当前位置: 仪器信息网 > 行业主题 > >

分析仪测定总硫原理

仪器信息网分析仪测定总硫原理专题为您提供2024年最新分析仪测定总硫原理价格报价、厂家品牌的相关信息, 包括分析仪测定总硫原理参数、型号等,不管是国产,还是进口品牌的分析仪测定总硫原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分析仪测定总硫原理相关的耗材配件、试剂标物,还有分析仪测定总硫原理相关的最新资讯、资料,以及分析仪测定总硫原理相关的解决方案。

分析仪测定总硫原理相关的资讯

  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 目前测定石油产品中硫含量的主要仪器及测试方法有哪些?---X荧光硫元素分析仪,紫外荧光测硫仪等。
    简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。测定硫含量仪器列举及对应的测试方法!测定石油产品中硫含量的主要仪器:深色石油产品硫含量测定仪,轻质石油产品硫含量测定仪,微库仑硫氯分析仪,硫测定仪(紫外荧光测硫仪),石油产品硫含量测定仪,馏分燃料硫醇硫测定仪,X荧光硫元素分析仪对应测试方法:管式炉法,库仑硫,紫外荧光法,燃灯法,自动电位滴定法,X荧光法。DELITE相关仪器1A1320深色石油产品硫含量测定仪依据GB/T387《石油产品硫含量测定法》(管式炉法)、ASTM D1551设计制造的,适用于测定润滑油、重质石油产品、原油、石油焦、石蜡和含硫添加剂等石油产品中的硫含量。仪器特点:1、由水平型的管式电炉系统、数显温度控制系统、电动机驱动控制系统、空气净化流量调节系统等组成2、伺服电动机的运行由单片机自动控制,并有手动快进、快退、测定、停止的功能3、两支平行安装的带有磨口直管的石英管,同时对两个试样进行试验,一次可并行做两个结果4、单片机程序控制,具有造型小巧,设计合理,使用方便技术参数:电源电压:交流220V±10% 50Hz±10%电炉加热功率:1600W控制温度:900~950℃电炉行程:130mm流量计:60~600 ml/min空气流量计 试验时流量:500ml/min行程时间:25~65 min,可任意选择热电偶:分度号K环境温度: 5℃ ~ 40℃ 相对湿度:≤85%2A1330轻质石油产品硫含量测定仪是依据SH/T 0253设计制造的,应用微库仑分析技术,采用氧化法将样品通过裂解炉氧化为可滴定离子,在滴定池中滴定,根据电解滴定过程中所消耗的电量,依据法拉第定律,计算出样品中硫的含量,适用于沸点40~310℃的轻质石油产品。硫含量范围为0.5~1000ppm的试样,大于1000ppm的试样应稀释后测定。本仪器也可测氯的含量。仪器特点:1、人机直接对话,操作便捷。2、计算机控制整个分析、数据处理等过程,显示全过程工作状态,根据需要可将参数、结果存盘或打印。3、采用**元器件,减少了仪器噪声,提高了检测速度。4、具有性能稳定可靠,操作简便,分析精度高,重复性好等特点。技术参数:偏压范围:0 ~ 500mv测量范围:0.1~10000 ng/μl控温范围:室温~1000℃控温精度:±1℃测量精度:    样品浓度(ng/μl) 0.2 RSD(%)35   样品浓度(ng/μl) 1.0 RSD(%)10   样品浓度(ng/μl) 100 RSD(%)5   样品浓度(ng/μl)1000 RSD(%)2气源要求:普氮和普氧工作电源:AC220V±10% 50Hz功  率:3.5KW外形尺寸:主机:410×350×75(mm)     温控:530×420×360(mm)     搅拌器:290×270×360(mm) 进样器:350×130×140(mm)3A2070S 硫测定仪 (紫外荧光测硫仪)A2070S 硫测定仪是根据紫外荧光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0689、ASTM D5453、GB/T11060.8仪器特点:1、系统采用紫外荧光法测定总硫含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。技术参数:样品种类液体、固体和气体测定方法紫外荧光法样品进样量固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围0.1-5000mg/L测量精度荧光测硫仪进样量(μL)RSD(%)0.2202551010501051001035000103控温范围室温~1300℃控温精度±1℃气源要求高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源AC220V±10% 50Hz功 率1500 W外形尺寸主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量主机:20kg 温控:40kg技术参数:1、输入电压:220V±10% 50Hz2、消耗功率:每个吸气泵6W3、环境温度:室温25℃左右
  • 红外碳硫分析仪器在测定合金钢中超低碳硫的应用
    红外碳硫分析仪器在测定合金钢中超低碳硫的应用 南京麒麟分析仪器的老客户-----福州金嘉利有限公司主要生产管机接头,检测钢,合金钢等材料,多年前购买了南京麒麟的电弧红外碳硫分析仪器QL- HW2000E(C)型, 此款产品采用红外吸收峰,根据CO2与SO2能选择性地吸收红外光这一原理,以标准样品通过测量池探测器接收的能量为参比,经计算机数据处理后得到试样中碳跟硫的含量。 碳是钢铁中的重要元素,是区别铁与钢,决定钢号、品级的主要标志。随着C的增加,钢铁的硬度和强度提高,而韧性和塑性却变差,使钢变脆且难于加工;随着C的减少,钢的韧性得到增强。碳的测定方法有气体容量法、吸收重量法、电导法、电量法、非水滴定法、光度滴定及红外吸收法等。 硫是钢中的有害元素,可引起钢的热脆性,降低钢的机械性能,使疲劳极限、塑性和耐磨性下降,影响钢件的使用寿命。测定硫的方法有滴定法、电导法、红外线法等。 南京麒麟的此款电弧红外碳硫分析仪主要就是利用红外吸收法,针对于测量含量较低或较高的碳元素跟硫元素,具有测量范围宽、抗干扰能力强、功能齐全、操作简单、分析结果快速准确等特点, 2009年认定为江苏省名牌产品。更多产品资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com南京麒麟科学仪器集团有限公司检测中心马工
  • 碳硫分析测定中添加剂的作用原理
    1.引言 燃烧法测定碳和硫,常用的添加剂有锡、铜、铁、CuO、V2O5、Cr2O3、SiO2、SnO2、硅、钨、钼、MoO3、WO3、B2O3等。不同的燃烧系统,所用添加剂也有差别。例如高频炉常用钨粒,电弧炉常用铁粉、硅钼粉、锡粒,而管式炉多用锡粒、V2O5[2]等。测定试样不同,有时选用一些专用添加剂或复合添加剂,电弧炉燃烧选用硅钼粉添加剂,高频炉燃烧选用含有锡的钨粒,都属复合添加剂。由于添加剂的组成不同,性质不同,所以在燃烧过程中,起的作用也不同。 2.添加剂的作用 2.1 助熔作用 铁的熔点约在 1529℃,在 1500K的温度下难以熔化,虽然铁中含有其它一些元素,使凝 固点有所降低,但不能使铁熔化成液体。CO2和SO2不能在固相中逸出,只能在液相中释放, 因此,必须加入助熔剂降低熔点。由于此点的重要性,过去常把添加剂叫助熔剂。 2.2 发热作用 所用的添加剂中,有些是金属和非金属元素,在氧气流中氧化燃烧,能放出大量的热,可以提高炉温,特别是对于电弧炉燃烧,有显著的作用。 2.3 调节介质的酸碱性 氧化燃烧生成CO2和SO2都属于酸性氧化物,碱性介质不利于CO2和SO2的释放,选取适量的偏酸性添加剂加入燃烧体系,可使介质变成中性或弱酸性,有利于CO2和SO2的逸出。特别是SO2对介质酸碱性更加敏感。因此,要注意调节介质的酸碱度。 2.4 搅拌作用 搅拌能加速硫离子的扩散,有利于与氧气接触,使氧化反应加快,添加剂如SiO2由于液体密度小于铁的氧化物,在体系内部向上飘浮的过程中,可加快硫离子的扩散,有些添加剂受热后生成气体物质,当气体逸出时,起到良好的搅拌作用。 2.5 催化作用 如氧化铜,在燃烧过程中,碳和硫都能夺取CuO中的氧生成CO2和SO2,然后氧再与铜生成CuO,起催化加速作用。 2.6 稳燃作用 电弧炉的燃烧,有时欠稳定,若在电弧炉燃烧中加适量锡粒或二氧化硅,有助于稳燃。 2.7 抗干扰作用 燃烧后生成的Fe2O3、SnO2等粉尘,对SO2有吸附作用,导致测试结果偏低,加入有关的添加剂,可阻止吸附,减少干扰。 2.8 参与化学反应 此点很重要,在硫酸盐的热法高速测定及通氮燃烧的方法中作用很大。 3.对添加剂的要求 添加剂作为化学制品,有规格要求。常量碳、硫测定,要用分析纯,低含量测定,有时用光谱纯或电子纯试剂,要求杂质要少,碳、硫含量要低。另外对添加剂的几何形状、粒度、 空隙度等物理性能也应注意。如钨系列助熔剂,粒度在0.84~0.42 ㎜,孔隙度 15%左右, 这样透气性好,反应快,有利于氧化燃烧。更重要的是添加剂的空白问题,要求添加剂的空 白值小,一般应小于被测物质碳、硫含量的 10%,此项要求对于高含量碳、硫的测定,不会 引起很大的麻烦,而对于低碳、低硫的测定,就是很大的问题。如碳含量为0.005%、硫含量为 0.0005%的试样测定,要求添加剂中碳含量小于0.0005%、硫含量小于0.00005%,制备碳含量为 5×10-6%、硫含量为 0.5×10-6%的添加剂是很困难的,即使能制备出来,测定其含量也有难度。因此,添加剂的空白问题,是测定低碳、低硫过程中最难解决的问题。 南京麒麟分析仪器有限公司根据多年来的不懈努力,可以为用户提供高频炉、电弧炉和管式炉等各种条件下进行碳硫测定的添加剂和方案,解除用户后顾之忧。
  • 中国总磷/总氮在线分析仪市场发展调研解析
    p   目前,水体的富营养化问题已相当严重,引起人们的普遍重视。水中的总磷/总氮的含量在一定程度上能反映出水环境富营养化的情况,因此总磷/总氮的测定已成为水研究中必不可少的内容。 /p p   总氮包含有机氮和氨氮、硝态氮等,氨氮是水体中的营养素,是水体中的主要耗氧污染物,可导致水富营养化现象产生,对鱼类及某些水生生物有毒害,所以要对其进行监测控制。 /p p   除氨氮外,总氮中含有的其它物质也可能引起水体富营养,同样可引起水质恶化。以前出于治理成本、检测手段等因素,各废水排放标准中对氨氮和总氮的重视程度各有差异,现在国家对两者的监测都比较重视了。在评测水体富营养化特征的时候,既考虑氨氮也考虑总氮是比较全面的评价方式。 /p p   为了及时有效地了解水中总磷/总氮的含量,出现了总磷/总氮在线监测技术。针对中国水质总磷/总氮在线分析仪的应用现状、各品牌占有率以及市场前景等内容,仪器信息网特组织了“总磷/总氮在线分析仪市场调研”活动。 /p p   基于调研结果,我们撰写完成《中国总磷/总氮在线分析仪市场调研报告(2018版)》。《中国总磷/总氮在线分析仪市场调研报告(2018版)》就目前国内市场上总磷/总氮在线分析仪的产品、市场等情况进行了调研分析,内容包括总磷/总氮在线分析仪的不同原理、国内总磷/总氮在线分析仪用户的地域分布、行业分布、单位类型分布、以及主流品牌的产品价格及市场份额等。报告中对用户以及业内专家关于总磷/总氮在线分析仪产品、品牌的评价进行了汇总分析,报告的最后为广大仪器厂商指出了总磷/总氮在线分析仪未来发展方向所在。 /p p   本次调研活动得到了广大用户、企业以及业内专家的大力支持,共有近四百位来自水中总磷/总氮监测/检测相关行业的专家和用户参与了此次调研,其中接近200家相关用户单位接受了我们的电话访谈。 /p p    strong 节选 /strong /p p   第一章 总磷/总氮在线分析仪概述 /p p   1.2 总磷/总氮测定方法 /p p   本次调研结果显示,目前国内市场上最常见的总磷、总氮在线分析仪的设计原理分别是基于《GB/T 11893-1989 水质 总磷的测定 钼酸铵分光光度法》中的钼酸铵分光光度法和《HJ 636-2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》中的紫外分光光度法。本章下面会就这两种方法原理进行一个简要概述。 /p p   ...... /p p   第二章 总磷/总氮在线分析仪市场抽样统计分析 /p p   2.2 总磷/总氮在线分析仪使用单位行业分布 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/42fb64ce-2151-4f74-b297-960defc675ab.jpg" title=" 1.0.jpg" alt=" 1.0.jpg" / /p p style=" text-align: center "   图2.2 单位行业分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/cdb04e8b-5870-4a67-bd48-67f59b17e93f.jpg" title=" 2.0.jpg" alt=" 2.0.jpg" / /p p style=" text-align: center " 图2.3 单位性质分布 /p p style=" text-align: right "   (数据来源:抽样调研) /p p    /p p   第三章 总磷/总氮在线分析仪市场情况 /p p   根据本次调研结果,本章对2018年总磷/总氮在线分析仪的市场总量以及各大主流品牌所占国内市场的份额进行了一个阐述,并结合前几章对总磷/总氮在线分析仪的市场发展情况进行了分析。 /p p   3.1 总磷/总氮在线分析仪主流品牌2018年市场情况 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b2b3b3f4-59fb-4423-a4c1-36ffd438e2da.jpg" title=" 3.0.jpg" alt=" 3.0.jpg" / /p p style=" text-align: center " 图3.1不同品牌总磷/总氮在线分析仪2018年销量占比 /p p style=" text-align: right "   (数据来源:仪器信息网) /p p    strong 报告目录 /strong /p p   第一章 总磷/总氮在线分析仪概述............... 1 /p p   1.1总磷/总氮概述 ................1 /p p   1.2总磷/总氮测定方法 ...............1 /p p   1.3总磷/总氮在线分析仪............... 3 /p p   第二章 总磷/总氮在线分析仪市场抽样统计分析 .......5 /p p   2.1总磷/总氮在线分析仪使用单位地域分布......5 /p p   2.2总磷/总氮在线分析仪使用单位行业分布 .........7 /p p   2.3总磷/总氮在线分析仪使用单位性质分布 .......8 /p p   2.4 总磷/总氮在线分析仪中标信息统计 ..........9 /p p   2.4.1中标公告中招标单位性质分析 .........9 /p p   2.4.2中标公告中招标单位地区分布........11 /p p   2.5总磷/总氮在线分析仪需求趋势分析 ......13 /p p   2.6总磷/总氮在线分析仪网上询盘量 .........14 /p p   第三章 总磷/总氮在线分析仪市场情况 ................16 /p p   3.1总磷/总氮在线分析仪主流品牌2018年市场情况 .............16 /p p   3.2总磷/总氮在线分析仪市场发展历程 ............18 /p p   第四章 总磷/总氮在线分析仪部份主流产品及生产商介绍 ..23 /p p   4.1进口品牌产品及价格情况 ............23 /p p   4.1.1岛津TNP-4200总磷/总氮在线分析仪 ..........23 /p p   4.1.2哈希NPW-160总磷/总氮在线分析仪 ........25 /p p   4.1.3堀场TPNA-500总磷/总氮在线分析仪 .........27 /p p   4.2国产品牌产品及价格情况 ..........29 /p p   4.2.1湖南力合LFS-2002(TP/TN)总磷/总氮在线分析仪 ......29 /p p   4.2.2聚光科技TPN-2000型总磷/总氮在线分析仪 ....30 /p p   4.2.3中兴仪器C310型总磷/总氮在线分析仪 ........31 /p p   4.2.4广州怡文总磷/总氮在线分析仪 ............32 /p p   4.2.5宇星科技YX-TNP型总磷/总氮在线分析仪 ........34 /p p   4.2.6 朗石仪器PhotoTek 6000 TP/TN在线分析仪 ....35 /p p   4.2.7杭州绿洁总磷总氮在线分析仪..........37 /p p   第五章 总磷/总氮在线分析方法存在问题及未来发展趋势 ..40 /p p   5.1总氮在线监测中存在的问题 ...............40 /p p   5.2总磷在线监测中存在的问题 ............41 /p p   5.3小结 ...................41 /p p   5.4总磷/总氮在线分析仪未来发展趋势 ............42 /p p   第六章 结论.................44 /p p   报告链接: a href=" https://www.instrument.com.cn/survey/Report_Census.aspx?id=165" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " 《中国总磷/总氮在线分析仪市场调研报告(2018版)》 /span /a /p p   欢迎感兴趣的网友和我们联系购买报告事宜,电话:010-51654077转 销售部 /p
  • 基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用
    基于全自动高锰酸盐指数分析仪平台在测定总硬度与盐碘的拓展应用在国家环保市场利好的大环境下,环境检测数据质量要求不断提高、检测任务不断加重,人员配置不断缩减,引发环保检测领域对于自动化分析设备的持续大力投入,实验室分析检测作为短期内不可变更的检测需求,传统人工分析检测方法的弊端已经日益凸显,作为依循标准的自动化检测设备对于终端实验室具有极强的适用性。安杰科技的APA-500 全自动高锰酸盐指数分析仪,依循《GBT 11892-1989 水质 高锰酸盐指数的测定》设计开发,专用于《GB 3838-2002地表水环境质量标准》、《GB 5749-2006 生活饮用水卫生标准》 等标准中水质高锰酸盐指数的自动化分析检测,能够实现无人值守式流程操作、数据分析、待机维护、数据推送等人性化、智能化功能,从繁琐的手工分析操作中彻底解放实验员。由于APA-500拥有成熟三轴移液模块、样品杯架模块、多通道注射进样模块和滴定分析功能,同时根据市场的需求,在APA-500的基础上拓展了两个滴定实验的项目,分别是:总硬度 GB/T 7477-1987《水质钙和镁总量的测定 EDTA滴定法》,食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》。水质总硬度是指水中Ca2+、Mg2+的总量,标准中规定用EDTA滴定法测定地下水和地面水中钙和镁的总量。在pH 10的条件下,用EDTA溶液络合滴定钙离子和镁离子。铬黑T作指示剂,与钙和镁生成紫红色或紫色溶液。滴定中,游离的钙离子和镁离子首先与EDTA反应,跟指示剂络合的钙离子和镁离子随后与EDTA反应,到达终点时溶液的颜色由紫变为天蓝色。此过程可以完全使用APA-500进行自动化分析。人工只需做以下操作:准备试剂,将管路放入试剂中;使用样品杯量取样品放入样品盘中;进行样品信息设置等软件操作。APA-500测试总硬度时加快了滴定速度,其测试单个样品的平均时间为2min,测试30个样品只需要1h。对自来水和2.5mmol/L的样品进行9次测试,滴定体积差均小于GB7477-87上±0.2滴(±0.04mmol/L)的测试要求,测定不同浓度的在质控均在范围内。碘是人体正常新陈代谢是必不可少的一种微量元素,在食盐中加入碘酸钾可以保证碘的摄入,因此食盐中的碘是食品检测重要的项目。食品安全国家标准《食用盐碘含量》GB 26878-2011中明确,在食用盐中加入碘强化剂后,食用盐产品(碘盐)中碘含量的平均水平(以碘元素计)应为20mg/kg-30mg/kg。依据食盐中的碘 GBT 13025.7-2012 《制盐工业通用试验方法 碘的测定》3.1直接滴定法。在酸性介质中,试样中的碘酸根离子氧化碘化钾,析出碘单质。使用淀粉溶液做指示剂,用硫代硫酸钠标准溶液进行滴定,从而测定碘的含量。滴定过程中的颜色变化:样品+碘化钾+磷酸→黄色(颜色深浅与浓度有关)+硫代硫酸钠→黄色变浅+加淀粉→蓝色+硫代硫酸钠→蓝色消失(终点)。同样,此过程可以完全使用APA-500进行自动化分析。仪器的测试范围是5~40mg/kg。对市售食盐进行7次测定,结果绝对差值小于标准中给出的2.0mg/kg。对12.1mg/kg和12.1mg/kg质控样品进行测试,均在指控范围内。以上是APA-500的两个扩展应用,该仪器将进行更多扩展应用。充分发挥仪器的优势。为推动仪器行业发展贡献绵薄之力。
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • MA系列直接汞分析仪 – 食品中总汞测定的好帮手
    MA系列直接汞分析仪– 食品中总汞测定的好帮手 GB5009.17 的亮点之一是增加了食品的直接汞分析方法。直接汞分析是如何提高我们实验室的性能的? 让我们先了解一下传统方法存在的问题:l 长时间的样品制备和可能的分析物损失基于汞的特性,传统方法所涉及的冗长的样品前期准备步骤让大多数分析人员感到很麻烦。漫长的过程容易出错,而且汞的高挥发性很容易造成分析物的不可避免的损失或交叉污染,从而导致数据的不确定性。即便是有经验的分析人员也对汞的损失和交叉污染也无可奈何,只能重新进行分析。在操作过程中必须小心翼翼,以尽可能降低这种可能性。l 更高的运营成本由于汞是痕量污染物,分析所用试剂必须是高纯度的,以避免对样品的干扰或在分析过程中造成汞添加,导致“假阳性”结果。在传统方法中所使用的高纯度试剂通常价格昂贵,增加了实验室操作成本。l 更长的步骤意味着更高的错误机会从人为错误到玻璃器皿清洁度,每个步骤都有可能引入一定程度的污染物。用于汞分析的玻璃器皿或实验室器皿必须使用特定程序进行清洁,或由聚四氟乙烯等不同材料制成,以减低汞的记忆效应。因此,通过传统方法进行汞分析通常会导致较差的或不确定的质量控制 (QC)、加标回收率、准确度和精密度。 让NIC MA系列分析仪成为您的得力助手NIC 在直接热分解方面的知识、经验和技能的优势可追溯到 40 多年前。因为传统方法面临挑战,直接汞分析便成为被广泛接受的汞检测替代方案之一, MA 系列正是为此而设计。NIC的 MA 系列直接汞分析仪可以轻而易举地克服上述所有难题。MA 系列包括 2 种不同的型号:MA-3000 和 MA-3 Solo,分别适用于不同规模的实验室。 MA 系列仪器已被全球范围内的实验室所使用,因此 NIC 拥有大量的应用数据。所有应用数据均通过对实际样品和标准参考材料 (SRM) 的分析而获取。 欲了解更多解决方案与产品信息,请查阅:仪器信息网NIC展位: https://www.instrument.com.cn/netshow/SH104984/
  • 全自动碳硫分析仪、元素分析仪的概述
    全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。 全自动碳硫分析仪、元素分析仪的概述 南京第四分析仪器有限公司成立于1976年,是国内金属分析仪器的首创厂家。专业生产高频红外碳硫分析仪红外碳硫分析仪 红外分析仪 碳硫分析仪 金属元素分析仪 金属材料分析仪 电脑多元素分析仪 钢铁分析仪 化验设备 理化分析仪 元素分析仪 多元素分析仪 材料分析仪 铝合金分析仪 铁合金分析仪 矿石分析仪 铁矿石分析仪 有色金属分析仪 合金钢分析仪 不锈钢分析仪 铜合金分析仪 铸铁分析仪 铸造分析仪 炉前快速碳硅分析仪 碳硅当量仪 铁水分析仪等,分析仪器的种类很多,欢迎来电垂询,电话:025-57332233 57330555 传真:025-57552266 QR-5型全自动电脑碳硫分析仪采用中国国标法测定(碳采用气体容量法、硫采用碘量法)原理设置而成,品牌电脑控制,配备电子天平实现了不定量称样测定,Windows界面下的全中文菜单式操作,并可贮存8条工作曲线,使用进口传感器,确保数据精密采集。检测结果可自动或手动打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标 。 QR-5型全自动电脑碳硫分析仪主要技术参数 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒 测量精度: 符合GB223.69-2008,GB223.68-1997标准 QR-5型全自动电脑碳硫分析仪主要特点 采用气体容量法定碳,碘量法定硫。碳、硫测定均为全自动; 利用微机系统进行智能程序控制,精密数据采集; Windows界面下的中文菜单操作; 碳硫元素同时可保存八条标样曲线,测试结果长时间大容量保存,并具有自动、手动两种打印方式,且可任意查询分析数据; 配套电子天平,实现不定量称样。
  • 总氮分析原理和用途
    水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况。大量生活污水、农田排水或含氮工业废水排入水体,使水中有机氮和各种无机氮化物含量增加,生物和微生物类大量繁殖,消耗水中溶解氧,使水体质量恶化。胡泊、水库中含有超标的的氮、磷类物质时,造成浮游植物繁殖旺盛,出现富营养化状态。原理:采用高温高压、碱性条件下氧化剂将水样中氨氮、亚硝酸盐氮及有机氮氧化成硝酸盐,在浓硫酸介质中,硝酸盐与显色剂反应生成浅黄色的硝基化合物。该化合物的吸光度与水样中总氮含量成正比,通过测量该化合物的吸光度,从而得到水样中总氮的含量。主要应用场景有企业雨水、污水的监测,市政管网、提升泵站、地下水、河水、湖泊水、海水等水质中总磷含量的监测。
  • 众瑞仪器发布ZR-7220型 便携式甲烷非甲烷总烃分析仪新品
    ZR-7220型便携式甲烷非甲烷总烃分析仪产品简介:ZR-7220型便携式甲烷非甲烷总烃分析仪是我公司精心研制的用于非甲烷总烃监测的便携设备,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。本仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量,其广泛应用于有机化工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测。 适用范围:l 固定源废气排放中非甲烷总烃的测定;l 烟气连续测量仪器准确度的评估和校准;l 其它可应用的场合。 执行标准: GB 16297-1996《大气污染物综合排放标准》 HJ/T 397-2007《固定源废气监测技术规范》 HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术 要求及检测方法》 HJ/T 38-2017 《固定污染源废气总烃、甲烷和非甲烷总烃的测定 气相色谱 法》 DB11/T 1367-2016 《固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢 火焰离子化检测器法》 技术特点:l 全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预; l 全程高温伴热,有效的避免高温高湿场合样品冷凝损失;l 主机进样口内置滤芯,可有效过滤颗粒物进入主机影响测试;l 配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠;l 单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式;l 测试数据可打印数据凭条,并输出PDF格式测试谱图;l 仪器状态动态显示,方便用户掌握仪器工作情况;l 采用进口隔膜阀,避免死体积及气体泄漏造成测试误差,使用寿命更长;l 管路为气相色谱专用不锈钢管,避免样管路本底值及吸附造成测试误差;l 样品分离采用填充色谱柱,预热时间小于30min,稳定更快;l 每2分钟可测出一组数据并保存测试数据,导出excel表格,选配大容量硬盘,数据无限存储;l 实时查询检测数据,标配蓝牙打印机(选配针式打印机),可按照选定的测试结果进行现场打印;l 采用高性能低功耗工控机,宽温高亮度彩色触摸屏,能够在恶劣工况下连续稳定运行;l 选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息。创新点:ZR-7220型便携式甲烷非甲烷总烃分析仪,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟管、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。 产品特点: 1、全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预; 2、全程高温伴热,有效的避免高温高湿场合样品冷凝损失; 3、配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠; 4、单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式。 ZR-7220型 便携式甲烷非甲烷总烃分析仪
  • QP1680 - TOC(总有机碳)分析仪方法检出限测定
    QP1680 - TOC(总有机碳)分析仪方法检出限测定哈希公司方法检出限(MDL)是一种普遍方法,被用于测量根据指定分析仪方法测定出的置信度为 99% 的物质的最低浓度。该程序要求有一个完整、具体且经过明确定义的分析方法。在对方法检出限进行测定时,至关重要的一点是将实验室使用的所有样品处理步骤纳入测定范围。配备了 65 位自动进样器和搅拌器的 QP1680-TOC 高温催化燃烧分析仪已被用于执行方法检出限程序。根据标准方法 SM 5310 B-2011 所得结果可证明计算出的检出限为 0.019 mg/L,符合仪器的规格范围。方法检出限为美国环境保护署条例 40 CFR Part 136 的一部分。该条例也被称为《清洁水法案》。MDL 程序被用于定义指定方法的检出限。在《清洁水法案》项下,总有机碳(TOC)分析被列为应按照标准方法 SM5310-B 或ASTM D7573 进行分析。MDL 程序包含几个不同阶段。第一个阶段对初始 MDL 进行预估。第二个阶段对初始 MDL 进行测定。MDL 一经测定,就需要不断收集数据对 MDL 进行持续性验证。对至少 7 个方法空白和 7 个加标样品进行分析,以执行 MDL 的初步测定。加标浓度通常为预估 MDL 的 2-10 倍。所使用的样品必须在三个不同的日期至少分三批制备。通过以下公式分别计算方法空白和加标样品的 MDL:其中:MDLs基于加标样品的方法检出限MDLb基于空白样品的方法检出限X方法空白结果的平均值t(n-1, 1−α = 0.99) 自由度为 n-1 时的 Student’s t 值;1-a 为置信水平 99%Ss加标样品分析的标准偏差Sb空白分析的标准偏差在使用 7 个复制样品时,Student’s t 值系数为 3.143。在计算出两个 MDL 后,MDLs 或 MDLb 的最大值将定义为方法检出限。QP1680-TOC 分析仪ProCat 燃烧管表1:MDL结果概要表2:MDL数据概况QP1680-TOC(总有机碳)分析仪 自带一个集成 65 位自动进样器,并为每个瓶位配备了一个瓶搅拌器。在进行 NPOC 分析时,会对样品进行自动预处理。在提取样品前,会对进样针进行清洗,并对样品进行均匀搅拌。通过内置注射泵将样品吸入样品保持环,避免与任何阀门或内置注射器接触。样品被直接注入温度维持在 680°C 的高温炉中。载气将不断流经高温炉。通过 ProCat 燃烧管将所有有机碳转化为二氧化碳。燃烧气体流经冷凝器时,水蒸气在此冷凝。随后,洗涤器将捕获卤素和酸雾并将其去除。最后,气体在进入检测器之前将流经一个 5µm 过滤器以吸附所有气溶胶或颗粒物。样品流中的二氧化碳气体将被引导流经一个非色散红外检测器(NDIR)进行定量。来自检测器的综合信号响应与二氧化碳浓度直接成线性关系。通过使用分析软件,可轻松进行样品报告并将其转移到可用的 LIMS 环境中。表3:QP1680-TOC 系统设置概况校准曲线根据标准溶液生成,而标准溶液则由 100 mg/l 的单一储备标准溶液制备而成。将无水邻苯二甲酸氢钾溶解于超纯水中,进行储备标准溶液的制备。将储备标准溶液进一步稀释以生成所需标准溶液。对每个标准溶液进行 5 次分析。表 4 列出了每个标准溶液和平均峰面积表4:QP1680-TOC 校准 0-2.5mg/L 数据图1:校准曲线 0 - 2.5 mg/L,r2 = 0.9996图2:叠加加标样品 0.310mg/L图 3:叠加加标样品和空白样END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 新品发布丨ZR-7220型甲烷非甲烷总烃分析仪
    ZR-7220型便携式甲烷非甲烷总烃分析仪产品简介:ZR-7220型便携式甲烷非甲烷总烃分析仪是我公司精心研制的用于非甲烷总烃监测的便携设备,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。本仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量,其广泛应用于有机化工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测。 适用范围:l 固定源废气排放中非甲烷总烃的测定;l 烟气连续测量仪器准确度的评估和校准;l 其它可应用的场合。 执行标准: GB 16297-1996《大气污染物综合排放标准》 HJ/T 397-2007《固定源废气监测技术规范》 HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术 要求及检测方法》 HJ/T 38-2017 《固定污染源废气总烃、甲烷和非甲烷总烃的测定 气相色谱 法》 DB11/T 1367-2016 《固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢 火焰离子化检测器法》 技术特点:l 全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预;l 全程高温伴热,有效的避免高温高湿场合样品冷凝损失;l 主机进样口内置滤芯,可有效过滤颗粒物进入主机影响测试;l 配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠;l 单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式;l 测试数据可打印数据凭条,并输出PDF格式测试谱图;l 仪器状态动态显示,方便用户掌握仪器工作情况;l 采用进口隔膜阀,避免死体积及气体泄漏造成测试误差,使用寿命更长;l 管路为气相色谱专用不锈钢管,避免样管路本底值及吸附造成测试误差;l 样品分离采用填充色谱柱,预热时间小于30min,稳定更快;l 每2分钟可测出一组数据并保存测试数据,导出excel表格,选配大容量硬盘,数据无限存储;l 实时查询检测数据,标配蓝牙打印机(选配针式打印机),可按照选定的测试结果进行现场打印;l 采用高性能低功耗工控机,宽温高亮度彩色触摸屏,能够在恶劣工况下连续稳定运行;l 选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息。创新点:ZR-7220型便携式甲烷非甲烷总烃分析仪,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟管、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。 产品特点: 1、全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预; 2、全程高温伴热,有效的避免高温高湿场合样品冷凝损失; 3、配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠; 4、单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式。
  • 热机械分析仪原理简介
    p   热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。 /p p   热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title=" 热机械分析仪结构示意图.jpg" width=" 400" height=" 339" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 339px " / /p p style=" text-align: center " strong 热机械分析仪结构示意图 /strong /p p style=" text-align: center " 1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样 /p p   TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title=" TMA常用测量模式示意图.jpg" width=" 400" height=" 134" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 134px " / /p p style=" text-align: center " strong TMA常用测量模式示意图 /strong /p p strong 压缩或膨胀 /strong /p p   两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。 /p p strong 针入模式 /strong /p p   这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。 /p p strong 三点弯曲 /strong /p p   这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。 /p p strong 拉伸模式 /strong /p p   适合薄膜或纤维。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 典型的TMA测量曲线 /span /strong /p p strong 热膨胀系数测量曲线 /strong /p p   热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。 /p p   大多数材料在加热时膨胀。线膨胀系数α定义如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title=" TMA-1.jpg" / /p p 式中,dL为由温度变化dT引起的长度变化 L sub 0 /sub 为温度T sub 0 /sub (通常为室温25℃)时的原始长度 α单位为10 sup -6 /sup K sup -1 /sup 。 /p p strong 玻璃化转变的TMA测量曲线 /strong /p p   测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。 /p p strong 测量杨氏模量的DLTMA曲线 /strong /p p   如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。 /p p   从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。 /p
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 智能碳硫分析仪
    智能碳硫分析仪 什么是智能碳硫分析仪? 智能碳硫分析仪采用中国国标测定(碳采用气体容量法、硫采用碘量法)原理设置而成,配备了电子天平实现了不定量称样测定,触摸式薄膜按键全中文菜单式操作,并可贮存四条工作曲线,检测结果大屏幕液晶显示并直接打印,碳可显示到小数点后面三位、硫可显示到小数点后面四位,其精度已优于中国国标。 智能碳硫分析仪能快速、准确地检测钢铁、其它金属以及非金属材料中碳硫两元素的质量分数。适用于钢铁、冶金、机械制造加工、铸造有色金属等行业化验室进行碳、硫质量分数检测的主要手段。是分析工作者检测碳硫的理想设备。智能碳硫分析仪广泛应用于冶金铸造、采矿、建筑、机械、电子、环保、卫生、化工、电力、技术监督等部门、可检测钢、铁、及铁合金、铝合金、铜合金、锌合金、钢铁氧化液及磷化液等材料中各种化学成份的含量。 智能碳硫分析仪主要技术参数: 测量范围: 碳:0.010~6.000% 硫:0.003~2.000% 测量时间:45秒(包含称样时间) 测量精度:符合GB223.69-2008,GB223.68-1997标准 智能碳硫分析仪主要特点: 采用单片机控制,全自动操作,零点自动调整彻底消除人为误差,性能可靠,抗干扰强; 配备电子天平实现不定量称样,提高了检测速度和精度; 采用国际先进的传感技术,使用进口传感器,测量结果可数字显示并自动打印测试结果; 高碳、低碳均可直接显示,不需换算; 采用气体容量法定碳、碘量法定硫。
  • 岛津高性价比在线总磷分析仪TP-4210惊艳IE expo2018
    2018年5月3日,上海新国际博览中心,汇聚800余家知名仪器厂商、分享环保产业前瞻技术和科技成果的大舞台第十九届中国环博会(IE expo2018)盛大揭幕。岛津公司携环境在线监测系列产品高调亮相本届大会,并首发其全新高性价比在线总磷分析仪TP-4210。新品TP-4210发布后随即获得与会者的高度关注。岛津展台传真岛津展位现场咨询者络绎不绝    岛津环境事业部副事业部长内桥英夫、市场部水质在线产品专家王琤等代表共同为新品TP-4210揭幕。这款由岛津研发团队匠心打造、全新推出的TP-4210高性价比在线总磷分析仪一经亮相,便吸粉无数。岛津市场部水质在线产品专家王琤(左)和环境事业部副事业部长内桥英夫(右)   新品揭幕后,王琤先生为在场参展观众介绍了新品TP-4210在线总磷测定仪的三大特点、技术指标和应用领域等。分析测试仪器市场部水质在线产品专家王琤做介绍 2017年8月3日环保部办公厅发布环办环监61号文《关于加快重点行业重点地区的重点排污单位自动监控工作的通知》,目的是加快建立全国统一的实时在线环境监控系统,依法依规加强对重点行业、重点地区的重点排污单位主要污染物排放情况实施自动监控。通知文件中重点污染行业总磷排放重点行业包括磷肥、复混肥(复合肥)等肥料制造,含磷化学农药制造,无机磷化工,淀粉及淀粉制品制造,屠宰及肉类加工,酒的制造,饮料制造,汽车、半导体液晶面板制造,设有污水排放口的规模化禽畜养殖场,污水集中处理设施。   借此契机,岛津推出了应对中国水环境特征而开发的高性价比在线总磷分析仪。TP-4210在线总磷分析仪采用过硫酸钾,高温消解,钼蓝吸光光度法的原理,活用岛津独有技术——8通阀注射器方式的高精度计量,实现稳定测量。岛津8通阀和注射泵系统将一般需要若干个泵、切换阀和计量机构才能实现的功能整合成一套,其中设有各类测定试剂、样品、稀释水、反应器等分析操作时所需的配管,能够根据需要自动切换流路。TP-4210在线总磷分析仪搭载源于自动稀释技术的再次测量功能,可实现1台设备同时应对地表水、汚染源两个领域。  TP-4210在线总磷分析仪三大特点:  1、浊度补正功能:使测定更加准确,保证高可靠和高稳定性;  2、应对质控、加标回收测量:可编入在线计划,自动确认测量,质控可测量最多3个样品;  3、自动再测量功能:测量超量程,防止漏测,可使用相同样品实施再测量;  TP-4210在线总磷分析仪适用领域:  1、水环境监测:地表水水质监测,水体评价依据;  2、市政行业应用:污水处理厂水质监测、城市污水泵站水质监测;  3、饮用水安全监测:水源地水质监测、自来水厂进/出水水质监测;  4、环境监察应用:企业污水排放监测,排污收费依据;  5、工业领域应用:工业循环水、冷凝水、污水处理监控。TP-4210在线总磷分析仪   高品质的持续供给是岛津多年来致力于研发投入的必然结果。在第十九届中国环博展上,岛津将全新的在线监测仪器,成熟的应用解决方案与热情的服务展现给来自环境工程、水处理、第三方检测等行业的70000专业观众,让与会观众更切实地感受到岛津在仪器事业上的专业态度。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 国瑞力恒发布红外烟气综合分析仪新品
    GR-3027型红外烟气综合分析仪 1.产品概述 GR-3027型红外烟气综合分析仪(以下简称分析仪)是以非分散红外吸收法(NDIR)为核心的新型产品,主要用于污染源排放管道中有害气体成分的测量,广泛应用于环境监测以及热工参数测量等部门。该分析仪用于测量O2,SO2,NO,NO2,CO,H2S,CO2等有害气体的浓度,其中SO2,NO,CO2采用非分散红外技术进行分析测量;该分析仪具有测量精度高、可靠性强、响应时间快、使用寿命长等优点。分析仪研制过程中广泛征求专家及广大用户的意见,采用进口长光程多组分检测器件、创新抗干扰算法、传感器及新材料领域的高新技术,竭力为用户提供一台质量可靠、性能稳定的高品质分析仪2.适用范围a) 各种锅炉、工业炉窖的SO2、NOx、CO等有害气体的排放浓度、折算浓度和排放总量的测定。b) 烟道排气参数:动压、静压、烟温、流速、标干流量等的测定。c) 烟气含氧量、空气过剩系数的测定。d) 烟气连续测量仪器测量准确度的评估和校准。3.采用标准JJG 968-2002 《烟气分析仪》HJ/T397-2007 《固定源废气监测技术规范》HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法》HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法》 GB/T 16157-1996 《固定污染源排气中颗粒物测定与气态污染物采样方法》4.技术特点l采用非分散红外吸收法测量原理,同时测量SO2、NOx、CO2、CO、H2S、O2多种烟气成分;l核心部件具有自主知识产权,测量系统具有除湿、除粉尘、恒温控制、减震装置等措施,有效保护仪器,提高仪器的适用范围及数据测量的准确性;l皮托管、烟气取样管、烟气预处理器三合一,现场使用方便,提高工作效率。l对于高湿工况的测量可选配具有专利技术的半导体和膜式除水联用的二级烟气预处理系统,烟气水溶性损失小、除水更彻底,测量数据更准确。l内置烟气湿度测量传感器,当烟气湿度过高时停止工作,又要保护仪器不受湿气的损坏。l10.1寸高亮彩色触摸显示屏,界面美观,操作方便,兼容触摸屏和按键操作l内置锂电池,电池工作时间4大于小时。l交直流两用:交流输入80-264V,现场适应性强,尤其针对高电磁干扰工业现场;直流宽压输入,输入电压12-26V,具有欠压、过压、反接保护功能,有效保护仪器不受损坏。l整机采用电磁兼容性及静电防护设计,可有效抵抗现场静电和电磁干扰。 l选用大容量存储器实时存储分钟数据和总平均数据,测量数据可通过U盘导出。l实时查询检测数据,标配蓝牙打印机,现场打印。l可选配物联网模块,实现远程数据传输和物联网组网。 5.技术参数表1 主要技术指标主要参数参数范围分辨率准确度烟气温度(-50~500)℃0.1℃优于±3℃等速采样流速(2~45)m/s0.1m/s优于±5%烟气动压(0~2000)Pa1Pa优于±1%FS烟气静压(-35~+35)kPa0.01kPa优于±1%FS烟气采样流量1.0L/min烟气浓度O2(0~30)%0.01%示值误差:优于±5.0%重复性:≤2.0%响应时间:≤90s稳定性:1小时内示值变化≤5.0% SO2(0~2860)mg/m30.1mg/m3NO(0~2000)mg/m30.1mg/m3CO2(0~20)%0.01%NO2(可选)(0~200)mg/m30.1mg/m3CO(可选)(0~5000)mg/m30.1mg/m3H2S(可选)(0~300)mg/m30.1mg/m3外型尺寸(长×宽×高)470X192*365整理重量150W功率6.5kg创新点:GR-3027型红外烟气综合分析仪是以非分散红外吸收法(NDIR)为核心的新型产品,SO2,NO,CO2采用非分散红外技术进行分析测量;该分析仪具有测量精度高、可靠性强、响应时间快、使用寿命长等优点; 红外烟气综合分析仪
  • QP1680 - TOC(总有机碳)分析仪 (污)水样品中的总有机碳和总氮分析
    QP1680 - TOC(总有机碳)分析仪 (污)水样品中的总有机碳和总氮分析哈希公司工业工厂对其污水中的有机物质含量进行监控,从而确保在排放前已对其进行充分的处理。污水排放必须遵守环境保护机构制定的严格规定。这些污水中可能含有对环境有害的有机物质。为保护环境,需要在环境和工业实验室内对总有机碳(TOC)和总氮(TN)进行测量。上述测量也被用于污水处理过程的监控。 装有集成自动进样器的 QP1680-TOC/TN 分析仪已被用于进行污水样品中总有机碳和总氮的分析。结果证明标准偏差系数(RSD)远低于 5%。 HACH 进行了一项应用测试,测试显示在对污水样品中的总有机碳和总氮测定上,QP1680-TOC/TN产品表现优秀。这款燃烧法分析仪完全符合但不限于下列国际和国内标准:适用于 TOC:- ASTM D7573- EN 1484- EPA 415.1- EPA 9060- ISO 8245- USP - SM 5310B- HJ501-2009适用于 TN:- EN 12260- ASTM D8083根据下列标准测定污水中的 TOC 和 TN 含量:EN 1484 - “水分析。总有机碳(TOC)和溶解性有机碳(DOC)的含量测定指南”ISO 8245 - “水质。总有机碳(TOC)和溶解性有机碳(DOC)含量测定指南”EN 12260 - “氮的测定-根据氧化氮的氧化测定总氮(TN)”ASTM D7573 - “高温催化燃烧和红外探测法水总碳和有机碳的标准测定方法”ASTM D8083 - “采用高温催化燃烧和化学发光检测法计算水中总氮和总凯氏氮(TKN)的方法” QP1680-TOC 分析仪默认配备集成自动进样器,并在每个样品位置均配备搅拌器。自动进样器从试剂瓶中采集酸溶液并将其加入污水中。对酸化后的样品进行净化,以去除无机碳含量。在酸化过程中,集成搅拌装置将对样品进行不断搅拌。随后,进样器将从指定的样品位置抽吸并均匀搅拌样品,并直接将其注射至无阀进样口。校准所用标准为超纯水中的邻苯二甲酸氢钾,由集成自动进样器从单一储备溶液中制备而成。QP1680-TOC/TN 的 TOC 校准范围为 0-100 mg C/L 和0-1000 mg C/L,总氮为 0-25 mg N/L 和 0-250 mg N/L。QP1680-TOC/TN 可在不同浓度条件下以良好的标准偏差系数(RSD)对污水样品中的总有机碳和总氮含量进行测定。 配备集成自动进样器的 QP1680-TOC 分析仪ProCAT™ 燃烧管集成式自动进样器的设计采用直接注射进样,避免了样品与阀门和内置注射泵接触,从而尽可能降低了样品残留风险。样品被充分转移到燃烧区域,由于直接进样技术,确保无残留及记忆效应。样品进样后,坚固耐用的燃烧炉将 ProCATTM燃烧管 加热至 720 ℃ , 确保对二氧化碳(CO2)和氮氧化物(NO)进行充分催化氧化,燃烧管在确保适宜温度分布的同时有效的保护催化剂,从而延长催化剂的使用寿命并确保得到准确的测试结果。氧化后,将执行若干调节步骤。首先,气流需进入温控冷凝器进行快速脱水(H2O)。随后,要经过卤素洗涤器来吸附卤酸。最后,含有二氧化碳的气体流向高灵敏度的 NDIR (非色散红外检测)检测器和坚固的 TN-CLD 检测器。通过易于使用的专用分析软件,可控制样品队列中的样品引入,处理检测器信号,并根据存储的校准曲线计算总有机碳浓度。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 新品消息:新一代精密分析仪器---A2070S紫外荧光测硫仪
    硫是石油及其产品中含有的重要元素之一。硫化物在石油加工过程中可引起设备腐蚀﹑催化剂中毒等问题 硫含量过高的成品油则属于质量不合格产品。随着环保法规的不断完善,燃料油中硫含量的控制指标日趋严格,硫含量的测定越来越受到重视。 测定硫含量的经典方法燃灯法﹑管式炉法等,操作步骤繁琐,测定时间长,灵敏度低。近些年,氧化微库仑法、光电比色法、X-射线荧光法、紫外荧光法等快速分析方法受到更多关注。与其它方法相比,氧化裂解/紫外荧光法具有操作简便,分析快速、灵敏度高,基体效应小,抗干扰能力强等许多突出优点,实际应用也越来越多。得利特技术组研发了A2070S紫外荧光测硫仪,以下是该仪器的具体参数:A2070S 硫测定仪是根据紫外荧光荧光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准: SH/T 0689、ASTM D5453、GB/T11060.8仪器特点:1、系统采用紫外荧光法测定总硫含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。技术参数:样品种类 液体、固体和气体测定方法 紫外荧光法样品进样量 固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围 0.1-5000mg/L测量精度 荧光测硫仪 进样量(μL) RSD(%) 0.2 20 25 5 10 10 50 10 5 100 10 3 5000 10 3控温范围 室温~1300℃控温精度 ±1℃气源要求 高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源 AC220V±10% 50Hz功 率 1500 W外形尺寸 主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量 主机:20kg 温控:40kg
  • 从原理到应用,6大类元素分析仪大比拼
    p   元素定义:是 strong span style=" color: rgb(0, 0, 0) " 具有相同质子数(核电荷数)的同一类原子的总称 /span /strong ,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种. /p p   元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。 /p p   明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。 /p p style=" text-align: center " strong span style=" text-align: center color: rgb(0, 112, 192) " 主要元素分析仪器 /span /strong /p p    strong span style=" color: rgb(0, 0, 0) " 1.紫外\可见光分光光度计(UV) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   2.原子吸收分光光度计(AAS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   3.原子荧光分光光度计(AFS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   4.原子发射分光光度计(AES) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   5.质谱(MS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   6.X射线分光光度计(XRF ) /span /strong /p p   常见分析仪器的归属类型: /p p   ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /p p   ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /p p   FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 各种元素分析仪器分析过程、特点及应用 /span /strong /p p    strong span style=" color: rgb(192, 0, 0) " 紫外\可见光分光光度计(UV) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong 2.原理: /strong /p p   利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。 /p p    strong 3.主要特点 /strong strong : /strong /p p   (1)灵敏度高 /p p   (2)选择性好 /p p   (3)准确度高 /p p   (4)适用浓度范围广 /p p   (5)分析成本低、操作简便、快速、应用广泛 /p p    strong span style=" color: rgb(192, 0, 0) " 原子吸收和荧光分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong 2.原子吸收光谱法原理: /strong /p p   原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。 /p p   公式:A=KC /p p   式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。 /p p   原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。 /p p    strong 3.原子吸收主要特点: /strong /p p   (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /p p   (2)原子吸收谱线简单,选择性好,干扰少。 /p p   (3)操作简单、快速,自动进样每小时可测定数百个样品 /p p   (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10% /p p   (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。 /p p    strong 4.原子荧光主要特点: /strong /p p   (1)有较低的检出限,灵敏度高。 /p p   (2)干扰较少,谱线比较简单。 /p p   (3)仪器结构简单,价格便宜。 /p p   (4)分析校准曲线线性范围宽,可达3~5个数量级。 /p p   (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。 /p p    strong span style=" color: rgb(192, 0, 0) " 原子发射分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em " strong 2.原理 /strong /p p   原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。 /p p   发射的光波长为: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title=" 0.png" alt=" 0.png" / /p p   每个元素有自己独特的特征光谱,从而进行元素定性分析。 /p p    strong 3.主要特点 /strong /p p   (1)高温,104K /p p   (2)环状通道,具有较高的稳定性 /p p   (3)惰性气氛,电极放电较稳定 /p p   (4)具有好的检出限,一些元素可达到10-3~10-5ppm /p p   (5)ICP稳定性好,精密度高,相对标准偏差约1% /p p   (6)基体效应小 /p p   (7)光谱背景小 /p p   (8)自吸效应小 /p p   (9)线性范围宽。 /p p    span style=" color: rgb(192, 0, 0) " strong 质谱分析法 /strong /span /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p    strong 2.原理 /strong /p p   使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。 /p p    strong 3.主要特点: /strong /p p   (1)质量测定范围广泛 /p p   (2)分辨高 /p p   (3)绝对灵敏度,可检测的最小样品量。 /p p    strong span style=" color: rgb(192, 0, 0) " X荧光光度计(XRF) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p    strong 2.原理: /strong /p p   受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 /p p    strong 3.主要特点: /strong /p p   (1)快速,测试一个样品只需2min-3min /p p   (2)无损,测试过程中无需损坏样品,直接测试 /p p   (3)含量范围广 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 几种元素分析仪器对比 /span /strong /p p    strong 1.工作范围 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p    strong 2.无机分析产品的检出限 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p    strong 3.干扰 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p    strong 4.费用 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title=" 9.jpg" alt=" 9.jpg" /    /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/818.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 医用原子吸收光谱仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/646.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 金属多元素分析仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/476.html" target=" _self" style=" text-decoration: underline color: rgb(192, 0, 0) " span style=" color: rgb(192, 0, 0) " 有机元素分析仪会场 /span /a /p
  • 理学发布单波长X荧光总硫分析仪新品
    国内数百个石化企业、质检部门经过反复论证并强烈推荐使用。样品检测范围:汽油、柴油、石脑油、航空煤油、航空汽油、原油、渣油、水、聚丙烯、催化剂等液体及固体样品。单波长X荧光分析标准: 硫 S:SH/T0842 氯Cl:SH/T0977 硅Si:SH/T0993 铅Pb:ASTM D5059 检测下限: 硫S:0.1ppm;氯Cl:0.1ppm; 硅Si:0.5ppm;铅Pb:0.2ppm; 检测范围:0-99.99%X射线光管:靶材:Pd;50KV – 4mA;200W;分光晶体:多块晶体自动转换。 分析仪特点:1. 检测汽油、柴油、石脑油、原油、水(包括污水)等样品,也可测量催化剂等粉末和固体样品。灵敏度高,重复性好。2. 相比传统单波长检测单元素分析仪功率只有70W,四合一分析仪光源的功率为200W,检测下限更低、重复性更加优异。3. 划时代的将四组单波长X荧光技术集合到一台分析仪,运用到石油产品多元素检测中, 且采用特殊晶体分光,分辨率更高。尤其检测高硫低氯的样品,分别率更加清晰。4. 外形小巧,可放置于任何实验室,即插即用。5. 仪器标配12位自动进样器,真正提高分析效率。6. 全中文软件,操作简便。7. 可快速进行定性分析、定量分析、无标样近似定量分析。8. 具有光路校正、薄膜校正、匹配数据库等功能。创新点:1、用200W光管功率检测硫元素 2、单波长X荧光从传统的70W升级至200W 单波长X荧光总硫分析仪
  • 制药企业总有机碳TOC分析仪选型的三步比较法
    总有机碳(TOC)分析仪的选型是制药企业使用人员和采购人员需要开展的一项重要工作,通常主要从使用功能、价格、售后服务等多方面进行比较。但制药企业使用的TOC分析仪与普通设备有所不同,在使用过程中更要兼顾其合规性和准确性。美国药典委员会(USP)建立和制定制药(其他相关)公司所需遵守的质量标准和准则,而美国食品药品监督管理局(FDA)通过检查,强制药企执行这些标准。其中涉及到USP ,要求检测制药用水的电导率;USP 要求检测制药用水的TOC。《中国药典》自2010年起也开始向美国药典看齐,要求检测制药用水的TOC,其中对注射用水(WFI)强制要求检测TOC,纯化水则为建议检测TOC。2020年新版《中国药典》自2020年12月30日起开始实施,其分为4个部分,分别为中药、化学药、生物制品以及通则与药用辅料。新版《中国药典》第二部分的“注射用水”项目下,关于“总有机碳TOC”检测项目的规定没有发生变化,规定注射用水中TOC含量不得超过0.50 mg/L。“纯化水”检测项目中,TOC与易氧化物检测任选其一。为了兼顾TOC检测的合规性和准确性,可以从以下3个步骤进行比较选择。第一步了解法律法规药典法规对TOC测定技术的部分具体要求如下:1TOC测定技术应能区分无机碳(溶于水中的CO2和碳酸氢盐分解所产生的CO2)与有机碳(有机物被氧化产生的CO2),并能排除无机碳对有机碳测定的干扰。2应满足系统适用性试验的要求。3应具有足够的检测灵敏度(最低检出限为每升含碳≤0.05 mg/L)。从上述第1条可以看出如果一台TOC分析仪无法区分无机碳和有机碳,无法排除干扰,仅仅是检测氧化前和氧化后有机物引起的差异,在法规的符合性上是存在瑕疵的,其易受有机卤化物的干扰,无法作为检测的标准方法。第二步了解验证文件《中华人民共和国药品管理法》第四十三条:从事药品生产活动,应当遵守药品生产质量管理规范,建立健全药品生产质量管理体系,保证药品生产全过程持续符合法定要求。《药品生产质量管理规范》第一百四十条:应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)性能确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准。分析仪器属于检验设备,属于上述(四)中的设备范畴,而PQ(Performance Qualification)的含义属于性能确认,一台没有做性能确认,或者虽然做了性能确认,但所作项目并不完整的仪器设备是不符合法规要求的。使用这样的仪器设备存在法律风险。药企质量管理部门的工作职责就是评估风险并将其降到最低,因此IQ/OQ/PQ是否资料齐全且全面认证,是制药企业选择TOC分析仪时要考虑的一个非常重要的因素。第三步了解工作原理如果从TOC工作原理中的检测方法上进行分析,主流机型分为Non-Dispersive InfraRed(NDIR)非色散红外传感器和电导率检测法两种。其中NDIR是以非散布法来测量红外线的吸收,其光源所发出的红外线是两道平行的光线,一道通过样品池,另一道通过参比池。样品池内的气体来自于样品气体,红外线通过时会被样品气体中的CO2吸收;而参比池内的气体为高纯氮气,红外线可以完全通过,不被吸收。其工作原理如图1所示。该方法的工作原理来自于朗伯-比尔定律,是描述物质对某一波长光吸收的强弱与吸光物质的浓度及其液层厚度间的关系,即吸光度A与吸收层厚度B和吸光物质的浓度C成正比,即A=KBC。其中符号A表示吸光度;K表示吸光系数;B表示吸收层厚度;C表示吸光物质的浓度。朗伯-比尔定律在使用稀溶液(低浓度)时,吸光度A和浓度C才呈现线性关系,而使用高浓度溶液时,吸收成分之间与平均浓度之间的距离会减少,使得临近质点间电荷分布相互受到影响,改变了其对特定辐射的吸收能力,最后使得A-C的线性关系产生偏离。浓度越高则偏差越大。尽管有些制药企业用NDIR方法的仪器来检测低浓度的样品,但到了极低浓度时,红外法载气的纯度不够,其背景值会影响CO2的检测,因此,NDIR方法并不适用于极低浓度CO2的检测。电导率检测法另一种检测方法是电导率检测法。该技术能够通过测量水中的CO2,使用UV灯将水样中的有机物转化成CO2,CO2溶解在水中形成碳酸根离子,由于电导率传感器能检测到离子,从而间接检测了TOC。因为是物理检测,其速度既快,测量又准。电导率检测法又分为两种方法:直接电导率法和薄膜电导率检测法(又称选择性膜电导率法)。采用两种电导率法的TOC分析仪校验结果都很稳定,检测精度高。这两种技术主要的区别在于,直接电导率法比较容易受杂酸性、卤化有机物等的干扰;而薄膜电导率检测技术抗干扰性更佳。其中电导部分的工作原理如图2所示。 图3 薄膜电导率检测法,可区分有机碳与无机碳一般而言,制药企业制水系统的注射用水通常只有几十个ppb, 纯化水通常在100多个ppb左右, 所以只要电导率的传感器精度足够高,加之卓越的软件算法,就能确保在极低浓度的情况下测量TOC的准确性,而NDIR由于其工作原理的天然特性,无法准确测量极低浓度的TOC。综上所述,随着我国制药行业的快速发展,GMP检查也越来越严格,三步比较法是制药企业TOC分析仪选型的理想方法。原文刊登于《流程工业 制药业》杂志2021年第6期作者:扬子江药业集团江苏海慈药业有限公司 陈雅男 于小琴苏伊士Sievers分析仪 王欣了解更多!
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 赫默瑞发布法国HEMERA总磷分析仪新品
    Hemera L800D总磷在线分析仪技术参数指标 ● 检测参数:总磷TP● 测量原理:钒钼黄比色法● 量程 :TP:0-2mg/L至0-100mg/L● 测量精度: ±2% F.S.或±0.02mg/L P(测量范围0-2mg/L)● 测量响应时间:TP:2-10分钟● 操作环境:温度:5-50°C (41°F-122°F);湿度:”彩色触摸屏16/9 (LED背景光), 双层玻璃, 800x480像素,具有自动屏保功能。存储:8GB SD卡(1年数据)● 电源:100-240VAC或 24VDC/50-60Hz● 功率: USB:历史数据下载,仪器出厂设置数据信息下载● 测量时间间隔设定:2-720分钟任意可设。● 具备自动清洗和自动调零功能:自动清洗和自动调零功能可以根据需要在菜单选项中设定为“是”或“否”;自动清洗时间间隔和自动调零时间间隔可根据测量时间任意设定,或根据测量次数任意设定。● 取样及预处理:仪器带有取样泵,具有自动取样功能,具有预处理过滤功能(备选)。● 机箱:壁挂式, 防护等级IP65,不锈钢1.4435 (SS316L),H430mmxW340mm xD200mm● 耗材:过硫酸钾溶液(potassium persulfate):氧化剂,2ml/次。 钼钒酸溶液(vanadate molybatate):显色剂,2ml/次。创新点:总磷可以合并到COD和氨氮中去,三合一同时测量 法国HEMERA总磷分析仪
  • 综述:现代分析仪器及其应用发展的六大特点和有关问题
    李昌厚(中国科学院上海生物工程研究中心 上海 200233)  由于科学仪器是“四两拨千斤”的产业,发展前景非常广阔。基于它在国家的科技、经济、国防、民生和社会发展中战略地位的重要性,在“农、轻、重、海、陆、空、吃、穿、用”各行各业,无所不在,无所不有。所以,加速科学仪器产业发展已成为世界各国关注的重点之一。本文简单介绍我国科学仪器和应用发展的有关情况。  一、分析仪器的主要发展趋势和方向(潮流)  近10多年来,由于纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果、特种功能材料研究成果和全球网络技术推广应用成果等一大批当代最新技术成果竞相问世,使得全球科学仪器领域发生了根本性的变革。  1、分析仪器发展的趋势(方向):  目前国际上的科学仪器发展总体上呈现出以下的发展趋势:  1)检测原子、分子和组份的仪器向多功能、智能化、网络化方向发展   2)进行分离、分析的仪器向多维分离和分析方向发展   3)生命科学仪器向原位、在体、实时、在线、高灵敏度、高通量、高选择性方向发展   4)检测复杂组份样品的仪器向联用分析仪器方向发展   5)用于环境、能源、农业、食品、临床检验的仪器向专用、小型化方向发展   6)样品前处理仪器向专用、快速、自动化方向发展   7)用于国防和生命科学的仪器向集成化、微型全分析系统方向发展   8)监控工业生产过程的分析仪器向小型化、在线分析、原位分析方向发展。  2、分析仪器的发展潮流  微型、微量、快速、专用、在线检测是目前国际上分析仪器的主要发展方向或发展潮流:  微型:应用需求 便携、占地方小   微量:应用需求 兔子耳窝2微升液体要求做一个方法研究   快速:应用需求 疾控应急、食物中毒、车载、网络实验室   专用:应用需求 流水线、环保、食品   在线:自动化仪器发展的需要 特别是水质检测,每年10亿RMB的市场   因为研发出的仪器是给使用者用的,所以,分析工作者的需求是:微型、微量、快速、专用、在线;所以,分析仪器的发展方向也是微型、微量、快速、专用、在线。  这些方向或潮流,是现代分析仪器研发工作者应该重视的问题之一。  科学仪器是一种高科技产品,它受益于采用各种前沿技术的最新成果,同时也面临各种前沿技术不断地创新和发展的挑战。可以预测,随着信息科学、生命科学、材料科学、能源科学、海洋科学、空间科学、环境科学、民生科学和公共安全科学的发展,以及新技术的不断出现,科学仪器会在微型、微量、快速、专用、在线等方面将不断的创新、不断发展。  二、分析仪器及其应用发展的特点  1、分析测试对象发生了战略转移,对分析仪器提出了更高的要求  众所周知,五十年代以前的分析测试,主要是无机化学领域的定量分析,七十年代前后的分析测试,则以成分分析为主,同时结合结构分析。目前的分析测试,已发生了很大变化,已突破了传统的分析测试专业界限,涉及到现代科学技术的各个领域。  近几年来,国际上高新技术的发展日新月异,令人眼花缭乱,其中最有代表性、最核心和最能代表未来方向的高新技术有六个方面,它们被科学家们称之为六大技术群,即信息技术群、新材料技术群、新能源技术群、生物技术群、海洋技术群和空间技术群。这六大技术群,都离不开现代分析测试技术。  1)信息技术群:它是新兴技术群体的核心和先导,是未来世界的中枢神经系统。但信息技术群中所有仪器设备材料的光、机、电、磁学等性能和成分、结构分析测试都离不开现代分析测试仪器   2)新材料技术群:它是新兴产业的基础,被称为技术发展的骨骼的肌肉组织,但不论有机材料还是无机材料,其结构分析,特别是微观、亚微观结构分析、功能材料分析、微量杂质含量的分析等,都必须依靠现代分析测试仪器。  3)新能源技术群:是替代传统石油、煤等燃料能源的途径,是未来社会物质运作的动力源泉,相当人体的心血管系统,但它的每一细小环节,都少不了分析测试。  4)生物技术群:是前沿科学中的前沿,是利用生物体及其组织和功能的全新领域,开发前景广阔。但生物体及其组织和功能的开发研究、复杂体系的分离、生物大分子的测试、生物活性的测试、空间构象的测试等都必须要有分析测试仪器。  5)海洋技术群:是充分利用和开发占地球表面71%的海洋和海底资源的现代手段,但海洋和海底物质资源的提纯、分离等,都涉及到现代分析测试仪器。  6)空间技术群:是当今科技发展的伟大象征,是探索地球、太阳系、银河系、乃至整个宇宙的新起点,但空间技术中的新材料和太空物质资源的开发研究等,都与分析仪器发展密切相关。  综上所述,纵观当今世界上科技发展的现状和世界分析测试技术发展的历史,人们会深深认识到现代分析测试技术领域已发生了巨大变化,出现了一个明显的特点,那就是分析对象已经发生了战略性的转移,已经从过去的成分分析和一般的结构分析,发展到了趋向于从微观和亚微观结构这两个层次上去寻找物质的功能与物质结构之间的内在关系,寻找物质分子间相互作用的微观反应规律。同时,要求进行快速、准确的定性和定量分析。可以说,分析对象的战略转移对分析仪器的要求进一步提高,或者说分析仪器必须适应分析对象的战略转移,这是现代分析仪器和应用发展的第一个特点。  2、分析测试技术的难度明显增大,分析仪器必须相适应  随着现代分析测试对象的战略转移,分析测试研究的深度、广度和难度都发生了很大的变化,特别是当今的分析测试技术的难度,比过去有明显增大。纵观世界上分析测试技术领域的现状,可以明显看出,当今世界上分析测试技术的主要难点集中反映在以下三个方面:第一,大分子的分析测试 第二,复杂体系的分析测试 第三,动态分析测试。  所谓大分子的分析测试,主要指生物分子的微量提纯和分离、结构的测定(一级、二级、三级结构测定)、表征生物大分子活性的空间构象的测定、细胞的骨架、细胞膜、受体细胞等的测定等等。这些都是当代分析测试技术中的难点。  所谓复杂体系,主要指材料科学。材料科学本身就是复杂体系,再加上添加剂、辅助剂等就更加复杂。有时只要万分之几或十万分之几的添加剂,就可以改变材料的全部特性,如离子束注射技术就是如此,只需在材料中注入极少量的离子,材料的机械、电子、光学、磁学等特性就会发生极大的变化。例如,目前全世界一致公认,人工心脏瓣膜的最好材料是热解碳,但它有凝血性。热解碳做成的人工心脏瓣膜装入人体后,病人必须长期每天吃药,以使血液流过人的心脏时,不产生血栓,否则会导致生命危险!但吃药后,又有副作用,尤其对有生育能力的人影响极大。为此,我国的科技工作者,用离子束注射热解碳,再用它做成人工心脏瓣膜,就可提高抗凝血性,所以装入人体后,可以不吃药。这是一个有重大意义的课题,但其分析测试工作的难度很大,既要作离子束注射后热解碳的材料分析,又要作动物乃至人体的血液相溶性分析测试,工作量巨大,要求很高 又如无机大分子,有机高分子和簇类物质(原子、分子簇,即人们所讲的纳米材料)的聚合态结构研究,特别是其三维分子结构、低维分子结构、分子取向度、表面结构等的分析测试,都属于材料科学的难点。并且,这些方面的分析测试工作都属于当代材料分析测试技术中的热点。人们正在开展纳米结构半导体发光材料的研究,这是材料科学中一个有重大意义的课题,但其分析测试非常困难。因要寻找晶粒在一定程度上可控的纳米薄膜,以制备高致密度、与衬底有高结合力的纳米晶粒薄膜,故分析测试工作量很大,且难度非常大。这项工作在微电子学中有重大意义。  还有,现代分析测试技术中,往往要求快速、准确的解决被测对象中某些组分的含量,如钢铁、冶金、机械等行业中最普遍,而又是最重要的C、S、Mn、Si、P等含量的现场、快速、实时的分析测试就是如此,这些实时的现场快速分析测试,也是相当难的。  所谓动态测试,主要指的是反应动力学。在对亚稳态、分子、离子、自由基等物质的实时分析测试时,全部要求在动态过程中进行。就拿一个简单的化学反应来讲,一般我们知道的是反应后的结果产物,分析测试的也是反应结束后的最终产物。但若要知道反应过程中,任何一个△t时间上的具体细微信息,就相当困难了。如果是一个复杂体系的动态测试,那就更难了。  综上所述,分析测试的难度明显增大,对分析仪器的要求就会提高。这是现代分析仪器和应用发展的第二个特点。  3、现代分析测试技术涉及的专业面越来越广  随着分析对象的战略转移,分析测试技术涉及的专业也发生了变化。因为要寻找物质的功能与物质的结构间的内在关系,要寻找物质分子间相互作用的微观反应规律,要快速、准确的测定成分和结构,首先要解决的就是要得到物质的有关信息。因此,如何获得信息,是解决分析测试问题的首要前提,信息获得就成了分析测试的重要基础。而现代科学仪器是信息的源头,它包含许多基础科学和应用学科方面的内容,包含许多边缘科学、交叉学科、实验技能知识。现代分析测试技术必须依赖于现代科学仪器。分析技术涉及的面越广,对仪器的要求就越高。这是现代分析仪器和应用发展的第三个特点。  4、要求分析仪器制造者和使用者,越来越重视仪器学理论  由于分析对象转移、难度增大、涉及的面更广,做仪器和用仪器的人就需要有理论支撑,这个理论就是仪器学理论。仪器学理论是一种综合性学科的理论,是一门涉及到多个领域的、复杂的、交叉的、边缘学科的理论,是涉及到光学、机械学、电子学、计算机、应用等各个领域的理论,特别是现代分析仪器,都离不开这些方面。  仪器学理论是一切科学仪器研发者、生产者、使用者,是最基本、最重要的理论之一。  目前,很多仪器设计者没有重视仪器学理论,往往出现数据不准确或发生疑虑时、分析数据与文献值不一致时,大家就不知所措!如:当试样很稀或很浓时,分析误差很大!但是中等浓度时,分析误差就正常,为什么?这个问题很多人不清楚!因为,从仪器学理论来讲,所有根据比耳定律设计的分析仪器,都只能适用于一定浓度 噪声N都是限制被分析样品浓度下限的。根据仪器学的S/N理论:信号S一定,噪声N大,则仪器S/N就小、灵敏度就低。同时仪器的分析测试误差就会大。而杂散光SL是限制被分析样品浓度上限的,试样很浓时,浓度与吸光度不成正比、就偏离比耳定律,分析误差就会很大。如果有人要求用UVS检测0.0004Abs的样品,这是违背仪器学理论的。目前世界上最好的UVS,美国Varian的6000i,其BF(基线平整度,表征仪器全波长范围内的每个波长上的噪声)为± 0.001 Abs,仪器的噪声都比0.0004Abs大几倍,根本不能检测0.0004Abs的样品。所以,懂了一点仪器学理论,你才会知其然,也知其所以然,才会当仪器出现误差大、不稳定、重复性差等问题时,能够解释或顺利解决。所以,越来越需要和重视仪器学理论是现代分析仪器和应用发展的需要,也是现代分析仪器和应用发展的第四个特点。  5、分析仪器制造者和使用者结合越来越紧密  分析仪器是给仪器分析工作者使用的,因此仪器分析工作者对分析仪器的要求是“好用” 所谓“好用”,就是分析仪器要稳定可靠 而所谓稳定,就是漂移小、重复性好 所谓可靠,作者在30年前提出,应分为狭义和广义两种。狭义可靠性主要指分析仪器的故障率,它不能全面完整的表达可靠性的内涵。仪器故障不出,但是,分析测试的数据不准,这是最大的不可靠。所以作者提出了广义可靠性的定义,即指分析仪器的可靠性,主要指分析测试数据的准确度高、稳定性好、故障率低和售后服务好。因此,分析仪器的优劣,要在分析测试工作中检验,应由仪器分析工作者来评价。使用者是裁判员,分析仪器的好坏,必须要经过分析测试实际使用的检验后才能下结论!由于许多分析仪器研发、制造工作者,不了解使用者如何使用分析仪器,不了解使用者的思路,导致做仪器和用仪器的人脱节,互不沟通。所以,做出的分析仪器有时不大好用,甚至不好用,这是造成我国分析仪器落后的主要原因之一。所以,分析仪器制造者如果离开使用者,就没有目标。  一台(或一种)新的分析仪器问世,必定是来自仪器分析工作的需要或仪器分析工作的实践。许多分析仪器都来自应用实践的需求。如:八十年代中期,中科院上海有机化学研究所的知名有机化学家汪猷教授在核酸的研究中发现:五种核苷中有的对UVS有吸收,有的对UVS没有吸收 有的有天然荧光,有的没有天然荧光 国外用HPLC分析测试时,往往用两种检测器(紫外、荧光)串连检测,这样,会使峰形扩散,降低灵敏度。当时,汪猷教授提出,能否研制一种紫外/荧光同时检测(记谱)的HPLC检测器?作者根据他的要求(实践需要),在他的启发下,与他紧密结合,很快发明了一种紫外可见分光光度计和荧光光度计一体化设计、一机两用的多功能新型仪器。它作为HPLC检测器,只需要8微升样品,一次进样,就可得到试样的紫外和荧光两种信息。该仪器大大减少了试样的扩散,具有很高的灵敏度。并且一次进样,可将五种核苷中的发荧光和不发荧光、有紫外吸收和没有紫外吸收的核苷区分开。该仪器1988年获得了国家发明奖,至今还未见国外报道过同类仪器。这就是分析仪器来自分析测试工作实践的一个很好的典型例子。我们的仪器研发人员应该重视研发仪器与使用仪器的关系。要走出去,向用户学习。从他们那里吸取营养、拓宽思路。  还有,诺贝尔化学奖得主之一是日本岛津公司的田中耕一,他之所以能得诺贝尔化学奖,主要是他提出了“基体辅助激光解吸质谱法”,这是一种对生物分子进行确认和结构分析的新方法。他用激光照射成团的生物大分子,成功的将生物大分子完整地相互分开,并电离,再用飞行时间质谱来测量。这一发明解决了世界上两大难题:第一,解决了成团的生物分子的结构和成份不受破坏地拆成单个分子的难题 第二,解决了用飞行时间质谱来测量分子量大到50-60万的生物大分子的难题。这一发明,使人类可以通过对蛋白质的详细分析,从而加深对生命进程的了解,使新药开发发生了革命性的变化,并在食品控制、癌症的早期诊断等领域有广泛的应用!我们可以设想一下:如果没有先进的激光仪器和先进的飞行时间质谱仪器,田中耕一能发明“MALDI-TOF-MS”方法吗?他能得诺贝尔化学奖吗?回答是不能。  以上事实,足以说明仪器分析工作者(用仪器)与分析仪器(生产仪器)之间的关系。更能说明分析仪器与仪器分析必须紧密结合、相互沟通、相互促进,这个问题,必须引起广大分析仪器工作者的极大关注。这是当前世界分析仪器和应用发展的显著特点之五。  6、正在朝着联用技术方向大发展  联用技术的迅速发展,是当前国际上分析仪器及其应用发展的热门话题之一。很多工作,某一种技术解决不了,但是,两种或多种技术联用就迎而解了。例如:单纯一台薄层扫描仪器或单纯一台拉曼光谱仪器都不能解决的问题,二者联用(薄层扫描仪起分离作用,拉曼光谱仪起检测作用),问题就很容易解决了,这对复杂体系、中药的分析等特别有意义。又如:FIA(流动注射分析)与AAS联用、ICP-MS、LC-MS、GC-MS等等均系如此。所以,联用技术发展,在集成创新方面将有广阔的前景,它是现代分析仪器及其应用发展的显著特点之六。  三、有关问题  1、再次希望分析仪器和应用行业的广大科技工作者注重学习,要特别重视仪器学理论、要不断注意扩大自己的知识面、多参加各类专业学术会议、多看文献、重视与同行之间的交流、不断提高和充实自己。特别是仪器使用者,一定要注意研究影响分析误差的五大主要因素及其排除方法(作者将另文论述)。  2、建议大家参考以下几本书。这些书的内容都具可操作性。因为作者在大学里学仪器,毕业后,50多年来一直使用仪器、研发仪器、维修仪器。这些书是作者的经验教训总结,既有仪器学理论内容,又有应用实践的内容 对研发仪器、生产仪器、使用用仪器、维修仪器和管理者都有参考意义。这五本书都是著的,而不是编的。它们是:  (1)李昌厚著,《紫外可见分光光度计》,北京:化学工业出版社,2005。  一般科技新书首印2000册 这本书首印4000册,后来重印过两次,总共销售1万多册。内容都具有可操作性。  (2)李昌厚著,《紫外可见分光光度计及其应用》,北京:化学工业出版社,2010。  这本书有很多设计、使用的具体例子,都具有可操作性。  (3)李昌厚著,《原子吸收分光光度计仪器及其应用》,北京:科学出版社,2006  这本书很多科技工作者作为起蒙书籍在读。特别是分析行业的研发生产仪器、使用仪器、维修仪器、销售仪器的人,都有参考价值。  (4)李昌厚著,《仪器学理论与实践》(仪器学理论与光学类分析仪器整机及关键核心部件的设计、制造、测试、使用和维修),北京:科学出版社,2008  仪器学理论是研发仪器、生产仪器、使用仪器、维修仪器的科技工作者必须了解的基础理论 它可以保证你掌握仪器指标与分析误差的关系、使你做出优质仪器 可以使你把仪器用到最佳水平、得到最佳的、最可靠分析数据。  (5)李昌厚著,《高效液相色谱仪器及其应用》,北京:科学出版社,2014  此书三位院士作序。第六章“HPLC一百问”得到了很多读者青睐。  目前分析仪器类的书很多,特别是光谱、色谱仪器方面的书更多。但大多都是专讲仪器或专讲应用,真正将仪器和应用有机结合起来介绍作者的科研成果的书比较少。上述5本书在仪器及其应用的结合方面有独到之处,建议读者参考。  主要参考文献从略。仪器信息网特约撰稿人招募中,丰厚稿酬等您来!!!  投稿人职称在副研/副教授以上,喜欢以文会友 稿件要求原创 内容完整,无需修改,单篇1000字以上 一经录用,单篇稿件稿费500-1000元!  内容:聚焦科学仪器及分析测试行业(拒绝广告),包括但不限于:仪器及技术发展综述 仪器/技术/应用/方法等重大成果研究进展 相关政策、法规、标准解读 仪器技术发展趋势/方向展望/预测 仪器行业“观点”分享… …   投稿邮箱:yej@instrument.com.cn
  • 利曼TOC总有机碳分析仪培训圆满结束
    6月28、29日,Tekmar公司国际销售经理Kevin M. Dubas来华,在利曼北京总部进行了为期两天的TOC培训。来自利曼全国各地的销售精英,借此机会系统学习了Fusion/Torch总有机碳分析仪的结构及其原理。 Fusion/Torch总有机碳分析仪是Tekmar公司第五代最新产品,符合EPA 415.1等国际标准,采用静压浓度&mdash 非色散红外检测(SPC-NDIR)专利技术,同时具有强大的智能稀释功能,另外质量流量控制器(MFC)可有效控制气体流动状态,还可对仪器进行泄漏监测。Fusion总有机碳分析仪采用紫外&mdash 过硫酸盐氧化技术,而Torch总有机碳分析仪采用催化燃烧氧化技术,两款仪器都能检测液体样品中ppb级别的碳含量,广泛应用于医药、环境行业。 培训期间,大家就仪器优点、销售策略等进行了重点讨论。Kevin耐心详尽地介绍以及结合仪器实物展示的培训方式,得到了各地销售们的一致好评。通过培训,有力地加强了利曼中国销售队伍的力量,为新产品在国内的进一步大力推广做出了铺垫。 相信在未来,利曼中国偕手美国Tekmar,必将为中国用户提供一流的仪器、一流的技术服务!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制