通过将智能化和自动化技术与生命科学深度结合,在众多领域大幅提升了生物医药研发和生产的效率。通过大规模自动化实验平台,镁伽与多家顶尖机构合作,为下一代AI驱动的研究开发构建标准化、结构化的生物数据库。本次融资将帮助镁伽进一步加强‘自动化+人工智能+生命科学’的能力闭环,打造和完善以智能自动化为特色的下一代生命科学基础设施。” 亚投资本创始合伙人兼首席执行官刘二飞先生表示:“亚投资本长期关注产业自动化智能化升级的机会。镁伽凭借突出的技术和商业能力,在生命科学领域已经获得了众多龙头客户的认可。我们看好镁伽在自动化和人工智能领域的复合能力、多年深耕的行业经验、以及持续探索前沿领域的创新精神。镁伽将以自动化、数字化为基础,推动生命科学行业的智能化发展,持续拓展业务深度和广度,为行业发展提效赋能、创造价值。” 高盛资产管理专注医疗行业私募投资的执行董事丁一鸣先生表示:“全球生命科学自动化市场规模发展前景广阔。随着生命科学领域持续的高速发展,我们预计生产规模和研发人才瓶颈将推动自动化渗透率在该领域显著提升。镁伽为客户提供完整的自动化解决方案并显示了持续创新和产品迭代能力,作为全球生命科学领域的长期投资者,我们很荣幸可以参与和支持镁伽的未来发展。” 作为长期以来持续支持镁伽前行的伙伴,创新工场合伙人杨小龙先生表示:“在AI、自动化技术深度融合先进产业的时代机遇下,镁伽在过去几年中获得了长足的发展,使用自动化技术大举提升生物与化学行业的效率,到产生质变推动行业的升级,进而延伸核心竞争力到其他尖端产业。创新工场有幸作为这个过程的见证者和陪伴者,一路走来有很多的感动和启发。镁伽人胸怀天下、脚踏实地,短短几年内持续地自我挑战、升级和蜕变,形成了迎难而上、‘Always Day One’的镁伽精神。随着更多资本合作伙伴的加入,镁伽正式晋升独角兽的行列。但我们相信这只是个开端,并希望有更多的人才、合作方加入到这个伟大的事业中来,共同用科技和爱推动人类生命的进步。” 镁伽创始人兼首席执行官黄瑜清先生表示:“此次融资是镁伽发展过程中的重要里程碑,非常荣幸能与众多顶尖机构投资人和合作伙伴携手并进。我们坚信智能自动化是生命科学不可阻挡的发展趋势,镁伽将不断纵向深耕,夯实研发与技术能力,同时积极横向探索,将智能和自动化技术延展并赋能给能源化工、食品安全、应用化学及半导体等领域,助力更多产业实现升级变革,真正践行‘为每个人创建更高效、更健康、更美好世界’的愿景使命。”
  • 《国家智能制造标准体系建设指南(2018年版)》征求意见
    p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 工业和信息化部办公厅 国家标准化管理委员会办公室关于征求《国家智能制造标准体系建设指南(2018年版)》(征求意见稿)意见的通知 /strong /span br/ /p p   为加快推进智能制造综合标准化工作,加强顶层设计,构建智能制造综合标准体系,发挥智能制造标准的规范和引领作用,工业和信息化部、国家标准化管理委员会组织开展智能制造综合标准化体系建设研究工作,形成了《国家智能制造标准体系建设指南(2018年版)》(征求意见稿)。如有意见或建议,请于2018年2月14日前以书面或传真、电子邮件形式反馈。 /p p   联系方式: /p p   工业和信息化部装备工业司   传真:010-66013708,邮箱:zhuangbei@miit.gov.cn /p p   国家标准化管理委员会工业标准二部   传真:010-82260679,邮箱:xuqp@sac.gov.cn /p p   附件:1、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/02fcfc66-3938-41d1-a420-1c9ce48a7428.pdf" 《国家智能制造标准体系建设指南(2018年版)》(征求意见稿).pdf /a /p p   2、 img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/fe8e28a5-de59-4d75-8fbf-4e280f75bb43.pdf" 编制说明(征求意见稿).pdf /a /p p style=" text-align: right "   工业和信息化部办公厅 国家标准化管理委员会办公室 /p p style=" text-align: right "   2018年1月15日 /p p br/ /p
  • 《食品接触材料及制品迁移试验预处理方法通则》标准解读
    p   GB 5009.156-2016《食品接触材料及制品迁移试验预处理方法通则》(以下简称新标准)于2016年10月19日发布,2017年4月19日实施。 /p p   该标准替代了GB/T 5009.156-2003《食品用包装材料及其制品的浸泡试验方法通则》(以下简称旧标准)。小编今天就把新标准的修改变化和使用过程的注意事项与大家分享。 /p p   新标准与旧标准相比较,主要变化如下: /p p   1. 标准名称修改为“食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则” /p p   2. 修改了术语和定义 /p p   3. 增加了试验总则 /p p   4. 增加了试剂和材料 /p p   5. 增加了设备与器具 /p p   6. 修改了采样与制样方法 /p p   7. 修改了试样接触面积 /p p   8. 增加了试样接触面积与食物模拟物体积比 /p p   9. 修改了试样清洗 /p p   10. 修改了试验方法 /p p   11. 增加了迁移量的测定要求 /p p   12. 修改了结果表述要求 /p p   13. 删除了原标准“附录A 食品用包装材料采用方法” /p p   14. 删除了原标准“附录B 浸泡试验项目及试验条件” /p p   15. 增加了附录A、附录B、附录C、附录D /p p   其中新标准增加的设备要求中恒温设备是保证迁移试验的关键因素。新标准对恒温设备的要求如下: /p p   恒温设备(恒温箱、培养箱、水浴锅、冰箱等)应保证迁移试验达到规定的温度,并可控制食品模拟物温度,温度的误差应符合附录C中表C.1的规定。 /p p    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/318c4aa4-acbe-4917-a02d-5e032f4f7926.jpg" style=" width: 600px height: 370px " title=" 1.jpg" vspace=" 0" hspace=" 0" height=" 370" border=" 0" width=" 600" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/900c65c4-fea7-4b79-ae14-d40b526b8cce.jpg" style=" width: 600px height: 370px " title=" 2.jpg" vspace=" 0" hspace=" 0" height=" 370" border=" 0" width=" 600" / /p p   由此可见,对于食品接触材料及制品迁移试验预处理,选择一款恒温范围足够宽广,能长期运行并安全的恒温设备是非常重要的。 /p p   某出入境检验检疫局食品接触材料实验室按照旧标准做食品包材材料的浸泡试验时使用的是德国IKA恒温循环器,对其温度范围、升温速率、稳定性及安全性都有非常好的评价。 /p p    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/12d02a4c-aad4-4322-9886-c3306f256eec.jpg" title=" 3.jpg" style=" width: 567px height: 383px " vspace=" 0" hspace=" 0" height=" 383" border=" 0" width=" 567" / /p p style=" text-align: center " strong 某食品接触材料实验室 /strong /p p   德国IKA恒温循环器温度范围-25~250℃,控温精度高达± 0.01℃,设备可长期稳定运行,曲线实时现实控温过程,保证长期控温实验温度数据的可靠性。 /p p   此外,IKA更关注实验细节及用户的实际使用体验,可提供多种附件。如下图的可调升降台,可以保证各种规格的样品稳定的放置在恒温循环器中,再也无需担心小量样品漂浮的问题了。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/bc88c6e9-1dcd-41cb-b901-e9bf1436d5ce.jpg" title=" 4.jpg" style=" width: 600px height: 390px " vspace=" 0" hspace=" 0" height=" 390" border=" 0" width=" 600" / /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制