当前位置: 仪器信息网 > 行业主题 > >

化学发光定氮仪原理

仪器信息网化学发光定氮仪原理专题为您提供2024年最新化学发光定氮仪原理价格报价、厂家品牌的相关信息, 包括化学发光定氮仪原理参数、型号等,不管是国产,还是进口品牌的化学发光定氮仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学发光定氮仪原理相关的耗材配件、试剂标物,还有化学发光定氮仪原理相关的最新资讯、资料,以及化学发光定氮仪原理相关的解决方案。

化学发光定氮仪原理相关的论坛

  • 化学发光定氮仪原理

    化学发光定氮仪采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050 ℃左右的高温下,样品被完全气化并发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。样品气经过膜式干燥器脱去其中的水份。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下,反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量

  • 【原创】化学发光定氮仪系列之原理

    仪器采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050℃左右的高温下,样品被完全气化并发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。反应气由载气携带,经过干燥器高氯酸镁脱去其中的水份,进入反应室。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下, 反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量。

  • 化学发光定氮仪

    技术参数 1.测定范围:从0.1ppm到百分之几 2.用于测定原油、馏分油、石油气中的总氮含量 3.测定塑料、石化产品、食物以及水中的总氮含量 -------------------------------------------------------------------------------- 技术文章此仪器没有任何技术文章 -------------------------------------------------------------------------------- 主要特点1.符合ASTM D4629及SH/T0657方法的要求 2.仪器采用人机对话,提示操作步骤。 3.结果自动打印 -------------------------------------------------------------------------------- 仪器介绍仪器采用氧化裂解---化学发光的原理,可测定固体、液体和气体中的总氮含量,方法符合ASTM D4629及SH/T0657方法的要求。已成功的用于测定原油、馏分油、石油气、塑料、石油化工产品、食物以及水中的总氮含量,测定范围从0.1ppm到百分之几。仪器采用人机对话,提示操作步骤,结果自动打印。

  • 【分享】REN-1000A型化学发光定氮仪的维护与管理

    REN-1000A型化学发光定氮仪器可测量固体、液体和气体中的总氮含量,符合ASTMD4629方法的要求,已成功的用于测定原油、馏份油、石油气、塑料、石油化工产品以及食物和水中的总氮含量。由于省去繁锁的电化学池子的操作和维修,简化操作,省去氢气,避免可能发生燃烧爆炸的危险而公认为是当前较灵敏、准确、快速、简便的方法。本文就如何维护与管理该仪器提出一些观点和看法。

  • 【资料】化学发光的原理

    [size=4]化学发光的原理化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。 化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。[/size]

  • 化学发光定氮仪

    技术参数 1.测定范围:从0.1ppm到百分之几 2.用于测定原油、馏分油、石油气中的总氮含量 3.测定塑料、石化产品、食物以及水中的总氮含量 -------------------------------------------------------------------------------- 技术文章此仪器没有任何技术文章 -------------------------------------------------------------------------------- 主要特点1.符合ASTM D4629及SH/T0657方法的要求 2.仪器采用人机对话,提示操作步骤。 3.结果自动打印 -------------------------------------------------------------------------------- 仪器介绍仪器采用氧化裂解---化学发光的原理,可测定固体、液体和气体中的总氮含量,方法符合ASTM D4629及SH/T0657方法的要求。已成功的用于测定原油、馏分油、石油气、塑料、石油化工产品、食物以及水中的总氮含量,测定范围从0.1ppm到百分之几。仪器采用人机对话,提示操作步骤,结果自动打印。

  • 化学发光及生物发光的原理及其应用

    化学发光及生物发光的原理及其应用

    第一部分 概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24995_1636364_3.jpg[/img]依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24996_1636364_3.jpg[/img]在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。

  • 【原创】化学发光及生物发光的原理及其应用

    化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。 2 .光泽精 光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。 3 .洛粉碱 洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。 4 .过氧化草酸酯类 草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。 5 . 吖啶酯类 McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。 以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。

  • 资料---化学发光原理

    详细请见附件化学 发 光 是指在某些特殊的化学反应中,反应的中间体或产物由于吸收了反应释放的化学能而处于电子激发态,当其回到基态时伴随产生的光辐射现象。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法,称为化学发光分析。广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象,必须满足以下条件:第一是该反应必须提供足够的激发能,并由某一步骤单独提供,因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程,使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子,或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。化学 发 光 反应能用于分析测定,是因为化学发光强度与化学反应速度相关联,因而一切影响反应速度的因素都可以作为建立测定方法的依据[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18547]化学发光[/url]

  • 凯氏定氮仪与化学发光定氮法的比较

    燃烧法定氮仪也叫化学发光定氮仪,它与凯式定氮仪的区别体现在原理,测定对象,标准,样品量,价格,运行费用,分析速度,自动化程度,工作环境等方面,具体介绍如下:一、原理不同:凯氏方法是绝对测量;燃烧法是相对测量凯氏定氮仪是应用凯氏定氮法的仪器设备,凯氏方法是利用浓硫酸消化、碱性环境蒸汽蒸馏、硼酸吸收、指示剂滴定终点颜色判定法,根据滴定体积来计算出氮含量。燃烧法:在高温情况下,使用充足的氧气将样品全部燃烧,生成氮的氧化物,再还原出氮元素,利用TCD 检测器测量其信号强度,与事先标定的曲线进行比对,计算出样品中的氮含量。凯氏方法是绝对测量,与标准样品无关,可以直接测量标准品的含量,并用来检验仪器的准确性;燃烧法是相对测量,必须依靠标准品,标准品的准确性定标直接影响测量结果,没有办法检验仪器的准确性。二、测量的对象不同:凯氏测量的是氨态氮;燃烧法测量的是总氮样品中的氮含量根据定义不同有:总氮、凯氏氮、铵态氮、硝态氮、亚硝态氮;也可以分为:有机氮和无机氮。燃烧法测量的是总氮的含量。凯氏方法可以分别测量出来上述各个氮含量。样品不经过消化直接蒸馏测量,就是无机氮中的铵态氮;在蒸馏过程中加入催化剂将硝态氮、亚硝态氮转换成铵态氮,其结果就是无机氮。样品经过消化蒸馏得到的是凯氏氮,在消化前加入催化剂将硝态氮、亚硝态氮转换成铵态氮,得到的是总氮。因而燃烧法测量的结果总是高于凯氏氮的结果;没有人为掺假的食品,二者测量结果是一样的。三、标准不同:凯氏方法是所有样品的国标;燃烧法是参考方法凯氏方法是食品、饲料、土壤、环境、种子等样品中氮或蛋白质含量测量的强制标准,测量结果具有互通性和可比性。由于燃烧法和凯氏法测量的氮含量对象不同,造成样品种类不同、成份不一样,结果偏差也不一样。燃烧法不适合化肥中的氮含量的国家标准。四、样品量不同:凯氏方法是常量分析;燃烧法是微量分析凯氏方法是常量和半微量;燃烧法是从微量扩展到半微。凯氏法固体到5g、液体到15ml;燃烧法最多到1g。凯氏法可以一直使用最大量分析,而燃烧法如一直使用最大量分析,则燃烧后的无机残渣堆积在仪器里面,要求频繁清理,同时也会缩短仪器的使用寿命。对于均匀性不好的固体样品,脂肪高的食品,只能通过大取样量来减少测量结果的偏差,燃烧法显得稍微。困难;如大豆、玉米。此外鲜肉类食品,由于蛋白、脂肪分布不均匀,也建议是大的取样量。

  • 【分享】电化学发光免疫检测原理动态展示

    电化学发光免疫测定(Electrochemiluminescence immunoassay,ECLI)是继放射免疫、酶免疫、荧光免疫、化学发光免疫测定以后的新一代标记免疫测定技术,是电化学发光(ECL)和免疫测定相结合的产物。 它的标记物的发光原理与一般的化学发光(CL)不同,是一种在电极表面由电化学引发的特异性化学发光反应,实际上包括了电化学和化学发光二个过程。ECL与CL的差异在于ECL是电启动发光反应,而CL是通过化合物混合启动发光反应。ECL 不仅可以应用于所有的免疫测定,而且还可用于DNA/RNA探针检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608290841_24973_1636364_3.gif[/img]

  • 【转帖】化学发光的原理

    第一章化学发光的研究与应用绪论1.1 化学发光的原理、特点及发展方向1.1.1化学发光法的原理[to化学 发 光 是指在某些特殊的化学反应中,反应的中间体或产物由于吸收了反应释放的化学能而处于电子激发态,当其回到基态时伴随产生的光辐射现象。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法,称为化学发光分析。广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象,必须满足以下条件:第一是该反应必须提供足够的激发能,并由某一步骤单独提供,因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程,使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子,或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。化学 发 光 反应能用于分析测定,是因为化学发光强度与化学反应速度相关联,因而一切影响反应速度的因素都可以作为建立测定方法的依据。化 学发 光 反应一般可表示为:A+ B -- C* ( 1)C` --C + hv (2 )化学发光强度([url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url],)取决于反应的速度(dP/ d t) 和化学发光量子效率(95CL)[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url]L(t)= 5qcLdP/dt (3)郑州大学硕士学位论文式中'PCL= 0,么,其中么,为生成激发态产物分子的量子效率,Of为激发态产物分子的发光量子效率。对于 一 定 的化学发光反应,45C L为一定值,其反应速度可按质量作用定律表示出与反应体系中物质浓度的关系。因此,通过测定化学发光强度就可以测定反应体系中某种物质的浓度,原则上讲,对任何化学发光反应,只要反应是一级或假一级反应,都可以通过公式(3)进行化学发光定量分析。例如,在上述化学发光的反应中,如果物质B保持恒定,而物质A的浓度变化并可视为一级或假一级反应,则:[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url]L= f [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]IC[/color][/url] L (t) dt= f 59 CL[dCA/dt]dt= 59CLCA (4)即化学发光强度与A的浓度成正比。化 学发 光 分析测定的物质可以分为三类:第一类物质是化学反应中的反应物 第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂 第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定人们感兴趣的其他物质,进一步扩大了化学发光分析的应用范围。飞.1.2 化学发光分析法的测定体系1.1.2.1液相化学发光体系[(21(1)过氧化物化学发光体系酞腆 类 担 ydrazides)(鲁米诺及鲁米诺类):有机过氧化物的离解是一种放能过程。大多数观察到的化学发光反应都有过氧化氢参加或中间过程生成过氧化型化合物。在化学分析中,酞阱类有机化合物作为发光试剂的例子很多,其中以鲁米诺研究和使用最多。鲁米 诺 在 碱性溶液中被H202,I :等氧化剂氧化,可产生最大波长为425nm的光辐射。在通常情况「鲁米诺与过氧化氢的化学发光反应郑州大学硕士学位论文相当缓慢,但当有某些催化剂存在时,反应非常迅速。最常用的催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有碎灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺(ABEI)标记到梭酸和氨类化合物上,经过高效液相色谱(HPLC)或液相色谱(LC)分离后,再在碱性条件下与过氧化氢一铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如张帆等[131将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母RNA后,通过离心和透析分离,然后进行化学发光检测。此外,他们仁41还合成了N-(O一梭基丙酞基)异鲁米诺,并对其性能进行了研究。光泽 精 体 系:与鲁米诺一样,利用光泽精化学发光反应直接检测H2O:及其超氧化物。许多物质能诱发光泽精发光,如利用胆固醇/胆固醇氧化酶反应产生H2O:来间接测定血清中的胆固醇 基于光氧化抗坏血酸的产物为H202来间接测定血清中的抗坏血酸。亚胺 类 : 在碱性介质中,大量芳基4化合物能产生化学发光。其中洛粉在经典有机化合物化学发光中的使用可能是文献最早记载的,但它们在分析化学中的应用却不象后来发现的鲁米诺和光泽精那样广泛。(2 )酚类化学发光自从 1 91 6年发现用过氧化氢和过氧化物酶处理连苯三酚可使之发光以来,酚类化合物的研究及应用方面的工作却较少。利用酚类化合物对氯硼酸重氟酸重氮盐H2O:的化学发光反应具有淬灭能力检测污水郑州大学硕士学位论文中的苯酚、邻硝基酚、对甲酚和2, 4一二甲酚。1.1.2.2 [url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光在气 相 中 ,03能氧化NO、乙烯等产生化学发光,原子氧也能氧化S02, NO, CO等产生化学发光。例如:NO+03--NO2* N02*--N)2+ hV (A-}- 600nm)CO+O--CO2* C 02*-CO2+hV 仆=300-500nm)1.1 .2.3 生物化学发光在生 物 体 系中的化学发光,称为生物发光(Bioluminescence),它是具有最高发光效率的化学发光体系。该体系主要用于测定生物体内的一些活性物质,如ATP 151, GOD 16〕等。1.1.3 化学发光分析法的测定范围化 学发 光 分析法的测定范围很广。利用化学发光分析法可以测定样品中的无机物,如:Co(II), C u(II), F e(II), A s(III),H 202,C N ,N02-, MO(III)[7-1s1等:也可以测定样品中的有机物,如:腐殖酸、抗坏血酸、葡萄糖、四环素[16-191等,还可以测定生物体内的活性氧[2011.1.4 化学发光分析法的突出特点(1)灵敏度很高。例如,用荧光素酶和腺普三磷酸(ATP)的化学发光反应,可测定低至2X 1 0-'m olL'ATP 利用鲁米化学发光体系测定Cr3+, Cot十等离子的检出限也至10-12g , mL-1。据文献报道,其检出限可以达fmol(10-15mo1/L )[211,甚至检出限可达1个分子[22](2 )测定的线性范围宽。一般有5-6个数量级。(3 )仪器设备简单。化学发光分析仪没有激发光源,由于不存在杂散光和散射光等引起的背景干扰,并且检测的是整个光谱范围内的发光总量,因而也不需要单色器。(4 )分析速度快,易实现自动化。流动注射化学发光分析每小时可测郑州大学硕士学位论文定100个以上的试样。1. 1 .5 化学发光分析法的发展方向今 后化 学 发光分析法应在合成新的化学发光试剂,寻找新的化学发光体系方面以及与新方法,新技术等的联用方面加大研究,以达到对分析物灵敏准确的分析测定。其更应加大对化学发光体系的发光机理的探讨,寻求从化学本质上揭示其发光规律,该工作将会给化学发光新试剂的合成,化学发光新体系的发现等诸多方面提供极有用的理论指导作用。1.2 碘的分析方法进展碘 是生 命 必需元素,碘在人体内的主要生理功能为构成甲状腺素,调节机体热能代谢,促进生长发育,维持正常的神经活动和生殖功能。长期缺碘会出现甲状腺肿大,智力及体格发育障碍,特别是对胎儿和婴儿脑发育造成智力上的影响,可导致呆小症。所以碘的测定有着十分重要的意义。碘 的测 定 方法有:饰一砷催化法,硫氰酸铁一亚硝酸催化法,四甲基四胺基二苯甲烷比色法,选择性离子电极法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法,离子色谱法等[23]。食品中碘的测定方法主要有澳氧化碘滴定法,分光光度法,现简述如下:1.澳氧化碘滴定法[241此方 法 的 原理是:样品中的碘化物在酸性条件下用饱和澳水氧化成碘酸盐,再于酸性条件下氧化碘化钾而游离出碘,以淀粉作指示剂,用硫代硫酸钠标准溶液滴定。计算含量。2.分光光度法,其中有(1) 氯仿萃取比色法或称重铬酸钾氧化法[251

  • 化学发光的原理

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。 间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。 一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。   化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。

  • 免疫化学发光原理

    一)原理  化学发光免疫测定属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。    (二)标记物  1.发光剂直接标记 常用鲁米诺及其衍生物等,它们属环肼类化合物,能与很多氧化物如氧、次氯酸、磺、过氧化物等反应而发光。因此可直接将鲁米诺或其衍生物标记抗体或抗原进行CLIA。这类方法特异性强,但往往会因交联影响发光物特性,降低敏感性。  2.发光催化酶标记 常用辣根过氧化物酶、丙酮酸激酶、葡萄糖氧化酶等标记抗体或抗原。与酶标抗体测定基本相同,差别在于CLIA是用发光性底物指示反应,有人称为发光酶免疫测定。  3. 标记物产物参与反应 标记物不直接催化发光反应,而其反应产物能使反应系统发光。如用草酸类标记抗体或标记抗原,在有H2O2作用下,生成二噁二酮,后者可使红荧稀(Rubrene)激化发光。  (三)应用  CLIA特异性强、敏感性高,可检测到10-5mol/L的抗原量。快速,一般几十分钟或1-3小时内完成。操作简便,可进行固相和均相分析。试验重复性好,试剂易标准化和商品化。目前已用于多种药物、激素、病原微生物及其代谢产物、抗体及其他生物活性物质的测定。

  • 【资料】化学发光的原理

    化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。间接发光又称能量转移化学发光,它主要由三个步骤组成:首先反应物A和B反应生成激发态中间体C*(能量给予体);当C*分解时释放出能量转移给F(能量接受体),使F被激发而跃迁至激发态F*;最后,当F*跃迁回基态时,产生发光。一个化学反应要产生化学发光现象, 必须满足以下条件: 第一是该反应必须提供足够的激发能, 并由某一步骤单独提供, 因为前一步反应释放的能量将因振动弛豫消失在溶液中而不能发光 第二是要有有利的反应过程, 使化学反应的能量至少能被一种物质所接受并生成激发态 第三是激发态分子必须具有一定的化学发光量子效率释放出光子, 或者能够转移它的能量给另一个分子使之进入激发态并释放出光子。  化学发光分析测定的物质可以分为三类:第一类物质是化学发光反应中的反应物;第二类物质是化学发光反应中的催化剂、增敏剂或抑制剂;第三类物质是偶合反应中的反应物、催化剂、增敏剂等。这三类物质还可以通过标记方式用来测定其他物质,进一步扩大化学发光分析的应用范围。 化学发光反应的发光类型通常分为闪光型(flash type)和辉光型(glow type)两种。闪光型发光时间很短,只有零点几秒到几秒。辉光型又称持续型,发光时间从几分钟到几十分钟,或几小时至更久。闪光型的样品必须立即测量,必须配以全自动化的加样及测量仪器。辉光型样品的测量可以使用通用型仪器,也可以配有全自动化仪器。本产品针对辉光型化学发光反应进行检测。

  • 化学发光检测原理概述(转贴)

    化学发光检测原理概述化学发光作为一种分析工具的吸引之处就在于检测的简单性。化学发光的实质是自身发光,这意味着化学发光的分析测试仪器只需要提供一种可以检测光信号和纪录结果的方法就可以了。自发光检测仪需要一个闭光的样品室和光检测器。最简单的便是相片纸或x-光片,甚至视觉检测器都可以。化学发光检测方法的简单性使得它的应用很简单并且完全可以自动化。但是它的灵敏度又是怎么样的呢?化学发光有如下两个内在的优势:1.绝大多数的样品没有“背景”信号,如它们自身不发光。2.化学发光的检测不是一个比例测试,这是与荧光和吸收或比色测试不同的。在荧光测试中,具有小的Stokes Shift的荧光基团非常难检测。荧光很难从激发波长中分辨出来。另外一个问题是,特别在样品是浑浊的情况下有一部分杂光会进入到检测器。在吸收光测试上,其灵敏度受到限制的根本因素是需要在两个相对较强的信号之间去区分一个较小的差别。需要注意的是检测器对光谱的敏感性近可能接近化学发光的光谱,以得到最大化的灵敏度。一般在自发光仪中的光电倍增管对蓝光有最佳的反应,对红光的末端光谱不太敏感。固态检测器对红光有较好的反应。X-光片广泛用于记录在尼龙膜、纤维素膜或PVDF膜上的化学发光印迹分析。但是我们需要牢记在心的是x-光片仅能够用于检测紫外到蓝光光谱范围内的光信号,虽然有一些特殊的光片对增强的绿光有敏感性。

  • 国际主流化学发光免疫分析仪的原理技术及特点

    化学发光放大技术同样利用抗原一抗体反应原理,将酶或其他非放射性标记物标记于抗原或抗体,然后与已知抗原或抗体反应,标记的酶使反应底物进行发光,经光电倍增管测量后可得到被测样本的每秒钟发光计数CPS,再根据内置的标准曲线将CPS转换为样本的浓度值"由于这项技术的应用,使抗原一抗体的反应时间缩短,特异性程度和灵敏度得到提高,同时辅以单克隆技术的应用,使整个反应的全自动化实现成为可能,并一改过去依赖于手工加样,再交由仪器测量的半自动化技术的局面,也是近十年来免疫检验技术的一个飞跃。 化学发光免疫分析系统由以下子系统构成:反应杯传送系统,测试包被珠装载系统,样本装载系统,条码读取系统,试剂装载系统,加样系统,温育系统,离心清洗系统,发光计数测量系统,计算机控制系统组成。1.微粒子捕捉酶免疫分析技术(MEIA) 下面以双抗体夹心法为例介绍微粒子捕捉酶免疫分析技术:已包被了抗体的塑料微珠试剂中,加入待测标本后,经温育,再加入碱性磷酸酶标记的抗体!形成抗体一抗原一酶标记抗体复合物"然后将其转移到玻璃纤维柱上,用缓冲液洗涤,没有结合的抗原!酶标抗体被洗掉,结合抗原抗体的塑料微珠则被保留在纤维柱滤膜的上方"这时再加入底物,4一甲基伞型酣磷酸盐,酶标抗体上的碱性磷酸酶将4一甲基型酣磷酸盐分解,脱磷酸后形成甲基伞型酣,在365nm激发光的照射下,发出448nm的荧光,经过荧光读数仪的记录、放大,计算出所测物质的含量"。2.荧光偏振免疫分析技术(FPIA) 这是一种均相荧光免疫分析法,主要用于测定小分子量物质,如药物浓度测定"原理是:标记在小分子抗原上的荧光素经485nm的激发偏振光照射后,吸收光能,越入激发状态,激发状态的荧光素不稳定,很快以发出光子的形式释放能量而还原"发射出的光子经过偏振仪形成525~55Onm的偏振光,这一偏振光的强度与荧光素受激发时分子转动的速度呈反比,游离的荧光素标记抗原,分子小,转动速度快,激发后发射的光子散向四面八方,因此通向偏振仪的光信号很弱,而与抗体大分子结合的荧光素标记抗原,因分子大,分子的转动慢,激发后产生的荧光比较集中,因此偏振光信号比未结合时强得多",在测定过程中待测抗原小分子!荧光标记抗原小分子和特异性抗体大分子同时加入到一反应杯中,经过温育,待测抗原和荧光标记抗原竞争性地与抗体结合,待测抗原越少,与抗体竞争结合的量越少,而荧光标记抗原与抗体结合量就越多,当激发光照射时,荧光偏振的程度与荧光标记物分子转动的速度成反比,而荧光标记的小分子抗原与大分子抗体结合后,其分子的转动速度减慢,因此荧光偏振信号强"结果是待测抗原的浓度低,可以通过计算获得其含量。3.利用化学发光技术和磁性微粒子分离技术相结合此方法以叮咤酶为发光的标记物,固相载体为极细小的磁性颗粒"其测定原理与放射免疫和酶联免疫中的双抗体夹心法和竞争结合法相似。4.采用酶联免疫技术!生物素亲和素技术和增强化学发光技术此方法是用辣根过氧化物酶(日RP)标记抗原或抗体!以子弹头型塑料小孔管为固相载体,鲁米诺为化学发光剂,并加入化学发光增强剂,可使化学发光强度增强,时间延长而且稳定。 在链霉亲和素包被的子弹头型塑料小孔管中,加入生物素标记的特异性抗体和待测标本,经过37e温育,链霉亲和素与生物素结合,特异性抗体与标本中的抗原结合,形成链霉亲和素一生物素一抗体一抗原复合物,经过洗涤,将多余的标本和生物素标记抗体除去,加入辣根过氧化物酶标记抗体,经37e温育,形成链霉亲和素一生物素一抗体一抗原一酶标抗体复合物,并固定在小孔管壁上,加入氧化剂日202,增强化学发光剂和鲁米诺,这时结合在固相载体上的辣根过氧化物酶在强氧化剂的作用下将增强化学发光剂亚铁原吟琳激活,接着它催化并激活鲁米诺发光,这种化学发光强渡比单独鲁米诺发光强,持续时间长,而且稳定,易于测定。鲁米诺发光强度经光量子记录系统记录,经计算从标准曲线上得出待测抗原含量。

  • 【在线讲座71期】电致化学发光原理及应用——时间:2011年5月17日-5月24日

    【在线讲座71期】电致化学发光原理及应用——时间:2011年5月17日-5月24日

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_630753_1644065_3.gif 【在线讲座71期】 电致化学发光原理及应用 主讲人: paulwong119老师 活动时间:2011年5月17日—2011年5月24日 参与人员:仪器论坛全体注册用户活动细则:1、请大家就电致化学发光原理及应用遇到的相关技术问题进行提问,直接回复本帖子即可,自即日起提问截至日期2011年5月24日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励3、提问格式:为了规范大家的提问格式,请按下面的规则来提问 :paulwong119老师:您好!我有以下问题想请教,请问:…… http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_630753_1644065_3.gif说明:本讲座内容仅用于个人学习,请勿用于商业用途,由此引发的法律纠纷本人概不负责。虽然讲座的内容主要是对知识与经验的讲解、整理和总结,但是也凝聚着笔者大量心血,版权归王刚老师和仪器信息网所有。 本讲座是根据笔者对资料的理解写的,理解片面、错误之处肯定是有,欢迎大家指正。 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191653_630753_1644065_3.gif 在电极上施加一定的电压,由电极表面发生的电化学反应生成的产物再经过一系列的化学发光会形成激发态的中间产物,此中间产物在由激发态返回到基态的过程中发射出一定波长的光,这个现象就是电致化学发光(Electrogenerated chemiluminescence,ECL,也称为电化学发光)。虽然在上个世纪20年代已经发现在电解的过程中会有发光的现象,不过直到60年代才开始系统地进行电致化学发光的研究。随着电子技术的提高以及仪器的发展,对于电致化学发光的研究越来越多,也越来越深入。电致化学发光法是电化学方法与化学发光法相结合的产物,除了化学发光法具有的灵敏度高、线性范围宽和仪器简单等优点之外,它还具有可控性强、发光区域确定以及可以在线生成不稳定的发光物质等优点,已经在生物分析、免疫分析、药物分析等领域得到了广泛应用。同时,做为一种检测方法,电化学发光分析与流动注射、高效液相色谱、毛细管电泳以及微流控分析等技术成功地进行了联用。1. 电致化学发光原理 电致化学发光包括两个过程:电化学反应过程和化学发光过程。电化学反应过程主要是产生自由基;化学发光过程产生激发态物质,并且在激发态返回基态的过程中发光。1.1 湮灭电致化学发光早期的电致化学发光的研究主要是基于“离子湮灭”的反应,其机理如下:http://ng1.17img.cn/bbsfiles/images/2011/05/201105172100_294665_1644065_3.jpg

  • 全自动化学发光免疫分析仪的原理以及临床应用

    全自动化学发光免疫分析仪的原理以及了临床应用。全自动化学发光免疫分析仪采用光电比色原理来测量体液中某种特定化学成分的仪器。是用于检测肿瘤标志物、贫血、甲状腺、孕筛查等项目,是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术,目前应用的自动化分析仪是分析中的取样、加试剂、去干扰物、混合、保温、比色、结果计算、书写报告和清理等步骤的部分或全部由模仿手工操作的仪器来完成,大大提高了工作效率及准确性。

  • 化学发光免疫分析仪与酶标仪的区别

    虽然酶标仪价格低廉、仪器简单、方便操作,但在越来越多的项目检测中,化学发光免疫分析仪逐渐取代酶标仪的使用。 化学发光的优点到底在哪里呢?从原理上说,酶标仪是通过对酶标板中液体的吸光值检测,获得一个OD值后进行定性或半定量的分析,达到检测的目的。化学发光免疫分析仪是化学发光反应(酶促发光或直接发光)产生的光信号通过光电倍增管进行信号转换后等到相应的信号值,用RLU(相对光单位)表示,以达到定量或定性的检测目的,其更加灵敏,线性范围更宽,而且可以做定量检测,可进行全自动操作,而酶标仪无论检测还是线性范围都不如发光仪,且只能做定性检测,但是目前国内酶标仪较为成熟,化学发光尚处于成长期。

  • 化学发光仪

    本人研一新生,想做化学发光,但组内没有化学发光仪,有一台荧光分光光度计,不清楚如何使用荧光分光光度计来测化学发光强度!也可以测流动化学发光么?希望懂的老师,师兄师姐可以帮忙一下,或留下联系方式,十分希望有人指点!

  • 化学发光免疫分析

    化学发光免疫分析放射免疫分析法有很高的灵敏度,但存在着放射性防护和同位素污染等问题。近年来,许多非放射性同位素标记的免疫分析方法相继出现。其中,在化学发光反应及抗原-抗体特异性识别基础上建立起来的一种新的非放射免疫分析技术--化学发光免疫分析法,由于这种方法具有灵敏度高,特异性强,精密度好,线性范围宽,仪器设备简单,试剂价格低廉,方法稳定、快速等优点,已成为一种重要的非同位素标记免疫分析方法,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测。  化学发光免疫分析包括三大类型:即标记化学发光物质的化学发光免疫分析;标记荧光物质的荧光化学发光免疫分析和标记酶的化学发光酶联免疫分析。下面以偶合放大化学发光酶联免疫分析法检测人血清中乙型肝炎表面抗原(HBsAg)为例。  (一) 原理  尽管辣根过氧化物酶(HRP)可以催化Luminol-H2O2反应体系产生化学发光,但由于该体系的检测灵敏度不够高,不能满足酶联免疫测定的要求。因此,为了提高体系的检测灵敏度,可将HRP催化H2O2氧化曙红(Eosin)的反应与该反应产物增强HRP催化luminol-H2O2的化学发光反应相偶合,建立偶合放大化学发光酶联免疫分析法。这里,酶的活性是基于下列发光反应进行检测的:  HRP         luminol+H2O2───→产物+hν                 产 物                  ↑       Eosin+H2O2 ──────┘               HRP 二) 操作步骤  1. 包被抗体 在每个小试管中加入聚苯乙烯珠各一枚,再加入300μl用0.05M,PH9.6 碳酸盐缓冲液稀释的抗HBsAg抗体,同时设空白对照,置4℃过夜。  2. 洗涤 用抽滤针头吸干管内液体,加入Tris-HCl-Tween20洗涤3次,每次加2ml,放置3~5min,用抽滤针头吸干管内液体。  3. 加待检血清和阳性标准品 用PBS-Tween20缓冲液不同倍数稀释HBsAg阳性标准品或待检血清,每管加入300μl。同时设阴性对照;空白对照管只加抗体稀释液。置37℃孵育2h。  4. 洗涤 同2。  5. 加酶标抗体  用含小牛血清的PBS-Tween20缓冲液稀释HRP标记的抗HBsAg抗体,每管加入300μl,空白对照管只加用于稀释酶标抗体的稀释液。置37℃孵育2h。  6. 洗涤 同2。  7. 化学发光测定 给每管加入300μl底物溶液,置37℃保温20min。犎;后将小试放入LKB-1250 lumimeter中,并置于测量位置,加入300μl 5.0×10-4M luminol。记录仪记录化学发光强度。  8. 同时用ELISA方法进行对照,结果测量采用DG3022型酶联免疫检测仪。  结果判定(1) 定性 按下列公式判别阴、阳性:          L样品-L空白     ┌≥2.1 为阳性   S/N = ──────── = 商│       L阴性对照-L空白    └<2.1 为阴性   (2) 定量 以不同稀释度的HBsAg阳性标准品的化学发光强度为纵坐标,不同稀释倍数为横坐标,作出剂量反应曲线(标准曲线),犜r待测样品中HBsAg的含量就可由测量的化学发光强度换算得到。

  • 化学发光法测定水中铬

    化学发光法测定水中铬一、实验目的1.掌握化学发光法进行定量分析的原理;2. 了解化学发光测定仪的使用方法。 二、实验原理根据化学发光强度或发光总量来确定物质组分含量的分析方法称为化学发光分析法。化学发光现象自十九世纪以来即为人们所知悉,但其作为一种分子发射的专门技术应用在分析化学上却是近期的事情。人们在自然界中可以观察到一种醒目的化学发光例子,即大气上空的“晚霞“,这是原子气体化学反应所造成;其它常见的化学发光现象则有萤火虫和其它昆虫的生物发光。在碱性水溶液中,游离铬离子可催化鲁米诺-过氧化氢体系的化学发光反应,产生λmax=425nm的化学发光。光强度与铬(Ⅲ)离子浓度在一定范围内呈线性关系。据光强的大小即可测出铬(Ⅲ)的浓度。铬(Ⅵ)对发光反应无催化活性,不干扰铬(Ⅲ)的测定。若测定铬的总量,须先用亚硫酸处理水样,使铬(Ⅵ)还原为铬(Ⅲ),再进行测定。三、仪器与试剂1.化学发光测定仪(FT-632型),容量瓶,刻度吸管,液体加样器等。铬标准溶液:100μg•mL-1, 0.2562g干燥的CrCl3•6H2O(A.R),溶于少量水中,转入500mL容量瓶定容,使用时逐级稀释到100μg•mL-1为操作液。3.鲁米诺溶液储备液:1×10-3mol/L。称取0.08856g鲁米诺,用1mol/LNaOH溶解,转入500mL容量瓶中,用去离子水定容,避光保存。分析液:2.5×10-4mol•L-1。量取125mL鲁米诺储备液,分别加入50mL 0.0100 mol/L 1.0×10-2mol•L-1 EDTA,4.2g NaHCO3,30gKBr及250mL二次水,用1mol•L-1NaOH调节pH为12,于500mL容量瓶中定容,避光保存,四小时后使用。4.过氧化氢溶液:6‰取0.5mL30%H2O2于250mL容量瓶中,用0.1mol•L-1NaOH溶液定容。四、实验步骤1.试液配制分别吸取100μg•mL-1的铬(Ⅲ)操作液0.0,0.2,0.4,0.6,1.0mL及1.0mL水样于50mL容量瓶中,分别加入5mL 2.5mol•L-1KBr溶液,5ml 1.0×10-2mol•L-1EDTA溶液,二次水定容。2.测定仪器通电后5分钟调增益至5.7,稳定半小时。测定时吸取0.2mL样品于小试管中,将试管 置入样品池,转至测量位置,记录仪于扫描档,立即注射0.2mL鲁米诺与过氧化氢的等体积混合液,记录发光信号,绘制工作曲线,算出水样中的铬含量。实验完毕后,将增益调至零,再关仪器开关并清洗试管和注射器。

  • ASTM D4629,GB/T 17674原油中氮含量的测定 舟进样化学发光法

    SH708化学发光定氮仪采用化学发光法测定总氮含量,提高了抗杂质干扰的能力,避免了电量法对滴定池的繁锁操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。系统关键部件采用进口器件,使得整机性能有了可靠的保证。适用于测定石腊油、柴油、汽油、润滑油、燃料油、液化气及天然气,以及其它油品、化工原料及成品的总氮含量,执行标准SH/T 0657液态石油烃中痕量氮测定法(氧化燃烧和化学发光法,ASTM D4629,GB/T 17674原油中氮含量的测定 舟进样化学发光法。[b]性能特点[/b] 1、采用气动撑支撑仪器上盖,翻开仪器上盖内部结构一目了然。2、低含量和小含量的锋形和重复性比较好。3、仪器能够连续24小时开机连续使用的准确的化学发光定氮仪。4、样品中的总氮含量是通过化学发光的方法被快速测量的。5、高精度的数据采集和计算机技术的应用为数据的采集、控制、处理提供了可靠的保证。[b]技术参数:[/b]基本参数:样品种类:液体、固体和气体测定方法:化学发光法样品进样量:固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围:0.1 ~10000mg/L

  • 特殊的化学发光现象之一:微观非均相化学发光

    目前已知的许多氧化还原反应都伴随着微弱的化学发光现象,但是由于其量子产率极低,往往不具有分析应用的价值。为此,必须采取某些办法提高这些氧化还原反应的速率,从而使得发光强度增强到能够用于分析化学测定。近年来,国内外分析科学家模仿生物化学发光的酶反应原理,利用溶液中的表面活性剂等分子自我组合形成胶束、反相胶束、双分子膜等分子聚集体(Organized MolecularAssemblies),或者不形成分子聚集体,但其自身可提供微观非均相反应部位的分子包合化合物、高分子电解质等作为化学发光反应的介质,实现化学发光反应效率的提高。微观非均相体系多指水溶液或其它有机溶液中的小型分子聚集体,如图1-8 所示,包括由表面活性剂和脂质形成的分子聚集体和由无机化合物的重合体形成的反应体系。化学发光常用的微观非均相体系主要包括由表面活性剂等分子聚集体组成的胶束、微乳液、二分子膜和具有独特微观非均相结构的单独分子如环糊精和高分子电解质溶液等。这些溶液外观透明,但是包含可以为化学发光反应提供特异性很高的反应微空间。而无机化合物胶体溶液目前在化学发光研究中应用较少。一般来说,微观非均相体系作为化学发光反应的介质有四种主要的效果:(1)浓缩效应。离子性分子聚集体的表面可以吸附相反电荷的离子,从而使局部反应分子的浓度增大,有利于化学发光反应速度的提高;同时,具有相同电荷的离子被分子聚集体所排斥,使反应具有一定的选择性。(2) 可溶化效应。一些在水中或者有机溶剂中难溶的反应分子、中间体、反应产物等由于其亲水性或疏水性的差异,可以在微观非均相的疏水相、亲水相或者两相的界面上得到溶解。(3) 微观介质的环境效应。介质的极性、粘度、pH 值等受到微观局部环境的作用而产生变化,可能导致化学发光反应的效率和选择性的变化。(4) 激发态分子的稳定作用。由于化学发光的能量弛豫过程往往需要比光致发光更长的时间,因此激发态的稳定性对于化学发光的强度有很大的影响。微观非均相体系的静电相互作用、疏水/亲水作用、氢键结合、电荷移动相互作用等因素的影响,可以促进反应中间体、迁移状态以及激发态分子的稳定性,从而有利于化学发光的产生。林金明等对微观非均相化学发光反应体系作了详细的综述[73]。

  • 化学发光免疫分析的类型介绍

    化学发光反应参与的免疫测定分为以下几种类型:   (一)化学发光酶免疫测定   化学发光酶免疫测定(CLEIA)是采用化学发光剂作为酶反应底物的酶标记免疫测定。经过酶和发光两级放大,具有很高的灵敏度。以过氧化物酶为标记酶、以鲁米诺为发光底物、并加入发光增强剂以提高敏感度和发光稳定性。应用的标记酶也可以为碱性磷酸酶,发光底物为dioxetane磷酸酯,固相载体为磁性微粒贵州学|习网搜集整理。   (二)化学发光免疫测定   化学发光免疫测定(CLIA),是用化学发光剂直接标记抗原或抗体的一类免疫测定方法。吖啶酯是较为理想的发光底物,在碱性环境中即可被过氧化氢氧化而发光。   用作标记的化学发光剂应符合以下几个条件:   1.能参与化学发光反应。   2.与抗原或抗体偶联后能形成稳定的结合物试剂。   3.偶联后仍保留高的量子效应和反应动力。   4.应不改变或极少改变被标记物的理化特性,特别是免疫活性。   鲁米诺类和吖啶酯类发光剂等均是常用的标记发光剂。   (三)微粒子化学发光免疫分析   该免疫分析技术有两种方法:一是小分子抗原物质的测定采用竞争法;二是大分子的抗原物质测定采用双抗体夹心法。该仪器所用固相磁粉颗粒极微小,其直径仅1.0%26mu;m,这样大大增加了包被表面积,增加抗原或抗体的吸附量,使反应速度加快,也使清洗和分离更简便。其反应基本过程:(1)竞争反应:用过量包被磁颗粒的抗体,与待测的抗原和定量的标记吖啶酯抗原同时加入反应杯温育,其免疫反应的结合形式有两种,一是标记抗原与抗体结合成复合物;二是测定抗原与抗体的结合形式。(2)双抗体夹心法:标记抗体与被测抗原同时与包被抗体结合成一种反应形式,即包被抗体-测定抗原-发光抗体的复合物。   (四)电化学发光免疫测定   电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发的特异性发光反应,包括电化学和化学发光两个部分。分析中应用的标记物为电化学发光的底物三联吡啶钌或其衍生N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,制成标记的抗体或抗原。ECLL的测定模式与ELISA相似。其基本原理是发光底物二价的三联吡啶钉及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发态的二价钌,随即释放光子而恢复为基态的发光底物。这一过程在电极表面周而复始地进行,不断地发出光子而常保持底物浓度的恒定。

  • 化学发光基本常识普及系列之化学发光现象及化学发光法

    化学发光现象是一种常见的自然现象,利用化学发光测定化学发光反应反应物、催化剂、增敏剂、抑制剂,偶合反应中的反应物、催化剂、增敏剂的方法叫做化学发光法。   化学发光是物质在化学反应过程中,其物质分子吸收化学能产生光的辐射现象。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制