当前位置: 仪器信息网 > 行业主题 > >

比热容测定仪的原理

仪器信息网比热容测定仪的原理专题为您提供2024年最新比热容测定仪的原理价格报价、厂家品牌的相关信息, 包括比热容测定仪的原理参数、型号等,不管是国产,还是进口品牌的比热容测定仪的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合比热容测定仪的原理相关的耗材配件、试剂标物,还有比热容测定仪的原理相关的最新资讯、资料,以及比热容测定仪的原理相关的解决方案。

比热容测定仪的原理相关的资讯

  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • 梅特勒托利多热分析用户会暨技术研讨会报告
    报告名称:新版国标GB/T 6425—2008《热分析术语》的制订与指要 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 新版国标主要变化和各点说明  - 新版热分析定义及改变原因  - 两种类型DSC及其所测物理量  - 关于温度调制式差示扫描量热法(modulated-temperature differential scanning calorimetry)的简称  - 同时与串接联用技术的符号表示  - 关于sample (样品), specimen (试样) 和specimens (试样和参比物)  - 试样质量  - 热分析曲线TA curve  - 玻璃化glass transition  - 关于“热流”和 “热流量”(heat flow)  - 动力学三参量(kinetic triplet) * 新版国标特征(创新点)  - 具有一定的原创性  - 充分反映热分析的新进展  - 对热分析的新技术给出了科学定义  - 叫法严谨  - 对某些热分析术语定义及其表达做了重新表述  - 新版国标是制订我国各种热分析标准的最基本的文件和基础 报告名称:热固性树脂固化反应的表征 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 固化反应的两个重要效应  - 玻璃化温度提高  - 放热反应 * Tg * 固化反应的量热测量  - 基本表达式  - 等温固化度与升温后固化  - 固化反应动力学 * 固化反应举例:以环氧树脂为例  - 影响固化反应的因素  - 影响玻璃化的因素  - 贮存效应  - 固化因子(cure factor, CF) 报告名称:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - STARe系统仪器  - 气体切换器  - 参考标准  - 国内外标准比较  - 标准内容  - OIT典型的温度程序  - 聚乙烯:氧化稳定性  - PE-PP共聚物:空气中测定氧化稳定性(OIT)  - PP的OIT测试  - 聚乙烯OIT的TMA测量  - HP DSC827e: 应用 报告名称:比热容的DSC测量 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容: * 比热容的介绍及测试标准 * 比热容的测试方法  - 直接法(Direct method)  - 稳态ADSC法  - 蓝宝石法  1. ISO标准中蓝宝石法细节  2. ASTM标准中蓝宝石法细节  3. DIN标准中蓝宝石法细节  - 步进扫描  - 正弦温度调制方法  1. 计算原理  2. PET的ADSC测量  3. 如何进行ADSC测量  - 多频温度调制(TOPEM® )方法  1. TOPEN的原理  2. TOPEN的计算  3. TOPEN的优点 * 比热容测试注意事项 * 比热容测试方法比较 报告名称:Tg测量的不同标准(ASTM/DIN/Richardson)和不同技术(DSC/TMA/DMA)及其比较 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容:  - Tg测量方法概述  - DSC标准方法  - TMA标准方法  - DMA标准方法  - 聚苯乙烯的Tg测试  1. DSC、TMA、DMA三种方法测试、  2. 三种方法结果比较、  - 三种测试计算方法的影响  - 循环测试  - Tg的影响因素  - DSC、调制DSC、TMA、DLTMA、DMA方法优、缺点汇总、灵敏度比较  - Tg和相应的Dcp 报告名称:DSC在聚合物结晶动力学方面的应用 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - 差示扫描量热仪DSC 1  - 两种PP产品的结晶参数对比  - 非等温结晶动力学方程  - PPF401的非等温结晶DSC曲线  - PPS2040的非等温结晶DSC曲线  - 两种PP非等温结晶过程参数对比  - PPF401的相对结晶度X(T)-T曲线  - PPS2040的相对结晶度X(T)-T曲线  - 根据Ozawa方法获得的两种PP非等温结晶动力学参数  - Kissinger 的活化能公式  - PP的活化能结果  - PET 的非等温结晶动力学  - 聚合物的等温结晶动力学  - PP的等温结晶曲线  - 两种PP的等温结晶动力学参数对比 报告名称:热分析在弹性体行业的应用 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容:  - 热分析在弹性体材料领域的应用  - 差示扫描量热法(DSC)  - 热重分析法(TGA)  - 热机械分析(TMA)  - 动态热机械分析(DMA)  - 玻璃化转变的计算方法  - 软化的针入TMA测量  - 硫化度对玻璃化转变的影响  - 增塑剂对玻璃化转变的影响  - 相容性聚合物共混物的玻璃化转变  - 不相容聚合物共混物的玻璃化转变  - 不相容聚合物共混物的DMA测试  - 密封圈适用温度范围的DSC测定  - 结晶对氯丁橡胶(CR)玻璃化转变的影响  - 氯丁橡胶(CR)结晶和熔融的测量  - 氯丁橡胶(CR)的DMA测量  - 结晶对硅橡胶玻璃化转变的影响  - 硅橡胶的DMA测量  - 预处理对EPDM熔融的影响  - 不同种类EPDM的DSC比较  - 顺丁橡胶(BR)的冷结晶与熔融  - 玻璃化转变的影响因素  - 聚氨酯DSC与DMA测量的比较  - 天然橡胶(NR)的TGA  - 丁苯橡胶(SBR)的TGA  - 丁腈橡胶(NBR)的TGA  - 三元乙丙橡胶(EPDM)的TGA  - 氯丁橡胶(CR)的TGA  - 乳聚SBR和溶聚SBR的热分解区别  - 橡胶中炭黑和无机填料含量测试  - 弹性体中碳黑的TGA分析  - 含一种聚合物橡胶的组分分析  - 氯丁橡胶弹性体中碳黑的分析  - 橡胶含量分析  - 多种橡胶比较  - 含多种聚合物的橡胶的组分分析  - 组分分析方法  - Delta cp在组分分析中的作用  - EPDM/SBR共混物的TGA和DSC联合分析  - 氯醚橡胶和卤化丁基橡胶的TGA  - 含不同种类碳黑的弹性体的分析  - 不同种类碳黑的TGA比较测量  - 氟橡胶(FPR)的TGA  - 硅橡胶的TGA  - 含其它聚合物的NR共混物的TGA  - 含SBR组分的弹性体的TGA  - CR/NBR共混物的TGA分析  - 油含量的TGA测定  - 含油与不含油SBR的减压(真空)TGA  - 压力对NR/SBR共混物TGA的影响  - BR和NBR的TGA-FTIR联用鉴别  - BR/NR弹性体的TGA/FTIR分析  - 弹性体热分析参数  - 硫化反应  - 硫化动力学  - 等温硫化动力学的测量  - NBR硫化的TGA测量  - 硫化过程的TGA-MS联用气体分析  - 填料影响  - 振动阻尼  - SBR 的频率扫描测试  - 振动阻尼-交联密度的影响  - 松弛谱的温度依赖性  - 等温蠕变和回复  - 交联对蠕变和回复的影响  - 不同炭黑含量的EPDM  - 蠕变和松弛  - 热致蠕变  - 典型的TSC曲线  - TSC测试-不同硫化度的SBR  - TSC测试-不同炭黑含量的EPDM  - 橡胶在甲苯中的溶胀  - 溶胀模式  - 阻燃剂三水合铝和氢氧化镁的TGA  - 阻燃剂物质的DSC测量  - EVA中阻燃剂的TGA  - 增塑剂矿物油的DSC测量  - 弹性体的DSC测量  - CIIR弹性体的DSC测量  - SBR低分子量成分的转变  - 借助ADSC用于曲线解析 报告名称:MP超越熔点仪系列 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容: * 超越熔点仪系列 * 特点和优点  - 简单  - 高效  - 视频记录、回放  - 符合标准 - 设计优势  - 结果可靠  - 彩色触摸屏  - 文件安全 * 技术  - 光源  - 图象  - 测量方法  - 终点测定  - 炉体  - 升温速率 * MP50 – 满足基本要求 * MP70 – 最大灵活性的最佳选择 * MP90 – 最高水准的熔点测定 * MP技术指标 * MP熔点仪的应用  - 熔融  - 通过混合物熔点鉴定  - 熔融和分解  - 液晶  - 无机物熔点  - 热致变色物质  - 聚合物熔融 报告名称:热分析仪器维修保养介绍 演讲嘉宾:唐幸初 梅特勒托利多热分析仪器部服务主管、安调与维修专家 主要内容:  - DSC外壳拆卸,传感器的测量  - DSC传感器的更换  - TGA搬运的准备工作  - TGA搬运结束后的恢复  - TGA的毛细管的安装  - DSC和TGA的校准
  • 开启学霸模式,十大厂商会议火热报名中
    2014年3月,在迎春花开放的季节,各大厂商的新技术、新应用的培训也百花争鸣般呈现给仪器信息网的网友们,已经开放报名的会议有近10个,请网友们开启你的学霸模式,今天的努力是明天的收获!   1、热分析及联用技术在材料分析中的最新进展  时间:2014-03-20 14:30 主讲厂商:PerkinElmer   会议介绍:热分析仪器可以实现塑料、橡胶、金属等材料及药品在温变时的物理变化,但要同时完成对逸出气体成分的分析,则需要与红外、气相及质谱等技术联用,实现对样品的全面、深入分析。本次讲座主要介绍热分析及联用技术在材料分析领域的应用,助您从容面对质量控制及材料研发工作中遇到的表征技术难题。   2、创新拉曼采样技术及应用技术&mdash &mdash 海洋光学IDRaman系列   时间:2014-03-27 10:00 主讲厂商:海洋光学   会议介绍:介绍海洋光学IDRaman系列产品和拉曼技术在药品检测、安检、环境保护、材料表征和食品安全中的应用。IDRaman mini最终入围具有光电界&ldquo 奥斯卡&rdquo 之称的2014年度美国&ldquo Prism Award&rdquo ,并成为唯一入围的拉曼类产品 荣获2013年《Laboratory instrument》 &ldquo 读者选择&rdquo 大奖,核心采样技术ROS(Raster Orbital Scanning)荣获英国《分析科学家》(The Analytical Scientist)杂志颁发的&ldquo 分析科学家创新大奖&rdquo (The Analytical Scientist Innovation Awards,简称TASIAs)。   3、GC 2.0时代&mdash &mdash TRACE1300系列GC(模块化GC)   时间:2014-03-28 14:00 主讲厂商:赛默飞世尔   会议介绍:赛默飞向您介绍一款可以应用在石化行业的模块化式GC,而且结果更准确,分析更简单, 维护更方便,快速经济的解决了某农残检测用户临时增加检测项目的难题,设备更可以7*24小时连续工作。   4、梅特勒-托利多快速水分测定仪产品培训   时间:2014-04-02 14:30 主讲厂商:梅特勒-托利多   会议介绍:梅特勒-托利多快速水分测定仪可将水分测定流程从6-8小时缩短为5-15分钟,大幅提高水分测定的工作效率。本讲介绍快速水分测定原理,新品,配件选择,水分测定仪的校准以及执行日常的快速测试。   5、基于CE/LC-MS平台的法医毒物学应用进展   时间:2014-04-08 10:00 主讲厂商:安捷伦科技   会议介绍:使用和吸食毒品、致幻剂对人体有极大的伤害,我国在法律上对毒品的贩运、使用有严格的规定,但由于样品基质的复杂,使得确认使用毒品的种类和剂量在化学分析技术上存在很大挑战。如何简便地取样、制样,并能够准确地定性、定量是法医学对毒品、毒物检测的面临的一大课题。本次讲座将详细介绍安捷伦基于CE/LC-MS平台的法医毒物学解决方案,并分享这些新技术在唾液中的毒物成分、策划药、止痛剂等热点领域的应用。   6、移液学院-获得最佳的移液结果   时间:2014-04-09 14:00 主讲厂商:赛多利斯   会议介绍:接受培训以改善性能、人体工程学和安全性,您是否考虑到因移液操作不良或 RSI(重复性劳损)而影响工作结果?您是否曾考虑过手或手臂疼痛问题可能与所使用的仪表或技巧相关?您是否知道针对不同类型的液体应使用哪种移液技巧?使用结果是否因用户而异?移液学院研讨会提供综合指南包,这是为与您一起回答这些问题而开发。在研讨会期间,您将学习如何认识与移液相关的风险因素并增加对人体工程学、安全性和移液技巧的认识,以在日常工作中避免这些风险。   7、乳品微生物快速检测、方法验证和风险管理   时间:2014-04-15 14:30 主讲厂商:杜邦   会议介绍:杜邦公司作为微生物分子诊断的领导者,在乳品行业微生物检测和风险管理领域积累了丰富的经验,本次网络讲堂将为听众系统的介绍:乳品行业微生物检测的要求和标准 乳品微生物(包括克罗诺阪崎肠杆菌,沙门氏菌,金黄色葡萄球菌,单增李斯特氏菌,霉菌酵母等)快速检测、鉴定和分型技术 符合AOAC的方法验证程序 乳品企业微生物风险评估、污染溯源和干预措施及成功案例。   8、玻璃化转变温度Tg的测定   时间:2014-04-16 14:30 主讲厂商:梅特勒-托利多   会议介绍: 玻璃化转变发生在所有非晶或半结晶材料中,并导致材料性能的明显改变,如热膨胀、比热容或模量。由于玻璃化转变对于材料的化学及物理结构的影响非常大,可用于对材料的表征,因此在很多行业中都非常重要。热分析提供不同的方法来测定玻璃化转变及其温度。本次会议中,我们将讨论玻璃化转变的基本理论和几种不同的测定玻璃化转变及其温度的技术和方法。   9、拉曼光谱技术在食品检测中的应用   时间:2014-04-23 10:00 主讲厂商:赛默飞世尔   会议介绍:主要介绍拉曼光谱技术在食品成分鉴定、油品分析、添加剂鉴别以及利用表面增强拉曼光谱-SERS技术对食品中痕量成分进行分析。   10、动态热机械分析仪(DMA)   时间:2014-05-14 14:30 主讲厂商:梅特勒-托利多   会议介绍:动态机械分析仪 (DMA) 用于测量材料机械性能及粘弹性能随温度、时间及频率的变化,新型DMA1操作方便,既可以进行传统DMA分析,而且可以使用静态力进行实验或者在液体中进行测试。灵活可旋转的的测试头使得测试不但可以在所有标准形变模式下进行,甚至可在液体或特定相对湿度条件下进行。DMA1是质量控制中既经济又可靠的理想选择。
  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 激光闪光法热常数测量系统
  • 钱义祥&曾智强 :DSC曲线的峰谷之美
    热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡, 绝妙 ! DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念是一个完整的美学体系。DSC曲线的峰谷之美,TG曲线的流淌之美和DMA曲线的激荡之美构成热分析曲线之美的三部曲。本篇是DSC曲线的峰谷之美。【热分析简明教程】第五章是热分析实验方法的标准与规范。差示扫描量热法DSC的标准与规范包括玻璃化转变温度测定、熔融和结晶温度、熔融和结晶焓的测定、比热容的测定、特定反应曲线温度、时间、反应热和转化率的测定、氧化诱导期的测定、结晶动力学的测定。本文以差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定为示例,展现DSC曲线的峰谷之美。山高人为峰,脚踏幽幻谷。迈开脚步,探索DSC峰谷之美。传热学是研究由温差引起的热能传递规律的科学。热流DSC是测定热变化引起试样与参比物温差变化的研究方法。温度差既是热量变化的反映,又是引发热传导的必要条件。当试样发生热反应时,温差引起热能传递,DSC曲线上出现了吸热峰、放热峰和和台阶。约定DSC曲线Y轴的代表的热效应方向之后(例如将Y轴正向约定为放热方向),吸热效应用凹下的谷表示;放热效应用凸起的峰表示。高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。峰、谷和向吸热方向偏离的台阶是展现DSC曲线的峰谷之美的基本形态和美姿。它反映了事物变化的本质和规律。 一.玻璃化转变曲线的阶跃之美玻璃化转变测定的标准是GB/T19466.2-2004/ISO11357-2 2020。它规定了塑料玻璃化转变温度的DSC测定法。玻璃化转变研究植根于高分子化学、高分子物理和近代研究方法(热分析)的根基上。热分析研究玻璃化转变的目的就是科学认识玻璃化转变,用高分子化学、高分子物理和凝聚态物理来解析玻璃化转变曲线中的科学问题和应用问题。玻璃化转变是高聚物的基本物理转变,研究内涵极为丰富,它涉及玻璃化转变的特征温度、状态变化、热力学参数、力学性能、滞后圈、活化能测定;玻璃化转变温度的调控;玻璃化转变与蠕变、应力松弛、屈服、界面、银纹的关联;热-力历史对Tg的影响、以及玻璃化转变与高聚物结构、性能、加工、使用的相关性等。并通过分子运动揭示分子结构与材料性能之间的内联系及基本规律。用DSC方法研究玻璃化转变,当试样发生玻璃化转变时,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物发生物理老化时,应力松弛过程使台阶转化为凹下的谷。我们从玻璃化转变曲线的阶跃和凹下的谷发现玻璃化转变的外在美和内在美。1. 玻璃化转变的简约之美和变化之美 玻璃化转变峰形 应力松弛引起的峰形变化 TMA压入模式测定导线双层涂层的Tg,呈双台阶式,如图所示: 玻璃化转变的峰形简洁优美,简静和谐,简约的形式却表达了丰富的内容。玻璃化转变反映了物质的状态、使用温度、相容性、老化温度区间、制品加工、材料稳定等信息。2. 玻璃化转变台阶演变之美物理老化是玻璃态高聚物通过链段的微布朗运动使其凝聚态结构从非平衡态向平衡态过渡的松弛过程。它一般发生在玻璃化温度和次级转变之间。高聚物的物理老化引起玻璃化转变台阶变异,应力松弛过程使台阶演变为凹下的谷形特征,甚至酷似DSC曲线上的吸热峰。这是玻璃化转变台阶演变之美。从宏观性能角度来看,高聚物的玻璃化转变是指非晶高聚物从玻璃态到高弹态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低)。DSC是一个测定近似比热容的方法,高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,呈台阶形。玻璃化转变本质上是一个动力学问题,是一个松弛过程。当高聚物从熔体猝火到玻璃态后,再在低于Tg的温度下进行热处理,则会在Tg附近出现一个吸热峰。如图所示:具有不同热历史的从熔融态淬火聚对苯二甲酸乙二酯膜的DSC曲线(a) 分别在温度下热处理2小时;(b)在25℃下热处理不同的时间此曲线摘自【新编高聚物的结构与性能】 何平笙编著 科学出版社出版社 2009物理老化在DSC的升温测量中表呈现出来,如上图所示。当高聚物从熔体淬火到玻璃态后,再在低于Tg温度下进行热处理,Tg台阶演变为一个松弛峰,温度越高,松弛峰越高。淬火试样在25℃热处理不同时间,DSC吸热峰随处理时间延长而移向高温。研究具有不同热历史对玻璃化转变的影响,其本质是研究高聚物的物理老化。3. 和谐美(统一美)PET的DSC曲线如图所示。热分析曲线集玻璃化转变、冷结晶和熔融于一身,体现了多重转变的和谐(包容)之美。曲线似狼毫疾书,峰(锋)起峰(锋)落,流淌着玻璃化转变、冷结晶、熔融的变化轨迹。PET的DSC曲线在DSC曲线上,既有物理转变峰,也有化学转变峰;既有平坦峰,也有陡削峰;既有强峰,也有弱峰。它们和谐地融汇在一起。 4. 玻璃化转变台阶宽化之美玻璃化转变是非晶态高聚物(包括部分结晶高聚物中的非晶相)发生玻璃态≒高弹态的转变,其分子运动本质是链段发生“冻结”“自由”的转变。基于热运动强烈的时间依赖性和温度度依赖性,高聚物的玻璃化转变不是一个温度点,而是一个温度区间。因此科学认识玻璃化转变峰的寛化现象非常重要。玻璃化转变区一般宽达10~20℃,而且玻璃化转变区还明显地依赖于实验条件。某些高聚物体系的玻璃化转变区域发生加宽现象,加宽现象表明存在多种形式分子链段运动,这主要来源于交联高聚物中交联程度的微观差异、嵌段或接枝共聚物微相结构的差异、高聚物共混体系中相结构和相互作用的不同等因素。5. 玻璃化转变的双重峰之美非晶高聚物通常只有一个玻璃化温度。但高聚物也会出现双重玻璃化现象和双玻璃化温度。从热分析应用研究史来看,随着新型材料不断出现,热分析研究领域也不断扩展。科学认识双重玻璃化温度现象是以热分析实验为基础。在新材料的研究中,通常都需要测定玻璃化转变,常常会发现双玻璃化转变转变现象。归纳整理大量的热分析曲线,发现下列情况常常会出现双重玻璃化现象和双重玻璃化温度:1)许多部分结晶高聚物常表现出两个玻璃化温度;2)交联高聚物的两相球粒模型;微相分离;3)部分相容的共混高聚物;4)部分橡胶均聚物、树脂/基体体系;5)高聚物涂布在基体(尼龙纤维)上的双玻璃化温度;6)导线双层涂层的双玻璃化温度高聚物具有双玻璃化温度,它的DSC曲线将出现二个玻璃化转变的台阶。摘抄几个具有双玻璃化转变的高聚物:DMA也可以测定玻璃化转变,如交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象如图所示:交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象 高交联微球分散在低交联基体中的两相结构中。一个对应于高交联球的玻璃化转变,另一个对应于低交联基体的玻璃化转变。DMA和DSC是测定到双玻璃化现象和双玻璃化温度的常用方法。6. 玻璃化转变的可逆之美 玻璃化转变是一个可逆过程。从宏观性能角度看,高聚物的玻璃化转变是指非晶高聚物玻璃态转变为高弹态(温度从低到高),或从高弹态转变为玻璃态(温度从高到低)。通常,玻璃化转变测量是进行升温实验。但严格来说,玻璃化过程应是从高弹态转变为玻璃态(温度从高到低),由降温曲线求得玻璃化温度更合理。非晶高聚物由玻璃态转变为高弹态(温度从低到高)是解玻璃化过程。非晶高聚物的升温与降温的DSC曲线如图所示: 非晶高聚物的升温与降温的DSC曲线7. 玻璃化温度的调控之美物质的热变化是可调控的,玻璃化温度也是可以调控的。解读特定材料玻璃化转变的热分析曲线,研究它的特征和变化规律,进而对玻璃化温度进行调控,优化材料热物性参数、状态和特性,服务于材料研发、生产和使用,使热变化沿着确定的研究方向发展。你欲调控材料的玻璃化温度,你就要知道哪些因素会影响材料的玻璃化温度。调控玻璃化温度依赖于你对影响玻璃化温度因素的认知。高分子物理告诉我们:玻璃化温度是高分子的链段从冻结到运动(或从运动到冻结)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能够影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子柔性的因素,如引入增塑剂或溶剂,引进柔性基团等都使Tg降低。基于高分子物理对玻璃化转变的认知,改变玻璃化温度的手段有:增塑、共聚、交联、结晶及改变相对分子质量可以使高聚物玻璃温度在一定范围内连续地变化。如不同结构的聚苯并噁嗪,Tg 在107 ℃—368 ℃宽的温度范围内变化;N-羟甲基丙烯酰胺(NMA),参与共聚的EVA乳液的 Tg 值可以在 -30~30℃之间调控;偏二氯乙烯与丙烯酸酯共聚,可制备得到不同Tg的两种乳液:低Tg(-50~0℃)的乳液和高Tg(0~30℃)的乳液;用于粘接水晶的 UV 固化胶,添加增塑剂来降低 Tg , 增加胶的柔韧性。8. 科学认识玻璃化转变中的“未知”人的认知是不断提高的,常常用已知来解释未知。探索未知的利器是丰富完善自身的知识体系,完善的知识结构包括雄厚的知识储备和系统、灵活地运用这些知识的科学方法。几十年来,我们已科学认识了玻璃化转变中的许多“未知”,但还有很多的“未知”需要继续探索。探索未知的前提是你要有求索的觉醒。如果一个人的思维被禁锢,视野和认知就会变狭隘,认知也就停止不前了。玻璃化转变研究中最大的“未知”是人们还是无法回答玻璃态的本质是什么这一基本问题。玻璃态本质的研究一直是凝聚态物理及软物质领域的重要内容,也是至今悬而未决的难题。迄今为止没有一个理论能解释玻璃化转变过程中的所有现象,已有的理论也只是在某些特定的过冷区间和特定的体系中才与实验或模拟结果吻合。诺贝尔奖获得者Andcrson在文章中展示了他对玻璃化转变问题的兴趣,并预言玻璃化转变问题将在21世纪得到最终解决。对玻璃化转变机制的研究,正在不断深入并逐渐逼近正确,对它的研究,既是挑战也是机遇,并将继续吸引科学家们研究下去。经过科学家们持续不断的努力,玻璃及玻璃化转变的物理本质之谜最终一定会解开!热分析方法研究高聚物材料已有几十年的历史,它不仅为材料提供了热物性参数,还为探索玻璃化转变的实验特征(玻璃化转变过程的热力学行为、动力学特征)、实验技术表征和玻璃化转变理论的演变积累了大量的数据,是探索玻璃化转变理论的实验基础。它在玻璃化转变理论研究中的作用不容忽视。热分析方法表征高聚物材料需要玻璃化转变理论指导,研究玻璃化转变理论也需要近代科学方法(包括核磁共振、热分析等)的实验基础和实验证据。玻璃化转变研究在进行中,玻璃化转变的峰谷之美将在不断研究中绽放得更灿烂。二、熔融-结晶的峰谷之美熔融和结晶温度、熔融和结晶焓测定的标准是GB/T 19466.3-2004/ISO 11357-3 2018。它规定了塑料熔融与结晶的DSC测量法。可用DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。1. 冷结晶、热结晶、等温结晶之美结晶或部分结晶聚合物的非等温结晶有冷结晶和热结晶之分。试样以适当的速率升温,熔融后淬火,淬火试样以相同速率升温,DSC曲线上的结晶峰称为冷结晶峰。把开始结晶的温度与Tg之差 ∆Tg 作为非等温冷结晶速率的度量,初略地说,∆Tg越大,则冷结晶速率越慢。 聚合物升温熔融与降温结晶的DSC曲线如图所示;可以用过冷度∆Tc来分析非等温实验数据。过冷度 ∆Tc定义为升温DSC曲线熔融峰温与降温DSC曲线开始结晶温度之差,用线性方程式中截距表示聚合物所固有的结晶能力。∆Tc随降温速率而变。 2. 熔融-结晶峰的峰、岭、谷之美DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。高聚物的DSC曲线显现结晶高聚物的熔融与结晶过程。升温测量高聚物的结晶-熔融过程,假设DSC图中约定Y轴正方向代表放热,那么冷结晶曲线呈峰的形式,熔融曲线呈谷的形式。降温测量热结晶,热结晶曲线呈峰的形式。PTFE熔融的DSC曲线如图所示:PTFE不同升温速率的DSC曲线PTFE熔融峰的峰形与升温速率有关。随升温速率的提高,熔化峰变宽,河谷越来越深。熔融峰好似平原上的河谷。结晶度高的部分结晶聚合物熔融峰的谷坡陡峻、狭而深,似大峡谷;结晶度低的结晶或部分结晶聚合物熔融峰的谷坡浅而宽。熔融双峰呈现谷—谷相连突起的“岭”,似水中的暗礁或小岛。如图示意:熔融双峰的双谷和暗礁或岛屿的示意结晶峰好似独立高耸的山峰。结晶双峰呈现山峰相连的岭和狭窄低凹的山谷。如图示意:结晶双峰的峰、岭、谷的示意3. 等温结晶峰的变化之美 结构相当规整的聚合物在玻璃化温度Tg和熔融温度Tm所限定的温度范围内出现结晶作用。结晶速率随温度而变,所以采用恒温法测定高聚物的结晶过程,结晶峰的峰形是随结晶温度而变。不同结晶温度的DSC曲线如图所示。它显现了高聚物结晶速率对温度的依赖性,也显现了不同结晶温度下结晶峰形的变化之美。PBS熔融后分别在80℃、81℃、83℃、85℃、88℃等温结晶的DSC曲线部分结晶高聚物是晶相和非晶相的混合体系。晶相最重要的特征温度是熔点Tm。非晶相最重要的特征温度是玻璃化转变温度Tg 。部分结晶高聚物结晶温度范围正是在Tg与Tm之间。实现结晶的途径有两条:一是将熔体或溶液冷却到Tg与Tm之间的温度使之结晶,称为热结晶;二是先将熔体骤冷到Tg以下形成过冷液体(即玻璃),然后再升温到Tg与Tm之间的温度下使之结晶,称为冷结晶。高聚物结晶速率对温度的依赖性取决于成核速率和晶体生长速率的温度依赖性。随温度的下降,成核速率逐渐增大;晶体生长速率的温度依赖性取决于高分子链段向晶核扩散并作规整排列的速度。温度越低,熔体黏度越大,晶体生长速率越小。因此,高聚物的结晶速率随温度的变化不是单调上升,也不是单调下降,而是在某一温度下达到最大值。在结晶温度略低于熔点时,结晶速率因成核速率很低而很慢;在接近玻璃化转变温度时,结晶速率因晶体生长速率很低而很慢;而结晶温度在(0.80 ~ 0.85)Tm附近时,因成核速率和晶体生长速率都较高,结晶速率达到极大。等温实验得到多条等温结晶曲线,绘制等温温度-等温结晶时间下的关系曲线,如图所示:等温结晶温度和结晶时间的关系由等温结晶温度-等温结晶时间下的关系曲线方便地选择等温结晶温度,具有选择之美。U字形曲线显现结晶温度和结晶时间相关性之美。三.比热容曲线的线性美及松弛峰特征比热容的DSC测定法的标准是ISO11357-4 2021和ASTM E 1269-11(2018)规定了比热容的DSC测定法。比热容是指单位温升所需的热量(热容C)除以质量m,单位为J / kg. K 。比热容的DSC曲线如图所示: 显现玻璃化转变和应力松弛特征的比热容曲线通常,比热容与温度的关系是线性增大。当试样发生玻璃化转变且有应力松弛时,比热容曲线会出现台阶和松弛峰峰形。四.特定反应的特征/特性之美 特定反应曲线温度、时间、反应热和转化率测定标准是ISO11357-5。它规定了特征反应曲线温度、时间、反应热与反应程度的DSC测定法。热分析研究特定的反应,热分析曲线就是这种特定反应的特定的形象。DSC研究的特定反应泛指氧化、还原、固化、热降解、热氧降解等。用DSC曲线来表征特定反应曲线温度、时间、反应热和转化率,也可进行剩余热的测量。依实验目的可以采用升温法或恒温法。特定反应的DSC曲线峰谷具有特定反应的特征和特性,呈现特定反应特有的特性之美。特定反应的美是建立在反应本身固有的特征和特性基础上,人们从研究特定反应中得到了快乐,为什么能从中得到快乐呢?因为特定反应的DSC曲线的峰谷具有特定反应的特性之美。特定反应的美是建立在特定反应本身,如DSC研究胶粘剂的固化反应。胶粘剂的固化反应是一个高分子化学问题。高分子链之间通过化学键连接起来形成相对分子质量无限大的三维网络,称之为交联。交联固化过程不是按化学反应平衡方程式来表示,而是以一种不均一的状态存在,交联高分子的网络结构可以是规则的,也可以是不规则的。因此固化反应的DSC曲线常出现双峰峰形和多峰峰形,如图所示。交联固化的DSC曲线示意玻璃化温度(Tg)的测定这是一个高分子物理问题,通过测定Tg来研究交联高分子网状结构和宏观性能(玻璃化转变)的相关性。胶粘剂的固化反应出现双峰,表明固化产物以不均一的状态存在。那么固化产物的DSC峰就会出现双玻璃化转变现象。限于篇幅,其它特定反应曲线温度、时间、反应热和转化率测定就不介绍了。五.氧化诱导期的蓄势之美氧化诱导期的测定标准是ISO11357-6 2018。它规定了聚合物材料氧化诱导期的DSC测定法。氧化诱导期是指稳定化材料耐氧化分解的一种相对度量。是由DSC测量材料在某一特定温度、常压氧气气氛下起始氧化放热的时间间隔来确定的。典型的热氧化稳定性曲线如图所示:热氧化稳定性曲线(切线分析法)t1氧气流切换点 t2氧化起始点 t3切线法起点 t4氧化峰时间氧化诱导期是用起始氧化放热的时间间隔来确定的。在某一特定温度下等温,试样吸附氧,是一个蓄势过程,当物理吸附和化学吸附氧的量蓄聚达到某一个值时,试样突然氧化放热,出现一个氧化放热峰。DSC方法测定聚乙烯的氧化诱导期是典型的实例。试样在氧化气流中200℃或210℃下等温,吸附氧气,蓄势诱导,氧化放热直冲峰顶。润滑油的氧化诱导期是采用压力差示扫描量热法(PDSC)。美国试验与材料协会于1998年将PDSC法测定润滑油的氧化诱导期列为ASTM D6186标准(最近版本发布于2013年。润滑油是液体,易挥发,使用PDSC法测定润滑油的氧化诱导期,试验数据重复性好。氧化起始温度是另一个表示材料氧化分解的概念。动态测定是由DSC测量材料在程序升温下、常压氧气气氛下起始氧化放热的温度来确定的。典型的氧化起始温度的DSC曲线如图所示:两种不同HDPE的氧化起始温度(动态OIT)测试由DSC曲线的氧化放热峰分别求出反应起始温度、外推起始温度、最大反应速率温度、外推终止温度和反应终止温度。氧化诱导时间和氧化起始温度都是稳定化材料耐氧化分解的一种相对度量。氧化诱导时间(等温OIT),氧化诱导温度(动态OIT)分别表示开始出现氧化放热的时间或温度。氧化诱导时间与氧化起始温度是二个不同的概念。要证明材料耐氧化的时间,采用氧化诱导时间来表示;要证明材料耐氧化的温度,采用氧化起始温度来表示;氧化诱导时间长,并不表示氧化起始温度高。反之亦然。六.结晶动力学的测定 结晶动力学测定的标准是ISO11357-7 2022。它规定了利用差示扫描量热法研究部分结晶聚合物结晶动力学的等温和非等温两种方法。该方法可应用于已熔融的聚合物。如果测试过程中聚合物的分子结构有所改变,此法不适用。上面我们用图形和文字展现了差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定的DSC曲线的峰谷之美。峰谷之美的源泉是什么?源之温差引起的能量传递的热传导过程。温差引起的能量传递的热传导过程是峰谷之美的源泉。傅立叶定律是传热学中的一个基本定律,也称为热传导定律。傅立叶热传导定律与差示扫描量热法有一定的内在渊源。传热学是研究由温差(temperature difference)引起的热能传递规律的科学。热流DSC是测定由于热变化引起试样与参比物温差变化的研究方法。DSC热力学体系因温差引起热传导现象,热传导现象与能量的传递相联系,热传导过程就是热量热传递(流动)的过程。DSC测量流入(流出)试样和参比物的热流与温度或时间的关系,得到了热流随温度或时间变化的轨迹,DSC曲线上出现了吸热峰、放热峰和和台阶。热流DSC的理论基础是傅立叶热传导定律,应用傅立叶热传导理论解析热流DSC曲线的热传导现象,展现DSC曲线的峰谷之美。峰谷之美从温差、能量传递和热传导过程中绽放。人们发现美的同时,DSC曲线的峰谷也给人以美的享受。 下面我们继续探索DSC曲线的特性参数转折之美、曲线变异之美、峰-峰、谷-谷、峰-谷连绵之美。托宽思路,探索古陶瓷DSC曲线的远古之美和空间材料的遥远之美。七.特性参数转折之美DSC可以测定比热容、导热系数;TMA可以测定膨胀系数;导热仪可以测定导热系数。比热容、膨胀系数、导热系数在玻璃化转变温度的转折如图所示: 比热容、膨胀系数、导热系数在玻璃化转变前后的转折由图可以看出:比热容、膨胀系数、导热系数峰值都在玻璃化转变温度出现峰值。比热容、膨胀系数、导热系数在高聚物玻璃化转变温度出现转折点是特性参数转折之美。聚合物的比热容、热膨胀、导热系数与分子活动性直接相关。不同物质的比热容、膨胀系数、导热系数各不相同;相同物质的比热容、膨胀系数、导热系数与其结构、密度、湿度、温度、压力等因素有关。八.曲线变异之美 曲线变异是指与定势思维相侼的DSC曲线。热分析实验中出现DSC曲线变异是常见的事。如高聚物玻璃化转变峰出现应力松弛峰;固化反应的DSC曲线出现双峰或多峰时,在固化产物的DSC曲线上就会出现相应的双玻璃化现象。当测试到变异峰时,一定要溯源曲线变异的原因。避免将变异的热分析曲线当作异常峰处理,产生误读与误判。进化的基本机制是变异与选择。求异思维的逻辑内核是“敏于生疑,敢于存疑,勇于质疑”。思维的求异或求异意识是指敢于向权威或传统观念挑战,从已有思路或从相异、相逆的思路去思考变异的DSC曲线,获得新的认知。。物质世界中,唯一不变的是变化,变化是永恒的。人类对变化的认知虽然不断演进,但变化自身的哲学内涵远比我们对变化所能理解的更为深邃。人类对热变化的探索无止境,当你遇到变异的热分析曲线时,潜心研究变异的曲线。运用热变化中的哲理解析变异的热分析曲线。开智悟理,悟而生慧、悟得智慧。科学研究中,常常悟生于常规、传统、标准、经典之外,探索前行。由“悟”而后产生变则通思维具有必然性。“悟”出变幻无常的曲线变异之美是对热变化的认识深化。玻璃化转变是高聚物的一个基本转变,它常常会发生变异。如物理老化引起玻璃化转变曲线变异。物理老化使玻璃化转变峰的峰形由台阶式峰形变异为松弛峰峰形。MDSC可将可逆的玻璃化转变和不可逆的应力松弛分离。 通常,水合氧化铝脱水形成低温氧化铝(γ、δ、η、κ-Al2O3), 低温氧化铝于1250℃转型生成高温氧化铝(ɑ-Al2O3)。测试某一样品,偶然发现高温氧化铝(ɑ-Al2O3)的生成放热峰提前到1050℃。经溯源,峰的变异是由样品中加入了矿化剂之故,使转相温度提前了200℃。玻璃化转变的宽化现象和双重玻璃化现象也是DSC曲线变异的实例。探索曲线变异的原因是认识的深化。变异的DSC曲线呈现峰谷变异之美。DSC曲线的峰谷在变异中越变越美。九.峰-峰、谷-谷、峰-谷连绵之美用凹下的谷表示吸热效应;用凸起的峰表示放热效应;用向吸热方向偏离的台阶表示玻璃化转变。峰、谷和台阶是展现DSC曲线的峰谷之美的基本形态。是对事物本质和规律的反映。DSC曲线中,常常出现峰-峰、谷-谷、峰-谷相连的现象。座座山峰相连称为岭,两峰之间狭窄低凹处称为谷。峰美!谷美!峰-峰相连的山岭美!狭窄低凹的山谷美! 1. 峰-峰连绵之美Al-ZrO2体系的DSC曲线如图所示:不同升温速率下Al-ZrO2反应过程的DSC曲线Al-ZrO2体系在一定条件下(不同升温速率下)发生化学反应。图中两个放热峰分别对应于两个分步反应:Al + ZrO2 → ɑ-Al2O3 + [Zr][Zr] + Al → Al3Zr 两个分步反应在不同升温速率下的峰顶温度Tm是不同的,两个放热峰相连形成不同形状的山岭和山谷。DSC曲线因峰冠雄,因峡显幽。DSC曲线显现放热峰相连的山岭美!显现狭窄低凹的山谷美!2. 谷-谷连绵之美不同升温速率的PET的熔融双峰如图所示: 不同升温速率下PET的DSC曲线PET的结晶比较慢,因此不同的热历史可以造成不同的结晶和熔化过程。在慢速升温过程中,由于PET形成的片晶部分熔化,未熔化部分似作成核点,形成熔融再结晶,这种结晶可以在更高的温度熔化,从而形成熔融双峰。如果用TMDSC的话,还可以测到再结晶过程的放热峰。还有一种观点是,结晶过程中形成了两种不同稳态的晶体,热稳定性差的在较低温度熔化,热稳定性高的在较高温度熔化,从而形成熔融双峰。如果在120-140℃长时间退火,将试样降温到室温后再升温,DSC曲线在140℃以上还会出现第三个小峰。聚乳酸一次升温的DSC曲线如图所示: 161.0℃和167.4℃是聚乳酸的熔融峰,这个双峰现象有几种解释:1)熔融再结晶;2)晶型转变;3)分子量分布宽,片晶厚度不同。聚乳酸的熔融双峰具有紧紧相依之美。3. 3.谷-峰衔接之美 Al2O3与ZnO反应过程的DSC曲线如图所示: 图中表明:Al(OH)3脱水谷与AL2O3.ZnO生成的放热峰光滑衔接、谷-峰相连。好似造山运动,Al(OH)3脱水反应使曲线下降,形成脱水谷,AL2O3.ZnO生成的放热反应使曲线突然上升,形成雄伟的山峰。真是一幅因峡显幽,因峰冠雄,绝壁长崖的山水图。 Al2O3与B体系的DSC曲线如图所示:Al-B反应过程DSC曲线Al的熔融吸热峰形成显幽之谷,液态Al与B反应生成ALB2, 放热峰使曲线上升,熔融吸热峰与放热峰光滑衔接,谷-峰相连。好似地壳下沉后又突然升高,绝壁长崖直冲峰顶。4. 台阶与应力松弛峰的组合之美 高聚物的玻璃化转变在DSC曲线上的特征是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物在玻璃化转变温度和次级转变温度之间发生物理老化时,应力松弛过程使台阶转化为凹下的谷。 十.迷人材料热分析(DSC)研究的诗意和美“迷人的材料”是英国人马克.米尔多尼克所著。对构建现代世界的物质做了美好的描述,从细微中发现诗意和美, 是一部材料科学的颂歌, 也是对人类智慧的赞颂。“迷人的材料”是《物理世界》2014年推荐的最佳科普书。书中展现了人类需求和欲望的材料,带领人们走进神奇的材料世界。本书介绍了“迷人的材料”:钢、纸、混凝土、巧克力、发泡材料、塑料、玻璃、碳材料、瓷器、长生不死的植入物等材料。介绍迷人材料的资料还有:未来最有潜力的新材料;有能力改变整个世界的超级材料及地球上十大神奇的极端物质。如石墨烯、气凝胶、碳纳米管、富勒烯 、非晶合金、泡沫金属、离子液体、纳米纤维素、纳米点钙钛矿、3D打印材料、柔性玻璃、自组装自修复材料、可降解生物塑料、钛碳复合材料、超材料、超导材料、形状记忆合金、磁致伸缩材料、磁(电)流体材料、智能高分子凝胶。美国材料研究学会在每次年会上进行图片比赛,通过显微镜人们看到了如艺术品一般的材料组织,发现材料既有外在美,又有内在微观世界的神奇,微观世界与宏观世界具有异曲同工之妙。用热分析研究迷人的材料,可以提供许多有用的参数。DSC在材料研究中有着广泛的应用,展现了材料DSC曲线之美。 1.石墨烯的DSC曲线之美2.锂电池的的DSC曲线之美3.含能材料瞬变反应的新奇美 4.古陶瓷DSC曲线的远古之美以古陶瓷研究为例,古陶瓷是火与土的艺术,运用近代科技方法研究釉陶的的物理—化学过程,对古陶瓷样品的显微结构、物相结构进行深入研究,为推测古陶瓷的烧制工艺、揭示我国古代名瓷的呈色机理、再现我国古代名瓷的制作奥秘提供有力的数据支撑。应用近代科技方法(含热分析方法)研究古陶瓷是将今论古,今为古用,呈现远古之美。 现代陶瓷研究:先驱体裂解转化制备陶瓷,突破了火与土的传统,是突破之美。先驱体裂解转化制备陶瓷是利用有机先驱体聚合物裂解制备陶瓷材料的新方法。人们已用热分析方法(DSC方法)探索先驱体裂解转化制备陶瓷工艺中的合成过程、交联过程和裂解过程。 陶瓷反应体系Al-TiO2的DSC曲线及反应结果的X射线衍射花样如图所示: 陶瓷反应的DSC曲线的包容性陶瓷反应体系Al-TiO2的DSC曲线主要有三个峰和谷:第一个谷为吸热峰,发生在667℃,对应于Al液化吸热过程;随着温度升高,在950℃左右时出现了第二个峰,为放热峰,表明试样中发生了以下化学反应:4Al + 3TiO2→ 2ɑ-Al2O3 + 3[Ti]反应产生的活性[Ti]原子随后又与Al原子结合生成Al3Ti ,该反应为强放热反应,峰顶温度1000℃左右。因此,Al-TiO2体系在升温过程中依次经历了一个物理转变(Al的熔融)和两个化学反应,分别产生两种增强体 ɑ-Al2O3陶瓷和Al3Ti金属化合物。反应结果的X射线衍射花样进一步说明了这一点。Al-TiO2体系反应过程的DSC曲线具有强大的包容性。它包容了物理转变(Al的熔融)吸热峰的谷和两个化学反应放热峰及峰-峰相连形成的山岭和山谷。以上多图均摘自【材料科学研究与测试方法】朱和国 王新龙编著 东南大学出版社 2013 5. 空间材料DSC曲线的遥远之美国际空间站的微重力实验:空间条件下集成热分析的先进管式炉(ADV、TITUS)进行材料生长实验。最高工作温度1250℃,采用炉体移动的方式进行材料生长,其最主要的技术特点是该设备在进行材料生长实验的同时,也进行了材料的差热分析(DTA)测试。该实验即为空间材料科学与微重力下的热分析的诌型。在地球万有引力下,单晶硅生长由于重力的作用,生长单晶硅区浮液桥的直径不能超过8 mm。微重力环境实现无容器过程,增大浮区的直径没有限制,生长出比8 mm粗得多的硅单晶。结晶研究表明:具有高体积分数的样品,在有重力的地面上经过一年也不能结晶化的样品,在微重力条件下(10-6g),不到两周就全部晶化了。发挥DSC研究晶体的潜能,应用DSC开展微重力下的晶体生长实验成为可能。 空间生长的GaSb单晶(左、中)与地面生长的GaSb单晶(右)对比图微重力环境下高聚物的结晶研究:微重力环境下的结晶是为制备太空高聚物材料而进行的研究。模拟太空条件下的高真空微重力下对尼龙11、聚偏氟氯乙烯、间同聚苯乙烯、全同聚丙烯(i-PP)等做了等温结晶,发现不少与常规重力下不同的结晶现象。美国国家航空航天局在航空飞机的实验中测出了比热奇异性的趋势,验证了理论物理的预言。比热奇异性的实验曲线如图所示: 空间LPE实验的比热测量结果实线为地面的实验结果;点划线为空间微重力实验结果;虚线为重整化群理论预期结果比热测量时的相变温度控制在10-9 K以内,液体在相变点处的比热为无穷大。由于地面的重力作用使实验温度达不到要求的精度,测量不出比热奇异性。微重力环境提供了高精度的物理实验条件,测出了比热奇异性的趋势。空间LPE实验的比热测量结果如图。红框内即为比热奇异性。值得注意的是温度坐标为纳度nK。 以上均摘自【微重力科学概论】 胡文瑞等著 科学出版社 2010 十一.DSC曲线峰谷群像图DSC曲线的形态犹如地球的地貌特征,独立高耸的山峰和座座山峰相连的岭、两峰之间狭窄低凹的山谷和幽幻的大峡谷,低缓的丘陵、广阔的平原及谷坡陡峻、狭而深的河谷。山峰、山岭、山谷、丘陵、平原及河谷的特征构成了DSC曲线峰谷群像图。DSC曲线与地理地貌的相似性形象,增添了曲线的天然美(自然美)。 DSC方法研究材料的转变和热物性参数,得到各种各样的DSC曲线。DSC曲线的峰谷呈现物质变化规律之美。DSC曲线群像中,既有共性,又有特性,还有变异性。曲线有相像、相似、类似的形象;也有截然不同的形象,以及曲线变异的形象。转变峰的形状、大小、位置似水无常形,变化万千,借助文字和图形的阐释能力,揭示曲线峰谷蕴含的意义。DSC曲线与地理地貌的相似性形象图: 从DSC曲线与地理地貌的相似性形象,领略DSC曲线峰-谷的天然美。 DSC曲线转变峰群像如图所示: 从DSC转变峰群像图中看出:DSC曲线峰谷变幻无穷、群像纷呈。读懂、读透DSC曲线的峰谷不容易,那是你的理解能力。解析DSC曲线的峰谷并被别人读懂也不容易,那是你的表达能力。清乾隆蘅塘退土孙洙对《唐诗三百首》的题词是:“熟读唐诗三百首,不会做诗也会呤”。解读DSC曲线亦如此。熟读经典的DSC曲线和群像图中的应用曲线,认知DSC曲线的峰谷之美。发现美!欣赏美! 如何认知群像图中DSC曲线峰谷呢?人类学习与机器学习方法相结合。传统的方法是人类学习方法。人类对事物的认知路径经是从原始数据出发,凭借人脑拥有的科学知识去认知DSC曲线峰谷的内涵。面对同样的原始数据,拥有不同知识的人将得出不同的认知;同样,拥有相同知识的人,面对没有数据、有少量数据、有大量数据以及有充分数据等不同情况时,也将得出不同的认知。知识的拥有者占据上风。机器学习方法是一种全新的思维方式。机器学习的本质是跳出“知识”的束缚,建立原始数据与认知之间的直接映射,“数据”价值连城。机器学习方法直接建立“数据—认知”关系库,以更加深邃、更加贴近物质本来面貌的视角去认知DSC曲线的峰谷。机器学习方法已在化学、材料科学和高分子玻璃化研究中得到应用。如中国科学院长春应用化学研究所徐文生研究员和美国北达科他州立大学夏文杰教授基于在高分子玻璃化领域的多年研究经历,综述了机器学习方法在高分子玻璃化领域的研究进展。杨镇岳,聂文建,刘伦洋,徐晓雷,夏文杰,徐文生撰写了机器学习方法在高分子玻璃化研究中的应用。此文刊登于高分子学报2023,54(4)409-427运用人类学习和机器学习方法探索DSC曲线峰谷之美是人的需求。山高人为峰,脚踏幽幻谷,迈开脚步,探索DSC峰谷之美,以人为主导。科学的美是客观存在的,人对美的追求,是自然科学发展的源动力。DSC研究物质受热时发生的物理变化和化学变化,并以峰谷的外在美呈现物质变化的内在美。人,怀着对热分析的情感,自由地鉴赏DSC曲线峰谷的美感,发现美,享受物质变化之美。美使人感到愉悦的同时,也揭示了隐含在曲线中的物质热变化规律。
  • 仰仪科技发布仰仪科技自动反应量热仪RC HP-1000A新品
    RC HP-1000A自动反应量热仪是以立升规模模拟化学反应的具体过程、测量和控制重要工艺变量的专业测试仪器。仰仪科技深谙专业客户需求,全面搜集各行业用户实际试用建议,以“高效、安全”为核心设计理念,历时多年精心研发而成。该仪器是一种实验室条件下的自动化反应量热仪,可模拟工厂间歇或半间歇反应的真实情况,广泛应用于精细化工、制药及第三方安全评估等领域的反应工艺设计、工艺优化与放大、过程安全评估等。产品特点1) 具有热流、功率补偿、回流等三种量热方法,用户可根据需求选择2) 支持等温、恒温、扫描等多种运行模式3)可选配玻璃常压反应釜、玻璃中压反应釜、金属高压反应釜4) 大功率加热、制冷单元,控温响应速度快,放热测量精度高5) 自动加料控制,可通过质量或体积计量6)可精确测量并获取反应热流、反应焓、转换率、样品比热容、绝热温升、失控体系能够达到的最大温度等工艺安全相关数据7) 中文软件平台可灵活编制实验流程,实时监控反应过程关键数据,并可在线修改实验流程和参数8) 实时显示釜内温度、夹套温度、加料质量等试验状态9) 关键参数、状态安全阈值可设置,反应失控时“一键”快速冷却,异常状态报警及自动停机,有效保证安全10) 自动生成并保存图表、数据,导出实验分析报告技术规格量热方法热流法、功率补偿法(选配)、回流法(选配)温度控制油浴温度范围-45℃~250℃控制方式等温、恒温、扫描温度分辨力1.0mK控温精密度±0.1K硅油循环速度35L/min~76L/min功率控制电压范围0~50VDC最大电流3.0A,可选配4.0A加热器最大功率120W常压玻璃反应釜(选配)反应釜体积1000mL,其它体积可定制工作压力大气压温度范围-25℃~200℃反应釜材质玻璃中压玻璃反应釜(选配)反应釜体积1000mL,其它体积可定制工作压力0.6MPa或1.2MPa温度范围-25℃~200℃反应釜体材质玻璃反应釜盖材质316L不锈钢或哈氏合金高压金属反应釜(选配)反应釜体积1000mL,其它体积可定制工作压力10MPa温度范围-25℃~200℃反应釜材质316L不锈钢或哈氏合金搅拌器最大转速2000r/min,可选配3000r/min最大扭矩75Ncm,可选配300Ncm搅拌桨形式锚式或桨式搅拌桨材质PTFE、316L或哈氏合金进样系统进样通道1路液体进样、1路固体进样口、1路气体进样口;进样可扩展至4路精密天平量程3100g,精度0.01g进样泵电磁隔膜泵,最大流量2L/h其它参数电源3*400V/50Hz(±10%)/20A功率7000VA测试区尺寸1200mm*600mm*1850mm油浴尺寸600mm*700mm*1300mm油浴重量210kg整机重量300kg创新点:1. 更先进:基于相转换检测的低温流动性测定仪; 2. 更精确:激光和阵列式光电传感器实现相变精确检测; 3. 更高效:独有的半导体控温技术,低温发生更低、更快。
  • 《浙江省加快新能源汽车产业发展行动方案》发布!之量科技助力产业发展
    近日,省发展改革委、省经信厅、省科技厅印发《浙江省加快新能源汽车产业发展行动方案》。《行动方案》明确,浙江将着力打造国内领先的新能源汽车应用示范区、具有国际竞争力的新能源汽车智造高地和有影响力的新能源汽车产业生态引领区。《行动方案》提出,充分利用省重点研发计划政策,落实财政科技经费超1亿元,支持企业、科研院所开展新能源汽车领域科技创新。同时加大金融支持力度,加大对传统汽车企业技术改造的信贷支持力度,提升中长期贷款占比。《行动方案》将于2023年3月1日起施行,对专注锂电池研发的科研院所及汽车企业而言,正是蓄势增长的好时机。之量科技提供全方位的锂电池实验室测试方案,精准助力锂电池热安全和热管理的技术研究,推动新能源汽车产业的高质量发展。解决方案一:锂电池热管理参数测试本方案主要满足不同工况下的电芯充放电产热、比热容、导热系数等测试需求,能够为BTMS热管理系统设计与仿真提供全面、准确和可靠的关键热物性参数,助力高性能电池系统开发。产品包括:3D热物性分析仪、两状态法热参数测试仪、大型电池绝热量热仪、小型电池绝热量热仪、电池等温量热仪。解决方案二:锂电池产气爆炸特性测试本方案主要用于评价电池热失控产气和其他喷发物质的爆炸特性,测定爆炸极限、最大爆炸压力、爆炸指数和气体燃烧速率等重要参数,全面评估电池产气致灾危害,同时满足UL9540A等检测标准。产品包括:多相高温高压爆炸极限测定仪、气体燃烧速率测试仪、爆炸极限试验仪。解决方案三:锂电池产气成分在线分析本方案主要用于模拟程序控温下的锂电池热失控过程,并对电池产气进行实时采集和在线成分分析,帮助研发人员研究热失控不同阶段产气成分的演变历程。产品包括:大型电池绝热量热仪、小型电池绝热量热仪、定容燃烧弹、气相色谱。解决方案四:锂电池热安全特征参数测试本方案主要满足在热、电、机械等多种滥用条件下进行电芯热安全测试,测定电芯自放热起始温度、热失控起始温度、最大温升速率、热失控孕育时间等表征电芯热稳定性的特征参数。产品包括:大型电池绝热量热仪、小型电池绝热量热仪。解决方案五:锂电池材料安全性评估本方案主要用于表征电池材料的热稳定性和安全性,可测定电池材料热分解特性参数、电解液闪点和蒸气压等。产品包括:绝热加速量热仪、DSC差式扫描量热仪、微量连续闭口闪点仪、微量蒸气压测定仪。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 多频温度调制DSC技术TOPEM网络研讨会(Webinar)
    2010年06月21日 15:00[中文]   温度调制DSC技术(TMDSC)通常用于研究重叠的热效应,它不仅可以在大学或研究所中应用,而且可以用于工业研究。TMDSC方法可以将温度依赖性的过程和时间依赖性的过程进行分离。   TOPEM® 的基本思路是在等温或动态的温度程序上叠加不同周期的随机温度脉冲。目前TMDSC技术通常所使用的方法为在等温或升温程序上叠加正弦的温度调制,与之对比,TOPEM® 是一种新的高级多频温度调制技术,它使用许多不同的频率(多频)。   TOPEM® 的优点是:   1. 一次测试-在比较宽的频率范围内同时测试样品的性质随时间或温度变化的函数。   2. 从脉冲响应中测定cp-非常准确地测定准稳态比热容   3. 同步高灵敏度和高分辨率-可以进行低能转变测试和/或重叠的温度依赖性效应测试。   4. 分离可逆和不可逆过程-可以非常准确地测定热容,甚至在效应重叠的情况下。   5. 简化曲线解析-可以非常容易地将频率依赖性效应(例如玻璃化转变)和非频率依赖性效应(例如失水)进行分离。   6. 扩展PEM技术-消除仪器影响,扩大测试频率范围。   得益于频率信息,您可以很容易地将随频率变化的效应与非频率依赖的效应进行分离。这大大简化了具有重叠热效应的样品的曲线解析。同时,TOPEM® 可以测试非频率依赖的准稳态比热容。   网络研讨会(webinar)   您注册参加网络研讨会后,您将获得有关这种创新性技术的必要信息。   中文讲解之后,您可以与梅特勒托利多的热分析应用技术专家直接讨论您的问题。   注册参加网络研讨会
  • 梅特勒托利多网络研讨会(Webinar)
    温度调制DSC技术(TMDSC)通常用于研究重叠的热效应,它不仅可以在大学或研究所中应用,而且可以用于工业研究。TMDSC方法可以将温度依赖性的过程和时间依赖性的过程进行分离。   TOPEM® 的基本思路是在等温或动态的温度程序上叠加不同周期的随机温度脉冲。目前TMDSC技术通常所使用的方法为在等温或升温程序上叠加正弦的温度调制,与之对比,TOPEM® 是一种新的高级多频温度调制技术,它使用许多不同的频率(多频)。   TOPEM® 的优点是:   -- 一次测试-在比较宽的频率范围内同时测试样品的性质随时间或温度变化的函数。   -- 从脉冲响应中测定cp-非常准确地测定准稳态比热容   -- 同步高灵敏度和高分辨率-可以进行低能转变测试和/或重叠的温度依赖性效应测试。   -- 分离可逆和不可逆过程-可以非常准确地测定热容,甚至在效应重叠的情况下。   -- 简化曲线解析-可以非常容易地将频率依赖性效应(例如玻璃化转变)和非频率依赖性效应(例如失水)进行分离。   -- 扩展PEM技术-消除仪器影响,扩大测试频率范围。   得益于频率信息,您可以很容易地将随频率变化的效应与非频率依赖的效应进行分离。这大大简化了具有重叠热效应的样品的曲线解析。同时,TOPEM® 可以测试非频率依赖的准稳态比热容。   请点击报名   时间:2009年12月21日 15:00   网络研讨会(webinar)   您注册参加网络研讨会后,您将获得有关这种创新性技术的必要信息。   中文讲解之后,您可以与梅特勒托利多的应用技术专家唐远旺先生直接讨论您的问题。   此活动最终解释权归梅特勒托利多所有
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开!
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了他们在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。会上,杭州仰仪科技有限公司正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技的孙昕禹工程师为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼具优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。
  • 梅特勒托利多热分析技术专题讲座
    在3月25至27日由全国塑料标准化技术委员会石化塑料分标委组织的“塑料差示扫描量热法(DSC)比热容测定国标制订第一次会议”上,梅特勒托利多作为合作方,在26至27日举行了为期一天的热分析技术专题讲座,以配合国标制订工作。 梅特勒托利多的技术专家们就目前最热门的热分析技术及案例进行了报告演讲。技术报告主题:《比热容的DSC测量-直接法、蓝宝石法和温度调制法及其比较》(主讲人:应用技术工程师唐远旺);《PE和PP氧化诱导时间OIT的测量》和《PP和PET的结晶动力学》(主讲人:仲伟霞博士);《随机温度调制DSC技术TOPEM-理论和实例》和《热塑性聚合物Tg的测量-不同标准(ISO、ASTM、DIN、Richardson)和不同技术(DSC、TMA、DMA)及其比较》(主讲人:陆立明经理)。 与会者反应热烈,对相关技术问题进行了深入广泛的讨论,并对梅特勒托利多在热分析应用方面的深入工作表示赞许。热分析著名专家、中科院长春应用化学研究所教授刘振海教授在会上表示“一个仪器厂商的技术应用做到这么深入,甚至走到了我们的前面,对于推动我们应用者的工作很有帮助。”
  • 【莱恩德新品】ATP荧光测定仪的原理与应用
    点击此处可了解更多产品详情:ATP荧光测定仪  ATP荧光测定仪是一种用于测量生物样品中ATP浓度的设备。ATP,即三磷酸腺苷,是细胞内的一种能量代谢物质,其浓度可以反映细胞活力和代谢状态。因此,ATP荧光测定仪在生物医学领域有着广泛的应用。    首先,ATP荧光测定仪可以用于测量细胞活性。细胞活性是指细胞对刺激的反应能力,是评估细胞健康状况的重要指标。通过测量细胞中ATP的浓度,可以间接反映细胞的活性。因此,ATP荧光测定仪在药物筛选、细胞培养、疾病诊断等领域有着广泛的应用。    其次,ATP荧光测定仪还可以用于测量细胞内能量代谢状态。细胞内的能量代谢是一个复杂的过程,涉及到多个酶促反应和化学物质的转化。ATP是能量代谢中的关键物质,其浓度可以反映细胞内的能量代谢状态。因此,ATP荧光测定仪在研究细胞能量代谢、药物对能量代谢的影响等领域有着重要的应用价值。   此外,ATP荧光测定仪还可以用于测量生物样品中的微生物数量。微生物是生物样品中的重要组成部分,其数量和种类可以影响样品的性质和功能。通过测量样品中ATP的浓度,可以间接反映样品中微生物的数量和种类。因此,ATP荧光测定仪在食品检测、环境监测、疾病诊断等领域也有着广泛的应用。    总之,ATP荧光测定仪是一种重要的生物医学检测设备,可以用于测量细胞活性、细胞内能量代谢状态以及生物样品中的微生物数量。其应用范围广泛,对于生物医学领域的研究和发展具有重要的意义。【莱恩德新品】ATP荧光测定仪的原理与应用
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 石油产品辛烷值测定仪的原理和操作注意事项
    辛烷值测定仪是一种常用的检测仪器,具有体积小、操作简单、重复性好、检测速度快等特点,可以快速的分析出油的标号。测量原理石油辛烷值十六烷值测定仪的原理在于对汽油的辛烷值和柴油的十六烷值的绝缘导磁率和电磁感应的电荷特性测定测量出来的。通过测量油品的电介质特性,同已知的存在内存里的数据模型相比较,从而测定出结果。感应装置十分准确,可以测得微小的电介质参数变化.从而可以检测辛烷值和十六烷值等石油产品参数。石油产品辛烷值测定仪操作注意事项:1.严格遵守操作规程,严格控制标准试验条件。2.开机前要认真检查试验机,前要盘车3-4圈。3.停机前要往燃烧室中喷入少许未燃的柴油。4.在配制标准或副标准燃料时,必须使用计量部门校正过的容器和量筒。5.除短时间外,发动机运转中要不间断高压油泵的柴油供应。6.当搬动手轮增加发动机压缩比时,必须要瞬时针方向(从发动机仪表面板一端看)转动手轮进行z终压缩比调节,以消除手轮机械中的间隙而造成的读数误差。7.停机后要将飞轮盘到压缩冲程的上死点。8.当发动机换用燃料时,必须先运转几分钟,以确保喷射系统彻底清洗并使发动机工作平稳后再次读取试验数据。9.必须定期用检验燃料检查试验机的状况。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。主题演讲来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了各自在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。新品发布会上,仰仪科技正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技工程师孙昕禹为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼备优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。活动回放——————————————————————————————————杭州仰仪科技有限公司成立于2006年,浙仪旗下实验室事业群成员,是专注于化工与新能源领域测试需求的国家高新技术企业。我们在温度测量与发生、测试容器制备、仪器集成与数据分析等核心技术上有深度积累,是化工领域测试仪器设备、解决方案的专业开发者。公司产品线主要有热分析与量热、理化参数测试、燃爆特性测试和化学品物理危险测试等,产品综合性能达到国际先进水平,在应急管理、货物运输、海关监管、市场监管、环境保护、高等院校、科研院所、大型企业及第三方检测等机构具有广泛应用且口碑良好。
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:
  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK® 传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX® 丰富细节和FLIR UltraMax® 增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。
  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱 , 周东山 , 胡文兵 南京大学化学化工学院 配位化学国家重点实验室机构 南京 210023作者简介: 胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征 通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn摘要: 示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词: 高分子表征 / 示差扫描量热法 / 温度调制示差扫描量热法 / 闪速示差扫描量热法 目录1. 热分析基础1.1 温度和热1.2 热分析(thermal analysis)2. 示差扫描量热法2.1 基本原理2.2 实验技巧2.2.1 仪器校准2.2.2 样品制备2.2.3 温度程序2.2.4 保护气氛2.3 应用举例2.3.1 比热容2.3.2 热转变温度2.3.3 转变焓2.3.4 DSC与其他技术连用3. 温度调制示差扫描量热法3.1 基本原理3.2 实验技巧3.2.1 样品质量3.2.2 温度程序3.3 应用举例3.3.1 可逆热容和不可逆热容3.3.2 等温可逆热容3.3.3 玻璃化转变4. 闪速示差扫描量热法4.1 基本原理4.2 实验技巧4.2.1 样品制备4.2.2 样品质量4.2.3 临界条件4.3 应用举例4.3.1 等温总结晶动力学4.3.2 不可逆熔融转变4.3.3 与其他表征技术连用4.3.4 玻璃化转变4.3.5 热导率5. 总结与展望参考文献1. 热分析基础1.1 温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度. 热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量. 热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度. 值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度. 然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小. 例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的. 通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标. 1714年,Fahrenheit将水的冰点设为32 °F,沸点为212 °F,建立了华氏温度. 1742年,Celsius将水的冰点设为0 °C,沸点为100 °C,建立了摄氏温度. 到1779年为止,全世界并存有19种经验温标. 然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致. 此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系. 例如,水银在−39 °C发生固化,在357 °C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间. 1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标. 相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15 K. 摄氏温度与热力学温度之间的关系为即,摄氏温度的0 °C对应热力学温度的273.15 K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索. 早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的. 一直到18世纪中叶以前,热质说(theory of caloric)盛行. 18世纪后期,人们开始通过实验证明热是粒子内部的运动. 19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C (JK−1)来表征,表示物体温度升高1 K所吸收的热量(单位J),而单位质量(克,g)物体升高1 K所吸收的热量为比热容cm (JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数, 在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy). 它与内能的关系为由此得到等容热容和等压热容的关系为1.2 热分析(thermal analysis)广义上来说,所有控制温度的测量过程都可以称为热分析. 1999年,国际热分析和量热协会(International Confederation for Thermal Analysis and Calorimetry, ICTAC)和美国材料与试验协会(American Society for Testing and Materials, ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术. (A group of techniques in which a physical property of a substance is measured as a function of temperature or time while the substance is subjected to a controlled-temperature program.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等. 按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differential thermal analysis, DTA)、示差扫描量热法(differential scanning calorimetry, DSC)、热机械法(thermomechanical analysis, TMA)、热重分析法(thermogravimetric analysis, TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术. 它是目前应用最为广泛的一种热分析技术. 随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展. 其中一个主要的进展是在20世纪90年代出现的温度调制DSC (temperature-modulated DSC, TMDSC). TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分. TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容. DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scan chip-calorimetry, FSC). FSC其商业化版本为Flash DSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106 Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2. 示差扫描量热法2.1 基本原理示差扫描量热法起源于19世纪中期. 1887年,Le Chatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线. 1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA). 然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8] 改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关. 对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流. 这一发现最终导致了热流型DSC的诞生. 热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源. 1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率. 此后,DSC技术不断发展并成为热分析领域的常规分析手段. 目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heat flux DSC)和功率补偿型示差扫描量热仪(power compensation DSC)两类[11].热流型DSC的测试装置如图1所示.图 1Figure 1. Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率. 由热欧姆定律可知,由炉体流到试样坩埚的热流[Math Processing Error]ϕs 以及由炉体流入参比坩埚的热流[Math Processing Error]ϕr分别为[12]其中,[Math Processing Error]Ts、[Math Processing Error]Tr和[Math Processing Error]Tc分别为试样温度、参比温度和炉体温度,[Math Processing Error]Rth为热阻.DSC检测信号[Math Processing Error]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[Math Processing Error]ϕ与试样和参比物之间的温差[Math Processing Error]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线. 另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图 2Figure 2. Illustration of power-compensation DSC as invented by Perkin Elmer with the reference and the sample separately heated by two platinum resistance thermometers in two calorimeters mounted in a constant temperature block.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快. 为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2 实验技巧2.2.1 仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合. 校准的内容主要包括DSC曲线上的温度值以及热流速率值. 因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值. 常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准. 图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图 3Figure 3. Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.2.2.2 样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等. 其中最常用的是铝坩埚,包括40 μL标准铝坩埚和20 μL轻质铝坩埚. 带盖的40 μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试. 20 μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试. 称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性. 此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量. 一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度. 然而样品质量过少会导致信号的灵敏度较低. 因此,在称量样品时需要综合考虑两者的影响. 通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10 mg,无机样品的质量为10~50 mg[12]. 称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量. 称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方有关高分子标准热容数据可从ATHAS (Advanced THermal AnalysiS)[16]等数据库中查找.2.3.2 热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点. 玻璃化温度[Math Processing Error]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度. 研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义. 玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点. 图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[Math Processing Error]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[Math Processing Error]Tb1和外推终止温度[Math Processing Error]Te1,这两点的中点即为玻璃化转变温度[Math Processing Error]Tg.图 5
  • 国产量热计研制也有春天——微量化发展的量热技术与应用
    p style=" text-align: left " strong   本文作者为西南科技大学环境友好能源材料国家重点实验室金波老师,彭汝芳老师和楚士晋老师。 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/baf28e06-4e00-4250-9149-2308407544ca.jpg" title=" 1.png" alt=" 1.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/4c15335f-36ba-4d5d-965f-425f649686a8.jpg" title=" 2.png" alt=" 2.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/3148f83c-ef56-4024-a3f2-8ffb0d48c8fd.jpg" title=" 3.png" alt=" 3.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/22b6d866-77aa-4597-976c-65b55c8259b5.jpg" title=" 4.png" alt=" 4.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a7bb790e-54a6-4dfc-bbf8-3f09d9794c81.jpg" title=" 5.png" alt=" 5.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/6037df3d-122e-41c5-be5d-74d4c501f953.jpg" title=" 6.png" alt=" 6.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/87880764-6282-4ed5-8570-1af1670c3aa2.jpg" title=" 7.png" alt=" 7.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/898f2b84-2a26-4c60-9833-db440633fe0e.jpg" title=" 8.png" alt=" 8.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/79077550-5f8b-48b5-b323-d7e0dbf46da5.jpg" title=" 9.png" alt=" 9.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/71bfc17a-449e-4792-80ea-23a1f65d9f83.jpg" title=" 10.png" alt=" 10.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/9cb424b8-ffc8-41f4-89dd-84779c918e6a.jpg" title=" 11.png" alt=" 11.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/f52b38a3-bea9-4139-b93b-e027c1fdb5f4.jpg" title=" 12.png" alt=" 12.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/5781a803-8c45-4eaf-94cc-caa45025f3b4.jpg" title=" 13.png" alt=" 13.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/e12a4fb2-b31b-43e0-a6bb-04a45fa8b68f.jpg" title=" 14.png" alt=" 14.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/e00bea37-9974-4973-9f28-7ce15e55fb02.jpg" title=" 15.png" alt=" 15.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/bfc09b6e-3e6f-437a-b20b-1d929ddecb56.jpg" title=" 17.png" alt=" 17.png" / img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/67110ae6-63bb-42ed-b6b3-8ab5e9a74fa4.jpg" title=" 18.png" alt=" 18.png" / /p p   参考文献 /p p   [1] Calvet E. Experimental Thermochemistry. Vol. 1. New Yoek: Interscience-Wiley, 1956 /p p   [2] Calvet E. Experimental Thermochemistry. Vol. 2. New Yoek: Interscience-Wiley, 1962 /p p   [3] Calvet E, Prat H. Recent Progress in Microcalorimentry. New Yoek: Pergamon Press Ltd., 1963 /p p   [4] 楚士晋. 炸药热分析. 科学出版社, 1994 /p p   [5] Tian A. Utilisation de la mé thode calorimé trique en dynamique chimique: emploi d’unmicrocalorimé tre à compensation. Bull Soc Chim Fr, 1923, 33: 427-428 /p p   [6] 田安民, 秦自明, 曾宪诚. 热导式自动量热计的研制. 石油冶炼, 1979: 11–17 /p p   [7] 田安民, 秦自明, 曾宪诚, 詹曙光, 邓郁. RD-I 型热导式自动量热计的研制. 高等学校化学学报, 1981, 2: 244–250 /p p   [8] 陈学林, 楚士晋, 胡荣祖, 李楠. 微热量热法测定导热系数的原理及其理论推导. 含能材料, 1993, 1: 31–36 /p p   [9] 陈学林, 楚士晋, 唐水花, 秦蛟. 炸药导热系数的非补偿微热量热法测定. 爆炸与冲击, 1996, 16: 266–269 /p p   [10] 陈学林, 楚士晋, 秦蛟, 唐水花. 含能材料导热系数热扩散率的微热量热法测定. 含能材料, 1995, 3: 26–33 /p p   [11] Chen XL. An absolute method for determination of thermal conductivities of thermal insulators by microcalorimetry. J Thermal Sci, 1996, 5: 92-98 /p p   [12] 胡荣祖, 梁燕军. Calvet 微热量热计在含能材料及其相关物中的应用. 火炸药, 1985: 15–24 /p p   [13] 帅琪, 高胜利 陈三平, 刘明艳, 胡荣祖, 史启祯. 用微量热法测定稀土含硫有机配合物的比热容. 化学学报, 2005, 63: 1962–1966 154 /p p   [14] Song WM, Hu QL, Chen SP, Gao SL. Thermodynamic investigation on the reactions of formation of the compounds RE(C5H8NS2)3(C12H8N2) (RE = Eu, Tb). J Chem Thermodyn, 2006, 38: 1327–1334 /p p   [15] 帅琪, 陈三平, 高胜利, 孟祥鑫, 杨旭武. 三元配合物 Tm[(C5H8NS2)3 (C12H8N2)]的热化学性质研究. 无机化学学报, 2005, 21: 1333–1340 /p p   [16] 武向红, 郑丹星, 何信菊, 荆树宏. 微量量热法测定生物柴油和菜籽油的比热容. 工程热物理程学报, 2007, 28: 737–740 /p p   [17] 田涛, 郑丹星, 武向红, 蒋翼然. 室温离子液体[Emim]BF4 及其水溶液体系的比热容测定. 北京化工大学学报, 2008, 35: 27–30 /p p   [18] Li N, Zhao FQ, Luo YJ, Mo H, Gao HX, Xiao LB, Yao E, Hu RZ. Study on curing reaction thermokinetics of azide binder/bispropargyl succinate by micro-calorimetry, Propell. Explos. Pyrot., 2015, 40: 808–813 /p p   [19] XiaoYY, Jin B, Peng RF, Zhang QC, Liu QQ, Guo PL, Chu SJ. Kinetic and thermodynamic analysis of the hydroxyl-terminated polybutadiene binder system by using microcalorimetry. Thermochimica Acta, 2018, 659: 13–18 /p p   [20] Tao JJ, Jin B, Peng RF, Chu SJ. Isothermal curing of the glycidyl azide polymer binder system by microcalorimetry. Polymer Testing, 2018, 71: 231-237 /p p   [21] Chen JJ, Jin B, Luo G, Liu HH, Zhang QC, Huang Q, Peng RF. Thermodynamics and kinetics of polyglycidyl nitrate-based urethane network formation by microcalorimetry. J. Chem. Thermodynamics, 2019, 132: 397–404 /p p   [22] Xiao LB, Zhao FQ, Xing XL, Huang HF, Zhou ZM, An T, Pei Q, Tan Y. Dissolution properties of ammonium dipicrylamide in dimethyl sulfoxide and N-methyl pyrrolidone, Thermochim Acta, 2012, 546: 138–142 /p p   [23] Xing XL, Xue L, Zhao FQ, Gao HX, Hu RZ. Thermochemical properties of 1,1-diamino-2,2-dinitroethylene (FOX-7) in dimethyl sulfoxide (DMSO). Thermochim Acta, 2009, 491: 35–38 /p p   [24] Yin GY, Yao Y, Jiao BJ, Chen SP, Gao SL. Enthalpies of dilution of aqueous Li2B4O7 solutions at 298.15 K and application of ion-interaction model. Thermochim Acta, 2005, 435: 125–128 /p p   [25] Wang ZJ, Chen SP, Di YY, Yang Q, Gao SL. Enthalpy of solution of 5-R-Na2bdc· nH2O at 298.15 K. J Chem Eng Data, 2010, 55: 5786–5790 /p p   [26] 杨奇, 陈三平, 谢钢, 刘向荣, 刘明艳, 朱之轮, 贾青生, 高胜利. RD496 微热量计的研制及其应用. 中国科学: 化学, 2014, 44: 819-914 /p p br/ /p
  • 2013梅特勒托利多热分析用户培训会报名
    尊敬的客户:您好! 2013年梅特勒托利多热分析用户培训会将于今年7月17-19日在有着&ldquo 百岛之市&rdquo 之称的美丽海滨城市-珠海举办,在此诚邀您的参与! 热分析是仪器分析的一个重要分支,对材料的表征发挥着不可替代的作用,目前成为越来越多的科研机构和企业实验室使用的通用仪器。热分析试验方法较多,并且测量结果受多种因素的影响,因此深入了解仪器特点并使用正确的方法开展实验,正确的结果分析对于技术人员非常重要。为了让更多技术人员掌握热分析技术,更好的进行各类材料的研究及质量控制,梅特勒托利多公司每年都举办针对用户的大型技术交流会,今年我们将重点放在技术应用、仪器和软件使用以及结果分析上,届时将邀请长期支持梅特勒托利多热分析事业的专家和资深技术顾问与大家现场交流与讨论,欢迎所有对热分析技术感兴趣的人士踊跃参与! 培训会报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ta_user_tech_seminarinvitation2013.html?cq_ck=1369300478036 【会议内容】 热分析论著的规范表达:实例辨析; 热分析应用概述 热分析在高分子材料中的应用; 热分析在制药行业的应用; 玻璃化转变Tg的测定; 低温/高温比热容测试技巧及注意事项; DSC及TGA曲线解析; 仪器实验技巧(DSC、TGA、TMA、DMA); 热分析STARe软件操作技巧; 热分析仪器的维护、保养; 【会议时间】2013年7月17~19日(16日报到) 【会议地点】珠海星城大酒店 多功能厅 (珠海市商业文化中心区吉大景山路 88号,) 【注意事项】1)16日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您有事不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)会务费2000元/人(含培训费、资料、餐饮等),住宿可统一安排,费用自 理; 会议日程 7月17日 06:30 - 08:30 Breakfast 早餐 09:00 - 09:30 欢迎词与热分析简介 陆立明 梅特勒托利多中国区经理 09:30 - 10:30 热分析论著的规范表达:实例辨析 刘振海 中科院长春应用化学研究所教授 10:30 - 10:45 Tea Break 茶歇 10:45 - 12:00 热分析应用概述 唐远旺 梅特勒托利多热分析技术主管 12:00 - 13:00 Lunch & Break 午餐&午休 13:00 - 13:30 合影 酒店内 全体人员 13:30 - 14:30 热分析在制药行业的应用 范玲婷 梅特勒托利多热分析应用顾问 14:30 - 14:45 Tea Break 茶歇 14:45 - 16:00 热分析在高分子材料中的应用 孔鹏飞 梅特勒托利多热分析应用顾问 16:00 - 17:00 低温/高温比热容测试技巧及注意事项 唐远旺 梅特勒托利多热分析技术主管 17:00 - 17:30 FAQ 问题交流 18:00 - 20:30 Dinner 外出晚餐 全体人员 7月18日 06:30 - 08:30 Breakfast 早餐 09:00 - 10:30 DSC及TGA曲线解析 Craig Gordon 梅特勒托利多热分析亚太区经理 10:30 - 10:45 Tea Break 茶歇 10:45 - 12:00 DSC 及TGA实验技巧 孔鹏飞 梅特勒托利多热分析应用顾问 12:00 - 13:00 Lunch & Break 午餐&午休 13:00 - 13:45 玻璃化转变Tg测定 李焱 梅特勒托利多热分析应用顾问 13:45 - 14:30 TMA和DMA操作技巧 孔鹏飞 梅特勒托利多热分析应用顾问 14:30 - 14:45 Tea Break 茶歇 14:45- 15:45 热分析STARe软件操作技巧 李焱 梅特勒托利多热分析应用顾问 15:45 - 16:45 热分析仪器维护及保养 唐幸初 梅特勒托利多热分析服务主管 16:45 - 17:00 F&A 问题交流 17:00 - 17:30 Lucky draw 幸运抽奖 18:00 - 20:30 Dinner 外出晚餐 全体人员 7月19日 Team Building 全体人员 如有疑问或交流详情,请联系如下: 联 系 人:杨献玲 邮 箱:thermalanalysis@mt.com 联系电话:021-64850435*1733 手 机:13818489304 梅特勒托利多(中国) 热分析仪器部 2013年5月 培训会报名地址: http://cn.mt.com/cn/zh/home/events/seminars/cn_ta_user_tech_seminarinvitation2013.html?cq_ck=1369300478036 更多信息,请访问 梅特勒托利多热分析仪器部 梅特勒托利多官网
  • 3月23日~24日!之量科技参加第九届全国储能科学与技术大会
    会议预告会议时间:2024年3月23日-24日(22日报到)会议地点:江苏溧阳(溧阳天目湖豪生大酒店)主办单位:天目湖先进储能技术研究院、中国化工学会储能工程专业委员会、中国电机工程学会电力储能专业委员会、化学工业出版社有限公司、江苏省溧阳高新技术产业开发区管委会会议背景第九届全国储能科学与技术大会将重点围绕储能技术基础理论、核心技术、关键材料与装备、应用场景及商业模式等话题展开,并邀请来自材料、器件、装备、应用、投融资等相关行业代表参会,汇聚国内外政产学研资用等多方主体参与,共同探讨储能技术发展的关键问题,把握储能产业发展脉搏。作为浙仪旗下实验室事业群成员,仰仪科技、之量科技共同参加本届大会(展位号:3-17号),分享我们在全尺寸大容量电芯及模组热失控测试领域的技术成果——BAC系列大型电池绝热量热仪。与此同时,浙仪应用研究院的资深应用工程师王旭博士也将在“先进表征技术在储能中的应用”报告论坛分享《绝热量热技术与锂电池热安全测试》,欢迎您莅临现场,与我们进行技术交流!BAC系列大型电池绝热量热仪BAC系列大型电池绝热量热仪是专为满足超大型电芯单体及其小型模组进行热特性测试的绝热量热仪,具备最新版GB/T 36276-2023《储能用锂离子电池》绝热温升特性测试功能。该仪器通过模拟电池热失控过程绝热环境,可实现电池热失控测试、电池产气测试、电池充放电产热测试、电池比热容测试,可获取锂电池低温状态下的充放电产热和比热容、热失控起始温度、最大热失控速率、绝热温升特性、电池产气量和产气速率等参数,为锂电池及电池模组安全性能评估提供数据支持;为动力电池低温热管理系统提供评价依据。在样品容量方面,BAC系列大型电池绝热量热仪已成功完成包括130Ah 9系超高镍NCM、190Ah NCM811、230Ah NCM622、320Ah LPF等在内的数百款电芯绝热热失控和热物性参数测试。仪器性能方面,BAC系列可针对长边≤1500mm范围内的电芯开展安全、精准、可靠的绝热热失控测试。与目前国内外厂家的标准产品相比,BAC系列大容量腔体的抗爆性和产气测试能力显著提升,能够承受大型电芯的热失控温压冲击。*文中样品不代表仪器最终测试能力极限,详情可咨询销售01 严密的结构设计:标准款量热腔直径 (420~1000)mm, 各自设计有泄压型与密封型结构,可承受9系锂电池热失控时的剧烈压力与冲击。02 独特的量热性能:基于半导体控温的高精密低漂移测温模块设计,提升系统测试稳定性与准确性,确保实时跟踪、环境绝热、精确量热。03 随心的定制功能:可定制1000mm以上炉腔,并自行选配集气、针刺、低温冷却、多通道测温、比热容测试等丰富的功能模组。04 专业的安全防护:泄压型炉体设置内部爆破片与外部抗爆箱双重保护,为实验构建防护屏障;密闭型炉体符合标准压力容器规范,隔绝失控危险。
  • 加拿大专利型快速导热系数测定仪投入运行
    中科院上海硅酸盐所购买的我公司独家代理的加拿大MATHIS公司生产的专利型快速导热系数测定仪已于2006年12月安装完毕投入实验使用。该仪器可进行实验室及现场应用,可快速方便地测定固体、液体、粉沫、薄膜及粘稠物等多种不同材料的导热系数,热传导率及比热(需其它参数配合)精度为世界上最高,准确度优于5%,测试一个样品时间约为10-15分钟(包括冷却时间8-10分钟)。已有感兴趣的其它用户去参观了解该仪器。
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 简介差热分析基本原理
    p style=" text-align: center " strong 原创: 王昉【南师大】 江苏热分析 /strong /p p style=" text-align: center " img title=" 简介差热分析基本原理.jpg" alt=" 简介差热分析基本原理.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a583219e-fc52-4730-be7a-b8c049b9da17.jpg" / /p p style=" text-align: center " strong 简介差热分析基本原理 /strong /p p span style=" color: rgb(255, 0, 0) " strong · 热分析 /strong /span /p p   热分析是指在程序控制温度下,测量物质的物理性质随温度变化的一种技术。其中,它可以测定一个重要的热力学参数—热焓的变化。根据热力学的基本原理,物质的焓、熵和自由能都是物质的一种特性,可用Gibbs-Helmholts方程表达他们之间的关系: /p p style=" text-align: center " ΔG=ΔH-TΔS /p p   其中: T绝对温度 ΔG吉布斯能变 ΔH焓变 ΔS熵变 /p p   由于在给定温度下每个体系总是趋向于达到自由能最小状态,所以,当逐渐加热试样时,它可转变成更稳定的晶体结构,或具有更低自由能的另一个状态。伴随着这种转变,会有热焓的变化。这就是差热分析和差示扫描量热法的基础。 /p p   当然,热分析还可以给出有一定参考价值的动力学、质量、比热熔、纯度和模量变化等数据,所以它是分析和表征各类物质物理转变与化学反应基本特性的重要手段,在高分子材料、含能材料、药物、食品、矿物、金属/合金、陶瓷、考古以及资源利用等众多领域有着极其广泛的应用。 /p p span style=" color: rgb(255, 0, 0) " strong · 差热分析 /strong /span /p p   早在1887年法国的Le Chatelier首先利用热电偶经检流计记录了粘土类矿物在升温时的电动势变化。热电偶(thermocouple)是常用的测温传感器,它可以直接测量温度,并把温度信号转换成热电动势信号,进行记录。接着,1899年英国人Roberts-Austen利用参比热电偶制成了有实用价值的差热实验装置,最先以差示的形式成功地观测到试样与参比物之间的温差ΔT,这为DTA技术奠定了基础。以后的发展基本上都是在此基础上进行改进,例如:试样与参比物的配置、热电偶的形式、记录方法、控温方式和数据处理等方面,从而形成各种差示扫描量热仪。图1为差热分析示意图,图2为差热曲线。 /p p   实验过程中,处在加热炉内的试样和参比物在相同条件下,同时加热或冷却,炉温控制由控温热电偶监控。试样与参比物之间的温差用对接的两支热电偶进行测定,热电偶的两个接点分别与盛放试样和参比物的坩埚底部接触。参比物是一种热容与试样相接近而在研究的温度范围没有相变的物质,常用α –Al sub 2 /sub O sub 3 /sub ,或者空坩埚。 /p p style=" text-align: center " img title=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" alt=" 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶).jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/17afd1c0-ca11-4433-ac7c-7404a8f9ea9b.jpg" / /p p style=" text-align: center " strong 图1:差热分析示意图 (1.试样,2.参比物,3.炉子,4.热电偶) /strong /p p style=" text-align: center " img title=" 图2: 差热曲线.jpg" alt=" 图2: 差热曲线.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e2c5d8b8-1ed6-42f6-9f3b-2e15857bc77c.jpg" / /p p style=" text-align: center " strong 图2: 差热曲线 /strong /p p   在加热或冷却过程中,如果试样没有任何热效应产生,即试样与参比物无温差,ΔT=TS-TR=0 (TS为试样温度,TR为参比物温度 )。由于热电偶的热电势与试样和参比物之间的温差成正比,两对热电偶的电势大小相等,方向相反(由于是反相连接),热电偶无电势输出,所得到的差热曲线就是一条水平直线。称作基线。如果试样有某种变化,并伴有热效应的产生,则TS≠TR,差示热电偶就会有电势输出,差热曲线偏离基线,直至变化结束,差热曲线重新回到基线。这样,便可得到一条ΔT=f(T)的差热曲线。通常峰尖向上表示放热,向下表示吸热。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 让注水肉远离舌尖、肉类水分测定仪
    近段时间注水肉事件频发,注水肉的制造者图的是水充肉,多赚些银两,是没有健康卫生的理念,注水肉实质对人体健康存在,相当危害,并非只是简单的欺诈。除水之外,不法分子手段繁多;加入阿托品,扩张血管、多蓄水;注入血水可使肉色变深;注入矾水可起收敛作用;注入卤水能使肉色鲜艳、令蛋白质凝固而保水;注入工业色素也会使肉品长时间呈现鲜红色,但其物质会容易产生致癌病变。更有甚者,为延长肉的存放,水中加入防腐剂,对人直接产生毒害。注水肉不仅侵害了消费者的经济利益而且严重地影响了肉的卫生质量,是一种违法行为。因此注水肉的监督检验已成为市场肉类兽医卫生监督检验的一项重要任务。目前国内采用电导法这种仪器原理采用正负电极针插入肉内,利用肉类中本身含有的结构水中的电导率于注入水中的电导率不同而测量的,其结构特点是多针平滑滤波式电极和与之匹配的电路系统构成,以10次随机采样的算术平均值为测量结果示值。但是电导率存在的问题是:当不法商贩采用盐水、矾水或者污水时,其水分中的电导变化不大,导致这类水分测定的准确度不够稳定。而采用传统烘箱法,配备电子天平、恒温干燥箱等设备;有专职的化验人员操作,通过一定时间的恒温干燥箱的烘烤以及反复的称重和计算,方能得到结果。工序繁琐,操作周期长,而且烘干后的试样在从干燥箱取出进行称重的过程中,会迅速吸收空气中的水分容易产生误差以及人为误差。在注水肉检测领域,测量准确性和测量速度之间的矛盾一直没有解决;针对这一现状深圳市芬析仪器制造有限公司提供一种有烘干法结构的快速肉类水分检测仪器。CSY-R肉类水分测定仪是该公司自主研发生产的高新技术产品,获得国家发明专利国家发明专利号:ZL201310178317.X 国家实用新型专利号ZL201320262557.3外观专利ZL01430075376.X;CSY-R肉类水分测定仪克服检测误差大,测量步骤繁琐等问题,采用电磁力传感器确保称重准确,环形卤素灯可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法;目前该设备定为《GB 18394畜禽肉水分限量》标准检测设备,是一种新型的快速检测注水肉的仪器;可作为市场工商管理部门的一种有效的检测工具,防止不法商贩损害消费者的健康和利益的行为。公司网站:http://www.instrument.com.cn/netshow/SH103452/
  • 中国人民解放军军事科学院军事医学研究院选购和晟仪器差示扫描量热仪
    中国人民解放军军事医学科学院是中国人民解放军的最高医学研究机构,1951年8月创建于上海,1958年迁至北京。2003年,遵照中央军委决定承建解放军疾病预防控制中心。中国人民解放军军事医学科学院选购和晟仪器HS-DSC-101差示扫描量热仪,现已安装调试完毕。差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。中国人民解放军军事科学院军事医学研究院上海和晟HS-DSC-101差示扫描量热仪
  • 睿科集团发布睿科高通量真空平行浓缩仪新品
    产品简介在环境污染分析和食品安全分析实验室中,为了得到痕量目标物的可靠性检测分析,实验人员不断追求样品快速无损浓缩技术。睿科MPE系列高通量真空平行浓缩仪结合旋蒸和高通量氮吹仪的优点,基于通用的水浴平台,采用精准的数字型的真空控制体系,保证不同样品处于相同的蒸发环境,避免样液中目标物在低真空度下与溶剂共沸而损失,进而保证实验结果的平行性。 效率高采用比热容大的水作为导热媒介,保证加热均匀,连续严格的密封性,每个孔位的温度一致,保证样品在浓缩过程的高度平行性。批量较大,可同时浓缩16位大体积土壤提取液(100-200 mL)。 同等条件下样品数浓缩方式所用时长16位常规旋蒸180min16位真空浓缩45min 溶剂回收采用低温蛇形冷凝管进行蒸汽冷凝,耐腐蚀的PTFE体系为恶劣的蒸汽环境提供耐久可靠的性能保障,乙腈回收率(冷却液0℃)高达99.2%。 可视性强三面透明的水浴环境体系,便于快速查看样液的蒸发情况。当液面接近标准方法中规定的1mL或近干状态时,可通过三面观察窗进行肉眼判断,避免了样液过度浓缩带来的损失。另可通过选装红外定容模块,进行1mL液位感应,自动判定仪器终点。 样品瓶架兼容性强可兼容多种规格的样品瓶,使其应用于不同领域进行样品浓缩,浓缩体积最大可达150mL,浓缩过程无需实验员值守。 农残测试20 mL提取液35 mL净化液 土壤有机物测试100mL<土壤提取液<150mL 杜绝交叉污染快拆式密封盖板,利于不同样品管的快速更换。盖板加热设计,避免样液在盖板上冷凝,加快样液的挥发。出色的导流设计,高效地疏导溶剂废气,防止不同位置样液的交叉污染。 防暴沸设计平稳的圆周振荡,加快样液混匀和热量传递,避免样液的暴沸。温和的水浴环境,利于低沸点溶剂的蒸发和待测目标物在挥发过程中的保留。数字型的真空控制模式,高灵敏度的陶瓷型传感器实时检测真空度,避免样液在过低压力下共沸造成目标待测物的损失。 便捷图形化控制图形化界面提供便捷的人机交互功能,内置的仪器方法便于实验新手快速使用。调用仪器方法后即可点击开始按钮快速进行浓缩实验。实验到达终点后,仪器可自动泄压和降温保护样品。另仪器真空控制的手动模式可为摸索实验条件带来极大自由度。 应用举例1.土壤和沉积物多环芳烃的测定-高效液相色谱法(HJ 784-2016)2.土壤和沉积物多氯联苯的测定-气相色谱-质谱法(HJ 743-2015)3.猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定-液相色谱串联质谱法(GBT 20752-2006)4.水果和蔬菜中500种农药及相关化学品残留量的测定-气相色谱质谱法(GB 23200.8-2016)5.粮谷中475种农药及相关化学品残留量的测定-气相色谱质谱法(GB 23200.9-2016)创新点:睿科MPE高通量真空平行浓缩仪结合旋蒸和高通量氮吹仪的优点,基于通用的水浴平台,采用精准的数字型的真空控制体系,保证不同样品处于相同的蒸发环境,避免样液中目标物在低真空度下与溶剂共沸而损失,进而保证实验结果的平行性。 睿科高通量真空平行浓缩仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制