当前位置: 仪器信息网 > 行业主题 > >

最低成膜温度仪原理

仪器信息网最低成膜温度仪原理专题为您提供2024年最新最低成膜温度仪原理价格报价、厂家品牌的相关信息, 包括最低成膜温度仪原理参数、型号等,不管是国产,还是进口品牌的最低成膜温度仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合最低成膜温度仪原理相关的耗材配件、试剂标物,还有最低成膜温度仪原理相关的最新资讯、资料,以及最低成膜温度仪原理相关的解决方案。

最低成膜温度仪原理相关的资讯

  • ​《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范拟立项公示
    根据计量工作的总体安排,现将2022年申请立项的《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范计划项目(附件1)和项目建议书(附件2)予以公示,截止日期为2022年4月10日。如对上述申请立项的行业计量技术规范项目有不同意见,请在公示期间填写《行业计量技术规范立项反馈意见表》(附件3)并反馈至工业和信息化部科技司,电子邮件发送至wangjianhao@miit.gov.cn(邮件主题注明:计量技术规范立项公示反馈)。地址:北京市西长安街13号 工业和信息化部科技司邮编:100804联系方式: 010-64102953 010-68205243 联系人:黄雪吟 王建豪 公示时间:2022年3月11日-2022年4月10日附件1:《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范制计划项目.pdf附件2:《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范计划项目建议书.zip附件3:行业计量技术规范立项反馈意见表.pdf工业和信息化部科技司2022年3月11日
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • “你真的了解电子天平吗?”之四——掌控称量的温度“魔力”
    前情回顾在本系列上一期中,小编主要针对电子天平的称量原理,校准的定义及分类,砝码的基础知识以及与天平准确度之间的关系等方面为大家做了科普式的讲解,特别是在校准的分类方面着重花了笔墨进行了详细的梳理,想必大家一定对严谨而又考究的天平校准技术留下了深刻的印象吧,不知道小编尽量将复杂的数学原理讲得通俗透彻的方法有没有让大家解开了心中的疑虑呢?其实在天平的称量中,还有一只无形的大手牢牢地掌控着称量的结果,这就是温度。本期小编将为你展现这只大手到底有哪些奇妙的魔力! 称量原理的遗留问题 在上次关于校准的分享中,小编对电子天平的称量原理做了简要的介绍,同时也提到温度、湿度等环境因素也会影响电子天平的传感器,但至于是怎么影响的只是卖了个关子。那么今天我们就来走进电子天平的传感器内部,来一起探究温度是怎么影响称量的。 电子天平一般采用电磁力平衡传感器,其称量原理如下图所示: 电子天平在加载前,电磁力平衡传感器处于初始平衡状态。当被测物置于称量盘后,立柱和遮光板在被测物重力的作用下向下移动,光敏二级管D2检测到发光二极管D1发出的光,并产生电流信号,经过I/V变换电路、PID调节器,转变成与被测物重量相对应的电流并驱动动圈,在永磁体的磁场作用下,动圈产生向上的电磁力,使遮光片向上移动,D2输出的电流信号减小,直至遮光片重新回到初始平衡位置,D2的输出电流降为0。此时,动圈产生的电磁力F与被测物重力相当,即F=G=mg,其中m为被测物体的质量,g为重力加速度。【1】 同时,根据电磁力公式F=BLI sinθ,其中B为气隙磁场的磁感应强度,L为动圈(受力导线)的有效长度,I为动圈电流,θ为通电导体与磁场的夹角。由于传感器中动圈的规格尺寸已固定,所以其B和L均不再改变,而θ为90°,故sinθ=1,因此F 的大小与I成对应关系。综合之前的描述,即得出m=BLI / g。【2】 当温度恒定时,B和L是定值,g也是恒定值,则m与I成正比,通过检测动圈电流,就可以间接得到被测物体的质量。当环境温度变化或过流元件发热时,B和L均会发生改变,造成m与I不再成比例关系,使电子天平产生较大的非线性测量误差。 值得一提的是,当电子天平处于预热阶段时,随着内部温度升高,磁感应强度B会逐渐下降,同时I也会减小,这样就导致电磁力F变小,天平失去平衡,因此示值会呈现正的单方向漂移。而天平只有经过充分预热,使磁钢达到热平衡,这一变化过程结束,天平才达到平衡,再利用去皮功能,使显示置零,此时天平才处于真正的可使用状态。【2】 操纵天平的无形之手 电子天平会根据所在的环境而发生变化的,正常情况下,不同准确度级别的天平对温度范围和温度波动度的要求各不相同,准确度级别越高,对环境温度的要求就越苛刻。根据国家标准的相关规定,电子天平的正常工作条件需要满足以下表格的具体要求: 温度最主要的影响就是其变化会带来热胀冷缩,对电子天平就反映在传感器中细小而又精密的部件之间间隙的改变,这些变化会被灵敏的天平记录下来,从而影响读数的准确性。如果没有特定的工作温度范围,电子天平的正常温度条件为10℃~30℃,计量性能应符合国家标准对单次称量结果的示值误差,以及多次称量或在不同位置称量的示值误差(重复性和偏载)的相关规定。 温度变化是影响电子天平称量结果准确性的重要因素之一,而实验室由于早晨和中午会有一定的温差、以及电子天平设备发热、人员流动等原因,一天中最高温度与最低温度之间往往能够达到10℃。这对天平的影响是显而易见的,那么我们如何做才能消除温度对称量结果的影响呢?首先,天平在使用过程中,要尽可能地处于一个温度相对稳定的环境,当天平所处的环境温度有较大的变化时,天平的称量结果会发生漂移,比如从低温的仓库移到温暖的实验室,需要让天平在使用环境中通电预热一定的时间;其次,当温度变化超过一定范围时,我们可以通过校准将这种漂移消除。 通电时间的长短能够有效地避免温度变化对天平的影响。一般来说,天平的精度越高,需要预热的时间越长。小编在这里建议,十万分之一天平预热时间在4小时以上,万分之一天平预热时间在1小时以上。 玩转温度补偿,尽在奥豪斯电子天平 对于电子天平来说,一个良好的结构设计应该充分考虑到温度对称量系统的影响,并采取相关措施减少或消除温度变化所带来的影响。奥豪斯电子天平在设计中认真评估了温度对称重系统的影响,通过优化机械设计、零部件选型、以及智能算法,来消除温度带来的影响,保证天平在额定温度的变化范围内,计量性能符合如OIML等国际法规的要求。 从入门级的先行者CP系列及Adventurer AR系列,到进阶级的Adventurer AX系列,再到最高级的Explorer EX系列,最后到Explorer准微量天平(EX5)系列,均具有动态温度补偿功能,实时修正环境温度对称量结果的影响。特别是Explorer全系列和部分AX系列天平所拥有的AutoCal™ 全自动校准系统能够自动对温漂和时漂做出最实时的反应,当温漂值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,全面消除外界环境对天平所造成的不良因素。 怎么样,小编专业而又全面的讲解有没有让你对复杂而又深奥的温度“魔力”的理解变得清晰透彻了呢?如果你有更多关于温度对天平影响的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们专业的工程师们届时将会在第一时间联系您! 参考文献: 【1】孙鹏龙,何开宇,卜晓雪,李鹏飞,石磊. 环境温度对高精度电子天平称量准确度的影响[J]. 计量与测试技术,2016,43(10):34-35. 【2】唐辉,商洪涛,刘向兵. 如何提高电子天平称量的准确性[J]. 医疗装备
  • 【科普】LIBS光谱仪的温度稳定性对合金分析精度的影响
    激光诱导击穿光谱(LIBS)是一项利用高度聚焦激光器烧蚀材料表面来测定材料化学成分的分析技术。LIBS 是用于材料验证计划中的质量控制(QC)和材料可靠性鉴别(PMI)的重要技术,尤其适用于钢铁行业。大多数手持式 LIBS 分析仪采用 1064nm 波长脉冲激光器。高能量短脉冲(纳秒)在单位面积产生的功率足以烧蚀少量材料(大约一纳克)并在样品表面产生等离子体。Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪来自等离子体的光是多色的(白光),这意味着它包含多个不同的波长。白光被衍射光栅分成组分波长,其原理与白光穿过棱镜被分成各种颜色的彩虹大致相同。不同元素会发出特定波长的光,光的强度与元素浓度成正比。光谱仪可测量特定波长下发射的光子数量,并生成样品光谱。它通过测量关注元素的典型峰,并生成浓度指示结果。Thermo ScientificTM NitonTMApolloTM手持式 LIBS 分析仪用于测量每个元素的波长线的光谱仪,在机械尺寸方面必须高度稳定。鉴于铁谱中有数千条密集的发射线,必须将测量窗口保持在精确的绝对波长范围内,这对于避免附近线的干扰至关重要,否则这些干扰可能会漂移到分析窗口中,而所需线的信号会从窗口中漂移出来。如果产品不具有坚如磐石的尺寸稳定性,这种情况就会发生。光谱仪支架材料的尺寸会随温度变化而稍有变化。这会导致读数出现误差。 Thermo ScientificTM NitonTM ApolloTM手持式 LIBS 分析仪大多数手持式 LIBS 分析仪均采用 Invar-36 光谱仪支架。Invar 是一种 36% 镍铁合金,在室温至大约 230°C 的温度范围内,具有所有金属和合金中最低的热膨胀(来源:AZO 材料)。Thermo Scientific
  • 石墨烯助力冬奥颁奖礼服,有风度更有温度
    奥运会颁奖礼仪服装,是每届奥运会的举办国展示本国文化的最重要的一种方式。和夏季奥运会不同,冬奥会运动场馆的温度最低甚至可以达到零下30多度,在如此冷的环境中,如何让颁奖礼仪服装既能美观、舒适,又能暖意融融呢?新型石墨烯材料 打造冬奥颁奖礼仪服本届冬奥会颁奖礼仪服装共有三套方案。分别为“瑞雪祥云”“鸿运山水”和“唐花飞雪”。颁奖礼仪服装不仅要呈现礼仪人员端庄、大方的形象,还要满足防寒保暖的要求。衣服里这一片片黑色的材料,就是中国航发针对本届冬奥会研发的第二代石墨烯发热材料,它可以快速升温,帮助工作人员抵抗零下30多度的严寒。中国航发石墨烯材料冬奥专项项目负责人 陈利军:这个项目其实是一个科技冬奥的专项。在礼仪人员服装里边有一套内胆,这套内胆用了全套的石墨烯材料的新装备,所以看着礼仪姑娘们,外面穿得很薄,但里面内胆全套的石墨烯会给它提供一个温度的保障。我们其实做了一个中国文化传统与高科技石墨烯的一个深度结合。石墨烯是目前为止导热系数最高的材料,在通电的情况下,碳分子团之间相互摩擦、碰撞而产生热能,热能又通过远红外线以平面方式均匀地辐射出来,可以能很好地被人体接受,产生一种由内而外的温暖。同时,为保证在室外长时间工作的工作人员不感到寒冷,科研人员还开发出多种产品,满足各场馆,各工种的不同需求。中国航发石墨烯材料冬奥专项项目负责人 陈利军:我们给工作人员准备了有围巾、马甲、手套、袜子等一系列的石墨烯的加热类产品,可以快速地使人体升温,恢复到正常的温度值。保障我们的工作人员在零下40摄氏度的情况下,还有非常好的温度保障,又非常轻便。研发第二代石墨烯发热材料石墨烯发热材料的应用,大幅度提升了人的体感温度,让工作人员在料峭寒风中也可以暖意融融。针对本次冬奥会需求,为了解决穿戴的舒适性,专项小组的科研人员还专门研发了第二代石墨烯发热材料,它的质感有点接近纯棉布料。中国航发石墨烯材料冬奥专项项目负责人 陈利军:石墨烯的第一代材料,因为它不透气,用在身上以后,汗排不出去,容易造成低温灼伤,所以它不能做穿戴类的服装。针对冬奥的应用场景,我们开发了石墨烯的第二代柔性热管理材料,它的基材是布料或纤维肌,所以这样的材料柔软还透气。据科研人员介绍,针对冬奥会外有雪水,内有汗水的特殊情况,相较于第一代材料,为冬奥会专门打造的第二代石墨烯材料还能剪裁和水洗,保证了产品的安全性和可靠性。中国航发石墨烯材料冬奥专项项目负责人 陈利军:比如我把它剪断了,它还可以正常使用。并且将它放到水里揉搓清洗,再通上一个5伏充电宝。现在直接点亮它,我们可以用温枪来检查一下它这时候的温度,虽然剪断了并且用水洗了,仍然可以正常地工作。科研人员介绍,通过新材料的使用,冬奥发热服在保证安全性的前提下,还可重复使用。石墨烯:材料学的科技革新在本届冬奥会大显身手的石墨烯材料到底是什么?又是如何被发现的呢?石墨烯是一种新型材料,最早由英国的两位科学家安德烈盖姆和康斯坦丁诺沃消洛夫发现。他们用胶带反复粘贴石墨,得到越来越薄的石墨薄片,通过不断操作,最终得到了仅由一层碳原子构成的石墨烯。单层的石墨烯要比石墨具备更好的热传导性能,也是到目前为止导热系数最高的碳材料。中国航发北京石墨烯技术研究院院长 王旭东:当石墨烯材料两边被加入电场以后,电子的穿梭造成波动,所以说石墨烯发热它带来的效果就更加接近于光波,让我们感觉到阳光的温暖。据王旭东介绍,石墨烯制备技术已经非常成熟了,可以针对不同用途和不同要求,快速制备石墨烯材料,未来它将在高端装备、新能源等多个领域得到广泛应用。
  • 比朗光化学反应仪迎接中秋佳节 引爆最低价
    尊敬的客户:   您在上海比朗仪器所购的每一台光化学反应仪,均向您保证所售产品为正品行货,每一个产品的售出,上海比朗仪器都将与您签订合同,并在您收到货物后向您提供正规发票。您购买的产品,都在上海比朗的客户系统中有详细的记录,上海比朗将据此为您提供质保服务。届时中秋佳节,公司折扣将打破历史最低价。   BL-GHX系列光化学反应仪主要特征:●微电脑控制器,功率连续可调(国内领先)。●机箱内置有温度保护传感器,箱内温度过高启动断电保护。●控制器置有电流表和电压表,便于观察电流和电压变化。●有微电脑定时器,可分步定时。●内照式光源,受光充分。●配有磁力搅拌器,使样品充分混匀受光。●双层石英冷阱,可通入冷却水循环以避免光源温度过高受损。●配有可移动式推车,便于移动或固定。●BL-GHX-I型适合大批量样品的处理。   技术参数:   ◆该产品通过欧盟CE认证。   ★温度保护:箱体内高于50℃启动断电保护。   ★光源功率可连续调节大小。   ★BILON集成式光源控制器,可供汞灯、氙灯、金卤灯等多种光源使用。   ★汞灯功率调节范围:100~1000W可连续调节。   ★氙灯功率调节范围:100~1000W可连续调节。   ★金卤灯功率调节范围:100~450W可连续调节。   ★冷却水循环装置制冷量:BILON-T-10031000W   ★冷却水循环装置设有脚轮和底部排液阀。   ★玻璃反应器皿可以分别选用250ml、500ml、1000ml等(或定做)。   BL-GHX系列光化学反应仪主要用于研究气相或液相介质、固定或流动体系、紫外光或模拟可见光照、以及反应容器是否负载TiO2光催化剂等条件下的光化学反应。具有提供分析反应产物和自由基的样品,测定反应动力学常数,测定量子产率等功能,广泛应用化学合成、环境保护以及生命科学等研究领域。了解比朗光化学反应仪更多资讯:http://www.apparatussales.info/
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 膜分离或变压吸附?氮气发生器的原理对比
    克里斯.哈维,总经理-毕克气体仪器贸易(上海)有限公司众所周知,毕克科技拥有当前市场上最广泛的氮气发生器种类,同时,我们不断地研发出新的产品满足日新月异的氮气的需求,来给新的应用设备供气。我们不仅仅有市面上种类最多的氮气发生器来满足液质联用仪的用气需求,同时,我们给气相色谱仪,总有机碳分析仪,傅里叶红外光谱仪,样品蒸发仪,通风橱,手套式操作箱,电感耦合等离子体光谱仪,核磁共振仪,蒸发光散射检测仪等实验室设备供气的气体发生器种类也很全面和广泛-实际上,你实验室里几乎是所有需要用气的设备,都可以让我们的气体发生器来供气。为什么我们的气体发生器能够覆盖您的实验室里大部分应用设备?因为,我们二十年如一日,专注于实验室里气体发生器的研发和生产,专心于给您提供稳定可靠的实验室气源。另外一个广为人知的事实就是:我们所采用的气体分离技术成熟可靠。在我们的氮气发生器上,我们用膜分离技术和变压吸附技术来生产氮气,如果我们的顾客对某一种技术青睐有加,我们可以根据客户的喜好来推荐合适的型号。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。膜分离技术让压缩空气通过中空纤维膜,当空气通过膜的时候,空气中的氧气,二氧化碳,一氧化碳和水蒸汽 会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大尺寸的氮气分子和惰性气体氩气都收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。分离提取出来的氮气最高纯度能达到99.5%,不含任何杂质。变压吸附技术是通过固体介质来分离气体混合物中的单一组分,用变压吸附技术来分离空气中的氮气,所需的固体介质是碳分子筛,碳分子筛对空气中的氧气选择性吸附,从而在加压的情况下分离了空气中的氮气和氧气。 碳分子筛其实就是多孔疏松的棒状碳颗粒,当对填充满了碳分子筛颗粒的氮气纯化密封柱中充入压缩空气(主要成分是氮气,氧气和惰性气体氩气和少量水汽)时,碳分子筛会吸附水汽,氧气,但是,氮气不会被吸附。这主要是因为氮气和氧气的分子尺寸不一样,碳分子筛颗粒上的小孔能让分子尺寸小的氧气进入,却不能让氮气进入,因为氮气的分子尺寸大于氧气;从而,氮气和氧气被分离开了。变压吸附这一过程包含两个步骤和阶段:1.吸附阶段,压缩空气中氧气,水汽,二氧化碳被碳分子筛柱子吸附,氮气被收集起和储藏起来。2.重生阶段,将碳分子筛柱的压力释放到大气中去,吸附了氧气,二氧化碳,水汽的碳分子筛颗粒释放掉吸附的氧气,二氧化碳和水汽,从而为下一次吸附做好准备。变压吸附这一个过程需要维持一个稳定的温度,这个温度通常情况下和实验室的环境温度接近(20-25℃)。变压吸附技术生产出来的氮气,纯度最高能达到99.999%,纯度越高,生产过程中需要消耗的空气就越多。变压吸附技术和膜分离技术来生产氮气,各有利弊。具体使用哪种方法来生产氮气要取决于应用和流速要求。在市面上,某些人说氮气膜和碳分子筛是消耗品,需要定期更换,这是不对的。如果用户的除油和除水过滤器效果不佳,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。液质联用仪应用对于液质联用仪而言,氮气纯度高于95%就可以大多数的质谱仪的用气要求了,即使一些非常高端和灵敏的质谱仪也没有问题。关键是气体里面不能含有任何粉尘,水汽和碳氢化合物及油滴,所以,高性能的过滤系统尤为重要,过滤系统的除尘规格要小于0.01微米,同时,油滴和水汽也必须除掉。由于过滤系统一旦饱和,它们的过滤吸附效果也会大打折扣,所以,每年对过滤器进行维护也十分有必要。对于液质联用仪而言,分别利用膜分离技术和变压吸附技术来生产氮气的产品我们都有,但是,对于一些小型和中型的实验室而言,选用膜分离的氮气发生器有一些非常明显的优势维护和服务膜分离技术涉及到很少的移动部件,通常情况下,一台氮气发生器里面的氮气膜重3公斤(而变压吸附模块的重量能达到100公斤),这就让维护变得十分简单。目前,毕克中国的服务团队能保证在48小时内97%的首次修复率。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。氮气膜的工作无需很多电子部件的管理和控制,那么,我们可以将更多的电子部件用于监控核心技术参数,同时,让我们的工程师在维修时可以更快找到症结。尺寸和重量由于氮气膜尺寸小,重量轻,这也就意味着我们能设计出更轻盈小巧,结构更紧凑的气体发生器,同时,让发生器能放在标准实验台下,发生器机底脚轮设计,方便移动。这些气体发生器对于那些空间很有限的实验室而言,无疑是完美的选择。噪音水平膜分离技术不产生任何噪音,变压吸附技术在碳分子筛柱泄压放气的时候,会有很大的放气的声音产生,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作。无需将发生器放在另外一个房间,从而增加了管道延长所产生的额外费用。变压吸附技术对于大型实验室而言,优势十分明显,在我们的iFlow产品里,我们应用变压吸附技术,它能:生产出更高流速的氮气在一些拥有20-30台质谱仪的大型实验室里,我们已经安装了一些利用变压吸附技术来生产氮气的发生器。一台氮气发生器就足够给整个实验室来供气了。将成本降至最低由于一台氮气发生器的氮气流速就足够给实验室里所有的应用设备来供气,这种集中供气方案无疑比单台小流量气体发生器给单台应用设备来供气的性价比要高很多。气相色谱仪应用利用变压吸附技术所生产出来的氮气,非常适合给气相色谱仪来供应载气。给气相色谱仪做载气,不仅要求氮气的纯度特别高,还要求氮气中的碳氢化合物含量特别低。利用碳分子筛变压吸附技术来生产氮气是唯一的选择,在空气进入到碳分子筛之前,空气经过过滤,然后再经过催化裂解炉将所有的微量碳氢化合物催化氧化除掉。所生产出来的氮气纯度特别高,能给所有的气相色谱仪做载气,包括电子捕捉检测器所需要用到的载气。这不是变压吸附技术应用的典型案例,我们所采用的碳分子筛变压吸附技术,能将移动部件的数量降到最低,同时,变压吸附柱在工作时没有噪音,在发生器出现故障时,维修也很方便。毕克在全世界各地售出的气体发生器超过5万台,有4000台在实验室。我们所有的气体发生器都经过知名质谱仪和气相色谱仪生产商的检验和认证,同时,OEM供应商可以销售我们的气体发生器。基于我们对气体发生器的专注和丰富的经验,我们开发出来了很多优秀的产品,诸如NM32LA,NM3G, AB3G,Precision 系列氢气发生器,零级空气和氮气发生器,以及IFlow系列产品。若您想了解与您的应用相匹配的气体发生器和实验室集中供气,欢迎联系我们。
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 温度试验箱对制冷剂的要求
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 适应温度环境试验箱的制冷剂显然应该满足温度环境试验的基本要求,包括:& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 1)标准气化温度(ts) /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 制冷剂从液态蒸发成为气态的温度由其工作压力所决定,在标准大气压下制冷剂由液态蒸发成为气态的温度称为制冷剂的标准气化温度(ts),如R22的标准气化温度ts=-40.8° C;R502的标准气化温度ts=-45.6° C;R404A的标准气化温度ts=-47.6° C;R23的标准气化温度ts=-82.2° C。制冷剂工作压力越低,其气化温度也越低,反之,如果要求某制冷剂(如R12)的蒸发温度到达某个低温值(-40° C),则必须调整其工作压力低于某个相应的压力(如0.6MPa),称该压力值为饱和蒸汽压力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 为了避免空气渗入到制冷系统内降低制冷效率,温度试验箱制冷系统正常运行压力(如蒸发压力,冷凝压力,吸气压力等)一般都应稍高于当地的大气环境压力,因此制冷剂的标准气化温度(ts)是温度试验箱可能达到的最低极限温度。考虑到蒸发器传热的温差要求,温度试验箱可能达到的最低温度一般应比制冷剂的标准气化温度(ts)高3° C~7° C。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 2)冷凝压力Pk不能太高 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 冷凝压力Pk是从压缩机排出的高温高压的蒸汽在冷凝中被冷却为液态的工作压力,这个压力受冷却介质的温度和压缩机排气压力所制约。压缩机排气压力越高,冷却介质的温度越低,则制冷剂的蒸气越容易冷凝。但是提高压缩机的排气压力不仅会加大压缩机的功耗,缩短压缩机的工作寿命,而且容易出现工质的泄漏。另一方面,冷却介质的温度受大气环境温度(风冷)和冷却水温度(水冷)的限制不可能太低,通常情况下,冷却介质进入冷凝器的入口温度为24° C~29° C,冷凝器出口处冷却的温度为40° C~50° C,冷却介质的平均温度在30° C~50° C范围内,例如制冷剂R502的冷凝压力Pk大体是1.5MPa~2.0MPa,由于工质在管道内流动的压阻损失,压缩机的排气压力必须高于冷凝压力Pk,所以使用制冷剂R502的压缩机排气压力必须是1.8MPa~2.2MPa。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong & nbsp 3)制冷剂的溶油性与溶水性 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 制冷剂应该有一定的溶油性和溶水性。制冷剂中溶入润滑油后,有利于制冷系统中各种运转零部件的润滑,特别是在冷凝器中具有溶油性的液态制冷剂会带走因冷凝效应凝聚在冷凝器内壁上的油膜,可以降低贴符在冷凝器内壁上油膜对冷凝器热交换效率的影响。但是当液态制冷剂带着溶油进入蒸发器后,随着液态制冷剂的蒸发,气化,会在蒸发器内在实际的制冷系统中,压缩机的排气口之后都加装有油气分离器,限制制冷剂中的溶油量。同时在蒸发器的安装中采取一些回油的措施,如复叠式制冷机组中的蒸发冷凝器通常采用盘管式蒸发器,液态制冷剂从盘管的上部进入蒸发冷凝器,气化后的蒸汽从下部返回压缩机吸气口,吸附在蒸发器的内壁的油液也会在重力与压缩机吸气负压的作用下返回压缩机的油池中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 对于壳管式蒸发器,回气管道安装时必须向压缩机吸气口方向有一定的倾斜度,便于残留的油液依靠重力的集油作用,被压缩机的吸气负压吸回压缩机内。制冷系统中渗入水汽会在低温段的局部地方形成“冰塞”,阻挡制冷剂的顺利流动,所以在制冷系统中无一例外地在冷凝器之前都安装有“干燥过虑器”,吸收可能渗入制冷系统中的水分,并且在安装和维修制冷系统时,适当增加抽真空的时间,以有利于制冷系统中残留水分在真空状态下加速蒸发、排除。但这些措施不能完全清除渗入制冷系统中的水汽。为确保制冷系统正常工作,采用具有溶水性的制冷剂可以携带极少量残余的水汽循环运行。例如采用溶水性能好的氨作为制冷工质的制冷系统,基本上无“冰塞”之忧,而采用溶水性能差的氟利昂作为制冷工质的制冷系统必须特别重视“干燥”除水的要求,及时更换“干燥”过滤器的滤芯。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 4)& nbsp 制冷剂单位容积的制冷量 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 此外,还希望制冷剂单位容积的制冷量大,可减小制冷机组的尺寸;具有较高的导热系数,可减少冷凝器和蒸发器的换热的面积;黏度低且密度较小,可降低管道流动中的阻力,减少管路压降;化学及物理性能稳定,无腐蚀性,无毒,不燃烧,不爆炸,具有一定的抗电性能等。在实际工程中,温度环境试验箱最低极限温度一般为:-40° C~-35° C或-75° C~-70° C,采用大气环境温度的风和地表的水为冷却介质的冷凝器进口温度通常不高于30° C,故温度试验箱制冷系统最常使用的制冷剂是R404A和R23(R508B)。 /span /p
  • 【投稿】“最低价中标”动了谁的奶酪
    p    span style=" color: rgb(255, 0, 0) " 导读:近年来,低价中标带来的质量安全问题屡屡拨动公众的神经。在引起广泛关注的西安地铁“问题电缆”事件中,涉事企业陕西奥凯电缆有限公司法定代表人王志伟就承认,采用低价竞标的方式获取订单后,为了保证利润,降低了生产成本,造成产品不合格。 /span /p p span style=" color: rgb(255, 0, 0) "    strong 特别说明一下:建议将活动中所述的“低价中标”更改为“最低价中标”,更符合招标规程术语要求。 /strong /span /p p span style=" color: rgb(255, 0, 0) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1cf2f1c2-7d0a-4884-ac84-96abf0b6e9f3.jpg" title=" 1_副本.jpg" / /p p span style=" color: rgb(255, 0, 0) " /span br/ /p p   自从出现了由“最低价中标”引发的各种恶劣事件之后,现在“最低价中标”不仅仅是集体诟病,简直就跟过街老鼠一样,人人喊打。 /p p   那么从投标人到招标方都反对的“最低价中标”到底问题出在了哪里,为什么广为诟病,究竟动了谁的奶酪呢? /p p   且听我一一道来。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/b45c0e10-c649-49a6-881c-c991a61341c0.jpg" title=" 2_副本.jpg" / /p p    strong 1.“最低价中标”凸显的是不作为和逃避责任的心理。 /strong 对于招标方来说,“最低价中标”是最“安全”和最“省心”的,原因有两个,一是完全符合规则要求 二是不用考虑其他因素。“安全”在于不会给人任何把柄,“省心”在于不需要做额外的调研工作,也不需要考虑标书怎么详尽。 /p p   但是作为招标方的这种想法和做法是极其不负责任的,也是典型的懒政行为。招标方为了招到合适的产品,首先要做的就是调研调研再调研,因为参数,指标这些都是看不出来的,只能用的出来,只有通过对兄弟单位,同行的使用情况来了解,只有充分了解了仪器设备的性能和使用情况,才能写出高水准的《技术参数》,这无疑是需要花费大量的时间和精力的。 /p p   当然也是需要承担一定的风险,特别是当调研时了解到某些品牌的实际使用情况后,无形之中有个大致的方向。当然规则是不允许这种情况发生的,因此,“最低价中标”自然而然就成了懒政和逃避责任的借口。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/de9db4e4-2665-4d4e-a8e8-79e7e95960e7.jpg" title=" 3_副本.jpg" / /p p    strong 2.“最低价中标”背后是投标人之间的恶性竞争。 /strong 招标的本意是为了公开透明合理的使用财政资金,通过竞标的方式来节约财政资金。“最低价中标”的本意也是如此,即在性能指标参数符合招标方要求的前提下,谁的投标价最低,谁就中标。 /p p   看似单纯的价格比拼,实际上也是投标人之间对于区域市场,行业市场,大客户等等的追求比拼。对于投标人来说,看中的可能不仅仅是这一单生意,有可能看中的是在整个行业内的影响,或是在整个地区的影响,或是某些特定的大客户。 /p p   这样一来,希望开辟市场和不希望抢占市场的双方就是针尖对麦芒,往往竞争起来就没有什么底线了。“最低价中标”,还需要保证一定的利润,最终投出来的产品可想而知。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/14e916ca-52b0-4d96-ae7c-3a3d5031dc93.jpg" title=" 4_副本.jpg" / /p p    strong 3.“最低价中标”是投机倒把,游走于规则的边缘。 /strong 当投标人把利润压到实际成本之下,为了保持己方能继续获得利润,那么就必须要把实际成本进一步压缩,这样才能实现盈利。如同盖一间大厦,成本减少了,好比把水泥强度批号从45换到32.5,钢筋从40换到20,盖成大楼糊在一起,谁也看不出来,但实际上大厦的抗震强度减了N个等级。 /p p   这种做法对于投标人来说,依旧获利丰厚,但是实际上是游走在规则的边缘,也无异于在刀尖上舞蹈。 /p p   在仪器设备招标领域,通常表现为虚报参数,弄虚作假,以次充好,低价高卖再压低价,看似“最低价中标”,实际上是在玩弄规则。可惜的是,由于招标方很难对仪器设备的一些参数进行验证,因此,很难验证投标人报出的参数是否为真实有效的。譬如液相色谱的最高压力耐受,流量精密度等等。 /p p   缺乏了有效的验证手段,就给了“最低价中标”游走于规则边缘的机会,也让这部分投机倒把的投标人敢于铤而走险。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/7534d518-16d6-40a3-b2da-e318a6e6cb2a.jpg" title=" 5_副本.jpg" / /p p    strong 4.“最低价中标”为蝇营狗苟提供了滋生土壤。 /strong “最低价中标”看似公开透明公正,实际操作起来,因为可以在参数、配制上面做手脚,或者是增加补充合同,反倒有很大的浮动余地。 /p p   另一方面,除去降低参数、配制等恶劣做法之外,“最低价中标”的结果往往是质量和档次远逊于正常产品的小厂家,低成本的产品。这样的产品由于其本身成本就低廉,因此利润可观,更有可能滋生腐败。 /p p    strong “最低价中标”究竟动了谁的奶酪, /strong 综上所述,受损的是招标方的利益,是财政,是人民的利益。 /p p   因此,财政部七月末发布了财政部令87号《政府采购货物和服务招标投标管理办法》,该《办法》提出:评标委员会认为投标人的报价明显低于其他通过符合性审查投标人的报价,有可能影响产品质量或者不能诚信履约的,应当要求其在评标现场合理的时间内提供书面说明,必要时提交相关证明材料 投标人不能证明其报价合理性的,评标委员会应当将其作为无效投标处理。 /p p   怎样避免低质量或是不能诚信履约的“最低价中标”? /p p   个人觉得在现有招标管理规定的基础上,还应从以下几个方面入手: /p p    strong 1.被采购产品应当有相应的强制性技术标准,并需强制性检验。 /strong /p p strong   2.产品参与投标时应当公示型号和配件,以接受监督。 /strong /p p strong   3.产品验收时应由供应商提供关键参数的验证报告。 /strong /p p strong   4.对于弄虚作假,以次充好的违规行为应列入投标黑名单,限定投标资格。 /strong /p p style=" text-align: right "    a href=" http://www.instrument.com.cn/activity/2017yc/" target=" _blank" title=" 第十届原创大赛分析者端木团队" style=" font-family: 楷体,楷体_GB2312,SimKai color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 楷体,楷体_GB2312,SimKai color: rgb(0, 176, 240) " 第十届原创大赛分析者端木团队 /span /a /p
  • 人民日报怒批:“最低价中标”不改,何谈工匠精神、中国制造!
    《人民日报》曾两次发文诟病“最低价中标”,实为罕见!建设工程质量因“最低价中标”问题频发,使得整个行业怨声载道,也在给业内人士敲响警钟:“最低价中标”原则一天不变,行业就很难有什么工匠精神,更不要说什么中国品牌!”一般情况下,按照市场规律,招投标中的投标价或中标价不得低于成本价。然而在现实中,部分招标单位在招标环节忽视质量要求,唯价格论,造成中标价低于甚至远低于成本价。这些以低于成本价中标的企业,为获取利润,只能在原材料采购、生产制造等方面压缩成本,以牺牲产品质量来弥补亏损,从而出现“劣币驱逐良币”现象。在执法检查中,一家曾经获得过“政府质量奖”的线缆企业直言:生产企业没有利润空间,被逼得偷工减料,突破底线。事实上,因低价中标导致产品质量不过关,甚至酿成安全事故的案例,并不鲜见。质量是企业的立身之本。我国产品质量法也规定,企业要承担产品质量的主体责任。提升产品质量归根到底要靠企业自身,只有一件件产品都有质量、一家家企业都以质量为目标,经济发展才更有质量。“最低价中标”危害大容易导致优汰劣胜,埋下安全隐患,影响企业创新的积极性。1、助长以次充好,导致产品和工程建设质量下降,优汰劣胜。2、极易引发偷工减料,甚至埋下安全隐患。3、影响企业创新研发的积极性。“最低价中标”为何风行?1、担心“说不清”,规避“履职风险”,导致一些地方倾向于“最低价中标”。“大家都痛恨‘最低价中标’,可是产业链上每一环都在搞‘最低价中标’,因为你不搞低价,审计可能会审你!现在大力反腐,谁敢采购高质但高价的?虽说这完全是两回事,但别人都是‘最低价中标’,就怕咱有时候说不清啊。”中国第二重型机械集团公司党委副书记王平说。2、市场质量监管缺位、不到位,也是“最低价中标”大行其道的助力。从招标到中标,从施工到竣工,我国质量安全监管体系可谓全覆盖。但依然有一些伪劣产品能“一路畅通”,这往往与执法不严或惩处力度较低有关。3、招标方过于强调成本而忽视质量,也导致招标的天平倾向于价格。尽管法律文件等对招投标的各项指标都做出了规定,但技术等指标的优劣很难在使用前评判,只有价格最易分出高下。为了最大程度节约资金,提高效率,一些工程在招标中故意忽视“能够满足招标文件的实质性要求”这个条件,将低价作为最高标准。即使发现投标人报价过低,也不启动价格认定程序,导致投标人不计成本地恶性竞争。“最低价中标”不应延续企业建议,在产品招标中,修改“经评审的最低投标价法”,防范恶意低价投标。“要鼓励企业走‘人无我有、人有我优、人优我精’的创新之路,政府采购应逐步改变‘最低价中标’模式”。企业一致表示,“最低价中标”影响正当竞争、降低产品质量,已经成为振兴实体经济的障碍。它不仅不利于供给侧结构性改革的实施,不利于实施质量强国、品牌兴国等国家战略,还会埋下重大安全隐患。为此,企业建议应尽快取消商务标“唯低价是取”和“最低价中标”模式。关于“最低价中标”,你有什么想说的?
  • 光谱仪测量误差有哪些,如何降到最低?
    当我们使用光谱仪仪器进行测量时,我们都希望所获得的结果尽可能准确,而想要获得更为准确的测量结果,就需要尽量地将测量误差降到最低。但在降低因光谱仪测量误差之前,必须得先认识一般都有哪些误差类型,在了解了常见的误差类型后,我们才能更好地将光谱仪测量误差降到最低。对此,本文整理了以下3个常见的误差类型,及降低误差对应的技巧,可供参考!过失误差:我们的首要任务是检查并消除测量中的过失误差。通过观察上述图表,我们会发现,一个过失误差将导致测量结果完全位于绿色区域之外,并且可能会被视为异常。制备过程中的样品污染等工艺误差可能导致过失误差。缺陷样品亦如此,例如,测量区域中的空腔或运行不正确的测量程序也会导致过失误差。通过培训和使用正确的程序,可以避免过失误差。系统误差:系统误差通常与正确度有关,并在测量样品的平均值和预期结果之间给出一致的偏差。造成这类误差的原因在于设备缺乏维护、部件磨损或校准不良等设备故障。由于偏差对于确定的关注区域内的每个测量值均一致,因此可以测量偏移量,然后将校正系数合并到样品测量值中。定期校准和维护可以减少系统误差。随机误差:随机误差与精密度有关。随机变化越大,测量精密度越低,误差幅度越大。不同于系统误差,这类误差是不可预测的,并且使用统计方法进行估计。这些测量波动可能由样品的不均匀性、测量环境的微小变化以及用于校准的参考样品的测量不确定性造成。目标是通过良好的程序和维护良好的设备,尽可能提高精密度。降低测量误差技巧:事实上,您能完全相信结果的唯 一方法是您了解读数的误差范围。在每次测量中,由于测量系统的局限性和其中的随机波动,总会存在误差范围。为获得尽可能准确的读数,我们应消除过失误差,减少系统误差和随机误差,然后在商定的置信度内接受并计算剩余的误差范围。
  • 为什么使用冰箱温度计
    为什么您需要冰箱温度计?答案非常简单——即让您完全了解冰箱和冷冻箱内的确切温度,这对于医药和医疗保健产品尤为重要。所有用于制药、化学品、温室、血库、食品和饮料的冰箱都必须受到监测。根据PIC/S(药品检查合作计划)定义,深度冻结温度应保持在-15°C以下,冰箱应处于+2°C至+8°C范围内。冷冻箱和冰箱是实验室、微生物研究公共机构、医院和药房的标配设备。一些现代冰箱在设备中内置了数字温度计,可以更轻松地设置和监测所需的温度。但是,同样重要的是要知道冰箱显示屏上显示的温度并不总是代表整个冰箱隔室的情况。此外,考虑到冷却能力会随着时间的推移而下降,最好使用第二个温度计检查温度,以确保设备仍按预期运行,并验证内置温度计的准确性。同样重要的是要知道冰箱显示屏上显示的温度并不总是代表整个冰箱隔室的情况。对于需要精确温度设定值的医疗和保健流程中使用的冰箱,使用合适的冰箱温度计极其重要。此外,我们强烈建议选择可显示“MAX/MIN”(最高/最低)的温度计。在监测对温度敏感的产品时,必须每天记录最低和最高温度并人工记录在案。最后但同样重要的一点是,确保选择带有校准证书的产品。
  • 如何解决样品炸瓶?——冻干工艺关键温度给出答案
    不知道大家在处理样品的冷冻干燥过程中有没有遇到这样一种情况?明明进行了预冻,但在后续低压干燥过程中,突然就出现了炸瓶!并且,有这个问题的似乎不在少数!但很多时候,大家会把问题归结于仪器质量不过关等原因!本着求知若渴的态度,我们咨询专业人士,给出的答案是——预冻不充分的样品在后续低压干燥中也可能会炸瓶! 图1:预冻不充分的样品可能会炸瓶预冻不充分还会影响制品质量冷冻干燥的预冻,是将溶液冷却到一定温度,在此温度下,水和固体被充分结晶或冰晶和固体被包围在一个非晶态浓缩固体,自由水固化,赋予产品干燥后与干燥前有相同的形态,防止抽空干燥时起泡、浓缩、收缩和溶质移动等不可逆变化发生。也就是把物料冷冻成固态,并形成一个适合干燥的结构(matrix)。 预冻非常重要,可以影响后续的两个干燥阶段,*影响制品的质量。 当温度降低时,液态转变为固态,有两种不同状态,一种是粘度极大,流动性差,形成一种玻璃态的无定型结构(amorphous),另外一种是规则的晶体结构(crystalline)。在预冻过程中,预冻的温度、速度和时间是重要的控制参数。 共晶温度在冻干工艺中的含义 共晶温度(Eutectic temperature, Te):几种物质组成的混合溶液,在冻结过程中,开始时某些组分结晶析出,使剩下的溶液浓度发生变化。当达到某一温度或温度区域时,其液态和所形成的固态中的组分完全相同,这时的溶液称为共晶溶液,这时的温度或温度区间称为该溶液的共晶点或共晶区,也称为完全固化温度,它是产品在冷却过程中从液态结束转向固态的最高温度。共晶温度为冻干过程中预冻应达到的最高温度,一般预冻过程应低于其共晶温度10-20℃。 如何形成晶体结构溶液在冻结过程中,往往需过冷到冰点以下,称为过冷温度,其内部产生晶核以后,自由水才开始以纯冰的形式结晶,同时放出结晶热,使其温度上升到冰点,随着晶体的生长,溶液浓度增加,当浓度到达共晶浓度,这时温度下降到共晶点以下时,溶液就全部冻结,形成晶体结构。 塌陷温度在冻干工艺中的含义 塌陷温度(Collapse temperature, Tc):冻干时,当干燥层温度上升到一定数值后,物料中的冰晶消失,原先为冰晶所占据的空间成为空穴,因此冻干层呈多孔蜂窝状海绵体结构。此结构与温度有关。当蜂窝状结构体的固体基质温度较高时,其刚性降低。当温度达到某一临界值时,固体基质的刚性不足以维持蜂窝状结构,空穴的固形物基质壁将发生塌陷,原先蒸汽扩散的通道被封闭,此临界温度称为冻干物料的崩溃温度或塌陷温度。 玻璃化转变温度在冻干工艺中的含义 玻璃化转变温度(Glass transition temperature, Tg’):冻干过程的玻璃转化温度指*冻结浓缩液的玻璃化转变温度。在无定型结构材料中,原子、离子或分子的排列是无规则的。因为在冻结过程中随着冰晶的析出,剩余溶液的浓度逐渐增加,当达到一定浓度时,剩余的水分不再结晶,此时的溶液达到*冻结浓缩状态,对应的温度称为*冻结浓缩液的玻璃化转变温度。 制品结构与预冻的关系 在生物制药领域中,使用冻干工艺的绝大部分制品是无定型结构,小部分制品是晶体结构,或者是混合结构。除了与制品配方有关外,晶体结构的形成还与预冻温度和速度有关。 根据最近的研究表明,在Tg’温度下预冻,会形成无定型结构。在大于Tg’且小于Te的温度下预冻,则形成晶体结构。晶体结构可以更快和更容易冻干,但稳定性和溶解性稍差;无定形结构冻干比较难,但稳定性和溶解性好。 方法原理不同,但都是为了摸索工艺 共晶点、塌陷温度、玻璃转化温度,采用的测量方法和原理不同,都是为了找到预冻、主干燥的温度等,摸索工艺。 一般情况,塌陷温度Tc比共晶点温度Te稍高,共晶点温度Te较玻璃化温度Tg’高。多数情况下,塌陷温度Tc要比玻璃化温度Tg’高20K左右。冻干制品升华前,必须冻结到一定的温度,这个温度应设在制品的凝固温度以下10至20℃左右。该凝固温度,主要取决于样品冻干过程中需要固化的状态,是晶体结构还是无定型结构。晶体结构,对应温度为Te;无定型结构,对应温度是Tg’。 在回火(Annealing)的操作中,在低于Tg' 情况下预冻,然后把隔板温度设定在高于Tg' , 但低于Teu的温度,形成回火,再降温,在低于Tg' 情况下预冻,可使制品凝结更加均匀。 图2:样品维持在>Tg’且<Teu温度的结晶情况 如图中所示,预冻后将样品维持在>Tg’但<Teu的温度一段时间后,结晶变得更加明显且均匀。 如何快速实现配方关键温度的测量图3:冻干显微镜Lyostat5及搭配使用的DSC模块 英国Biopharma Group公司提供的冻干显微镜Lyostat5以及可与显微镜搭配使用的DSC模块,可以轻松实现配方关键温度的测量。 使用Lyostat5冻干显微镜进行塌陷温度的测量: 图4.1:温度超过塌陷温度Tc后样品结构消失 图4.2:再次降温冷冻后观察到新的干燥结构 使用DSC模块测量玻璃转化温度Tg’: 图5:使用DSC模块测量的玻璃转化温度Tg’
  • 七国集团达成最低企业税率协议,国产仪器需要“走出去”
    当地时间6月5日,七国集团(G7)财长会在伦敦举行。据了解,七国集团财长会通过了全球税收改革方案,方案要求跨国科技公司在其运营的业务所在国家合理纳税,G7成员国支持全球最低企业税率设为15%。七国集团,是主要工业国家会晤和讨论政策的论坛,成员国包括美国、英国、法国、德国、日本、意大利和加拿大七个发达国家。6月11日至13日,G7国家领导人峰会将在英国康沃尔召开,将进一步落实此次七国集团财长会议达成的共识。协议还将于今年7月提交20国集团(G20)威尼斯峰会,并在经合组织牵头下进行全球税改谈判。经合组织的目标,是希望在今年10月初步达成一项全球协议。为吸引跨国企业,各国数十年来争相降低企业税,也由此出现了众多的“避税天堂”,如开曼群岛等。分析人士认为,这种各国之间的「逐底竞争」会引起税基侵蚀及利润移转的问题。未来这项最低企业税率协议很可能推广到包括中国在内的全球各国。中国银行研究院曹鸿宇在其研报中表示,总的来看,中国落实全球最低企业税率所面临的内部障碍较小。中国现行企业所得税税率较高,一般标准为25%,既高于OECD包容性框架下12.5%的税率目标,也高于美国15%的最低税率底线。面对未来很可能达成的这项协议,国产仪器厂商将迎来出海机遇。相比于国际仪器企业巨头,我国仪器厂商海外竞争力薄弱。一直以来,跨国巨头企业依靠全球部署战略和强大的税务部门将企业注册在税率“洼地”避税效果显著,以此降低企业运营和研发成本,并在市场竞争中占据优势地位,形成了相对于我国本土仪器厂商的竞争优势。一旦达成这项全球性的最低企业税率协议,跨国企业的避税优势将极大衰减。此消彼长,国内企业将获得更强的海外竞争力。一般来说,跨国企业注册公司所在主要考虑税率、生产成本和客户分布(运输成本)。很多发展中国家招商引资就是通过税率优势吸引跨国企业设厂。这项协议要求的最低企业税率达成后,未来跨国企业设厂将更多考虑生产成本和客户分布。数据显示,“十三五”期间我国基础研究经费投入基本上增长了1倍,2019年达到了1336亿元,占全社会研发支出的比例首次突破了6%。“十四五”期间,将进一步增加基础研究方面投入。随着我国在高科技研发特别是基础科学研究领域不断增加研发投入,仪器市场不断扩大,将吸引更多仪器巨头在国内设厂,国内的竞争态势也必将愈发激烈。面对海外竞争机遇和国内市场竞争激化,国产仪器厂商需要“走出去”。
  • 国产仪器厂商盈亏“两重天”:最高破百亿,最低跌5000%
    据了解,我国仪器仪表产业在科技进步与工业蓬勃发展的驱动下,已然迈入万亿元规模的新纪元。然而,在2023年,行业内各企业的发展呈现出显著的两极分化现象,总体利润表现欠佳,在高速成长的同时,仪器仪表企业也正在面临产业升级与转型的重大挑战。随着2024年逐渐迈入盛夏时节,国内上市仪器公司陆续对外披露了2023年年度报告,其经营业绩情况成为了业界关注的焦点。仪器信息网以国内40余家上市仪器公司为研究对象,根据其公布的财务数据,列出2023年归属于上市公司股东的净利润TOP40榜单。图1 2023年归属于上市公司股东的净利润榜单注:自2023年4月4日开市起,*ST科华公司股票简称将由“*ST科华”变更为“科华生物”,股票代码仍为“002022”, *ST科华成为深交所2023年第一家“摘星脱帽”的上市公司。从图中可看出,42家上市企业中,31家企业净利润为正,最高为迈瑞医疗,达115.82亿元,同比增长20.56%,是第二名安图生物12.17亿元的近10倍;11家企业净利润为负,最低为华大智造,其净利润为-6.07亿元,同比下降129.98%。迈瑞医疗归母净利润突破百亿2023年迈瑞医疗归母净利润首次突破百亿,据了解,迈瑞医疗上市以来的归母净利润已连续6年保持超20%增长,5年间净利润复合增长率达25.51%。根据迈瑞医疗发布的2024年一季报显示,公司的营收为93.73亿元,同比增长12.06%,净利润为31.60亿元,同比增长22.90%,业绩走势持续向好。此外,迈瑞医疗体外诊断仪器设备报告期内获得了亮眼的装机表现,其中BC-7500系列装机超过2000台。外延式并购一直是迈瑞医疗的业绩增长立足点之一。自2008年启航全球并购之路以来,国内外的多笔并购让迈瑞在核心技术、营销平台和供应链平台的加强,以及新业务拓展上获得极大提升。报告期内,公司与海肽生物研发团队的整合进展顺利,海肽生物的研发新项目均已纳入公司体外诊断业务的统筹管理;公司完成了以现金形式收购DiaSys Diagnostic Systems GmbH 75%股权的交易,DiaSys正式成为迈瑞的控股子公司。同时,2024年1月,迈瑞医疗宣布收购A股上市公司惠泰医疗,成为惠泰医疗第一大股东及控股股东,心血管业务也将是公司接下来发力的重点领域之一。华大智造净利润大幅下滑对于2023年净利润大幅下滑的原因,华大智造提到:一是实验室自动化产品需求萎缩导致相应产品收入同比大幅下滑,整体毛利贡献额减少;二是市场需求变化导致公司计提的资产减值损失较上年同期增加;三是公司持续加大对新产品、新技术的研发投入,推动产品的研发和产业化工作,导致研发费用较上年同期增加;四是公司坚持立足国内,布局全球,加大了营销网络的建设及市场拓展力度导致销售费用较上年同期增加。具体来说,受到疫情红利消退的影响,2023年实验室自动化产品需求萎缩,导致华大制造相应产品收入同比大幅下滑,整体毛利贡献额下降。同时,华大智造发布的计提资产减值准备公告称,2023年公司确认的资产减值损失和信用减值损失总额为 2.74亿元,这也是导致公司全年亏损扩大的主要原因之一,除此之外,公司研发投入还在继续增加,2023年前三季度,华大智造研发投入合计6.42亿元,同比增长22.24%。就这三大影响因素来说,高基数带来的亏损落差情有可原,高研发投入是生命科学研究工具型公司属性所致,疫情红利消退是既定事实,而公司相关的资产减值准备计提是否充分是主要关注点。表1 净利润增幅榜单从近两年净利润数据对比可看出,41家企业中有17家企业净利增幅呈正增长,24家企业营收增幅呈负增长,其中,必创科技归属于上市公司股东的净利润增幅高达774.55%;科华生物、华大智造、易瑞生物、凤凰光学4家企业归属于上市公司股东的净利润同比下降均超过100%,凤凰光学净利润同比下降5005.79%。必创科技净利润增幅高达774.55%报告期内,面对市场变化和竞争的挑战,必创科技业绩大幅增长的主要原因是聚焦智能传感器及光电仪器领域,一方面优化业务结构,加大研发投入和市场开拓的力度,持续提升产品矩阵的竞争力、拓展新应用;另一方面优化资产负债结构,强化内部管理,提升运营效率,全年经营活动产生的现金流量净额为0.96亿元,期末资产负债率为20.10%。必创科技在科研领域推出了系列新产品对标国际一线品牌,工业领域推出智能快检、新型半导体材料诊断、农作物长势分析、精密位移及定位等系列产品;智能传感2.78亿元,同比增长37%,主要应用于智能制造、油田、煤炭、船舶等领域;精密光机9026万元,同比增长10%。在报告期,公司及全资子公司卓立汉光均入选专精特新“小巨人”企业名单,自主研发生产的无线传感器网络系列产品、智能温振传感器、通用光栅光谱仪、荧光光谱、拉曼光谱、高光谱等多项产品的技术性能指标均达到国内较高水平,进一步助力了公司业绩增长。凤凰光学净利润同比下降达5005.79%凤凰光学本次财报公布的各项数据指标表现不尽如人意,除归属于上市公司股东的净利润外,毛利率12.28%,同比减3.28%,净利率-5.15%,同比减5241.55%,销售费用、管理费用、财务费用总计1.72亿元,三费占营收比9.59%,同比增27.02%,每股净资产1.55元,同比减16.18%,每股经营性现金流0.55元,同比增90.03%,每股收益-0.3元,同比减3100.0%。在主营业务方面,凤凰光学聚焦光电影像传感和智能控制两大领域,持续推进光电产品业务的融合发展,受安防行业、家电行业和车载行业不景气和市场竞争加剧影响,公司主营的安防镜头,智能控制器产品和车载镜头营业收入均出现不同幅度下跌,主营产品订单不足、单位固定成本高,毛利率下降;同时,公司继续加大研发投入和市场开拓,研发费用和销售费用同比有较大增长;从而导致经营性亏损。负债状况方面,公司有偿债压力,报告期内合同负债规模环比增幅达34.16%,未完成订单增加,可能有公司交货变慢或者下游需求增强的原因。易瑞生物、科华生物净利润下滑超100%2023年上半年,受国内外公共卫生防控政策变化的影响,易瑞生物体外诊断业务收入和毛利大幅下降。此外,相关资产计提减值准备,加之投资业务等影响,多重因素叠加下,公司业绩出现亏损。对于后续发展,易瑞生物方面表示,将继续保持食品安全快速检测业务稳步发展,并大力拓展动物诊断业务,以实现公司经营效益的提升。科华生物在2023年中报中的营业收入增长显著,但净利润和现金流量净额大幅下滑,表明公司的盈利能力和现金流量管理面临一定的压力。2023年是充满挑战的一年,由表1数据可知,国内41家上市科学仪器企业在经历2022年取得的211.08亿元归属于上市公司股东总净利润后,2023年的该项指标下滑至169.19亿元,跌幅接近20%。由于全年的国家预算紧缩、市场需求萎缩、融资环境冷却等多重不利因素交织,行业内频繁传出经营困境、预期下调、薪资削减及人员精简的消息。面对此景,企业亟需寻求创新突破与战略调整,以应对复杂多变的市场环境。目前,人工智能与量子信息等前沿科技为高端仪器领域注入了前所未有的创新活力,开辟了崭新的发展空间。各家应紧抓这一机遇,聚焦新质生产力的培育与应用,驱动产业升级转型,加速迈向高质量发展的新阶段,确保在激烈的国际竞争中占据先机,引领技术变革与产业革新。附:2022年国内上市仪器公司盈利利润哪家强?TOP40榜单正式公布   上市仪器公司2023年报系列解读:  1、大洗牌!2023年全球仪器公司营收TOP排行榜揭晓  2、2023年国内仪器公司营收排行榜揭晓:谁在逆势中突围?  3、国产品牌冲进前三,2024年全球仪器公司市值榜出炉  4、全球上市仪器公司TOP20盈利能力大比拼  5、国产仪器厂商盈亏“两重天”:最高破百亿,最低跌5000%
  • 招投标将迎来重大变革,财政部拟取消最低价中标的规定!
    p   财政部近日在答复全国人大代表建议时提出,将通过继续推进政府采购结果导向,探索建立用户评价机制,研究修改相关制度办法,继续加强诚信体系建设等举措,着力解决政府采购活动中存在的低价恶性竞争等问题。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/ea39c91f-4d61-4429-9f41-20ae9715057b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   根据《财政部对十三届全国人大一次会议第2938号建议的答复》,有全国人大代表在两会期间提出了《关于在政府采购中建立最优品质中标制度的建议》。对此,财政部答复称,诚如代表所言,目前政府采购招标投标市场中存在低价恶性竞争现象主要由于有关制度设计不能适应经济社会发展的要求。同时,低价恶性现象的出现还在于采购人需求设置不合理、履约验收不到位以及供应商缺乏诚信,不按投标文件和采购合同的承诺诚信履约。 /p p   针对上述问题,财政部介绍,目前正在研究深化政府采购制度改革,进一步完善政府采购制度设计,着力解决政府采购活动中存在的低价恶性竞争等问题。初步考虑拟采取四个方面的措施。其中最受各方关注的是对相关制度办法的修改。 /p p   财政部称,将调整低价优先的交易规则研究取消最低价中标的规定,取消综合评分法中价格权重规定,按照高质量发展的工作要求,着力推进优质优价采购。鼓励有条件的地方开展相关探索实践,为改革积累经验。 /p p   此外,财政部还表示,要继续推进政府采购结果导向,健全采购需求管理和履约验收制度,强化采购人确立采购需求和履约验收管理的责任,完善相关内控制度,提高专业化水平,引导采购人采购优质产品。 /p p   探索建立用户评价机制,依托信息化系统,探索开展对供应商的用户评价,将供应商的信用信息、评价结果作为后续采购的重要依据。继续加强诚信体系建设,推动出台针对政府采购领域严重违法失信行为的联合惩戒备忘录,对包括相关失信主体开展联合惩戒,维护政府采购公平竞争的市场环境。同时,配合相关部门开展质量诚信联合惩戒。依法限制严重质量失信行为当事人参加政府采购活动,倒逼供应商诚信履约。 /p p   据了解,近年来,财政部和发展改革委按照职责分工,不断完善政府采购及招标投标制度,着力提高招标采购质量,实现“物有所值”的采购目标,主要进行了三个方面工作。 /p p    strong 一是完善制度办法,遏制低价恶性竞争现象。 /strong 针对货物和服务招标投标中的低价恶性竞争现象,财政部修订完善了《政府采购货物和服务招标投标管理办法》(财政部令第87号),规定了最低评标价法的适用范围,即技术、服务标准统一的货物服务项目 明确投标人报价明显低于其他投标人的报价,有可能影响产品质量或者不能诚信履约的,且不能证明其报价合理性的,评标委员会应当将其作为无效投标处理。 /p p   针对工程招标投标活动中的低价恶性竞争问题,发展改革委正牵头修订招标投标法,严格限定经评审的最低投标价法的应用范围,强调经评审的最低投标价法适用于具有通用技术、性能标准或者招标人对其技术、性能没有特殊要求的招标项目 同时,从要求评标委员会对疑似低于成本价投标情况进行核实、强化标后合同履行监管、加强招标投标领域信用制度建设等方面,遏制经评审的最低投标价法在实践中被滥用和误用。 /p p   strong  二是强化需求和履约验收管理,着力提高采购质量。 /strong 财政部印发了《财政部关于进一步加强政府采购需求管理和履约验收的指导意见》,明确采购人是需求和履约验收的第一责任人,要求采购需求的制定须严格执行国家相关标准、行业标准、地方标准等标准规范,履约验收时应当按照采购合同的约定对每一项技术、服务、安全标准的履约情况进行确认,并将需求和履约验收管理嵌入本单位内控流程,着力提高采购质量。 /p p    strong 三是加强诚信体系建设,倒逼供应商诚信履约。 /strong 财政部制定印发《在政府采购活动中查询及使用信用记录有关问题的通知》,要求在政府采购活动中查询和使用相关主体的信用记录。在中国政府采购网开辟专栏,发布供应商的严重违法失信记录,并将相关信息与“信用中国”网站进行共享。同时,与多部门签订联合惩戒备忘录依法进行联合惩戒,对包括严重质量违法失信行为在内的多领域违法失信行为当事人,依法限制其参加政府采购活动。 /p p    strong 扩展阅读 /strong /p p style=" text-align: center " strong 人民日报谈& quot 最低价中标& quot ,恶意低价竞争有望得到遏制! /strong /p p   “一些地方的招投标制度可谓‘简单粗暴’。只要‘最低价中标’原则不变,就很难有什么工匠精神、百年老店!”四川仟坤集团副总裁周述军说。 /p p   记者近日在江苏省的苏州和无锡、湖北省的武汉和宜昌、四川省的成都和德阳,对3省6市的100多家实体企业进行调查时发现,“最低价中标”成为企业集中诟病的问题。 /p p   多位企业负责人表示,一些地方和国企招标采用“最低价中标”,这种“重价格、轻质量”的指挥棒,不符合新发展理念,阻碍了中国经济转型升级。 /p p span style=" color: rgb(255, 0, 0) " strong   一、危害较大 /strong /span /p p    strong 容易导致优汰劣胜,埋下安全隐患,影响企业创新的积极性 /strong /p p   “原料一吨8000元,可项目中标价格居然只有六七千元,结果往往是造假的胜利,做优的出局” /p p   一套自动售检装备,中标价居然比制造成本还低30%。这不是天方夜谭,而是让不少企业无奈的招标现实。 /p p   “现在很多PPP(政府和社会资本合作)项目,由政府或大型央企牵头招标,往往是最低价中标,压价非常严重。本来每个车站的模块成本应该是500万至550万元,但是中标价格居然只有350万元。从设备集成商到材料供应商,压力都非常大。” 国内份额最大的城市轨道交通自动售检票设备供应商——苏州雷格特智能设备股份有限公司副总经理袁鑫说。 /p p   企业反映,许多国企和地方政府的招标项目都采取“最低价中标”原则。然而,“最低价中标”这根指挥棒危害甚大。 /p p    strong ——“最低价中标”助长以次充好,导致产品和工程建设质量下降,优汰劣胜。 /strong /p p   “很多地方招标,原料一吨8000元,可项目中标价格居然只有六七千元,很多正规企业根本没办法做,结果是造假的胜利,做优的出局。”四川国光农化股份有限公司副总经理何颉说。 /p p   袁鑫也表示,国内招标压价严重,可产业链上每个环节都还要赚钱,因此上下游企业都在千方百计挖掘“价格低廉、质量过得去但不是特别好”的产品来投标。武汉长兴电器发展有限公司副总经理李卫红坦言,“最低价中标”往往就是牺牲质量来赚钱。 /p p    strong ——“最低价中标”极易引发偷工减料,甚至埋下安全隐患。 /strong /p p   今年3月,西安地铁爆出“电缆门”事件,劣质电缆竟然在多地地铁投标中畅行无阻。“奥凯电缆的中标价已经严重低于成本,可它中标肯定是为了赚钱,那就只能偷工减料了。”特变电工(德阳)电缆股份有限公司常务副总经理严昌龙说。 /p p   东方电气集团东方电机有限公司副总经理曾小平说,“没有哪个企业愿意参与‘最低价中标’,但是现在市场环境被扰乱了,产业链从下游向上游恶性传导:不压价,中不了标 中了标,产品质量往往下降。” /p p    strong ——“最低价中标”影响企业创新研发的积极性。 /strong /p p   成都百裕制药股份有限公司财务经理郭尧尧表示,“最低价中标”对于创新型企业很不利。“我们研发费用高,定价自然就高,尽管药效好,但是招投标上非常吃亏。” /p p   江苏双良集团有限公司财务总监陈强表示,“最低价中标”很少考虑投标企业的产品质量,更不会去考虑技术水平如何。“我们曾去浙江竞标一个项目,招标方就要求是‘最低价中标’,根本不要求品质和运营。这样的招标制度,怎么能有转型升级?又如何鼓励企业投入创新?” /p p   “包括‘最低价中标’在内的压价竞争危害非常大,挤压的不仅是企业效益,也是持续创新的投入空间。”四川日机密封件股份有限公司科技部经理张智说。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、为何“风行” /strong /span /p p   担心“说不清”,规避“履职风险”,导致一些地方倾向于“最低价中标”,“招标方普遍认为,价格低不犯错误” /p p   那么这个企业“人人喊打”的“最低价中标”,从何而来呢? /p p   “最低价中标”的法律依据是《招标投标法》。我国《招标投标法》规定,中标人的投标应当符合下列条件之一:“(一)能够最大限度地满足招标文件中规定的各项综合评价标准 (二)能够满足招标文件的实质性要求,并且经评审的投标价格最低 但是投标价格低于成本的除外。”此外,《评标委员会和评标方法暂行规定》第二十九条也明确规定:“评标方法包括经评审的最低投标价法、综合评估法或者法律、行政法规允许的其他评标方法。” /p p   从以上法条可以看出,我国实施的评标方法并不唯一。那么,为何在实际操作中,价格往往成为评标的唯一要素? /p p    strong ——担心“说不清”“犯错误”,规避“履职风险”,是一些地方和企业倾向于“最低价中标”的重要原因。 /strong /p p   “大家都痛恨‘最低价中标’,可是产业链上每一环都在搞‘最低价中标’,因为你不搞低价,审计可能会审你!现在大力反腐,谁敢采购高质但高价的?虽说这完全是两回事,但别人都是‘最低价中标’,就怕咱有时候说不清啊。”中国第二重型机械集团公司党委副书记王平说。 /p p   张智也表示,尽管现在政府采购只重视价格有客观原因,即产品质量只有使用起来才能检验,但更重要的还是“招标方普遍认为,价格低不犯错误”。 /p p   strong  ——市场质量监管缺位、不到位,也是“最低价中标”大行其道的助力。 /strong /p p   从招标到中标,从施工到竣工,我国质量安全监管体系可谓全覆盖。但依然有一些伪劣产品能“一路畅通”,这往往与执法不严或惩处力度较低有关。 /p p   严昌龙介绍,很多产品,例如电缆的质量检验检测并不难,但像奥凯这样的劣质产品却能拿到质量监管部门的合格报告,说明有关部门质量监管还有漏洞,执法力度还不够。“无论哪种评标方法,送检和抽检必须严格执法,市场的公正和监督不能缺位,否则就会劣币驱逐良币。自从奥凯电缆出事后,质监部门加大了抽检力度,我们周围很多不合规的小企业马上就关门了。” /p p    strong ——招标方过于强调成本而忽视质量,也导致招标的天平倾向于价格。 /strong /p p   尽管法律文件等对招投标的各项指标都做出了规定,但技术等指标的优劣很难在使用前评判,只有价格最易分出高下。为了最大程度节约资金,提高效率,一些工程在招标中故意忽视“能够满足招标文件的实质性要求”这个条件,将低价作为最高标准。即使发现投标人报价过低,也不启动价格认定程序,导致投标人不计成本地恶性竞争。 /p p   “招标法明明要求价格不能低于成本,为啥会有人亏本竞标?因为没有人去核算合理成本。”王平说。 /p p   严昌龙透露,我国普遍采用“最低价中标”,有一个客观原因就是招标方对招标产品性能并不了解,只能谈价格。“我们竞标一些国外或外资企业的项目,招标方会对产品原材料配比、产品结构等进行详尽要求,甚至根据你的设计图进行议价,优质优价,而国内这样的招标很少。” /p p    span style=" color: rgb(255, 0, 0) " strong 三、不应延续 /strong /span /p p   strong  企业建议,在产品招标中,修改“经评审的最低投标价法”,防范恶意低价投标 /strong /p p strong   “要鼓励企业走‘人无我有、人有我优、人优我精’的创新之路,政府采购应逐步改变‘最低价中标’模式” /strong /p p   企业一致表示,“最低价中标”影响正当竞争、降低产品质量,已经成为振兴实体经济的障碍。它不仅不利于供给侧结构性改革的实施,不利于实施质量强国、品牌兴国等国家战略,还会埋下重大安全隐患。为此,企业建议应尽快取消商务标“唯低价是取”和“最低价中标”模式。 /p p   “中国人常强调价廉物美。其实,中国制造到了现阶段,更应强调工匠精神。精心打磨的产品,投入那么多,怎么可能是低价的呢?要强调优质优价,不要再延续‘最低价中标’的传统。”无锡江南电缆有限公司常务副总经理夏亚芳说。 /p p   调查中,多位企业负责人建议,我国应建立健全法律法规,在产品招标中,修改“经评审的最低投标价法”模式,采用“经评审的平均投标价法” 其次,要形成行业成本价格体系,防范恶意低价投标 最后,还要建立诚信体系,健全失信惩罚机制。 /p p   “如果继续拼价格,中国制造在国际市场上是不会有话语权的。要鼓励企业走‘人无我有,人有我优,人优我精’的创新之路,政府采购应逐步改变‘最低价中标’,给全社会释放积极信号。”四川科新机电股份有限公司副总经理李涛说,如果以政府和国企主导的招投标继续沿用“最低价中标”,可能会逼着制造业走外延性扩张的老路。 /p p   企业还建议,在招标过程中,应当严把市场准入关,健全市场出清机制。对于发生过严重质量、安全事故和严重投标失信、履约失信、行贿受贿行为的投标人,以及违法违规的检测机构和人员,要依法作出严肃处理,限制其进入招标投标市场和监管领域。与此同时,也要完善政府招标过程中的追责机制,一旦发现质量问题,即便是最低价,也应对招标方责任人进行追责。 /p p   “像我们专门做高精尖产品的企业很难参与政府招投标,因为一些地方和国企在采购中,只要满足基本使用要求,往往更偏向于价格。可是如果是自己家里装修采购,我们会忽视质量、优先选择最低价的产品,还是优先选择质量、功能最好的,再考虑价格呢?这还是个责任问题。”四川西加云杉科技有限公司副总经理郑新蜀说。 /p
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 中国原奶质量世界最低?炮打乳业新国标
    乳业新国标是进步,还是倒退,是个问题   是保护消费者,还是保护奶农,是个问题   是受制于现实,还是鼓励先进,也是个问题   细菌含量超出国外数十倍的原奶,用还是不用?   蛋白质含量远低正常标准的原奶,用还是不用?   炎症缠身的病体奶牛挤出的原奶,用还是不用?   怀揣着上述疑问的上海奶协副秘书长顾佳升,刚参加完6月上旬的中国奶业首届大会,未能寻到答案。   在行业反弹雀跃中举行的这次盛大集会,洋溢着对产业一体化的期许,几乎屏蔽了三鹿事件后的安全阴影。顾佳升再一次嗅出了曾经的集体沉默的味道。   这些质问,本是抛给6月1日正式施行的乳业“新国标”的,此前数月,作为业内专家,他反复被新国标究竟是历史倒退还是进步的争论声浪所淹没,在化名博客里,他直言不讳,“对三聚氰胺事件的反思正走向歧途”。   两个月前,在另一处奶业的集会上,压抑在业内的腹诽之声,最终却是因为一位好事者的意外提问,才在会议结束前刻,公然引爆。   那场不免愤激的评论中,不止一家乳企,不止一家行业协会,也不止一位专家,炮打了乳业新国标,“离奇”、“意外”等说法频频出口。中国乳业阵营林立,互相攻讦的事情并不新鲜,但放诸一项集11部委、机构之力,耗时近两年,并被寄予开启食品安全新纪元期待的新国标之身,还是令人惊诧。   乳业新国标怎么了?官方语境中的共识之下,究竟掩盖着什么样的秘密和争议?   一夜退回25年   现在的中国原奶质量,可以说是全世界最低了   问题出在了乳业新国标的分支“生乳安全标准”中的蛋白质含量、菌落总数等细分指标的设定上。   三鹿事件中,元凶三聚氰胺正是在生乳环节添加,而添加的最直接动机就是增加蛋白含量,可见这些指标的生死攸关。   一直以来,对于生乳(又称鲜乳,生鲜乳),中国奶业从不乏标准,引用最频的当是1986年农业部颁发的收购标准,以及2003年卫生部的鲜乳卫生标准。   三鹿事件后,奶业标准混乱之弊屡被提及,并一度成为反思所向。2009年初,清理原有乳业标准,再造新国标,即已启动,卫生部受托领衔。   然而,对照两份旧有的生乳标准,在蛋白含量上却难得一致,均系2.95%(即100克生乳含2.95克乳蛋白),菌落总数(通俗理解就是细菌含量)亦呈从严之势,从原有的最低容许每毫升400万提升至50万。   三鹿垮台后,国务院紧急出台《奶业整顿和振兴规划纲要》,在反思中尤为提及“对生鲜乳及乳制品(以下统称乳品)质量监管存在严重缺失,标准体系不完善”,上溯一年,2007年,国务院在关于促进奶业持续健康发展的意见中,更是明确要求“把提高原奶质量放在突出重要的位置,努力提高原料奶的乳脂率和乳蛋白含量,降低菌落总数”。   前有国家指导思想,后经三鹿事件血般教训,太多人坚信,新国标必将更趋严格生乳细分指标,以构筑乳业的第一道安全之门。   然而,2010年4月,等到千呼万唤的新国标正式颁布,年近八旬的原国家乳制品订标组副组长曾寿瀛,难抑惊诧,“这简直是一夜退回25年前”。   若单纯从数值上看,甚至连25年前都不如了,乳蛋白含量从1986年的2.95%,降到了2.8%,菌落总数则从2003年的每毫升50万下调至200万,均为历史新低。在丹麦,在新西兰,在几乎所有的乳业大国,生乳蛋白质含量标准都至少在3.0以上,而菌落总数,美国、欧盟是10万,丹麦是3万,更是严至中国的数十倍。“世界上哪一个国家的标准放低至此?二十多年来一直沿用的历史经验,为什么骤然被推翻?”曾感慨,“现在的中国原奶质量,可以说是全世界最低了。”   此外,一度呼声颇高的体细胞标准,也未出现在终稿中。体细胞,是反映奶牛健康状况的重要指标,国际上早已通行,“不设此标准,新国标开宗明义的生乳应来自‘健康乳畜’的定义几乎是一纸空文。   立足于国情的政府,立足于利益的企业,乳业新国标集众多“智慧”,却被指一夜倒退25年。 (梁伟驰/图)   被推翻的专家“共识”   “与其桌面下偷偷摸摸做,不如把事情拿到桌面上解决。”   因为生乳并不直接饮用,很难说,这些数字上的变更会立竿见影地带来安全祸患,但质疑者仍不免担心,关键标准的显著降低,会传递出宽松妥协的信号,置乳业于新的不可预知的风险之中。   1986年农业部生乳标准中悄然取消了“不准有任何添加或提取”的条款,二十余年后,三聚氰胺被肆意添加,“很难说当初的取消没有埋下纵容的种子。”一位业内人士称。   这样全线放宽的标准何以出台,让顾佳升和曾寿瀛两位专家颇为惶惑,他们都曾参加专家起草组会议,并均认为:“在蛋白质含量等标准上,专家组已达成共识2.95%,何以最终形势逆转?”   曾寿瀛记得,2009年6月第一次参加专家组会议,关于蛋白含量的争议,“会场就像是钟摆,左边喊2.8,右边喊2.95,甚至还有喊2.7的,莫衷一是。”   同年7月,在重庆的一场奶业集会上,部分与会代表公开叫板“对于乳蛋白质含量,不能降低标准迁就落后的生产者和生产方式。”曾寿瀛为此还写信给卫生部领导,直陈“蛋白质菌落总数的指标,无论加加减减,都要有客观依据。”   曾寿瀛在信中回忆,自己早年主持乳业标准制定,之前都要在全国东南西北选中5个城市的卫生单位及企业,每年根据春夏秋冬的季节变化,采样分析数据,进行统计学的处理,最后提出项目指标。   而这一次,因为重在梳理和归并整合,且领衔单位卫生部不分管奶源,基础数据的准备工作并不充分,遂造成了各种意见,各怀动机,各自为政。   多少因为领导批示此信的作用,8月的专家会上局势出现了变化。尤其是8月19日,“专家送审稿,几乎是专家一条条地过堂,再也听不到2.8%的呼声了。”他说。   但显然,老先生过于乐观了。先是两个月后的公开征求意见稿中,蛋白质含量标准被折中为2.95%,附加每年5-9月为2.8%,至正式发布稿,则只余2.8%了。   南方周末记者获悉,最终拍板是在专家送审稿的审定会议上,一位参会专家回忆说,农业部和奶协,力挺2.8%方案,这一意见最终被卫生部和国家标准委员会采纳。   这位专家记得,当时农业部门的人指出, 在内蒙古、黑龙江等北方地区,许多散户奶源蛋白含量连2.8%尚难达到,何谈2.95%?   “没有哪个企业敢说它没有收过2.95%以下的牛奶,与其桌面下偷偷摸摸做,不如把事情拿到桌面上解决。2.8%就是立足国情实事求是。”农业部奶办主任王俊勋此前回应媒体时称。   鼓励先进,还是保护落后?   “急于比照欧盟或发达国家的标准,中国的乳业才要垮了。”   立足国情论,得到了主持新国标制定的专家起草组组长、国家疾控中心营养与食品安全所副所长王竹天的认同。   他接受南方周末记者采访时表示,蛋白质含量降低、菌落数放宽,是兼顾行业现实,保障散户奶农的利益,而体细胞未被纳入则还考虑到,一旦增设,整个行业将要增加巨额设备添置和检测成本,且监管体系也未做好准备,“步子不能走得太前”。王教授还直言,急于比照欧盟或发达国家的标准,“中国的乳业才要跨了。”   支持“立足国情”论者不乏其人,比如中国奶业协会理事陈渝坦言,过去标准中的2.95%均非强制性,从没有被严格遵守过,所谓”退“,无从谈起。   而以黑龙江、辽宁、内蒙古为代表的北方奶源大省的奶协,更是立场坚决,甚至私下联合纵横,辽宁奶协秘书长卢戈川说,他们调研发现超过40%的奶户原奶质量不能稳定在2.95%之上。   从1986年的旧生乳国标颁布至今,中国奶牛的养殖水平仍在低水平徘徊,生乳质量也没有顺时改善,反而频露混乱之相。“这就是必须正视的无情的现实。”王竹天说。   甚至有支持专家认为,三聚氰胺事件之所以爆发,正是因为过去的生乳标准强调蛋白含量的要求太高了,部分散户奶农达不到要求,才不惜铤而走险。   这就是农业部门弃2.95%取2.8%的用心所在,作为强制性新国标,如果标准定高,要不增添散户奶农造假的几率,要不“万一出现企业拒收,奶农倒奶,则事关三农稳定的大局了”。   是保护奶农利益,还是保护消费者利益,成了难以取舍的选择题。   三聚氰胺风波之后,基于奶源环节暴露出的漏洞,奶牛养殖规范化和规模化的呼声日益高涨。同是上海奶协的副秘书长曹明是就曾高呼,中国乳业的根本出路在于终结落后的生产方式——散户养殖。现在,“尊重这样的现实,究竟在鼓励先进,还是保护落后?”   四川新希望乳业的一位高层亦直言,“奶牛正常养殖,生乳完全可以达到2.95%,反之,必是养殖不科学,现在标准低了,其后果就是再不科学也可以达标,中国奶源质量何时才能真正提高?”   中国乳制品工业协会一位专家一言以蔽之,新国标将“食品安全问题和民生问题混为一谈了”,从而可能坐失行业自新的机遇。   一锅被利益搅浑的粥   “七十多位不同领域的专家,11个部委机构的联合,难道会是摆设?”   漩涡还不止于是否立足国情这般简单,企业也被认为是推手之一。   新国标正式颁布前,曾经历了公开征集意见阶段。南方周末记者获得的一份征求意见汇总表显示,力主生乳指标放宽的意见中不乏一些大型乳企的身影。   比如一家企业就主张降低标准,反对增设体细胞指标,而另一家则希望菌落总数放宽至1000万(这一数值是欧盟标准的100倍),理由是散户奶源需要一定时间规范和提升。“这些特大企业,一直以来奶源的覆盖面广,质量不稳定,若是标准定高,势必会影响合格奶源持续充足的供应。”一位业内人士如是分析。   实际上,新国标的制定从始至终,一直被人指责受企业干扰。最具代表性的细节是,新国标起初吸纳了蒙牛、伊利等大企业参与,这本是国标制定的惯例,但后来引发指责,最终的折中结果是,新国标有史以来第一次没了起草人和起草单位的栏目。   中国乳业一直以来还被认为存在着巴氏奶阵营和常温奶阵营的尖锐对立,通常的分析是,巴氏奶阵营,因对奶源质量要求更高,自是乐见标准提高,而常温奶阵营则相反。   一位观察家推测新国标可能存在着刻意平衡利益的影子:强制性地赋予了巴氏奶标鲜的地位,易于其被市场识别,这被视为胜利之处,而作为平衡,在生乳标准上,则适当倾向于常温奶阵营的诉求,如是则互有攻守。   这样的揣测被相关企业反驳,强调自己从头至尾,也没有动议过放宽生乳标准,所谓1000万菌落数的动议也是无中生有。   专家起草组组长王竹天,尽管也承认新国标是“各方利益协调后的产物”,但断然否认存在国标为大企业左右的情况,“七十多位不同领域的专家,11个部委机构的联合,难道会是摆设?”   而作为最初生乳标准的起草单位的另一家企业则未接受采访,其参与起草工作的代表只是强调:“争论这么久,难得新国标有了共识,不要再起波澜了。”   叫屈者解释,若论实际影响,放宽生乳标准,只会使奶企在奶源收购上损失对奶农的话语权,且增加低标准原料的加工成本,企业怎会自乱阵脚?   而质疑者坚定认为,降低标准,客观上特大企业是受益的,可以借此扩大收购半径,缓解原料匮乏压力,“至于增加加工环节成本的弊,远小于扩大奶源带来的利。”   作为反击,在征求意见稿的回馈中,一家企业也曾指责动议增加体细胞的部分专家“存在商业目的,因为大部分在推销检测仪器”。   对于不明就里的消费者来说,这样的互相指摘、揣度越发增其安全忧虑,而未及整肃中国乳业乱相,新国标自己已陷入乱麻之中。   乳业大国不设防?   “什么都进口,我们自己究竟留下了什么?”   新国标的争议正在私下酝酿,但专家组组长王竹天强调,“国标再低,各个企业可以针对自身的需求来提高企业标准。”   起草专家内部也有抱释然态度的,江苏省疾控中心研究员袁宝君就称“蛋白质含量、菌落总数并不直接威胁消费者安全,因为最终面对消费者的成品质量标准并没有降低”。   曾寿瀛很不以为然,蛋白质关乎营养,菌落总数则攸关质量,“难道非要有毒才叫威胁安全?”   质疑者如顾佳升难掩遗憾,“三聚氰胺事件,表面上是一个偶发的安全事件,但背后恰是中国乳业表面繁荣、基础薄弱的必然反映。”这位唱反调的专家,一度被视为“盲目比照国外标准”的论坛专家。   看看支撑乳业大国的基础,“既进口奶牛又进口牧草,进口了黄油、奶酪、奶粉,又进口乳清粉,还在进口其他各种乳原料,以及一些从乳汁中提取出来的种种天价添加剂,我们自己究竟留下了什么?”他忧心忡忡。   没有配套的饲料基地建设,奶牛养殖模式分散却又缺乏长远规划,乳制品名目繁多而背离牛奶本质,这些问题本可以借三聚氰胺事件一并被反思,梳理,继而重新出发。   2009年的官方数据显示,中国乳业显示了强劲的反弹的势头,三聚氰胺事件对市场的负面影响已渐消弭,保卫行业的努力正收获实效。   只是,被寄予构筑质量安全之门第一步的乳业新国标,才落地,已飘摇。
  • 一文了解|红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知的是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步的研究。图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距,即可获得近场、远场混合信号( 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集的光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO2衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长( ~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO2)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO2强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外另外,值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO2;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO2。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
  • ATAGO 系列产品全国最低价
    上海人和科学仪器有限公司联手ATAGO日本总部推出2009年中国市场最&ldquo 诚&rdquo 促销活动。首批促销产品: MASTER-M 现货300台 RMB 820元/台 起订数量10台 RMB 800元/台 起订数量20台 促销时间:2009年1月20日起,售完为止。 同时PAL-1,PAL-2,PAL-3, RX-5000&alpha 促销活动也在进行中。 我司郑重承诺:以上促销产品价格系全国最低价。中国大陆地区任何分销商如能够提供合法有效且低于我司促销价的书面证据,在向我司订购以上产品时,我司将给予比其所提供报价更低2%--5%的价格。 我司将在2009年陆续推出更多品牌产品的惊喜优惠活动。尽请关注www.renhe.net 促销产品详情,欢迎来电垂询:021-6485 0099,400 820 0117 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 诚征全国经销商!
  • 温度如何影响污水深度处理膜污染?
    安徽理工大学地球与环境学院青年教师陶晨与加拿大滑铁卢大学工程学院教授Wayne Parker和不列颠哥伦比亚大学教授Pierre Berube课题组合作,针对安大略省多伦多市Keswick污水回用中心冬季深度处理污染加剧的问题,进行了前期历史数据分析和后期实验研究,厘清了二级生物处理运行温度和深度处理超滤运行温度对膜污染的影响机制。相关研究成果发表于《分离纯化杂志》。二级和深度处理运行温度对膜污染影响机制的示意图 安徽理工大学供图污水深度处理是指城市污水经一级、二级处理后,为了达到一定的回用水标准,使污水作为水资源回用于生产或生活的进一步水处理过程。超滤被认为是一种非常有前景的污水回用处置方式,然而膜污染问题一直是限制其长期稳定运行以及运营成本管控的瓶颈性问题。 “因为膜污染会造成跨膜压差的上升,在维持目标处理效率的前提下,需要提高膜清洗与更换的频率,从而增加运营成本和能源消耗。一般来说,膜污染控制成本占运行成本的20%-30%;其中,膜清洗和膜更换成本分别占膜污染控制总成本的9%-30%和40%-65%。而对于污水深度处理的运行场景来说,这些数据会随着冬季温度的降低,进一步升高。”陶晨向《中国科学报》介绍。近年来,各国学者针对温度对膜污染的影响展开了相关研究,然而研究对象多为膜生物反应器(MBR)工艺。一方面,在深度处理中,因为膜不直接与污泥混合液接触,所以膜污染机理与MBR有很大区别;另一方面,深度处理中膜过滤过程与二级生物过程分开进行,温度对二者造成的影响程度不同且存在交叉影响,值得分别去探讨。此次研究中,陶晨等提出了活性污泥模型与实验结合的方法,通过新颖的实验设计,评价了温度通过影响二级生物过程及其代谢产物,以及温度影响膜固有性质对深度处理膜污染的影响机制。“我们研究发现,将二级生物处理运行温度从20℃降低到8℃,且超滤运行温度为20℃不变时,总膜阻力大幅度增加。这主要是由于二级生物过程在低温下产生的可溶性微生物产物大量增加导致,其中与生物质衰减相关的有机质(BAP)是最主要膜污染物质。”陶晨说。进一步地,降低超滤运行温度时,总膜阻力增加了122%,这一部分膜阻力的增加是由于膜孔径的减小和液体黏度的增加。研究发现,总膜阻力的增加并不是各部分影响的简单叠加,而是存在复杂的交互影响。陶晨说,该工作全面探讨了运行温度对膜污染的影响,为不同温度运行条件下设计膜污染缓解措施提供了理论基础,也为探讨其他极端运行条件下二级生物过程与膜污染间的关系提供了方法借鉴。”审稿人认为:作者研究了实际污水处理厂运行温度对深度处理膜污染的影响机制,区分了造成低温条件下总膜阻力上升的不同原因,是一项有趣的研究工作,对缓解膜污染并减少运行成本提供了理论参考,具有实际意义。
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • TDLAS检测温室气体原理
    GHK-5100多组分温室气体分析仪基于TDLAS可调式半导体激光器吸收光谱技术,内置激光控制模块、吸收池、泵吸处理控制模块、信号处理模块,可实现进样气的实时在线及现场便携测量,通过扩展激光器可实现多组分气体同步测量。下文简单地为您介绍一下关于“TDLAS检测温室气体原理”。 TDLAS检测温室气体原理为通过电流和温度调谐半导体激光器的输出波长,扫描被测物质的某一条吸收谱线,通过检测吸收光谱的吸收强度获得被测物质的浓度。 TDLAS检测的是激光穿过被测气体通道上的分子数,获得的气体浓度是整个通道的平均浓度。TDLAS的气体浓度定量计算是以Beer-Lambert定律为基础,Beer-Lambert定律指出了光吸收与光穿过被检测物质之间的关系,当一束频率为V的光束穿过吸收物质后,在光束穿过被测气体的光强变化为: I(v)=I0(v)exp[-σ(v)CL] I(v):光束穿过被测气体的透射光强度 I0(v):入射光强度 σ(v):被测气体分子吸收截面 C:被测气体的浓度 L:光程 因此,可通过测量气体对激光的衰减来测量气体的浓度。值得注意的是σ(v)吸收截面是分子吸收线强S(V)和分子吸收线形φ(V)的乘积,吸收线强S(V)受到气体温度的影响,吸收线形φ(V)收到压力展宽的影响,因此在实际检测中,TDLAS分析仪需输入温度和压力值进行补偿,如果过程气体的温度和压力变化比较大,还需要通过接入温度和压力传感器实时进行温度压力补偿。 GHK-5100多组分温室气体分析仪采用模块化定制,体积小、重量轻,采用温度、压力补偿算法以及光源自动锁频技术,环境适应性强,满足用户高精度温室气体在线连续监测需求。
  • 新手捋清qPCR原理并不难~
    什么是实时荧光定量PCR(qPCR)?在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过Cq值和标准曲线对起始模板进行定量分析的方法。一.使DNA产物发出荧光的常用标记方法① 非特异性荧光染料—SYBR Green荧光染料也称DNA结合染料,SYBR Green 是一种结合于所有DNA双螺旋小沟区域的具有绿色激发波长的染料。游离的SYBR Green几乎没有荧光信号,但结合双链DNA后,其荧光信号可呈数百倍的增加。随PCR产物的增加,PCR产物与染料的结合量也增大,其荧光信号强度代表双链DNA分子的数量。▲ 图1. SYBR Green染料法发光原理② 特异性荧光探针—TaqMan探针qPCR中最常用的荧光探针为TaqMan探针,其基本原理是依据目的基因设计合成一个能够与之特异性杂交的探针,该探针的5' 端标记荧光基团,3' 端标记淬灭基团。完整的探针,两个基团的空间距离很近,淬灭基团的靠近会通过空间上的荧光共振能力转移(FRET)而显著降低由荧光基团发射的荧光。PCR扩增时,探针一般先于引物结合到目的基因序列上,结合位点位于其中一个引物结合位点的下游。随着引物的延伸通过Taq DNA聚合酶的5' 外切酶活性,探针发生水解,荧光基团和淬灭基团进行分离,从而增强了荧光基团的信号。每经过一个PCR循环,就会有更多的荧光基因从探针上脱离,荧光强度会随着PCR产物的增加而增加。因此,根据PCR反应体系中的荧光强度即可得出初始DNA模板的数量。▲ 图2. TaqMan探针法发光原理二.荧光定量PCR系统如何记录荧光信号所有的实时荧光定量PCR系统都有三个共同的组成部分:温控系统,光源系统和检测系统。温控系统用于PCR扩增,执行高温变性,低温退火和中温延伸的步骤;光源系统用于激发荧光染料或荧光基团,使其发出信号;检测系统采集荧光信号。温控系统每完成一个循环,光源和检测系统则先后进行激发和采集,从而实时记录每一个循环荧光信号的变化。随着PCR反应的进行,产物逐渐积累,荧光信号逐渐增强。▲ 图3. 实时荧光定量PCR系统检测原理那么Azure Cielo™ 实时荧光定量PCR系统,采用了高能LED作为光源系统,可保证光源强度高,光源一致性好;高品质的帕尔贴温度模块作为温控系统,升降温速率快,可设置12列跨度30°C的温度梯度;卓越的CMOS拍照+光纤信号传输作为检测系统,CMOS检测灵敏度高,光纤传输速度快,无光损失和噪音干扰,无需ROX校准。Azure Cielo™ 实时荧光定量PCR系统的高配置保证为您的科学研究提供高精准度、高灵敏度和高可靠性的实验结果。▲ 图4. Azure Cielo™ 实时荧光定量PCR系统三.如何根据荧光信号得出初始模板量实时荧光定量PCR系统所监测到的所有循环的荧光信号可以绘制成一条曲线,即为荧光扩增曲线。扩增曲线一般分为基线期、指数期、线性期和平台期。指数期内,每个循环PCR产物量大约增加1倍(假定100%反应效率),该阶段的扩增反应具有高度特异性和精确度,所以重复性好。▲ 图5. 扩增曲线qPCR软件会在指数期划定一个阈值线,阈值线对应一个荧光强度值,即阈值。在qPCR过程中,各扩增产物的荧光信号达到设定的阈值时,所经过的扩增循环数即是Cq值。Cq值与初始模板量的对数成线性关系。样本初始模板量越多,荧光信号达到阈值所经历的循环数越少,即Cq值越小。▲ 图6. Cq值与初始模板量的关系
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制