当前位置: 仪器信息网 > 行业主题 > >

太阳模拟仪测试原理

仪器信息网太阳模拟仪测试原理专题为您提供2024年最新太阳模拟仪测试原理价格报价、厂家品牌的相关信息, 包括太阳模拟仪测试原理参数、型号等,不管是国产,还是进口品牌的太阳模拟仪测试原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太阳模拟仪测试原理相关的耗材配件、试剂标物,还有太阳模拟仪测试原理相关的最新资讯、资料,以及太阳模拟仪测试原理相关的解决方案。

太阳模拟仪测试原理相关的论坛

  • 太阳模拟器光源等级对太阳能电池测试的影响

    光伏行业发展初期,晶体硅电池和组件达到批量化生产时,BAA级的模拟器被行业普遍使用,但随着行业的发展和科学技术的进步,尤其是现在各种不同技术类型和不同规格的光伏电池/组件的产品的涌现,其B级光谱的限制性和对多标准板的要求以及测试误差的过大,对AAA级的模拟器成为行业的必然需求,即  A(光谱等级)A(辐照不均匀度等级)A(辐照不稳定性等级,通常指LTI)。  1.光谱对测试结果的影响  不同基材的电池光谱响应差别很大。实际上,即使基材相同的电池在生产过程中由于晶体生长或其它条件和工艺等的差异,也会导致光谱响应的差异,由于无法保证校准设备时使用的标准电池和其它被测电池的绝对一致性,因此如果要得到更为准确的结果,就需要高等级光谱的太阳模拟器。  2.光强均匀性对测试结果的影响  晶体硅太阳电池组件中单体电池之间焊接不良及同串单体电池IV特性不匹配等因素会导致输出功率降低。在工业上,为了防止由以上原因造成的热斑效应和功率消耗,在组件制造时一般都会在每十几片串联的电池片两端并上旁路二极管。这样做虽可降低组件的热斑效应,但同时也可能会使组件的IV特性曲线出现畸变。造成热斑效应的原因有很多,其中两个主要的原因是:一是电池组件本身工艺或品质造成的单体电池IV特性不匹配,二是遮盖等外界原因造成的组件受光不均匀。  因此,一个光强均匀性良好的太阳模拟器,可以通过测试从一定程度上反映出太阳电池组件的单体电池IV特性不匹配的问题。  模拟器的光均匀性还会影响测试结果的FF,如果模拟器的光均匀度不好,一般情况下,测试IV曲线的FF就会比实际值偏小。  3.辐照不稳定度对测试结果的影响  辐照稳定度对测试结果的影响是很容易理解的,模拟器辐照不稳定,就必然会造成测试结果不稳定,辐照稳定度保证了所测试的I-V特性是在同一条件下量测的,为数据的可参考性提供了前提。

  • avantes太阳模拟器光谱测量

    太阳模拟器作为光源,在某种意义上说,可以等同于太阳光源,可以模拟太阳光照射。太阳模拟器广泛应用于太阳能电池特性测试,光电材料特性测试,生物化学相关测试,光学催化降解加速研究,皮肤化妆用品检测,环境研究等。 随着太阳能光伏产业的蓬勃发展,太阳能模拟器的光谱匹配性能测试也越趋重要。针对大多数采用脉冲氙灯作为光源的设备,最理想的测试状态是采集一个脉冲周期内不同时间点的绝对辐射光谱,进而判断该太阳能模拟器的光谱等级。目前采用微小型的光纤光谱技术是实现太阳能模拟器光谱测量最简单可靠的方法。设备和方法 1、稳态光谱采集 根据IEC60694-9标准要求,太阳模拟器有效光谱范围是400-1100nm,这就需要光谱测试设备可同时采集到400-1100nm范围的绝对光谱数据,并且在整个波段范围内都具有较高的信噪比,以保证测试数据的可靠性。荷兰Avantes公司的AvaSolar光纤光谱仪,采用高信噪比的薄型背照式CCD探测器,其在200-1100nm均具有良好的光谱响应,以确保得到高质量的光谱数据。同时该套系统出厂时就进行了NIST可溯源的绝对辐射标定,可直接得到稳态的模拟器的辐照度光谱信息。 2、 瞬态光谱采集 基于AvaSolar光谱仪特有的快速采集功能,也可应用在瞬态模拟器的光谱检测中。AvaSolar最多可实现每秒钟450幅光谱的采集,不管模拟器的工作模式是单次脉冲、多次频闪,无论脉冲弛豫时间是小到2ms,还是较长的6s,AvaSolar系统均可得到真实可靠的辐照度数据。 3、光谱匹配度太阳模拟器的光谱匹配度是指在6个指定光谱范围内强度积分的百分比。任何与标准光谱的偏离百分比都必须在一定的范围内,这也正是衡量太阳模拟器等级的一项标准。对于A类太阳模拟器,光谱匹配度必须在75% - 125%之间。Ideal Spectral Match Defined by IEC StandardsSpectral MatchSpectral Range (nm) Ideal %400 - 500 18.4500 - 600 19.9600 - 700 18.4700 - 800 14.9800 - 900 12.5900 - 1100 15.9 利用AvaSoft-Solar软件特有的能量积分功能,可得到不同光谱范围内的辐照度总和(单位:µW/cm2),从而帮助判断该太阳能模拟器的光谱等级。如下图所示,同时对上述6个指定光谱范围的辐照强度进行能量积分计算。 4、 模拟器等级判断 AvaSoft-Solar软件可按照IEC60694-9标准上所述要求,根据测试得到的模拟器辐照度光谱数据直接给出模拟器的等级,可给出不同波段范围内的匹配度,以帮助用户更好的判断模拟器的性能。 5、 扩展功能 ⑴紫外老化仪光谱测量 对于设有可靠性试验室的用户来说,紫外老化也是检测光伏产品性能必不可少的环节,这也就需要针对紫外老化仪的光谱及辐照度进行有效的检测。由于AvaSolar主机可覆盖200-1100nm的光谱范围,因此AvaSolar该套系统可以直接用来进行紫外老化仪的光谱检测。 ⑵光伏组件玻璃板透过率测量 AvaSolar光谱仪不但可进行绝对辐照光谱的检测,同时可对光伏组件厂所用的大面积玻璃进行透过率的测量。仅需要在原有AvaSolar系统的基础上额外配置照射光源、积分球及光纤即可。对于工业用大尺寸的玻璃的透过率的检测,需要用户根据不同的现场测试要求自行设计积分

  • 全光谱稳态太阳光模拟器

    全光谱稳态太阳光模拟器

    [b][b][font=宋体]概述[/font][/b][/b][font=宋体]稳态太阳光模拟器是一种可以模拟太阳光谱、光强、光照时间等参数的设备,常用于室内环境下对材料、器件、产品等的测试和评估。通常由光源、光学系统、控制系统等组成。[/font][font=宋体]模拟光源可以采用氙灯、汞灯、金属卤化物灯等,这些光源能够发出相近于太阳光谱的光线,以模拟太阳光照射下的环境。光学系统可以对光线进行聚焦、分散、滤波等处理,以达到所需的光强和光谱分布。控制系统可以控制光源的开关、光强、光照时间等参数,以便进行不同条件下的测试和评估。稳态太阳光模拟器[/font][font=宋体][font=宋体]提供一个接近自然日光的环境,不受环境、气候和时间等因素影响实现[/font][font=Calibri]24[/font][font=宋体]小时不间断光照。[/font][/font][img=光降解之太阳光模拟器,690,387]https://ng1.17img.cn/bbsfiles/images/2023/11/202311261121287227_2939_5724447_3.jpg!w690x387.jpg[/img][b][b][font=宋体]设备详情[/font][/b][/b][font=宋体]稳态太阳光模拟器[/font][font=宋体]设备采用氙气灯[/font][font=宋体]作为核心光源[/font][font=宋体][font=宋体],辐照强度在[/font][font=Calibri]600[/font][font=宋体]~ [/font][font=Calibri]1200W/m[/font][font=宋体]2可调。为了确保有效辐照面积的均匀性,每套灯采用独立的 [/font][font=Calibri]EPS [/font][font=宋体]实时反馈控制,确保灯的恒功率输出能量,单个光源系统可以实时模拟量信号输出至采集器。为达到辐照面积[/font][font=Calibri]1m[/font][font=宋体]×[/font][font=Calibri]1m [/font][font=宋体]设备总共采用 [/font][font=Calibri]4 [/font][font=宋体]组光源。[/font][/font][font=宋体]其他辐照面积可根据用户需求定制生产。[/font][font=Calibri]1) [/font][font=宋体][font=宋体]光源特性:[/font][font=Calibri]1000 [/font][font=宋体]小时光强衰减小于 [/font][font=Calibri]10[/font][font=宋体]% (采用 [/font][font=Calibri]EPS[/font][font=宋体])[/font][/font][font=Calibri]2) [/font][font=宋体]排布方式:线性阵列排布,计算机模拟空间分布[/font][font=Calibri]3) [/font][font=宋体][font=宋体]光源寿命:[/font][font=Calibri]1000h+[/font][font=宋体](更换光源以满足[/font][font=Calibri]3000H[/font][font=宋体])[/font][/font][font=Calibri]4) [/font][font=宋体][font=宋体]光源质保:[/font][font=Calibri]1000h[/font][/font][font=Calibri]5) [/font][font=宋体][font=宋体]辐照强度:[/font][font=Calibri]600[/font][font=宋体]~[/font][font=Calibri]1200W/m[/font][font=宋体]2(此范围内可调)[/font][/font][font=Calibri]6) [/font][font=宋体][font=宋体]波段:[/font][font=Calibri]350[/font][font=宋体]~[/font][font=Calibri]1100nm[/font][/font][font=Calibri]7) [/font][font=宋体][font=宋体]辐照面积:[/font][font=Calibri]1m[/font][font=宋体]×[/font][font=Calibri]1m[/font][/font][font=Calibri]8) [/font][font=宋体][font=宋体]光谱匹配度:[/font][font=Calibri]A [/font][font=宋体]级[/font][/font][font=Calibri]9) [/font][font=宋体][font=宋体]辐照度不均匀性:[/font][font=宋体]≤± [/font][font=Calibri]2% A [/font][font=宋体]级[/font][/font][font=Calibri]10) [/font][font=宋体][font=宋体]不稳定性:[/font][font=Calibri]LTI[/font][font=宋体]≤± [/font][font=Calibri]2% A [/font][font=宋体]级[/font][/font][font=Calibri]11) [/font][font=宋体][font=宋体]单组灯的功率为:[/font][font=Calibri]1-3kw[/font][/font][img=光降解之太阳光模拟器,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311261122009141_2160_5724447_3.jpg!w690x690.jpg[/img][b][b][font=宋体]应用领域[/font][/b][/b][font=宋体][font=宋体]广泛应用于太阳能电池特性测试、染料敏化电池([/font][font=Calibri]DSSC[/font][font=宋体])、钙钛矿电池([/font][font=Calibri]PSC[/font][font=宋体])、光电材料特性测试、生物化学相关测试、光学催化降[/font][/font][font=宋体]解加速研究、皮肤化妆用品检测和环境研究等。[/font][b][b][font=宋体]专业术语定义[/font][font=黑体][font=Arial]1[/font][font=黑体]、光谱匹配[/font][/font][/b][/b][font=宋体]光谱匹配度太阳光模拟器的光谱匹配度是指太阳光模拟器的光谱辐照度分布与太阳光的标准光谱分布的匹配程度,一般用太阳光模拟器在每个波长范围内辐射的能量百分比与标准太阳光在同样波长范围内辐射的能量的百分比的比率表示。太阳光标准光谱辐照度分布情况见表。[/font][table][tr][td=3,1][align=center][b][font=宋体]表[/font][/b][font=宋体] [/font][b][font=宋体]1[/font][/b][font=宋体] [/font][b][font=宋体]标准光谱辐照度分布[/font][/b][/align][/td][/tr][tr][td=1,2][align=center][font=宋体][font=宋体]波长范围[/font][font=宋体]/nm[/font][/font][/align][/td][td=2,1][align=center][font=宋体][font=宋体]占有效波段内积分辐照度的百分比[/font][font=宋体]/%[/font][/font][/align][/td][/tr][tr][td][align=center][font=宋体]AMO条件[/font][font=宋体][/font][font=宋体](有效波段300 nm~ 1100 nm)[/font][/align][/td][td][align=center][font=宋体]AM1.5G条件[/font][font=宋体][/font][font=宋体](有效波段400 nm~ 1100 nm)[/font][/align][/td][/tr][tr][td][align=center][font=宋体]300~400[/font][/align][/td][td][align=center][font=宋体]9.4[/font][/align][/td][td][font=宋体] [/font][/td][/tr][tr][td][align=center][font=宋体]400~500[/font][/align][/td][td][align=center][font=宋体]18.5[/font][/align][/td][td][align=center][font=宋体]18.4[/font][/align][/td][/tr][tr][td][align=center][font=宋体]500~600[/font][/align][/td][td][align=center][font=宋体]18.6[/font][/align][/td][td][align=center][font=宋体]19.9[/font][/align][/td][/tr][tr][td][align=center][font=宋体]600~700[/font][/align][/td][td][align=center][font=宋体]15.8[/font][/align][/td][td][align=center][font=宋体]18.4[/font][/align][/td][/tr][tr][td][align=center][font=宋体]700~800[/font][/align][/td][td][align=center][font=宋体]12.8[/font][/align][/td][td][align=center][font=宋体]14.9[/font][/align][/td][/tr][tr][td][align=center][font=宋体]800~900[/font][/align][/td][td][align=center][font=宋体]10.2[/font][/align][/td][td][align=center][font=宋体]12.5[/font][/align][/td][/tr][tr][td][align=center][font=宋体]900~1100[/font][/align][/td][td][align=center][font=宋体]14.7[/font][/align][/td][td][align=center][font=宋体]15.9[/font][/align][/td][/tr][/table][align=center][font=宋体]标准光谱辐照度分布[/font][/align][b][font=黑体]2、[/font][b][font=黑体]辐照不均匀性[/font][/b][/b][font=宋体]表示太阳模拟器参数的光束在空间上的均匀程度。均匀性不好的模拟器会影响测试的结果,一般情况下导致测试值比实际值偏小。[/font][font=宋体][font=宋体]真实的太阳光在空间分布中是非常均匀的,但人造的光源并并不是。根据[/font][font=Calibri]ASTM[/font][font=宋体]的规定,太阳模拟器辐照不均匀度的计算公式如下:[/font][/font][font=宋体]太阳模拟器辐照不均匀度等级评定标准如下表:[/font][align=center][font=宋体]太阳光模拟器[/font][font=宋体]辐照不均匀[/font][/align][table][tr][td=1,2][align=center][font=宋体]等级[/font][/align][/td][td=1,2][align=center][font=宋体]光谱匹配到所有中指定的间隔[/font][/align][/td][td=1,2][align=center][font=宋体]空间非均匀性辐照度[/font][/align][/td][td=2,1][align=center][font=宋体]时间不稳定性[/font][/align][/td][/tr][tr][td][align=center][font=宋体]短期不稳定性辐照度[/font][/align][align=center][font=宋体]STI[/font][/align][/td][td][align=center][font=宋体]长期不稳定性辐照度[/font][font=宋体]LTI[/font][/align][/td][/tr][tr][td][align=center][font=宋体]A+[/font][/align][/td][td][align=center][font=宋体]0.875----1.125[/font][/align][/td][td][align=center][font=宋体]1%[/font][/align][/td][td][align=center][font=宋体]0.25%[/font][/align][/td][td][align=center][font=宋体]1%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]A[/font][/align][/td][td][align=center][font=宋体]0.75---1.25[/font][/align][/td][td][align=center][font=宋体]2%[/font][/align][/td][td][align=center][font=宋体]0.5%[/font][/align][/td][td][align=center][font=宋体]2%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]B[/font][/align][/td][td][align=center][font=宋体]0.6---1.4[/font][/align][/td][td][align=center][font=宋体]5%[/font][/align][/td][td][align=center][font=宋体]2%[/font][/align][/td][td][align=center][font=宋体]5%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]C[/font][/align][/td][td][align=center][font=宋体]0.4---2.0[/font][/align][/td][td][align=center][font=宋体]10%[/font][/align][/td][td][align=center][font=宋体]10%[/font][/align][/td][td][align=center][font=宋体]10%[/font][/align][/td][/tr][/table][b][font=黑体]3、[/font][b][font=黑体]辐照时间不稳定性[/font][/b][/b][font=宋体]表示太阳模拟器光束辐照度在时间上的稳定性。真实的阳光辐照度在一段(短)时间内是非常稳定的,因此太阳模拟器的辐照度也应具有一定的稳定性。辐照稳定度对测试结果的可参考性提供了前提。[/font][font=宋体][font=宋体]等级[/font][font=Calibri] [/font][font=宋体]辐照时间不稳定性[/font][/font][font=宋体][font=Calibri]A 2%[/font][/font][font=宋体][font=Calibri]B 5%[/font][/font][font=宋体][font=Calibri]C 10%[/font][/font]

  • 在线语音研讨会——符合国际标准的太阳能模拟器测量系统(主讲:熊利民老师)

    报名地址: http://webinar.ofweek.com/activityDetail.action?activity.id=4555178&user.id=2在线研讨会介绍研讨会主题:符合国际标准的太阳能模拟器测量系统举行公司:海洋光学亚洲分公司研讨会简介: 1、 熊利民老师太阳模拟器等级评定测试技术。2、 Michael Matthews作为海洋光学(Ocean Optics)引进的新型光学测量方案——RaySphere,主要用于太阳光模拟器和其他辐射源的绝对辐照度测量。作为一款用于检验太阳能闪光灯输出、太阳光过滤器功效、以及新型活性材料性能的工具,该款便携式RaySphere光谱仪对于太阳光模拟器和光电研发实验室的生产商和终端用户来说特别实用。 太阳能闪光灯尤其被广泛用于根据光谱反应设计的光生伏打电池以及关键光电模组功效测量设备的光电制造流程。为了取得IEC、JIS和ASTM等行业标准颁发的太阳能闪光灯认证,以及为了分析闪光灯的性能和稳定性,需要一款高度准确和精确的测量系统。RaySphere光谱仪将光学测量性能与先进的超低频振动式光学/电气触发电子元件相结合,用于关联闪光灯的光学和电气测量。德国物理技术研究院(PTB)的认证实验室对RaySphere的校准进行了确认,并授予太阳能闪光灯和模拟器光谱分布合格证书,证明其准确性和可靠性达到了前所未有的水平。研讨会议题安排 会议时间 会议内容 演讲嘉宾 会前 预先提问环节 网友可自行在线预先提问 有专家在线解答 09:50-10:00 会议即将开始 主持人介绍演讲专家和演讲内容情况 OFweek 杨秋妮 10:00-10:15 太阳模拟器等级评定测试技术。 演讲专家:熊利民 专家职务:中国计量科学研究院光学所 光通信与光探测实验室主任 10:15-10:45 符合国际标准的太阳能模拟器测量系统 演讲专家:Michael Matthews 专家职务: 10:45-11:00 现场提问互动环节 答疑专家: 丁海峰 专家职务: 光学工程师 11:00 研讨会结束 主讲人介绍http://webinar.ofweek.com/upload/users/ofweek/image/xiongliming.jpg演讲专家: 熊利民专家职务: 中国计量科学研究院光学所光通信与光探测实验室主任专家简介: 1996年哈尔滨工业大学工程热物理专业硕士毕业,其后分配到中国计量科学研究院光学所工作至今,长期从事光电探测器及太阳电池光谱响应度研究。已完成并正主持承担多项科技部项目、国家质检总局科研项目。曾获国家质检总局一等奖二项,二等奖一项,中国计量科学研究院一等奖一项;并被评为2003年国家质检总局岗位能手、2006年国家质检总局优秀青年。被誉为“国内太阳能模拟器计量第一人”。http://webinar.ofweek.com/upload/users/ofweek/image/michael.jpg演讲专家: Michael Matthews专家职务: 专家简介: Michael Matthews作为2009届凯洛格商学院生产管理硕士(MMM)研究生,除了拥有罗拉-密苏里大学非金属工艺学的学士和硕士学位外,他还在美国西北大学凯洛格商学院和麦考克工程学院取得工商管理和工程管理双学位。Michael现定居德国,带领海洋光学相关团队,致力于发展用于太阳光模拟器和其他辐射源的绝对辐照度测量新型光学测量方案——RaySphere。答疑人介绍http://webinar.ofweek.com/upload/users/ofweek/image/dinghaifeng.jpg演讲专家: 丁海峰专家职务: 光学工程师专家简介: 1982年出生,2008年毕业于上海交通大学 光学工程专业,硕士; 2010年3月加入海洋光学以来,一直致力于光学传感、光度测量及光谱分析方面的工作,侧重于技术研发及应用支持,尤其在LED光度、颜色测量及荧光粉测量方面。奖品介绍http://webinar.ofweek.com/upload/users/ofweek/image/j1.jpghttp://webinar.ofweek.com/upload/users/ofweek/image/j2.jpghttp://webinar.ofweek.com/upload/users/ofweek/image/j3.jpg参加预先提问活动人员里面抽5个幸运奖(限量纪念版4G U盘,价值100元)参加现场提问活动人员里面抽5个幸运奖(限量纪念版4G U盘,价值100元)研讨会结束后 再抽3个大奖(精美真皮钱包,价值500元)公司介绍 美国海洋光学作为微型光纤光谱仪的发明者,一直致力于光纤光谱仪,化学传感器的研究,是全球领先的光传感解决方案提供商,自1989年来在全球共售出近200,000套光谱仪,为OEM客户提供灵活多样的产品选择,为工业科研用户提供性能优越的系统解决方案,涉及领域涵盖生物,环保,医药,光电,化工,教育等。 海洋光学是英国豪迈(Halma)集团的分公司,豪迈集团主要经营用于探测潜伏危险和保护人们生命安全的产品,是专业性电子、安全和环

  • 海洋光学发布 RaySphere系列测量系统用于太阳光模拟器的质量检测

    海洋光学(www.oceanopticSChina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。

  • 【求助】【已应助】咨询太阳能测试系统

    我们单位有意向太阳能染料敏化电池方向发展,现有keithley 4200半导体参数测试系统。请问:1. 再单买一个太阳模拟器,能测全所有的性能参数吗?2. 哪种太阳模拟器最好?3. 如果需要单独购买一套全新的太阳能测试系统,哪个牌子的好呢?

  • 全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器

    全自动太阳能光热系统性能测试仪器太阳能光热系统性能测试仪器监测方法1、外墙保温系统外墙保温系统的节能监测主要包括系统耐候性试验、系统抗风载性能试验、系统抗冲击性能试验、抗拉强度试验和传热系数测定试验等。而在当前的建筑节能监测中,主要技术是能够快速准确地测定建筑外围护结构的热工性能,即得出外围护结构的传热系数。传热系数的测定方法主要有热流计法和热箱法两种。热流计是建筑热耗测定中常用仪表,其监测基本原理为:在被测部位至少布置两块热流计,测量通过建筑构件的热量,在热流计的周围和对应的冷表面上各布置4个热电偶测量温度,并直接传输进入微机系统,通过计算可得出传热系数值。而热箱法的工作原理为:在试件两侧的箱体(冷箱和热箱)内,分别建立所需的温度、风速和辐射条件,达到稳定状态后,测量空气温度、试件和箱体内壁的表面温度及输入到计量箱的功率,就可以计算出试件的热传递性质,热箱法不适合于现场监测,适合于外墙、楼板、门窗的热传递系数的实验室测量。目前较先进的方法还有红外线热像仪法。红外线热像仪是集先进的光电技术、红外探测器技术和红外图像处理技术于一身的高科技产品。热像仪测量物体表面温度是一种非接触式、快速的测量仪器,测量物体表面温度分布,能够直观的显示物体表面的温度分布范围。此外还有显示方法多、输出信息量大、可进行数据处理、操作简单、携带方便等优点。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920056230_4359_4136176_3.jpg!w690x690.jpg[/img]2、建筑外门窗试验建筑外门窗的节能监测主要包括保温性和气密性能的监测。门窗是建筑外围护结构中热工性能最薄弱的构件,通过建筑门窗的能耗在整个建筑物能耗中占有相当可观的比例。调查表明,我国北方一些地区的采暖建筑由于采用普通钢门窗,冬季通过外窗的传热与空气渗透耗热量之和,可达全部建筑能耗的50%以上 夏季通过向阳面门窗进入室内的太阳辐射所得的热量,成为空气负荷的主体。外门窗保温性能以传热系数为评定指标。其监测方法为标定热箱法。试件一侧为热箱,模拟采暖建筑冬季室内气候条件,另一侧为冷箱,模拟冬季室外气候条件,在对试件缝隙进行密封处理,试件两侧各自保持稳定的空气温度、气流速度和热辐射条件下,测量热箱中电暖气的发热量,减去通过热箱外壁和试件框的热损失,除以试件面积与两侧空气温差的乘积,即可得出试件的传热系数。外门窗的气密性监测一般可采用压力法,就是利用风机等增压或减压的原理,使建筑外门窗内外之间人为造成压力差,测定在该压力差条件下的空气渗透量。[img=太阳能光热系统性能测试仪器,400,400]https://ng1.17img.cn/bbsfiles/images/2022/10/202210070920334308_3344_4136176_3.jpg!w690x690.jpg[/img]太阳能光热系统性能测试仪器监测技术我国建筑节能监测技术是与建筑节能工作的开展同步发展起来的,太阳能光热系统性能测试仪器具体分为直接监测和间接监测2大类。直接监测是采用能源计量法,即对拟进行监测的建筑物单元提供热源,待稳定后,测试室内外温度,计量热源供应总量。据建筑面积、实测室内外空气温差、实测能源消耗推算标准规定的温差条件下的建筑物单位耗热量。间接法是通过测试建筑物围护结构传热系数和气密性,计算建筑物的耗热量。测试围护结构传热系数通常是设法在被测结构的两侧形成较为稳定的温度场,测试该温度场作用下通过被测结构的热流量,从而获得被测结构的传热系数,实际现场测试围护结构传热系数的方法有热流计法和热箱法。直接法必须在冬季供暖稳定期测试,即使对于北方采暖建筑使用也有一定的局限性,对于夏热冬冷地区,就更加不便应用。间接法虽然理论上基本不受供暖季节的限制,但为了在被测结构两侧获得较为稳定的热流密度,通常也以在冬夏两季测试为宜。

  • 【求助】盐雾测试的模拟试验

    各位高手,有件事想请教,我们的产品大多是锌合金镀镍,要求作盐雾测试,但是我们没有盐雾测试箱,所以想问问有没有模拟的测试,时间短一点,好操作一点,但是也能测出效果,还望有经验的朋友告诉我~~~~~非常感谢!

  • 智能光伏组件测试箱厂家告诉你,这个实验箱模拟雨水和露珠的作用

    智能光伏组件测试箱厂家告诉你,这个实验箱模拟雨水和露珠的作用

    田间物料接触水分的瞬间,每天可长达12小时,研究结果显示,形成这片田地潮湿的主要原因是露珠,而非雨水。[b]智能光伏组件测试箱[/b]生产厂家通过一系列通用的凝结原理模拟现场的水分效应。该装置在冷凝循环圈内,箱体底部有一个蓄水池,通过加热产生水蒸汽。热蒸气使得试验箱内100%的相对湿度,并保持较高的温度。商品化设计保证了试样事实上构成了试验箱的侧壁,然后将试件的反面暴露于室内环境空气中。室温降至蒸气温度以下,使试件表面温度降至数度以下。这种温差的呈现导致试件在整个冷凝循环过程中始终存在着冷凝形成的液态水。此浓缩产物是稳定的纯净水。这纯净水提高了实验的重现率,同时避免了水渍问题。[align=center][img=,680,680]https://ng1.17img.cn/bbsfiles/images/2021/10/202110141606319150_9177_1037_3.jpg!w680x680.jpg[/img][/align]  由于野外暴露在潮湿环境下的接触可以长达一天12小时,所以智能光伏组件测试箱的湿度周期通常会持续数小时。每个凝结期至少持续4小时。实验结果表明,在设备中,曝晒和冷凝曝晒是单独进行的,并与实际气候条件一致。  就某些使用过程而言,水喷淋可以很好地模拟终将使用的环境条件。模拟因气温剧变和因雨水冲刷而造成的机械腐蚀而造成的水雾极为有用。屋顶、轿车材料和用于金属建筑或建筑结构的涂料往往会遇到俄然温度剧变。举例来说,在炎热的夏天,当热气积聚之后俄然因大雨而消失。对于许多物质来说,这种温度剧烈变化的结果是一种对抗。为了再现这一情况,特设计了智能光伏组件测试箱。  由于经常受到雨水的侵蚀,智能光伏组件测试箱的木材的涂饰层,包括油漆和色素,都会相应地呈现出腐蚀的景象。新近研讨构造说明,这种雨水冲刷行为能将材料表面具有防降解作用的涂膜层冲刷掉,然后将材料本身直接暴露在水份的破坏性影响下。这个过程可能会反复出现,从而使一种单独使用冷凝方法不能重现的物质退化现象。

  • 说说氙灯老化试验箱模拟环境的原理

    氙灯老化试验箱是的氙弧灯来模拟阳光中的破坏性光波,本设备可以为科研、产品开发和质量控制提供相应的环境模拟和加速试验。  氙灯的光通常是要经过过滤来产生一个合适的光谱,氙灯老化试验箱必须能够控制光的辐照强度来达到加速试验和重现试验结果的目的,光辐照度的变化是会影响到材料质量恶化的一个速度,然而光波波长的变化则同时会对材料降解的速度和类型产生一定的影响。  氙灯老化试验箱可以用于新材料的选择,改进现有材料或者评估材料组成变化后耐用性的变化等试验,设备通过将材料曝露在紫外线,可见光和红外光下,对材料的耐光性进行评测,它采用经过了过滤处理氙弧灯来产生与阳光具有最大吻合性的全阳光光谱,测试产品透过玻璃的阳光中的较长波长的紫外线和可见光的敏感度的最佳方式。

  • 把太阳搬回实验室太阳不是梦想

    把太阳搬回实验室太阳不是梦想  太阳模拟器作为光源,在某中意义上说,可以等同于太阳光源,可以模拟太阳光照射。由于太阳模拟器本身体积较小,测试过程不受环境、气候、时间等因素影响,从而避免了室外测量的各种因素限制。太阳模拟器广泛应用于太阳能电池特性测试,光电材料特性测试,生物化学相关测试,光学催化降解加速研究,皮肤化妆用品检测,环境研究等。一、太阳模拟器特性:1. 可以实现不同光照面积测试,从2inch×2inch到8inch×8inch不等。2. 可以达到A类标准。3. 寿命长,实用性更强。4. 采用温度监控、内部自锁等,测试过程更加安全。二、太阳模拟器评定标准:光谱匹配 光谱匹配标准规定了太阳模拟器在六个光谱范围内的积分百分比,太阳模拟器的光谱偏差必须在相应的标准规定的范围内。A类标准规定在75%到125%之间。为了是太阳模拟器光谱匹配达到相应的标准,可以采用合适的滤光片,合适的滤光片可以将没有经过任何处理的灯光重新进行整合,改变其光谱分布,达到相应的标准要求。辐射空间均匀性 对于太阳模拟器来说,工作区域辐射均匀性是最难实现的。辐射不均匀就有可能导致得出错误的太阳能电池效率,影响太阳能电池的封装。A类太阳模拟器将这中影响降低到了最小,辐射均匀性严格控制在±2%以内。时间稳定性 太阳模拟器输出光的时间稳定性是为了保证光强的波动不会影响太阳能电池效率的测量。光密度控制系统可以将太阳模拟器的光强波动控制在1%以内,即使没有光密度控制系统,同样可以达到相应的标准。三、太阳模拟器关键组成:1. 光室光室为氙灯提供了一个安全的空间,在光室里面有安全自锁系统,用来保证操作的安全性和系统的安全。积分器风扇和滤光片风扇用来保证光学器件的正常运转,并维持光室的温度。2. 快门在太阳模拟器内部有一个稳定的快门,用来控制工作环境,该快门可以实现1000000次开关,实际工作中甚至更多。该快门开关时间只用200ms,可以通过接触控制、逻辑输入控制,也可以通过按钮开关进行直接控制。3. 氙灯采用连续发光系统,从而避免了脉冲式氙灯光源受到太阳能电池材料响应时间的限制,氙灯为无臭氧短弧氙灯。1.5G滤光片 同时采用1.5G滤光片和氙灯就可达到A类太阳模拟器标准。电源   高品质电源可以为氙灯提供稳定的功率,并且可以检测氙灯的寿命。当氙灯寿命接近结束的时候,建议更换氙灯,否则将有可能会影响光谱特性。

  • 采用Modelica语言建模模拟分析研究相变材料比热容动态热流计测试方法

    采用Modelica语言建模模拟分析研究相变材料比热容动态热流计测试方法

    [color=#990000]摘要:本文针对测试定形相变材料热性能的ASTM C1784动态热流计法(DHFM),采用基于Modelica语言的SimulationX软件,建立测试热焓和比热容的模拟仿真模型,对测试方法开展更深入的研究。通过对不锈钢和沙子样品材料的测试模拟仿真,优化了试验参数,使得动态热流计法更容易被理解、掌握和推广应用。[/color][color=#990000]关键词:定形相变材料 热性能 动态热流计法 热焓 比热容 导热系数[/color][align=center][color=#990000][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302108149726_8347_3384_3.png!w690x402.jpg[/img][/color][/align][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#990000][b]1. 概述[/b][/color]  随着建筑节能以及能量存储的需要,相变材料技术得到了飞速发展,出现了各种新型的定形相变复合材料,而定形相变复合材料的热焓、比热和导热系数等是相变材料设计、研制和生产过程中的重要物理性能参数。为了保证新型定形相变材料的热物理性能测试的准确性,ASTM 在2013年制定了一个新的测试标准:ASTM C1784-13“采用热流计装置测量相变材料及其产品储热特性的标准测试方法”,并在2014年颁布的修订版。  ASTM C1784方法是一种基于传统稳态热流计法隔热性能测试技术(HFM)的动态测试方法,称之为动态热流计法(DHFM),是为了解决板状大尺寸相变材料热性能测试的一种实验室级别测试方法,样品尺寸一般为边长100~300 mm之间的正方形板材,这种尺寸易于从定形相变复合材料实际板材中取样测试,与DSC测试中毫克量级样品形式相比更具有材料的代表性。  本文针对测试定形相变材料热性能的ASTM C1784动态热流计法(DHFM),采用基于Modelica语言的SimulationX软件,建立测试热焓和比热容的模拟仿真模型,对测试方法开展更深入的研究。通过对不锈钢和沙子样品材料的测试模拟仿真,优化了试验参数,使得动态热流计法更容易被理解、掌握和推广应用。  [b][color=#990000]2. 动态热流计法基本原理[/color][/b]  动态热流计法(DHFM)是基于传统稳态热流计法(HFM)测量仪器上的一种动态测试方法,在稳态时可测量样品的导热系数,在动态时可测量样品的热焓和比热容。如图2-1所示,动态热流计法测试仪器结构与稳态热流计法测试仪器基本相同,不同之处是在样品的上下两面都安装有热流传感器,而且上下加热板的温度变化使用相同且同步。[align=center][color=#990000][img=,690,210]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302111544136_4772_3384_3.png!w690x210.jpg[/img][/color][/align][align=center][color=#990000]图2-1 动态热流计法测量原理[/color][/align]  按照ASTM C1784规定,两个热板为台阶式升降温方式,如图2-1所示,当样品和上下热板在初始温度T1时达到稳态,将上下两个热板台阶式升温到另一个温度T2并达到恒定。这个温度变化过程中的测量不再时稳态测量而是非稳态测量,但记录了样品两侧的温度和热流密度随时间的变化,经过一定时间后两个均热板再次冷却到初始温度T1,这是一个典型的台阶式升降温测试过程。在此温度变化ΔT范围内,样品吸收的总热焓Δh可以通过对热流密度进行时间积分计算得到,而热容Cp则等于Δh/ΔT。[b][color=#990000]3. 测试仿真模型和参数[/color][/b]  为了建立仿真模型进行瞬态分析计算,使用了SimulationX软件。SimulationX是基于Modelica语言模型的一维仿真软件之一,而Modelica是基于模型设计的基础设计研究的语言模型之一,采用模块式结构可以非常快速的设计仿真模型,仿真模型的物理意义直观和明确,能完美结合传统的热阻网络分析方法,非常适合瞬态传热的快速仿真计算,较传统的有限元瞬态分析方法的速度大为提高,可以在几秒内完成整个瞬态传热过程的模拟分析计算。  在采用SimulationX建模中,样品尺寸设置为300 mm×300 mm×20 mm,初始温度为20℃,对样品的两个表面按照相同的温度波形程序同时进行加热到30℃。  建模分析中采用了两种典型材料,其中不锈钢304的热物性参数分别是:导热系数为14.9 W/mK,比热容为0.477 J/gK,密度为7900 kg/m3。沙子的热物性参数分别是:导热系数为0.60 W/mK,比热容为0.80 J/gK,密度为1515 kg/m3。[b][color=#990000]4. 无热损情况下的模仿仿真[/color][/b]  首先在无热损的理想条件下对准稳态法进行仿真模拟。在无侧向热损条件下,分别有两个热流计检测进出样品的热流量大小,同时假设样品是中心截面对称,并不考虑样品侧面的边缘热损。由此采用SimulationX软件设计的仿真模型如图4-1所示,分别模拟仿真不锈钢和沙子两种典型不同导热系数材料的比热容动态热流计法测试过程,计算得到比热容结果。最终将模拟仿真计算结果与设定的参数值进行比较,由此考核动态热流计法在理想情况下的测量准确性和合理的试验方法。[align=center][color=#990000][img=,690,225]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112235746_5820_3384_3.png!w690x225.jpg[/img][/color][/align][align=center][color=#990000]图4-1 使用SimulationX软件建立的无侧向热损仿真模型[/color][/align][color=#990000]4.1. 不锈钢比热容测量的模拟计算[/color]  首先对不锈钢304材料进行模拟仿真计算,按照ASTM标准方法规定,加热采用一个方波形式。在方波加热过程中,方波加热时温度变化,以及仿真模拟计算得到的不锈钢样品中心温度和进出样品的热流变化如图4-2所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量不锈钢样品的热焓值变化曲线,如图4-3所示。[align=center][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112410398_6514_3384_3.png!w690x395.jpg[/img][/align][align=center][color=#990000]图4-2 矩形加热波形时不锈钢样品温度和热流变化曲线[/color][/align][align=center][color=#990000][img=,690,375]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112525839_1676_3384_3.png!w690x375.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图4-3 矩形加热波形时单位质量不锈钢样品热焓值变化曲线[/color][/align]  根据图4-3所示的模仿仿真结果,可以计算出20~30℃温度范围内不锈钢平均比热容为0.450 J/gK,与设定值0.477 J/gK的相对误差为5.7%。  通过图4-2所示的热流量随时间变化曲线可以看出,对热流量变化曲线进行积分相当于求此曲线相对于时间坐标轴所包含的面积,而对图4-2中如此突变的尖峰信号进行积分,由于时间间隔选取不可能无限小,这势必会带来积分误差,由此可见,对于方波加热形式,温度的突变是造成仿真计算误差的直接原因。在试验测试过程中,由于数据采集速度不可能很快,时间间隔也不可能非常小,这同样会带来相应测量误差。[color=#990000]4.2. 沙子比热容测量的模拟计算[/color]  同样,在方波加热过程中,计算得到的沙子样品中心温度和进出样品的热流变化如图4-4所示。通过对上述热流随时间变化曲线按时间进行积分,最终得到此波形加热过程中的单位质量沙子样品的热焓值变化曲线,如图4-5所示。[align=center][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113091809_7935_3384_3.png!w690x393.jpg[/img][/align][align=center][color=#990000]图4-4 矩形加热波形时沙子样品温度和热流变化曲线[/color][/align][align=center][color=#990000][img=,690,373]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113298077_3554_3384_3.png!w690x373.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图4-5 矩形加热波形时单位质量沙子样品热焓值变化曲线[/color][/align]  根据图4-5所示的模仿仿真结果,可以计算出20~30℃温度范围内沙子平均比热容为0.750 J/gK,与设定值0.80 J/gK的相对误差为6.3%。[color=#990000]4.3. 改变加热波形的模拟计算结果[/color]  鉴于上述方波加热波形仿真计算结果有较大误差,对于304不锈钢材料样品,将加热波形调整为梯形,如图4-6中的红线所示,用时30分钟温度从20℃线性升温到30℃后恒温40分钟,然后按照相同的变温速率用时30分钟再降到20℃。[align=center][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113448695_2143_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#990000]图4-6 改变加热波形后的不锈钢样品温度和热流变化曲线[/color][/align]  在这种加热波形下,计算得到的样品中心温度和进出样品的热流变化如图4-6所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量不锈钢样品的热焓值变化曲线,如图4-7所示。[align=center][color=#990000][img=,690,375]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113558613_3754_3384_3.png!w690x375.jpg[/img][/color][/align][align=center][color=#990000]图4-7 梯形加热波形时单位质量不锈钢样品热焓值变化曲线[/color][/align]  根据图4-7所示的模仿仿真结果,可以计算出20~30℃温度范围内的304不锈钢平均比热容为0.473 J/gK,与设定值相比没有误差,这说明通过改变加热波形,降低加热温度突变速率,可显著提高积分计算精度,大幅度减少最终计算结果误差。  同样,对于沙子材料样品,将加热波形调整为梯形,如图4-8中的红线所示,用时30分钟温度从20℃线性升温到30℃后恒温40分钟,然后按照相同的变温速率用时30分钟再降到20℃。[align=center][color=#990000][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114079115_6329_3384_3.png!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图4-8 改变加热波形后的沙子样品温度和热流变化曲线[/color][/align]  在这种加热波形下,计算得到的样品中心温度和进出样品的热流变化如图4-8所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量样品的热焓值变化曲线,如图4-9所示。[align=center][img=,690,377]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114186965_4185_3384_3.png!w690x377.jpg[/img][/align][align=center][color=#990000]图4-9 梯形加热波形时单位质量沙子样品热焓值变化曲线[/color][/align]  根据图4-9所示的模仿仿真结果,可以计算出20~30℃温度范围内的平均比热容为0.799 J/gK,与设定值相比没有误差,这说明通过改变加热波形,降低加热温度的突变速率,可显著提高积分计算精度,大幅度减少最终计算结果误差。[b][color=#990000]5. 有热损条件下的模仿仿真[/color][/b]  上述仿真模拟是假设样品侧向无热损,而在实际测试条件下,样品侧面尽管采用了低导热材料进行防护,但还是存在侧向热损。为此,针对热流计法导热仪结构建立带热损效应的仿真模型,如图5-1所示。[align=center][color=#990000][img=,690,163]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114302217_9430_3384_3.png!w690x163.jpg[/img][/color][/align][align=center][color=#990000]图5-1 使用SimulationX软件建立的存在侧向热损仿真模型[/color][/align]  其中假设样品侧向热防护材料为软木,软木导热系数为0.048 W/mK,比热容为2.03 J/gK,密度为86 kg/m3,软木截面积为300 mm×20 mm,厚度为50 mm,软木的外侧温度始终保持为20℃。考虑到样品的四个侧面都有软木隔热材料,所以侧面仿真模型中的软木尺寸应为截面积为300 mm×80 mm,厚度为50 mm。  为了便于观察热损的影响,对沙子样品进行了有热损情况下的模拟仿真计算,结果如图5-2所示。从图5-2中可以看出,当有侧向热损存在时,样品达到热平衡后,焓值随时间的变化并未呈水平方向的曲线形式,而是向上倾斜,而且焓值要比无热损时要大(误差将近10%左右),这证明其中有一部热量被侧向热损带走,因此在实际测试中要对测试曲线进行侧向热损修正。[align=center][color=#990000][img=,690,360]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114412688_54_3384_3.png!w690x360.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图5-2 沙子样品有热损、无热损和修正后的模拟仿真计算结果[/color][/align]  从图5-2中的修正后结果可以看出,修正后的结果与无热损计算结果完成重合,修正后的比热容为0.80 J/gK,与设定值0.8 J/gK的相对误差基本为零。  同样,对不锈钢样品进行有热损存在时的模拟仿真计算结果证明也存在相同规律,如图5-3所示,修正后的误差基本为零。[align=center][color=#990000][img=,690,382]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114517112_2150_3384_3.png!w690x382.jpg[/img][/color][/align][align=center][color=#990000]图5-3 不锈钢样品有热损、无热损和修正后的模拟仿真计算结果[/color][/align][b][color=#990000]6. 结论[/color][/b]  综上所述,采用SimulationX软件的动态仿真模拟,计算了不锈钢和沙子材料的热焓和比热容动态热流法测量结果,由此可得出以下结论:  (1)采用动态热流计法以及相应的修正手段,可以准确测量样品的热焓和热容随温度的变化,证明了ASTM C1784的有效性。  (2)在动态热流计法实际应用中,并不能完全采用ASTM C1784中规定的方波加热方式,因为这种突变型的变温方式会对测量数据处理带来较大误差,更准确的变温方式应为变化较缓慢的梯形的升降温方式。  (3)动态热流计法本质上还是属于一种稳态法,只是将大的温度区间分割为许多个小温度区间进行测试,按照ASTM中的规定,单个测试温度区间一般设定为1.5℃±0.5℃,由此来覆盖相变材料的相变温度变化范围,由此带来的问题就是测试时间十分漫长,通过上述仿真分析也得到了证明这个特点。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 模拟月球表面环境研究月尘降尘机制和除尘方法

    模拟月球表面环境研究月尘降尘机制和除尘方法

    北京领宇天际和加拿大SimulTek研制了月球表面环境综合模拟系统,可以用于评估月表尘埃和其它月表综合环境因素对材料性能的影响,提供了包括高真空环境、高低温热循环、真空紫外线辐射、近紫外线辐射、可见光辐射、近红外辐射、质子辐射,电子辐射,月表尘埃环境、月尘悬浮,月尘带电环境,月尘沉降,以及月尘环境下真空摩擦磨损测试,并验证空间材料的降尘策略和技术的有效性,对空间材料和结构进行测试和寿命评估进行实验研究。月面环境模拟系统: 航天器故障的70%是由于空间环境的影响造成的, 为了验证设计的合理性, 充分的空间环境模拟试验是必不可少的, 月球表面环境的独特性和复杂性给空间环境模拟技术提出新的要求,为了研究月球表面的环境对登月飞船、月球车的环境适应性及可靠性,SimulTek研制的月面环境模拟系统可为登月飞船及月球车的设计、优化以及最终的系统验证提供试验平台。月尘悬浮系统:月球土壤 (尘埃) 具有极强的表面粘附能力、材料磨损能力和穿透能力,月球土壤电导率极低, 所以易于带电, 并可以在相当长的时间内保持带电。因此, 月壤颗粒在光电效应、太阳风辐照作用下带电之后, 可以长时间漂浮并移动月尘沉降及清除系统: 根据Apollo宇航员的纪录, 飞舞的月球尘埃及月表土壤颗粒会很快附着在与其接触的各类表面上, 无法清除干净, 而且会进一步引起热控系统性能下降、机械机构卡死、密封失效、光学系统灵敏度下降、部件磨损等一系列故障[img=,690,515]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241605108482_9376_1620854_3.jpg!w690x515.jpg[/img][img=,690,515]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241606424574_2996_1620854_3.jpg!w690x515.jpg[/img]

  • 模拟月球表面环境研究月尘降尘机制和除尘方法

    模拟月球表面环境研究月尘降尘机制和除尘方法

    北京领宇天际和加拿大SimulTek研制了月球表面环境综合模拟系统,可以用于评估月表尘埃和其它月表综合环境因素对材料性能的影响,提供了包括高真空环境、高低温热循环、真空紫外线辐射、近紫外线辐射、可见光辐射、近红外辐射、质子辐射,电子辐射,月表尘埃环境、月尘悬浮,月尘带电环境,月尘沉降,以及月尘环境下真空摩擦磨损测试,并验证空间材料的降尘策略和技术的有效性,对空间材料和结构进行测试和寿命评估进行实验研究。月面环境模拟系统: 航天器故障的70%是由于空间环境的影响造成的, 为了验证设计的合理性, 充分的空间环境模拟试验是必不可少的, 月球表面环境的独特性和复杂性给空间环境模拟技术提出新的要求,为了研究月球表面的环境对登月飞船、月球车的环境适应性及可靠性,SimulTek研制的月面环境模拟系统可为登月飞船及月球车的设计、优化以及最终的系统验证提供试验平台。月尘悬浮系统:月球土壤 (尘埃) 具有极强的表面粘附能力、材料磨损能力和穿透能力,月球土壤电导率极低, 所以易于带电, 并可以在相当长的时间内保持带电。因此, 月壤颗粒在光电效应、太阳风辐照作用下带电之后, 可以长时间漂浮并移动月尘沉降及清除系统: 根据Apollo宇航员的纪录, 飞舞的月球尘埃及月表土壤颗粒会很快附着在与其接触的各类表面上, 无法清除干净, 而且会进一步引起热控系统性能下降、机械机构卡死、密封失效、光学系统灵敏度下降、部件磨损等一系列故障[img=,690,515]https://ng1.17img.cn/bbsfiles/images/2023/04/202304241608031696_7595_1620854_3.jpg!w690x515.jpg[/img]

  • FDA 175.300 关于测试时加模拟液体积

    求助专家们:一个削苹果器,有红色涂层,客户要求做FDA175.300,样品是不规则,无法盛装的。标准里面关于加模拟液是说“加到距离容器顶部1/4 英寸处”,那对于无法盛装的样品,按什么原则来加模拟液。 谢谢!!!另外,测试温度选哪个更合适(D或E),客户提供的是室温下使用,接触时间不限制:[table=100%][tr][td]D. Hot filled or pasteurized below 150 deg. F[/td][td]II, IV-B, VI-B[/td][td]150 deg. F, 2 hr[/td][td] [/td][td] [/td][/tr][tr][td] [/td][td]III, IV-A[/td][td]do[/td][td]100 deg. F, 30 min [/td][td] [/td][/tr][tr][td] [/td][td]V[/td][td] [/td][td]do [/td][td] [/td][/tr][tr][td] [/td][td]VI-A[/td][td] [/td][td] [/td][td]150 deg. F, 2 hr. [/td][/tr][tr][td]E. Room temperature filled and stored (no thermal treatment in the container)[/td][/tr][/table]

  • AC模拟蒸馏

    社区有在石化厂工作的吗?有谁用过模拟蒸馏的??来讨论讨论,模拟蒸馏的原理到底如何理解?校正样的作用是什么???谢谢了!!!!

  • 阳光模拟测试试验技术

    阳光模拟测试中心试验技术[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241504181716_2080_5269196_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241504181706_9837_5269196_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241504181569_4115_5269196_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241504184138_5221_5269196_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111241504182272_6764_5269196_3.png[/img]

  • 【原创大赛】ESD模拟器试验不确定性简要分析

    【原创大赛】ESD模拟器试验不确定性简要分析

    文/孙成明 许展川 刘 笠 华测检测(汽车电子EMC实验室)[b]1 概述[/b]GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电抗扰度试验IDT IEC 61000-4-2:2001经两次修订为GB/T17626.2-2018 IDT IEC 61000-4-2:2012,欧盟也相应改版为EN61000-4-2:2009;主要修改内容是,试验脉冲参数和试验方法等;旨在减小试验不确定性。静电放电(简称ESD)试验的不确定性与试验设备、试验方法及环境条件等诸多因素有关。其中,ESD模拟器(试验脉冲发生器)输出脉冲波形参数的不确定性直接影响试验结果的判定。因此,IEC61000-4-2:2008/2012 对ESD模拟器输出波形参数和试验校验方法提出了新要求。某些在用ESD模拟器可能已不符合新标准要求。本文旨在简要分析ESD模拟器输出波形对试验不确定性的影响,引导ESD试验工程师校验、选择合格和正确使用ESD模拟器。[b]2 ESD模拟器基本原理和输出波形参数要求[/b]2.1 ESD模拟器基本原理IEC 61000-4-2:2008/2012规定的ESD模拟器基本工作原理如图1所示。[img=,498,219]https://ng1.17img.cn/bbsfiles/images/2019/07/201907012235054029_5777_3051334_3.jpg!w498x219.jpg[/img]注:图中,Cs为分布参数,对ESD输出放电电流峰值和I30,I60有一定影响;是IEC 61000-4-2:2008/2012新增加的参数。2.2 ESD模拟器输出波形和参数要求IEC 61000-4-2:2008规定ESD模拟器输出脉冲波形要求见图2;它与IEC61000-4-2:2001/1995规定的波形参数要求有差别,见表1所示。[img=,593,286]https://ng1.17img.cn/bbsfiles/images/2019/07/201907012235466782_8146_3051334_3.jpg!w593x286.jpg[/img]表1试验脉冲波形参数要求[table][tr][td][color=windowtext]项目[/color][/td][td][color=windowtext]参数[/color][/td][td][color=windowtext]单位[/color][/td][td][color=windowtext]IEC 61000-4-2[/color][color=windowtext]:[/color][color=windowtext]1995/2001[/color][/td][td][color=windowtext]IEC61000-4-2[/color][color=windowtext]:[/color][color=windowtext]2008/2012[/color][/td][/tr][tr][td][color=windowtext]脉冲上升时间[/color][/td][td][color=windowtext]tr[/color][/td][td][color=windowtext]ns[/color][/td][td][color=windowtext]0.7-1.0 [/color][/td][td][b][color=red]0.6-1.0[/color][/b][/td][/tr][tr][td][color=windowtext]第一峰值电流[/color][/td][td][color=windowtext]Ip[/color][/td][td][color=windowtext]A[/color][/td][td][color=windowtext]±10%[/color][/td][td][b][color=red]±15%[/color][/b][/td][/tr][tr][td][color=windowtext]放电电流[/color][color=windowtext]/30ns[/color][/td][td][color=windowtext]I30[/color][/td][td][color=windowtext]A[/color][/td][td][color=windowtext]±30%[/color][/td][td][color=windowtext]±30%[/color][/td][/tr][tr][td][color=windowtext]放电电流[/color][color=windowtext]/60ns[/color][/td][td][color=windowtext]I60[/color][/td][td][color=windowtext]A[/color][/td][td][color=windowtext]±30%[/color][/td][td][color=windowtext]±30%[/color][/td][/tr][/table][b]3 试验不确定性简要分析[/b]3.1试验脉冲参数校准3.1.1 IEC 61000-4-2:2001校准方法要求和测试结果IEC 61000-4-2:2001规定的校准方法是,输出串接50Ω匹配电阻,测试ESD模拟器脉冲输出电压减半。现市场上经过认证检测合格的ESD模拟器测试,即使符合IEC61000-4-2:2001规定要求,未必符合IEC 61000-4-2:2008/2012要求(参见下图3b),由于校准结果与实际试验负载不同,试验存在较大的不确定性。3.1.2 IEC 61000-4-2:2008/2012校准方法要求和测试结果分析IEC 61000-4-2:2008/2012规定的校准方法是,输出不串50Ω匹配电阻,测试ESD模拟器输出开路电压(不再减半)。例如:按IEC 61000-4-2:2008/2012校准方法要求,重新测试所选ESD模拟器的输出脉冲上升时间(tr)和第一峰值电流(Ip),放电电流(I30,I60),仅有一种产品接近标准规定下限值,见图3a);其余3种产品,均未达到新标准规定的波形参数要求,如图3b)所示。[img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/07/201907012235577564_3512_3051334_3.jpg!w690x307.jpg[/img]上述测试结果说明:1)按IEC 61000-4-2:2001校准方法校准合格的ESD模拟器,重新按IEC 61000-4-2:2008/2012校准方法校准,国内外大多数ESD模拟器已不符合IEC61000-4-2:2008/2012标准规定要求。主要差异是,测试ESD模拟器放电电流波形,第一峰值电流(Ip)和放电电流(I30,I60)均未达到标准规定要求。2)若用于产品ESD测试,存在或增加试验的不确定性;可能导致对受试设备的过度测试或测试不足。3.2 试验校验方法IEC 61000-4-2:2001规定,测量5次,取5次脉冲平均值。ESD模拟器输出脉冲校验结果离散性较大,试验存在不确定性。IEC 61000-4-2:2008/2012对ESD模拟器输出脉冲波形校验的可重现性提出了更高要求。规定在一个时间里或个别评估时,每个测量等级要记录5个脉冲;每一个脉冲每单次测量(tr, Ip, I30, I60)都必须符合规定要求;以期减小ESD模拟器特性和操作带来的不确定性。满足IEC 61000-4-2:2008/2012要求的新型ESD模拟器的输出脉冲上升时间(tr)减小,在(0.6-0.9)ns之间;第一峰值电流(Ip)增大,达到规定值范围;同时,放电电流(I30,I60)也很快降到规定值范围内。校准/校验波形的一致性明显增强。如图4所示。[img=,488,305]https://ng1.17img.cn/bbsfiles/images/2019/07/201907012236367635_4434_3051334_3.jpg!w488x305.jpg[/img]3.3减小分布参数影响从ESD模拟器基本工作原理(见图1)可看出,放电脉冲时间常数主要由Rd和(Cs+Cd)决定,其中Cs为分布参数,它与放电电路PCB、放电枪结构、接地平板及试验环境条件等有关。对这些分布参数,除放电回路(PCB)和放电枪结构可以设计控制外,其它环境分布参数有一定的试验随机性。所以,ESD试验必须严格按试验环境条件规定,由经过实际操作培训合格的试验工程师或技师操作,以减少试验环境的不确定性对试验结果的影响。3.4汽车电子零部件ESD试验汽车电子ESD试验GB/T19951-2005已改版为GB/T19951-201X(待发布),MOD ISO 10605:2008。主要修改内容包括有:试验环境温度,环境湿度,接地线长度,绝缘块厚度(25±2.5mm改为50±5mm),不接地设备试验方法,水平和垂直耦合板,测试桌上安全地线;试验脉冲放电参数,放电电极等。实验室应按新版本修改ESD试验SOP,需结合产品实际进行试验验证。[b]4结束语[/b]本文简要介绍了IEC 61000-4-2:2008/2012与IEC61000-4-2: 1995/2001对ESD模拟器特性和试验校准校验要求,并简要分析了ESD模拟器试验不确定性和按IEC 61000-4-2:2008/2012版要求进行校验和试验的要点,也同样适用于GB/T19951-2005/201X。对于减少ESD试验的不确定性有一定的指导参考意义。

  • ABREX具有真实模拟的人体指尖磨损和手磨损测试仪

    ABREX具有真实模拟的人体指尖磨损和手磨损测试仪[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442518701_3488_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442519866_9742_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442518701_3488_1602049_3.png[/img]

  • 什么是仪表的开关量,模拟量和数字量?

    什么是仪表的开关量,模拟量和数字量?

    [align=center][b]什么是仪表的开关量,模拟量和数字量?[/b][/align] 开关量和模拟量是电子技术和电力系统中,接触最多的概念,不论是学习PLC,还是学习继电保护,都涉及到这两种输入输出方式。什么是开关量?什么是模拟量?看完这篇文章,你就会清楚的明白这个概念。[b]一.概念开关量[/b] 开关量为通断信号,无源信号,电阻测试法为电阻0或无穷大;主要指开入量和开出量,是指一个装置所带的辅助触点,譬如电机的温控器所带的继电器的辅助触点(电机超温后变位)、阀门凸轮开关所带的辅助触点(阀门开关后变位),接触器所带的辅助触点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源开关量接点,也叫PLC的开关量。 也可以是有源信号,专业叫法是阶跃信号,就是0或1,可以理解成脉冲量,多个开关量可以组成下面给出的数字量。[b]模拟量[/b] 模拟量是指一些连续变化的物理量,如电压、电流、压力、速度、流量等信号量,模拟信号是幅度随时间连续变化的信号,通常电压信号为0~10V,电流信号为4~20mA,可以用PLC的模拟量模块进行数据采集,其经过抽样和量化后可以转换为数字量。[align=left][b]数字量[/b][/align] 通常所说的数字量是“0”和“1”组成的信号类型,通常是经过编码后的有规律的信号。对于开关量来说,触点闭合可以认为是“1”,触点断开是“0”,作为数字量采集信号。模拟量可以设置临界值量化,小于临界值为“0”,大于等于临界值为“1”。[b]二.区别[/b]1.数字量定义为:在时间和数值上都是断续变化的离散信号。2.模拟量定义为:在时间和数值上都是连续变化的信号。如:电量测量数值(电流、电压)。3.开关量:反映的是状态信号(如开关开、合)。[b]三.举例说明[img=,628,352]https://ng1.17img.cn/bbsfiles/images/2021/04/202104080516341832_8093_1626275_3.jpg!w628x352.jpg[/img][/b][align=left] 上图是一个典型能输出开关量信号的器件。压力高时C和B两个触点闭合接通,输出压力高信号,压力低时C和A两个触点闭合接通输出压力低信号。这样的压力表被称为电接点压力表。[/align] 有了这样的信号就能实现把就地的高、低压力信号,远传到远处的电气控制柜去参与自动远程控制了,其中C和B是一个开关量,C和A也是一个开关量。所以一个开关触点就是一个开关量,它的特性是同一时刻要么接通要么断开。接通就是1,代表有有信号,断开就是0,代表没有信号。这就是所谓的开关量信号。 这样的电接点压力表虽然能把压力信号传到远处,但它传输的只是有无压力这样的信号,无法知道实时压力值到底是多少。[img=,632,297]https://ng1.17img.cn/bbsfiles/images/2021/04/202104080522253559_379_1626275_3.jpg!w632x297.jpg[/img] 上图中的器件叫压力变送器。压力变送器的内部就是一块电路板,电路板连接着一个压力传感器F。 它的工作原理是压力传感器F把检测到的压力传到电路板的C,检测信号进入电路板后,通过电路板的转换与计算,把这个压力信号转换成一个电流信号由A和B这两个点输出。图中右边就是转换过程的示意图,它可以把一个0-10kpa的压力信号转换成一个4-20mA的电流信号,由A和B这两个点输出。这时我们就说A和B这两个点输出的就是一个模拟量信号。模拟量信号的特点是它的值是在一个数值范围内是连续可变的。[b]四.问答[/b]问:为什么都把模拟量信号转换成4-20mA的电流信号,而不是0-20mA的电流信号或0-10V的电压信号?答:(1)0-10V的电压信号容易受到外界的电磁干扰,特别是电缆长度很长时,导线的电压降干扰更明显。 (2)用0-20mA的电流信号的话,就无法判断在电流信号是0mA时,到底是电缆断线引起的故障0mA,还是压力本身就是0kpa而输出的正常的0mA。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制