当前位置: 仪器信息网 > 行业主题 > >

三杯风速风向仪原理

仪器信息网三杯风速风向仪原理专题为您提供2024年最新三杯风速风向仪原理价格报价、厂家品牌的相关信息, 包括三杯风速风向仪原理参数、型号等,不管是国产,还是进口品牌的三杯风速风向仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三杯风速风向仪原理相关的耗材配件、试剂标物,还有三杯风速风向仪原理相关的最新资讯、资料,以及三杯风速风向仪原理相关的解决方案。

三杯风速风向仪原理相关的资讯

  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销
    ?德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销? 德国Lambrecht风速风向仪中国总代理:南京铭奥仪器公司 ?Lambrecht(兰博瑞)公司是有140多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件。产品主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用。德国LAMBRECHT中国总代理特价供应Lambrecht风速仪、Lambrecht自动雨量计(降水传感器)、Lambrecht一体式气象站等Lambrecht气象测量仪器仪表。Lambrecht产品主要特点是:稳定性能好、精度高、寿命长且种类齐全。 Lambrecht公司产品在世界各地气象、工业、机场、港口码头、船舶、交通运输、地质、林业、环境保护、风力发电、科学研究等尤其是在海洋、船舶和军队得到广泛的应用。 单位名称:南京铭奥仪器设备有限公司 详细地址:江苏 南京市秦淮区刘家岗84号 联系电话:025-87163873 18913964277 传真:025-87163873 Email:suhua1985@126.com
  • 玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划
    近日,玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划!交通运输部对于港口作业机械防风装置有强制性要求,而传统意义的风杯式传感器存在量程低、精度差的缺陷,而我司自研自产的小型螺旋桨风速风向传感器全面弥补国内无小型高精度机械风传感器的空白,在提升港机产品品质、作业效率和安全性方面迈出了坚实有力的国产化替代步伐!小型风速风向传感器小型风速风向传感器是用来测量水平风场的风速和风向数据的标准化仪器。本产品为螺旋桨式一体风速风向传感器,具有体积小、量程大、重量轻、精度高、耐腐蚀等特点。可广泛应用于海洋气象监测、交通气象监测、农林牧副气象监测、极地气象监测、光伏环境监测、风力发电气象监测等领域。关于我们青岛玛瑞泰科科技有限公司是山东省第四届“创业齐鲁&bull 共赢未来”高层次人才创业大赛(团队类)获奖项目成果转化成立的科创企业,注册资本1000万元。公司业务主要面向海洋信息工程、环境气象监测等领域,研发团队依托哈尔滨工业大学高端平台开展海洋声学技术、海洋仪器、环境气象监测设备研发,开发了多种具有自主知识产权的仪器装备,打破了国外垄断和技术封锁,可广泛应用于气象监测、海洋环境监测、水下通信、海洋地质勘探、海水养殖、拖网捕捞等领域,致力于成为海洋信息工程领域的领航者,海洋仪器生态的构建者。
  • 恒创立达发布恒创立达BJ-3 三杯崩解时限仪新品
    3套吊篮,3路单独运行,可分别控制 崩解时限仪是根据《中国药典》对片剂、胶囊剂、及丸剂进行崩解时限检测的药检仪器。技术指标:△ 温度预制范围:室温~50℃,显示显示分辨率为0.1℃。△ 温度控制精度:±0.3℃△ 定时预制范围:1min~999min△ 时间控制精度:±0.5min△ 工作噪声:<60db△ 升降吊篮数量:3套△ 吊篮升降频率:(30~31)次/分△ 吊篮升降距离:(55±1)mm△ 筛网至杯底最小间距:25mm±2mm△ 筛网孔径:标配2mm、(0.425mm、0.71mm、1mm孔径可选定)△ 电 源:220V50Hz△ 整机功率:600W△ 外形尺寸:长*宽*高 540mm*320mm*440mm主要特点:◎ 3篮工作位系统测定崩解时限。◎ 3套吊篮,3路单独运行,可分别控制。◎ 电子温度传感器可显示和监控水浴箱内各点及烧杯中的温度。采用高精度数字电子传感器,无需校准即可保证水浴温度的高精度和高准确度。◎ 仪器自动控制水浴温度为37.0℃(药典规定)。并可随时重新设定预置温度。◎ 仪器自动设定吊篮升降时间为15分钟,也可任意重新设定。◎ 采用单片机为核心的计算机控制技术,智能化控制水浴温度、工作时间两个性能参数。◎ 仪器具有监控水浴温度过热报警和自动保护功能。创新点:(1)高效功能提高,三杯工作位系统测定崩解时限。 (2)3套吊篮,3路单独运行,可分别调控。 (3)仪器自动设定吊篮升降时间为15分钟,也可任意重新设定。 (4)电子温度传感器可现实和监控水浴箱内各点及烧杯中的温度。采用高精度数字电子传感器,无需校准即可保证水浴温度的高精度和高准确度。 恒创立达BJ-3 三杯崩解时限仪
  • 德国lambrecht风速仪/lambrecht风速传感器现货促销
    德国lambrecht风速仪/lambrecht风速传感器现货促销德国Lambrecht(兰博瑞)公司是有150多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件、风速传感器、风向传感器、雨量计、大气压力计、气象系统、温湿度计、辐射等德国Lambrecht风向传感器主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用德国Lambrecht风向传感器测量范围: 0.3...75 m/s精确度: ± 0.3 m/s =10 m/s ± 1% FS ...50 m/s分辨率: 0.1 m/s起始风速: 0.3 m/s输出: 0/4...20 mA = 0...75 m/s- 外壳采用经阳极处理的防海水腐蚀的铝材- 含12 m 可插接导线, 含有内部加热装置,高端传感器德国Lambrecht风速传感器技术参数测量范围: 0...360°分辨率: 2,5°输出: 0/4...20 mA = 0...360° 3 x 0 … 10 VDC (electrical wave)起始风速: 0.7 m/s供电电压: 24 VDC (10...30 VDC)风速传感器 (14575)测量范围: 0.7...35 m/s分辨率: 0.1 m/s输出: 0/4...20 mA = 0...35 m/s0…700 Hz = 0...35 m/s- 外壳采用防海水腐蚀的铝材,插接连接- 认证的传感器, 含有内部加热装置德国Lambrecht风向传感器、风向传感器、进口风向传感器、风向仪、风速风向仪、风向标、Lambrecht风向传感器供应德国lambrecht风速仪/lambrecht风速传感器中国总代理 单位名称:南京铭奥仪器设备有限公司 联系人:张先生联系电话:025-87163873 18913964277 网站:www.mingaoyq.com
  • 北京恒奥德仪器仪表年底大促销产品
    1. 撞击式空气微生物采样器/撞击式空气微生物采样仪/筛孔空气撞击式微生物采样器 型号:HAD-FA-A6 2. 六筛孔撞击式空气微生物采样器/空气微生物采样器 型号:HAJWL-SW6 3. 筛孔撞击式空气微生物采样器/撞击式空气微生物采样器 型号:HAD-JWL-S6 4. 空气微生物采样器/微生物采样器/空气微生物采样仪 型号:YH-FA-A 5. 半导体激光尘埃粒子计数器/激光尘埃粒子计数器/台式六通道粒子计数器 型号:HAD-PC-3B 6. 大流量激光尘埃粒子计数器 激光尘埃粒子计数器 型号:HAD-CLJ-350 7. 尘埃粒子计数器/激光尘埃粒子计数器/便携式洁净度检测仪 型号:HAD-CLJ-BII 8. 手持式激光尘埃粒子计数器/便携式洁净度检测仪 型号:HJ-CLJ-3016h 9. 白光尘埃粒子计数器/尘埃粒子计数器/尘埃粒子计数仪/洁净度检测仪 型号:SZ18-CLJ-D 10. 罐底焊缝真空检测盒/真空试验箱 型号:GL-1 11. 溴化汞试纸 型号:XHG 12. 醋酸铅棉花/乙酸铅棉花 型号:TJA 13. 旋转粘度计/圆筒旋转粘度计 型号:CY1-NXS-11B 14. 液化石油气密度测定仪 型号:HA/T0221 15. 便携式微电脑粉尘仪/粉尘测定仪/粉尘检测仪/便携式粉尘仪 型号:HAD-P5L2C 16. 直读式粉尘仪/防粉尘浓度测量仪/粉尘测定仪/粉尘检测仪/直读式粉尘检测仪 型号:HA/CCHG1000 17. 防激光测尘仪/粉尘检测仪/便携式粉尘仪 型号:HA-LD-3F 18. 数显角度仪/数显倾角仪 型号:HAD-90 19. 简易总辐射表/太阳总辐射仪 型号:PH9-LVTBQ-2-B 20. 太阳辐射仪(总辐射)/辐射仪/太阳辐射仪/总辐射仪/太阳总辐射表/太阳辐射表 型号:HA1-LVRZC-12 21. 便携式气象站/自动气象站/气象站 (风向、风速、雨量、气温、相对湿度、气压、太阳辐射、地温)型号:PH9-PH-8 22. 自动气象站/气象站 (温度、湿度、风速、风向、大气压力,雨量,辐射)型号:PH9-7 23. 手持式气象站/手持式气象仪/便携式气象站(风向,风速,温度,湿度,气压) 型号:PH9-5 24. 风速报警仪/在线式风速仪 型号:HAD-LVFCY-02 25. 手持式风速风向仪/三杯式轻风表 型号:HAD-12 26. 固体数字熔点仪 数字熔点仪 型号:LK-LB-SMP 27. 粉体综合特性测试仪/粉末综合特性测试仪/粉末特性测试仪/粉体特性分析仪/粉体综合特性分析仪/粉末综合特性测试仪/粉末特性分析仪/粉体特性分析仪 型号:HABT-1000/HAHYL-1001
  • 北京恒奥德仪器仪表双十大促销产品
    1. 撞击式空气微生物采样器/撞击式空气微生物采样仪/筛孔空气撞击式微生物采样器 型号:HAD-FA-A6 2. 六筛孔撞击式空气微生物采样器/空气微生物采样器 型号:HAJWL-SW6 3. 筛孔撞击式空气微生物采样器/撞击式空气微生物采样器 型号:HAD-JWL-S6 4. 空气微生物采样器/微生物采样器/空气微生物采样仪 型号:YH-FA-A 5. 半导体激光尘埃粒子计数器/激光尘埃粒子计数器/台式六通道粒子计数器 型号:HAD-PC-3B 6. 大流量激光尘埃粒子计数器 激光尘埃粒子计数器 型号:HAD-CLJ-350 7. 尘埃粒子计数器/激光尘埃粒子计数器/便携式洁净度检测仪 型号:HAD-CLJ-BII 8. 手持式激光尘埃粒子计数器/便携式洁净度检测仪 型号:HJ-CLJ-3016h 9. 白光尘埃粒子计数器/尘埃粒子计数器/尘埃粒子计数仪/洁净度检测仪 型号:SZ18-CLJ-D 10. 罐底焊缝真空检测盒/真空试验箱 型号:GL-1 11. 溴化汞试纸 型号:XHG 12. 醋酸铅棉花/乙酸铅棉花 型号:TJA 13. 旋转粘度计/圆筒旋转粘度计 型号:CY1-NXS-11B 14. 液化石油气密度测定仪 型号:HA/T0221 15. 便携式微电脑粉尘仪/粉尘测定仪/粉尘检测仪/便携式粉尘仪 型号:HAD-P5L2C 16. 直读式粉尘仪/防粉尘浓度测量仪/粉尘测定仪/粉尘检测仪/直读式粉尘检测仪 型号:HA/CCHG1000 17. 防激光测尘仪/粉尘检测仪/便携式粉尘仪 型号:HA-LD-3F 18. 数显角度仪/数显倾角仪 型号:HAD-90 19. 简易总辐射表/太阳总辐射仪 型号:PH9-LVTBQ-2-B 20. 太阳辐射仪(总辐射)/辐射仪/太阳辐射仪/总辐射仪/太阳总辐射表/太阳辐射表 型号:HA1-LVRZC-12 21. 便携式气象站/自动气象站/气象站 (风向、风速、雨量、气温、相对湿度、气压、太阳辐射、地温)型号:PH9-PH-8 22. 自动气象站/气象站 (温度、湿度、风速、风向、大气压力,雨量,辐射)型号:PH9-7 23. 手持式气象站/手持式气象仪/便携式气象站(风向,风速,温度,湿度,气压) 型号:PH9-5 24. 风速报警仪/在线式风速仪 型号:HAD-LVFCY-02 25. 手持式风速风向仪/三杯式轻风表 型号:HAD-12 26. 固体数字熔点仪 数字熔点仪 型号:LK-LB-SMP 27. 粉体综合特性测试仪/粉末综合特性测试仪/粉末特性测试仪/粉体特性分析仪/粉体综合特性分析仪/粉末综合特性测试仪/粉末特性分析仪/粉体特性分析仪 型号:HABT-1000/HAHYL-1001
  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 高低温试验箱风速的测量方法
    原文来源:高低温试验箱风速的测量方法 编辑:林频仪器  高低温试验箱风速的测量有几种方法,其中包括:  1、最古老的仪器是用风杯风速计,大都用在气象领域里,风杯的交叉臂,在不同风速的吹动下快慢不同地转动,从而确定风速大小,风杯风速计的可用范围很广,现在许多尺寸的风杯风速计,利不用小风速计,可在试验箱之类的小体积里测量空气速度。  2、cata温度计是一种特殊类型的玻璃温度计,是根据对流通冷却效应设计的,测量原理是根据把先加热的cata温度计冷却到一定温度时(例如从38度冷却到35度)所需的时间来确定该点风速的大小,但由于温度计在每次测量后再进行测量时必须重新加温,因此这种方法比较麻烦。  热线风速计和热球风速计的测量原理也是根据对流冷却效应设计的,这两种风速计在测量时给测量组件定量的电功率,使测量组件达到预定的标准温度,当空气流过组件时,组件的温度下降,根据组件下降的幅度可以确定空气的速度,热线测量组件是由铂丝绕制成的,而热球风速计的测量组件在许多情况下是负温度系数的电阻,由于目前已有小尺寸和小热容量的组件,故测量组件的热时间常数可以取得很小,同时,可以测量很小截面积上的气流速度,这对低风速的情况特别有用,目前已应用的温度测量范围在-30度到100度之间,在热线风速计中,热线组件的冷却效应取决于线轴和气流方向之间的角度,当气流平等于热线方向,冷却效应最差,通过转动热线风速计测量组件,可以准确地确定气流流向。  风杯风速计和cata温度计只可用于可容人进去的大型试验室,热线风速计和热球风速计则可用于小型高低温试验箱。
  • 最严药品审评令背后:新药审评时间可达美国三倍
    p   每年积压的大量申请,让这场突如其来的国家新药审批注册改革备受关注。8月15日,被称作“最严药品审评令”的《关于征求加快解决药品注册申请积压问题的若干政策意见的公告》(140 号文)将结束征集意见,历时半个月。 br/ /p p   《每日经济新闻》记者采访多位业内人士后发现,药品审批在2006年以后从急行军陡然转入“堵车模式”。申万宏源最新的行业研究资料显示,2011年到2014年,我国1.1类新药申报上市的平均审评时间从26个月升高到42个月。与美国新药的申报审评时间相比,中国药企的等待时间是前者的三倍以上。 /p p   业内人士表示,相关审评部门人手不够是一个原因,而不少药企创新能力不足,仿制药太多,导致过度重复申报是另一个重要原因。 /p p    strong 药审中心人手紧缺 /strong /p p   申万宏源的报告显示,2014年,我国1.1类新药、3.1类新药及6类新药的平均审评时间为42个月、42个月和25个月,申报临床的平均审评时间为14个月、28个月和28个月。 /p p   相同情况下,2003年~2013年,美国、欧盟、日本新药申报生产获批时间的中位数依次为304天、459天和487天。“人家申请上市等待的时间是按天计算,中国是以月为单位。最主要的原因还是申报上市的药太多,审评中心人手不够,加班加点也做不完。”国内一家原料药上市公司董秘对《每日经济新闻》记者坦言,企业和两会代表也多次向药监部门施压,审评人员数与巨量排队申请的矛盾,是药品审评的难点。 /p p   国家食品药品监督管理总局(以下简称食药监总局)公布的《2014年度药品审评报告》显示,2014年食药监总局药品审评中心完成了5261个药品注册申请的技术审评,较2013年的审评完成量增加了12.9%。与此同时,待审任务积压仍为18597件,较2013年待审任务总量又增加了4362个。 /p p   这也从一个侧面说明了药审中心人手有限,新药审批长期面临“僧多粥少”的局面。《南方周末》去年11月份报道称,这个食药监总局直属的事业部门在方案上的编制人数是120人,技术审评岗位人员只有70人左右。记者了解到,美国在这方面的人员约5000人,年评审经费也是中国的10倍以上。 /p p   江苏一家大型制药集团负责研发的傅先生接受记者采访时说,药品审评中心每个月可以审批的数量有限,但申请报批的品种越多,排队时间就越长。“真正审评的时间就一两个月,但得排队,仿制药尤其花的时间久。” /p p    strong 过度重复申请严重 /strong /p p   重复申请、占用审评资源是药品审批滞缓的另一个原因。傅先生告诉《每日经济新闻》记者,不少国内企业创新能力低,造成不少低水平的仿制药扎堆生产、同质化恶性竞争。 /p p   江苏豪森医药研究院有限公司副院长赵军军在接受媒体采访时指出,国内药品审批耗费了大量的时间成本,这和过度重复申报脱不了干系。 /p p   去年9月,食药监总局发布《关于公布第一批过度重复药品品种目录的公告》,选出50个已上市或申报注册的药品品种。两个月后,又发布第二批过度重复品种44个。 /p p   傅先生表示,罕见病药、儿童药或者临床急需品种都亟待自主研发,而国家针对这些品种也专门开设绿色通道加快审批,但大部分的企业临床研发能力都很有限。 /p p   对此,一位曾在美国某知名医药公司任职超过二十年的海归人士表示,美国对于药品审批流程的法规政策相当完善,生物仿制药三至四年就可进入三期临床,从新药申报到开始临床只需一个月审批时间,而国内则需24个月。“国外企业申报新药占主导地位,药监部门是被动,但在国内这个主次顺序就颠倒了。” /p p   实际上,食药监部门早就有了对药品审批流程“动刀”的念头。2007年~2008年,食药监总局曾对药品申请开展过一次大规模的集中整顿和审查,但未实现既定目标。7月22日和31日,食药监总局连续发布两则公告,督促药企对待审药品开展自查,并就药品注册申请积压问题向公众征求意见。前述董秘认为,外界无需对这一政策过度解读,随着审评规范和效率提高,药企将加剧在品种和规模上的洗牌与竞争。 /p p br/ /p
  • 中国部分烟草重金属超标 最高超出外国香烟三倍
    第九届亚太烟草或健康会议10月7日在澳大利亚悉尼召开。2010年会议主题是改变、挑战与进步 烟草控制框架公约在亚太。来自40余个国家和地区的600多人参加了这次大会。   会议发布的一项中国与其他国家烟草的对比研究表明:中国产的13个牌子卷烟检测出含有重金属。烟草中含有的铅、砷和镉等重金属成分,其含量与加拿大产香烟相比,最高超出三倍以上。研究人员选用加拿大香烟与中国香烟对比,是因为加拿大法律规定烟草生产商和进口商必须检测烟草中的金属含量,加拿大卫生部近期披露了相关数据。   这项名为国际烟草控制政策评估项目,涉及80多项控烟研究,研究者来自中国、美国、加拿大、澳大利亚等20多个国家,主要评估世界卫生组织《烟草控制框架公约》对控烟政策的影响。   研究团队主要成员、加拿大滑铁卢大学的杰弗里 方说,对于许多国家的消费者,他们知道巧克力含有什么成份,对所抽的烟含有什么样的成份却是一无所知。从维护自身的权利来说,这是根本性的错误。这就需要更多的研究去检测卷烟和其燃烧烟雾的成份,以帮助政府和消费者做出明智的决策。   项目的研究者纽约州罗斯维尔帕克癌症研究所的理查奥康纳指出,烟民和非烟民都有权利知道卷烟中究竟含有什么样的成分。烟草中含有让人致死的成份,迫切需要对卷烟产品进行强有力的干预,并严格遵守世界卫生组织《烟草框架控制公约》。   加拿大研究者方教授最后强调,中国人对烟草危害知之甚少,如果不采取有效措施的话,中国很快就会陷入一场前所未有的公共卫生灾难。作为《烟草控制框架公约》的缔约国,中国必须采取强有力的措施去保护公民不受烟草的危害。
  • 瑞士万通中国有限公司倾情赞助“三北”暨特邀省区分析测试中心工作研讨会
    由甘肃省分析测试中心承办、瑞士万通中国有限公司倾情赞助的&ldquo 三北&rdquo 暨特邀省区分析测试中心工作研讨会于2009年8月3日至5日在兰州市召开,参会代表为来自辽宁、黑龙江、河北、北京、山西、陕西、新疆、青海、安徽、山东、甘肃共11个省市的分析测试中心(院)的22位副主任(院长)。 甘肃省科技厅陈厅长亲临会场并发表了讲话,提出甘肃科技厅将大力支持甘肃省分析测试中心的发展。各省的代表分别就各自分析中心的人员组成以及工作方向和资金投入等方面做了详细的介绍。 瑞士万通公司在会议上进行的近四十分钟的演讲,介绍了瑞士万通公司仪器的特点及在离子分析领域的应用,给参会的代表留下了极为深刻的印象。演讲激发了参会代表对英蓝技术的浓厚兴趣,同时也使参会代表深刻了解到电位滴定在日常的溶液标定中发挥着手工标定无法比拟的强大作用,参会代表对电位滴定取代手工滴定表示大力支持。
  • 国家海洋局东海分局采购GC-MS等一批仪器设备
    国家海洋局东海分局发布2013年仪器设备采购项目(二)招标公告,将采购气质联用仪、原子吸收光谱仪、显微镜等一批仪器设备,详情如下:   上海上投招标有限公司受国家海洋局东海分局的委托,对其“2013年仪器设备采购项目(二)”进行国内公开招标。现邀请合格的投标人前来投标。   1. 招标编号:SITEN-SX6-NE13134   2. 招标内容:(技术规格详见第五章技术规格和要求。) 包号 产品名称 数量(台/件/套) 是否进口 是否授权 是否中小企业 1 数字专业摄像机 1 是 是 否 2 石墨炉原子吸收光谱仪 1 是 是 否 火焰原子吸收光谱仪 1 是 是 否 原子吸收分光光度计 1 是 是 否 多功能微波消解系统 1 是 是 否 3 体视显微镜 2 是 是 否 光学显微镜(含软件) 1 是 是 否 体视显微镜 1 是 是 否 4 离子溅射仪 1 是 是 否 5 在线营养盐分析仪 1 是 是 否 6 ADCP 6 是 是 否 7 水动力数值模拟软件 1 是 是 否 8 高纯锗γ谱仪系统 1 是 是 否 9 低本底α、β计数器 1 是 是 否 10 分析电子天平 2 是 是 否 超纯水装置 1 是 是 否 11 海气二氧化碳在线分析仪 1 是 是 否 12 RTK定位测量仪 1 是 是 否 13 抛弃式观测仪器 7 是 否 否 14 总有机碳分析仪 1 是 是 否 荧光分光光度计 1 是 是 否 微波消解仪 1 是 是 否 15 ADCP 1 是 是 否 16 波潮仪 4 是 是 否 17 波浪补偿仪 1 是 否 否 声速仪 1 是 否 否 18 气相色谱-质谱联用仪 1 是 是 否 19 手持式气象仪 2 否 否 是 三杯风向风速测定仪 2 否 否 是 扬尘仪 1 否 否 是 20 自动化观测系统 3 否 否 否 自动化观测系统 1 否 否 否   3. 交货地点:业主指定地点。(详见第五章具体要求)   4. 交货时间:(详见第五章具体要求)   5. 投标货币:人民币元。   6. 如果需要,投标人根据自身情况,自行组织对交货地点进行踏勘,费用自理,责任自负。   7. 本项目不接受联合体投标。   8. 接受报名并购买标书时间:2013年5月22日起至2013年5月29日止(北京时间)(节假日除外)  上午9:30——10:30   下午13:30——15:30   地点:上海市威海路511号上海国际集团大厦317室。   招标文件售价:每包人民币500元(售后不退)。   有意愿的潜在投标人购买标书时,须提供法人代表授权书,营业执照复印件(加盖公章),身份证复印件(加盖公章)。   9. 2013年6月13日13:30时为投标截止期(地点:上海市威海路511号上海国际集团大厦3楼会议室)逾期收到的或不符合规定的投标文件恕不接受。   10. 2013年6月13日13:30时开标(地点:上海市威海路511号上海国际集团大厦3楼会议室)。   请投标人代表届时出席开标仪式,并携带本人身份证和法定代表人授权委托书。   11. 联系方式   招标代理机构:上海上投招标有限公司   地址:上海市威海路511号上海国际集团大厦317室   邮编:200041   联系人:钱芳、王琴   电子信箱:shangtou06@163.com   电话:021-22191084、22191101   传真:021-63237316   账户名称:上海上投招标有限公司   开户银行:交通银行上海市分行   银行帐号:310066661010141114415   招标单位:国家海洋局东海分局   地址:上海浦东新区东塘路630号   邮编:200137   联系人:鲍昌能   电话:021-58673248   12.投标人须同时满足下列资格要求:   (1)投标人为独立法人单位   (2)具备销售同类设备的业绩和经验,并提供相关的证明材料   (3)参加投标的单位需按要求提供制造厂商针对本项目的授权   (4)投标人为中小企业必须提供相关资质证明。   如上述日程安排发生变更,请关注“中国政府采购网”相关信息及招标代理机构发出的书面通知。   上海上投招标有限公司   2013年5月22日
  • 国家海洋局905万气质、原吸项目结果公布
    国家海洋局东海分局2013年仪器设备采购项目(二)(招标编号:SITEN-SX6-NE13134),于2013年5月22日在中国政府采购网发布招标信息,2013年6月14日9时30分在上海市威海路511号3楼319室评标。   一、项目名称:国家海洋局东海分局2013年仪器设备采购项目(二)   二、招标编号:SITEN-SX6-NE13134   评标委员会成员:许生蛟、孙廷才、张炎华、杨军、葛万成、熊春婷、秦榜辉   经评标委员会评审,并经招标人确认,本次评标结果公布如下: 包号 产品名称 数量 (台/件/套) 中标单位 中标金额 1 数字专业摄像机 1 上海光赢能源科技有限公司 199,600.00 2 石墨炉原子吸收光谱仪 1 杭州英鑫仪器有限公司 1,739,000.00 火焰原子吸收光谱仪 1 原子吸收分光光度计 1 多功能微波消解系统 1 3 体视显微镜 2 北京大昌万同科技有限公司 472,400.00 光学显微镜(含软件) 1 体视显微镜 1 4 离子溅射仪 1 杭州卓杰仪器有限公司 138,600.005 在线营养盐分析仪 1 上海海奕环境科技有限公司 378,000.00 6 ADCP 6 青岛诺泰克测量设备 有限公司 896,985.00 7 水动力数值模拟软件 1 丹华水利环境技术(上海) 有限公司 756,000.00 8 高纯锗&gamma 谱仪系统 1 上海莎博化工科技有限公司 1,498,000.00 *9 低本底&alpha 、&beta 计数器 1 / / 10 分析电子天平 2 北京泰富坤科技有限公司 116,000.00 超纯水装置 1 *11 海气二氧化碳在线分析仪 1 / / 12 RTK定位测量仪 1上海中振测量技术工程 有限公司 499,800.00 13 抛弃式观测仪器 7 上海嘉翔自动化科技 有限公司 202,300.00 *14 总有机碳分析仪 1 / / 荧光分光光度计 1 微波消解仪 1 15 ADCP 1 上海劳雷仪器系统有限公司 298,000.00 16 波潮仪 4 青岛澳森泰科技有限公司 150,000.00 17 波浪补偿仪 1 上海海奕环境科技有限公司 260,000.00 声速仪 1 18 气相色谱-质谱联用仪 1 浙江纳德科学仪器有限公司 697,000.00 19 手持式气象仪 2 上海光赢能源科技有限公司 49,200.00 三杯风向风速测定仪 2 扬尘仪 1 20 自动化观测系统 3 天津市海华技术开发中心 700,000.00 自动化观测系统 1   注:   *包9 低本底&alpha 、&beta 计数器 包11 海气二氧化碳在线分析仪 包14 总有机碳分析仪、荧光分光光度计、微波消解仪:投标单位未满三家,不予开标。   三、联系方式   招标代理机构:上海上投招标有限公司   地址:上海市威海路511号上海国际集团大厦317室   邮编:200041   联系人:钱芳、王琴   电子信箱:shangtou06@163.com   电话:021-22191084、22191101   传真:021-63237316   账户名称:上海上投招标有限公司   开户银行:交通银行上海市分行   银行帐号:310066661010141114415   招标单位:国家海洋局东海分局   地址:上海浦东新区东塘路630号   邮编:200137   联系人:鲍昌能   电话:021-58673248   如对此结果有异议,请于本结果公布之日起7个工作日内以书面形式向招标代理单位提出质疑。   感谢各投标人对本项目的积极参与!   上海上投招标有限公司
  • 移动式一体化气象站-它居然有个触摸屏哎#2022已更新
    移动式一体化气象站-它居然有个触摸屏哎#2022已更新موبايلمحطةالطقسالمتكاملة-وقدتمتحديثشاشةتعملباللمس【型号介绍:TH-PQX7_天合环境气象设备口碑不错_是值得信赖选择的好设备】粮食作物主要露天种植,其生长特性依赖于“天”。降水、低温等因素对粮食生产各有利弊。近年来,生态环境持续恶化,极端天气逐渐增多,气象灾害频繁发生,严重影响了农业生产。我国自古以来就是农业气象灾害最频繁的国家之一,受到农业气象灾害的严重影响。它往往导致农业生产的失败,给农民造成严重的经济损失。气象站的使用让工作人员对气象有了实时的监测了解,能够及时的对灾害做到预防作用。一、产品简介TH-PQX7移动式一体化气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备支持无线传输,免调试,可快速布置,适用于各类应急气象短期观测、移动气象监测等气象数据的获取。广泛运用于气象、农林、环保、海洋、机场、港口、科学考察、校园教育等领域该设备采用七要素一体式传感器,可对风速、风向、空气温度、湿度、大气压力、总辐射/光照、光学雨量等气象要素进行实时观测,传感器外壳采用进口ABS材质,更有效对抗盐雾等环境,防护等级达到IP65以上。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、空气温度、湿度、大气压力、总辐射/光照、光学雨量七要素一体式传感器4、锂电池供电,带电量显示功能5、减震防护拉杆箱,方便携带5、铝合金支架,可伸缩6、7寸安卓触摸屏三、技术参数1)风速:测量原理超声波,0~70m/s(±0.1m/s);2)风向:测量原理超声波,0~360°(±1°);3)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃);4)空气湿度:测量原理电容式,0~100%RH(±2%RH);5)大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);6)光照:测量原理光电效应,0-100Klx(±3%)7)光学雨量:测量原理光电式,0~4mm/min(±4%);8)数据存储:不少于50万条;9)功耗:2W10)锂电池:可拆卸锂电池包,容量12000maH,电池续航时间≥32h11)总重量:≤5kg;12)布设时间:1人,不大于2分钟完成布设;13)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证14)生产企业具有知识产权管理体系认证证书和计算机软件注册证书位机软件介绍1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本安卓APP介绍1、安卓单机版数据接收、存储、查看、分析软件2、支持蓝牙数据接收3、手机休眠后软件后台接收、处理4、json数据自动添加设备,modbus设备支持扫码添加设备5、支持历史数据查看、分析、导出表格,支持曲线展示、单数据点查看。6、支持数据后处理功能7、支持外置运行javascript脚本
  • 微型环境监测站-一款有求必应的超声波气象站#2022已更新
    微型环境监测站-一款有求必应的超声波气象站#2022已更新【品牌型号:天合环境TH-CQX5_天合环境气象设备口碑不错_是值得信赖选择的好设备】农业在我国社会进步和经济发展的过程中占据了重要地位.我国因为农业领域的显著成果,成为闻名世界的农业大国,这与农业生产的蓬勃发展是息息相关的.气候因素作为影响农业生产的主要条件之一,也是在农业生产中较难把控的一个因素,一、产品简介TH-CQX5超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用五要素一体式传感器,可对风速、风向、温度、湿度、气压等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压五要素一体式传感器4、标配GPRS传输5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1)风速:测量原理超声波,0~70m/s(±0.1m/s);2)风向:测量原理超声波,0~360°(±1°);3)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃);(北京市气象局校准证书)4)空气湿度:测量原理电容式,0~100%RH(±2%RH);(北京市气象局校准证书)5)大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);(北京市气象局校准证6)采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,7)传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V8)太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%9)数据上传间隔:60s-65535s可调10)7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD四、产品尺寸图五、产品结构图六、上位机软件介绍1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本
  • 一体式超声波气象站-值得入手的一款全自动环境监测站介绍
    一体式超声波气象站-值得入手的一款全自动环境监测站介绍#2022已更新بالموجاتفوقالصوتيةمحطةالأرصادالجويةالمتكاملة-تستحقأن【品牌型号:天合环境TH-CQX7】天气突变往往不期而至,令人猝不及防,而造成生命财产的巨大损失。研究结果显示,一段时期内的天气变化,常常是在一定的气候背景下发生的。所以,要预报好天气变化,必须深入了解气候变化,掌握气候变化规律,实时监测气象环境的变化。随着气候变暖和现代社会的发展,恶劣天气事件有逐渐增多的趋势。一、产品简介TH-CQX7超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用七要素一体式传感器,可对风速、风向、温度、湿度、气压、光照/总辐射、光学雨量等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将七项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压、光照/总辐射、光学雨量七要素一体式传感器4、标配GPRS、蓝牙、485转USB三种传输方式5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1)风速:测量原理超声波,0~70m/s(±0.1m/s);2)风向:测量原理超声波,0~360°(±1°);3)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)4)空气湿度:测量原理电容式,0~100%RH(±2%RH);5)大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);6)光照:测量原理光电效应,0-100Klx(±3%)7)光学雨量:测量原理光电式,0~4mm/min(±4%);8)采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,9)传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V10)太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%11)数据上传间隔:30s-65535s可调12)7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD13)整机取得国家气象计量站校准证书14)整机取得实用新型号ZL 2020 2 3208599.815)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证16)生产企业具有知识产权管理体系认证证书和计算机软件注册证书四、产品尺寸图五、产品结构图六、上位机软件介绍1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本七、安卓APP介绍1、安卓单机版数据接收、存储、查看、分析软件2、支持蓝牙数据接收3、手机休眠后软件后台接收、处理4、json数据自动添加设备,modbus设备支持扫码添加设备5、支持历史数据查看、分析、导出表格,支持曲线展示、单数据点查看。6、支持数据后处理功能7、支持外置运行javascript脚本八、云平台介绍1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本
  • 小型车载气象站简单介绍《2022已更新》#气象服务
    小型车载气象站简单介绍《2022已更新》#气象服务مقدمةموجزةمن"2022"تحديث"خدماتالأرصادالجوية型号:TH-CZ2_天合环境气象设备口碑不错_是值得信赖选择的好设备.在公路上遇到大风时,速度越快,越容易失控。沿江沿海城市每年都会发生大风航行事故。城市街道上有很多人和车,刮风时必须放慢车速。为了测量行驶过程中风速和风向的变化,山东天合环境制造商推出了一个新的车载气象站。一、产品简介TH-CZ2小型车载气象站是一款高度集成、低功耗、可快速安装、便于移动监测的高精度自动气象观测设备。广泛运用于气象、农林、环保、海洋、机场、港口、科学考察、校园教育等领域。该设备采用二要素一体式传感器,可对风速、风向进行实时观测,传感器外壳采用进口ABS材质,更有效对抗盐雾等环境,防护等级达到IP65以上。标配485转USB(有线连电脑)、蓝牙(无线连安卓手机),可毫秒级采集。选配网卡传输,传输间隔最低1min。二、技术参数1、风速:超声波原理,0~60m/s(±0.1m/s),可测真实风速2、风向:超声波原理,0~360°(±2°)3、数据存储:不少于50万条;4、功耗:1.75W5、锂电池:容量12000maH,续航时间≥50h6、总重量:≤5kg;7、布设时间:1人,不大于2分钟完成布设;上位机软件介绍三、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速3、设备底部配备高强度磁铁(橡胶包裹),可无损吸附于车顶。4、减震防护拉杆箱,方便携带5、内置电子罗盘,自动找北6、北斗与GPS双模定位,最高精度0.1米1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本安卓APP介绍1、安卓单机版数据接收、存储、查看、分析软件2、支持蓝牙数据接收3、手机休眠后软件后台接收、处理4、json数据自动添加设备,modbus设备支持扫码添加设备5、支持历史数据查看、分析、导出表格,支持曲线展示、单数据点查看。6、支持数据后处理功能7、支持外置运行javascript脚本云平台介绍(选配)1、CS架构软件平台,支持手机、PC浏览器直接观测、无需额外安装软件。2、支持多帐号、多设备登录3、支持实时数据展示与历史数据展示仪表板4、云服务器、云数据存储,稳定可靠,易于扩展,负载均衡。5、支持短信报警及阈值设置6、支持地图显示、查看设备信息。7、支持数据曲线分析8、支持数据导出表格形式9、支持数据转发,HJ-212协议,TCP转发,http协议等。10、支持数据后处理功能11、支持外置运行javascript脚本
  • 德国 第三方质检,消费选择的风向标
    德国TüV莱茵集团玩具检测实验室的工作人员正在测试玩具狗的部件能否承受90牛顿拉力。 德国制造以可靠的质量享誉国际,这与企业追求产品品质、国家制定严格标准、市场对品牌的认可密不可分。而独立的第三方质检机构,则以其独立、专业的特点,用公信力在国家、企业和市场之间建立起关键一环,为消费者提供选择的风向标。   独立第三方质检机构在德国通常叫TüV,是“质量监督协会”的缩写。TüV莱茵集团是德国三大国际化质检机构之一,其位于纽伦堡的检测基地有8个足球场那么大,里面有各类检测实验室。在这里,安全检测占有重要地位,从车辆、电梯到食品和玩具,安全都是第一关。   在儿童玩具检测实验室里,玩具首先要经过材料检测:玩具的不同部位、不同材质,甚至不同颜色的部件被分别取样,用溶液溶解之后,送入自动化学分析仪器,以检测是否含有害物质。其次,玩具还要经过可燃性测试,毛绒玩具的燃烧速度不能超过规定值。TüV莱茵集团检测员赖纳魏斯基希告诉本报记者,现代玩具的复杂结构和材料,使玩具的安全隐患超出了普通消费者的考察能力,因此专业的第三方检测十分必要。   在转椅检测实验室,记者看到机械臂在反复推压转椅靠背、坐垫和护手,已然成为消费者的“专业测试员”。测试工程师彼得比克曼介绍说,转椅的气轴是核心部件,有较高的质量要求,而目前欧洲市场上的气轴绝大多数由中国生产,质量已经达到很高标准。   在德国,为了改进和保证产品质量,企业会自费拿产品来质检机构检测,而质检机构则会出具检测报告,并给出改进建议。如果希望产品获得TüV莱茵认证,企业还需交纳一定年费。为了保证产品质量,TüV莱茵集团不仅负责检测产品本身,还要对产品的生产工序和条件严格把关。此外,政府机构也会将一些需要鉴定质量的产品委托给第三方质检机构。每年,TüV莱茵集团还会主动从一些市场上抽检部分产品,为消费者提供参考。   TüV莱茵LGA产品部执行主管约尔格梅勒告诉本报记者,公信力是独立检测机构的生存之本。TüV莱茵集团通过内部审计、外部审计、多人交叉检查等办法,可以有效防止检验结果造假等情况发生,有助于树立其公正、独立的企业形象。   曾在中国工作多年的梅勒还说,过去30年,中国产品质量发生了质的飞跃,主动申请TüV检测的中国产品越来越多,产品的科技含量越来越高。中国正在从“世界工厂”向产业链更高端的“自主品牌”和“自主创新”转型,加强检测已成为企业进行产品改进和提升的重要途径。
  • 5万亿设备更新:高等职业学校风能与动力技术专业专业仪器设备装备规范
    3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。《方案》明确了5方面20项重点任务,其中在实施设备更新行动方面,提到要提升教育文旅医疗设备水平,明确指出将“推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平;严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备……”以下为仪器信息网整理的高等职业学校风能与动力技术专业仪器设备装备规范,以飨读者。表1 基础实验仪器设备装备要求实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范电工电子实验室1.理解基本 电路原理; 2.会识读电气图纸;3.会根据测 量信号分析 电路工作特 性;4.掌握常用 电子元器件 识别的基本 检测方法; 5.掌握常用 电子仪器仪 表的使用方 法。1电工电子实 验台1.能验证电路基本定理定律;2.具有基本电参数的测量功能;3.可完成 R、L、C 等电路元件的特性分 析及电路实验;4.具备单相、三相交流电路的实验功能; 5.具有模拟电子电路和数字电子电路的 实验功能;6.具有漏电保护功能。台1020GB 21746、GB 217482万用表1.直流电压: (0~25)V;20000Ω/V (0~500)V;5000Ω/V; ±2.5%;2.交流电压: (0~500)V;5000Ω/V; ±5.0%;3.电阻:量程,0~4kΩ~40kΩ~ 400kΩ~4MΩ~40MΩ 25Ω 中心; ±2.5%;4.音频电平: -10dB~+22dB。台10203信号发生器1.频率范围: 0.1Hz~1MHz;2.输出波形: 正弦波、方波、三角波、 脉冲波;3.输出信号类型: 单频、调频、调幅等; 4.外测频灵敏度:100mV;5.外测频范围: 1Hz~10MHz;6.输出电压: ≥20Vp-p(1MΩ),≥10Vp-p(50Ω);7.数字显示; TTL/CMOS 输出。台10204双踪示波器1.频宽: 20MHz;2.偏转因数: 5 mV/div~20 V/div; 3.上升时间: ≤17 ns;4.垂直工作方式: CH1、CH2、ALT、CHOP、 ADD ;5.扫描时间因数: 0.2μs/div~0.5s/div;6.触发方式: 自动、常态、TV-H、TV-V; 7.触发源: 内(CH1,CH2,交替)、外电源; 8.触发灵敏度:内触发不小于 1div,外 触发不小于 0.5Vp-p。台10205交流毫伏表1.测量范围: 0.2mV~600V;2.频率范围: 10Hz~600kHz;3.电压测试不确定度: ±1%;4.输入阻抗: 1MΩ。台1020表2 基础实训仪器设备装备要求实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范机械传动与液压控制技术实训室1. 了解液 压、气动 常用控制 元件的基 本原理及 结构;2.掌握液 压、气动 基本回路 的工作原 理;3.掌握齿 轮传动的 基本原理 以及齿轮 箱的拆装 和维修1液压、气 动 传 动 常 用 元 件1.齿轮泵、叶片泵、柱塞泵;2.节流阀、溢流阀、减压阀、换向阀; 3.液压油缸、气缸。套10202液压实验 台1.具有压力控制、速度控制、方向控制及 多缸顺序控制功能;2.具有泵的负载、 空载特性测试功能; 3.具有节流、溢流特性测试功能。台10203气动实验 台具有压力控制、速度控制及多缸顺序控制 功能台10204空气压缩机1.电机功率: 1.5kVA~7.5 kVA;2.排气量: 0.19m3/min~1.6m 3 /min; 3.使用压力:0.7MPa~1.0 MPa;4.储气罐容量: 0.1 m3~1 m3。台10205齿轮箱1.功率范围: 3kW~200kW;2.速比范围: 5~50;3.高速轴转速: ≤1800r/min;4.传动效率: 95%;5.工作环境温度: -10℃~+45℃ 6.工况:连续型。套1020表2 基础实训仪器设备装备要求(续)实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范电气控制与PLC实训室1. 理 解 单 相、三相交 流 电 机 的 基 本 电气 控 制 原 理 与方法;2 .掌握 电 气 系 统 一 般 故 障 的 产 生 原 因 与 故 障 排 除方法;3.熟悉 PLC 基 本 指 令 编程方法, 掌握用 PLC 控 制 简 单 对 象 的 方 法和技能。11电气控制 与 PLC 控 制 实 验 装置1.具有可靠的漏电保护功能;2.配有常用低压电器, 可在该装置上完成 低压电器控制实验实训项目;3.采用可编程逻辑控制器进行控制实训 项目;4.输入电源:三相四线制,380V±38V,50Hz;单相,220V±22V,10A,50Hz;直流电源,24V/2A;5.I/O 点>20;6.可进行 PLC 硬件接线与软件编程功能, 能对 PLC 进行安装与维护操作;7.有可用 PLC 控制的控制对象,实现其 动作执行;8.有可供开放式连接的按钮及 I/O 量和 模拟量输入传感器。套1020电力电子实训室1. 了 解 电 力 电 子 器 件 的 特 性 及 主 要 参 数;2. 会 连 接 整 流 、 逆 变、交流调 压、直流变 换 四 种 电 路, 并理解 其 工 作 原 理。12电力电子 实 训 装 置1.具有可靠的漏电保护功能;2.可进行单相、三相不可控整流电路连接 与测试实训;3.可进行单相、三相可控整流电路连接与 测试实训;4.可进行单相桥式有源逆变电路实训; 5.可进行单相交流调压电路实训;6.可进行三相交流调压电路实训;7.可进行六种直流斩波电路(Buck、Cuk、 Boost、Sepic、Buck-Boost、Zeta)的电 路实训;8.可进行单相交直交变频电路实训;9.可进行正弦波(SPWM)逆变电路实训; 10.可进行全桥 DC/DC 变换电路实训。套1020表3 专业实训仪器设备装备要求实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范风力发电技术实训室1.了解风 力发电机 组零部件 的构成和 功能;2.理解风 力发电机 组工作原理;3.理解风 力发电机 组常用传 感器的工 作原理; 4.掌握风 速的测量 方法;5.掌握风 力发电系 统基本参 数的检测方法;6.掌握用 PLC 控制 电气系统 的安装方法。1风力发 电机组 结构模 型1.风力发电机组结构的模型可根据兆 瓦级风机实际部件的参数按一定比例 缩小制作;2.可完成模拟偏航、变桨动作; 3.模型零部件能够反复拆装。台142风力发 电实训 装置1.室内风源风向变化范围≥300° , 叶 片位置风速在5m/s~18m/s 范围内可调; 2.采用水平轴风力发电机;3.有风速风向仪,并具备测速传感器 和角度传感器;有温度传感器;4.对风速、风向、温度、电网电压、 风机瞬时功率、风机转速、风机发电 效率、控制器运行参数等进行实时监 测并显示;5.配有离网和并网逆变器;6.具备可调阻性负载、感性负载。台53风力发 电机组 控制技 术实训 装置1.风速可调节;2.采用水平轴风力发电机;3.风力发电机可主动偏航;4.风力发电机可以实现手动和自动变 桨功能;5.有风速风向仪,并具备测速传感器 和角度传感器;有温度传感器;6.对风速、风向、温度、电网电压、 风机瞬时功率、风机转速、风机发电效率、控制器运行参数等进行实时监 测并显示;7.配有离网和并网逆变器;8.具备可调阻性负载、感性负载;9.配有上位机监测软件, 能对风力发 电机组运行进行实时监测,并可进行 PLC 与主机的实时双向通信。台—5注:“— ”表示不要求。表3 专业实训仪器设备装备要求(续)实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范风力发电机原理实训室1.理解永磁直 驱风力发电机 工作原理;2.理解永磁直 驱变流设备工 作原理;3.理解双馈异 步发电机组工 作原理;4.理解双馈异 步变流器工作 原理。1永磁直 驱风力 发电机1.额定功率:≥0.5kW;2.三相交流输出:380V;3.额定转速:≤1000r/min;4.工作温度: -400C~+800C;5. 防护等级: IP54。台112全功率 变流设 备1.可完成永磁直驱风力发电机发出 电流的全功率变流与并网实训任 务;2.电机侧交流输入电压:≤600V; 3.电机侧频率: ≤100Hz;4.网侧输出电压与电网一致;5.网侧输出频率: 50Hz±0.3Hz。台113双馈异 步发电 机1.额定功率::≥0.5kW;2.额定电压: 380V;3.转速范围: 1000 r/min~2000 r/min;4.绝缘等级:F 级;5.防护等级:IP54。台14双馈异 步发电 机变流 实训装 置1.可进行双馈异步发电机变流实 训;2.通过主控制电路板可完成对变流 器的控制以及并网运行控制实训; 3.可通过控制器检测电网侧幅值、 相位、相序及频率等参数, 并根据 得到的参数确定转子侧应给定的幅 值、相位、相序及频率, 以控制定 子侧发电电压信号与电网信号匹配。4.可以进行并网操作实训。台1注:“— ”表示不要求。表3 专业实训仪器设备装备要求(续)实训教学场所教学实训目标仪器设备序号名称规格、主要参数或主要要求单位数量执行标准代码备注合格示范风 光 互 补 控 制 实 训 室1. 了 解 风 力发电和 光伏发电 特性及风 光互补系 统构成;2. 理 解 风 光互补控 制原理;3. 理 解 最 大 功 率 点 跟踪原理; 4. 掌 握 室 内风源控 制 系 统 安 装调试方 法;5. 掌 握 风 光互补控 制 系 统 电 气安装方 法;6. 掌 握 风 光互补控 制系统主 要电气参 数的测量 方法;7.会连接 并网、离网 逆变系统 的一次、二 次电路。1风力发电 实训平台1.在室内风速、风向变化的风源驱动下可 实现风力发电;2.发出电能为三相交流电。套242光伏发电 实训平台1.有接近太阳光谱的可调光源;2.有光伏组件;3.配有充电控制及逆变系统;4.光源功率≥500W。台243风光互补 控制平台1.能对室内风源的风速、风向进行控制;2.能对室内光源的光照强度进行控制;3.能实现离网和并网的逆变;4.能实现单相和三相的逆变;5.具有储能系统,容量与系统匹配;6.能对光伏组件、风力发电机、蓄电池、 逆变直流侧、逆变交流侧的电流、电压进 行测量;7.有风光互补充电控制器;8.有阻性负载、感性负载、单相负载、三 相负载供离网逆变输出;9.有漏电保护功能。台24风光互补 控制系统 安装调试 平台1.能对室内风源的风速、风向进行控制;2.能对室内光源的光照强度进行控制;3.有储能系统;4.能实现离网和并网的逆变;5.能实现单相和三相的逆变;6.能对光伏组件、风力发电机、蓄电池、 逆变直流侧、逆变交流侧的电流、电压进 行测量;7.有风光互补控制器采用 MPPT 功率跟踪技 术。具有 2 路以上负载独立输出功能。 可 进行可视化远程控制,具有过载保护、抗 干扰功能以及自动调节参数的功能。8.有阻性负载、感性负载、单相负载、三 相负载供离网逆变输出;9.配有上位机及监测软件, 能进行发电系统运行数据实时监测;10.有漏电保护功能。 可电脑远程监控, 软 件升级和参数设置。台—4注:“— ”表示不要求。
  • 涡动相关观测与数据处理基础知识系列之一:通量塔的选址与建塔的基本原则
    近年来,采用涡动相关(eddy-covariance,EC)方法测量温室气体通量的站点数量在迅速增加,但是要在科学目的、工程标准、安装运行成本和实用性之间做出平衡,寻找到最佳的解决方法,仍是一个具有挑战的工作。从观测结果准确性和精确度来说,选址、建塔等站点设计的环节是重中之重。1、位置选择站点选址的基本原则是,该站点能够尽量观测到全部的研究对象,这涉及到两个问题,一个是方向,一个是架设高度。首先是确定观测区域近几年的主风向,可以参考近几年的气象数据。由于中国大部分地区是季风气候,一般在春夏和秋冬会有两个主风向,这时候要考虑通量仪器的架设方向,实验观测的主要周期等。如果仪器架设方向可以随主风向的改变方便调整,或者实验周期是明确区分了春夏或者秋冬,那么在选址时可以选在观测对象的下风向,这样可以尽可能多的观测到目标对象;如果不能改变通量仪器的架设方向,且是长期定位观测,那尽量将观测地点选址在观测对象的中央位置,或者沿主风向的中点位置,这样可以尽可能的在不改变仪器方向和位置的前提下,观测到尽可能多的研究对象。确定架设高度要满足通量仪器的基本观测条件, 即满足湍流运动的充分交换。一般的架设高度是下垫面冠层高度的1.5到2倍(具体确定观测高度的经验法则见图 1);在相对平坦和均匀的下垫面条件下,观测距离大约是观测有效高度的100倍(风浪区原理),具体范围需要根据footprint源区计算,随着湍流运动强度和下垫面情况会有所改变。图 1 确定观测高度的经验法则通量源区代表性分析(Footprint分析)是检验一个通量站质量的重要手段,可以用来进行实验方案的设计指导,观测数据的质量控制,以及通过特定传感器的源区分布和来自感兴趣下垫面(植被)的通量贡献,从而对观测结果进行分析解释。图 2 Footprint分析2、下垫面的影响2.1植被类型涡动相关法测量温室气体通量要求仪器安装在常通量层内,而常通量层假设要求稳态大气、下垫面与仪器之间没有任何源或者汇、足够长的风浪区和水平均匀的下垫面等基本条件。在涡动相关传感器能监测到的“源区域”内植被类型均匀一致的情况下,其观测到的通量结果是比较有意义的,可以用来解释生态系统的温室气体收支情况。但当涡动相关传感器的“源区域”覆盖到不同植被类型时,情况就会变得复杂起来。一个极端的例子是:某站点周围具有两种不同的森林植被类型,每天周期性地,白天,风从一种植被类型吹向另一种;夜间,则正好相反。那么,该站点观测得到的通量资料的日平均值将毫无意义。这种极端的情况虽然极少出现,但许多站点都会有微妙的风向变化,在数据分析时需要做仔细考虑。此外,光、土壤湿度、土壤结构、叶面积以及物种种类组成的空间异质性会导致温室气体源/汇强度的水平梯度。而其植被类型的变化也会造成表面粗糙度的变化,当风通过不同粗糙度或者不同源/汇强度表面的区域时,就会产生非常明显的平流效应(Raupach & Finnigan, 1997 Baldocchi et al., 2000)。图 3 不同下垫面的地表粗糙度(参考 于贵瑞&孙晓敏,2006)地表植被类型的突然变化会导致气流的变化,如气流在从高大森林向低矮草地移动时,会在森林边缘形成回流区(如图 4所示),导致近地面和上方气流方向不一致,其水平长度尺度(距离)等于冠层高度的2-5倍(Detto et al., 2008)。图 4森林边缘附近湍流结构的概念模型(参考Detto et al., 2008)2.2冠层高度通量足迹Footprint描述了EC系统能够观测到的“源区域”,提供了每个表面元素对测量的垂直通量的相对贡献。Footprint取决于观测高度、表面粗糙度和大气稳定度等。如图 5所示,通常来说,传感器的观测高度越高,就越能观测到更远、更广的区域(Horst & Weil, 1994),也便于捕捉植物冠层上方混合良好的边界层中的通量交换。但是观测高度也不是越高越好,在大气层结稳定的条件下(如夜间),过高的观测高度可能会使观测到的“源区域”超出感兴趣的研究区域。因此应该预先计算并确保来自感兴趣区域的通量贡献至少为90%(Gö ckede et al., 2004),在稳定条件下至少50%的时间以确保适当的数据覆盖不同的风向和不同的天气条件。图 5观测高度与通量足迹基于Munger(2012)等确定塔/测量高度(hm)的原则(如图 1),可能存在准确测量实际观测高度和冠层高度的困难,需要考虑后期调整高度的可能性。观测高度必须用三维超声风速计测量路径的中心来确定,其值取决于感兴趣的生态系统的冠层高度(hc),冠层高度值不需要特别准确:采用主要冠层的平均预期高度是合理的。对于冠层高度在生长季节中快速变化的农田、草地和种植园以及同样具有快速变化特性的冰雪下垫面,塔架设计必须考虑允许通过改变塔架高度(例如伸缩式塔架设计)或通过移动传感器来改变测量高度。随着时间的推移为了确保相同的通量观测源区,可以考虑改变测量高度,遵循的原则是测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值的±10%左右。但这种调整的频率不用特别频繁,最多在植被生长期或在积雪季节每隔一周进行。假设在植被生长期开始时的裸土,其测量高度为2 m,在冠层高度达到1.2 米前,不需要改变测量高度;在植被达到1.2米后(例如增加约0.5-0.8米)开始提高测量高度,然后保持测量高度与冠层高度的0.76倍之间的差值保持在一个确定数值。改变表面高度(由于生长和积雪)以及改变测量高度必须准确记录,因为这必须在后期数据处理中考虑。2.3地形影响EC法测量通量假设了地形水平,这样可以保证地形的坐标系和传感器坐标系方向一致,避免平流、泄流效应的影响。图 6复杂地形对EC观测的影响在复杂的地形条件下,风吹过小山时会引起气流的辐合或辐散运动,产生平流效应(Kaimail & Finnigan, 1994)。存在有局地风场影响的站点,在夜间大气稳定,垂直湍流输送和大气混合作用较弱,CO2的水平和垂直平流效应的影响是很重要的(于贵瑞&孙晓敏,2006)。Mordukhovish & Tsvang(1966)的研究表明,斜坡地形能导致水平异质和通量的辐散。对于设在地势较高的观测塔,在夜间对流比较弱时,通常会因CO2沿斜坡泄流而造成大气传输的通量低估,最后导致生态系统净生产力的估算偏高;对于在地势较低沟谷中的观测塔,其问题更加复杂,如果外部的大气平流/泄流通过观测界面进入生态系统,会高估光合作用吸收CO2的能力;如果外部的大气平流/泄流不能通过观测界面,而是从观测界面下部直接进入生态系统,则会在生态系统中暂时储存,最终输出生态系统,造成对呼吸作用的高估。在大多数情况下,实际地形难以满足地形水平的假设,这就需要进行坐标旋转,以消除平流项的影响。当安装铁塔的斜坡坡度特别大时,可以考虑将原本应水平安装的超声风速计调整为与地面平行。3、塔及塔附属设施的影响3.1塔体本身塔本身对观测的影响可分为塔本身对风场的影响,以及塔的偏转、震荡对测量过程的影响两种。3.1.1 对风场的影响自然气流无论是经过几十米的观测塔,还是遇到几毫米的仪器翼梁或电缆,各种尺度的障碍物都会使流线发散,从而导致用于计算通量的流线分离,称为流体失真,流动失真以难以看见的方式影响测量,其影响只能在塔的设计建造阶段进行最小化。在塔的迎风侧(上游),风速受到影响会有所降低。受流动失真影响的逆风距离与障碍物大小的立方成比例,并随着距离的立方体而减小(Wyngaard, 1981, 1988)。在塔的背风侧(下游),风速也减弱,这种效果随着风速的增加而减小(湍流的更快速重构)并且受到障碍物的长度和宽度的影响。图 7 展示了在高塔的迎风侧观察到的风向上的偏转与加速, 图 8则展示了高塔顶部和底部方向迥异的风向。这是由于在背风侧下方产生的回流区造成的,障碍物(塔)尺寸越大,回流区就越容易发展得更大。在塔基通量观测中,森林生态系统的观测常需要10m以上的高塔作为基础,容易导致回流区的产生,回流也增加了向上流动的倾向,并加强了烟囱效应,这可能会显著影响风的测量和干扰混合比梯度。图 7 在塔的迎风侧观察到风向上偏转和加速(引自Sanuki and Tsuda, 1957)图 8 塔顶部的西风流(离地面10米)和离地面2米处的东风回流(引自Vaucher et al., 2004)在建造塔时,尽量选择塔身纤细、结构较少的铁塔,避免对风场的影响,也要注意控制林窗的大小,避免人为形成回流区域。此外,应该尽量减少树木和树枝的移除,因为它们对风的阻力作用可以减少这些回流区域的形成。选择纤细塔体的同时也要保证塔体足够坚固,以确保安全的维护通道和应对整个观测周期中的极端环境。当塔架底座和结构由于受到外界辐射而加热引起对流循环时,可以观察到烟囱效应。这增强了气流的垂直偏转,从而使更多的空气向上移动。烟囱效应取决于基础和塔的质量和热容量、塔的形状、对树冠的干扰程度(清理/切割塔构造的树木)和站点的净辐射量等。烟囱效应是不可避免的,应尽量减少混凝土基础和塔架结构,塔的的横截面也尽量不超过2 x 3 m (Munger et al., 2012)。塔体结构对经过气流的扭曲变形和烟囱效应应该通过专业的方式或通过建模方法(Griessbaum & Schmidt,2009)进行调查(Serafimovich et al., 2011)。3.1.2 对测量过程的影响塔体本身随风速的运动会导致测量中的系统不确定性;塔的移动应限制在0.02 m s-1(即测量风速的精度),并且不应具有在1到20 Hz之间与风向共同变化的力矩(谐波效应);快速响应加速度设备可用于量化塔运动,逐点校正还需要快速响应测斜仪测量以确定旋转速率以及加速度;由于在塔上工作的人员而导致的塔架运动不会随着风或标量交换而变化,但可能会扰乱风场。3.2塔上横臂在1976年的国际湍流对比实验中,一些报告显示直径0.05 m的水平支撑结构造成的平均上升风速为0.1 m/s (Dyer, 1981),它大到足以使涡动相关测量无效。因此,风速计安装臂的尺寸也要尽量小,只需要提供一个安全稳定的测量平台就可以了。王国华等利用成熟的计算流体软件,对布置多个支撑观测仪器的支架所导致的大气边界层风场失真进行定量仿真。他们发现,当支架间距小于6倍的支架直径D或来流风向角小于30°时支架附近流场受到明显的相互干扰。通过对不同来流风向及支架间距离模拟结果的对比分析,认为使用多支架进行多点联合观测时,支架应沿垂直于观测地点常年来流主风向的展向布置。为避免不同支架相互干扰,支架间的最小距离L应大于9倍的支架截面直径。此外,横臂本身需要足够稳定以支撑仪表,可以通过增加侧臂和拉索的方式,以避免横臂的扭矩和振荡。3.3塔下建筑物3.1.1一节讨论了塔体本身对风速和风向造成扭曲从而影响风场的作用,塔下其他障碍物(如设备房间、供电小屋等)也存在这种作用,如图 9 所示。图 9 从障碍物侧面看的迎风流畸变和背风侧流畸变的概念图(引自Davies and Miller, 1982)回流效应在高大的森林冠层中最为明显,但较矮的草地和作物冠层也必须考虑,特别是在附近存放其他设备的房屋的情况下。因此,应尽可能地减少这种流动变形源,在不可减少的情况下,障碍物应远离观测塔,避免对风场的影响。参考文献1. Raupach M R , Finnigan J J . The influence of topography on meteorological variables and surface-atmosphere interactions[J]. Journal of Hydrology, 1997, 190(3-4):182-213.2. Baldocchi D , Falge E , Wilson K . A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. 2000.3. 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 高等教育出版社, 2006.4. Detto M, Katul G G, Siqueira M, et al. The structure of turbulence near a tall forest edge: The backward‐facing step flow analogy revisited[J]. Ecological Applications, 2008, 18(6): 1420-1435.5. Horst T W, Weil J C. How far is far enough?: The fetch requirements for micrometeorological measurement of surface fluxes[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(4): 1018-1025.6. Gö ckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology, 2004, 127(3-4): 175-188.7. Munger J W, Loescher H W, Luo H. Measurement, tower, and site design considerations[M]//Eddy Covariance. Springer, Dordrecht, 2012: 21-58.8. Kaimal J C, Finnigan J J. Atmospheric boundary layer flows: their structure and measurement[M]. Oxford university press, 1994.9. Mordukhovich M I, Tsvang L R. Direct measurement of turbulent flows at two heights in the atmospheric ground layer(Atmospheric turbulence statistical characteristics dependence on stratification and elevation from heat flux and wind friction stress characteristics)[J]. ACADEMY OF SCIENCES, USSR, IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS, 1966, 2: 477-486.10. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements[J]. Journal of Applied Meteorology and Climatology, 1981, 20(7): 784-794.11. Wyngaard J C. The effects of probe-induced flow distortion on atmospheric turbulence measurements: Extension to scalars[J]. Journal of Atmospheric Sciences, 1988, 45(22): 3400-3412.12. Sanukii M, Tsuda N. What are we measuring on the top of a tower?[J]. Papers in Meteorology and Geophysics, 1957, 8(1): 98-101.13. Vaucher G T, Cionco R, Bustillos M, et al. 7.3 FORECASTING STABILITY TRANSITIONS AND AIR FLOW AROUND AN URBAN BUILDING–PHASE I[J]. 2004.14. Griessbaum F, Schmidt A. Advanced tilt correction from flow distortion effects on turbulent CO2 fluxes in complex environments using large eddy simulation[J]. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 2009, 135(643): 1603-1613.15. Serafimovich A, Thomas C, Foken T. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy[J]. Boundary-Layer Meteorology, 2011, 140(3): 429-451.16. Dyer A J . Flow distortion by supporting structures[J]. 1981, 20(2):243-251.17. 王国华, 贾淑明, 郑晓静. 观测支架引起的大气边界层风场的失真规律[J]. 兰州大学学报: 自然科学版, 2012, 48(5):71-78.Davies M E, Miller B L. Wind effects on offshore platforms-a summary of wind tunnel studies[R]. National Maritime Inst., Feltham (UK), 1982.为了保障各位老师同学从仪器维护的工作中解放出来,做数据的使用者,把更多的时间和精力用在数据深度分析和科学价值发掘方面,我们特提供以下技术服务:站点长期正式运维基于站点管理、工作流程/规范、设备安全、系统优化、设备/数据预警、站点/设备监控、数据分析、科研成果凝练和挖掘等多方面综合执行。站点短期巡检发现目前设备安装、使用、维护、运行状态等影响数据质量的问题。数据远程综汇系统升级建立系统平台,对站点运行状态和数据质量进行预警、监控等。数据整理分析和深度挖掘通过数据整理、插补和分析,形成数据质量分析报告;同时深入挖掘数据背后的科学信息,可以多方面地支撑文章写作、项目申请、专利以及软件著作权申请等工作。通量观测技术培训(涡动相关系统、闪烁仪系统等)根据用户的实际需求,可以有针对性地培训涡动通量观测和设备运行的基本原理,数据处理的基本流程,通量数据处理软件介绍及实际操作演示,通量、气象设备日常维护以及仪器标定,站点选址等相关内容。提供远程视频和上门现场培训等多种方案。
  • LUFFT VENTUS风传感器应用于海洋
    lufft ventus风传感器应用于海洋背景海洋浮标站是布设在海上以观测浮标为主体组成的海洋水文水质气象自动观测站,用于获取海洋气象水文观测资料的大型综合性观测设备,是探测海上灾害性天气的重要手段。它能按规定要求长期、连续地为海洋科学研究、海上石油(气)开发、港口建设和国防建设收集所需海洋水文水质气象资料,特别是能收集到调查船难以收集的恶劣天气及海况的资料。海洋浮标是一个无人的自动海洋观测站,它由被固定在指定的海域,随波起伏,如同航道两旁的航标。其集计算机、通信、能源、传感器测量、抗海洋恶劣环境、长期可靠性设计等技术于一身,科技含量较高,是沿海和海岛站等其他海洋气象监测手段无法替代的监测站。海洋环境是最为恶劣的自然腐蚀环境,海水本身是一种具有很强腐蚀性的电解质溶液。由于浮标站长期处于高盐雾腐蚀、高温、高湿的环境下,有时还会有台风造成的破坏,所以对设备的质量和稳定性要求极高。一旦设备高频率出现故障,对后期的维护将造成极大的挑战,不仅是高维护费用,更重要的是数据的缺失,将无法弥补。 海洋浮标测风解决方案 海洋浮标站测量的要素中,风是很重要的一个要素,其对于海洋风暴的预测以及研究海洋气候变化,提供数据支撑。超声波风速传感器是利用超声波时差法来实现风速的测量。声音在空气中的传播速度,会和风向上的气流速度叠加。若超声波的传播方向与风向相同,它的速度会加快;反之,若超声波的传播方向若与风向相反,它的速度会变慢。因此,在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,同时计算得出风向。lufft ventus-umb超声波风速风向仪汲取lufft公司多年的技术沉淀和丰富的应用儿经验设计研发的。ventus 是一款使用铝镁硅合金材料,防盐雾腐蚀设计的风速风向仪,除具备高精度的风速风向测量功能之外,还输出气压、虚拟温度(空气温度)和空气密度等参数。 lufft ventus 具备众多优异的功能:ventus 的风速测量范围最高可达90m/s(可提供第三方测试报告).ventus 具备多种信号接口,数字rs485和模拟量接口(电流、电压、频率信号),便于集成.ventus 执行高等级的盐雾防护标准(通过cnas认证的1440小时的盐雾测试).ip68防护等级,在接线口做好密封的情况下,有效抵抗海浪和因浮标倾斜没入水中的影响.lufft 公司在中国上海专门设立国际标准的风洞检测设施,为ventus风速风向仪提供及时的检定及技术服务.针对风速、风向参数提供cnas的检测报告; ventus技术指标风向原理超声波测量范围0 ... 359.9 °精度±2° rmse 1.0 m/s分辨率0.1 °风速原理超声波测量范围0 ... 90 m/s虚拟温度原理超声波测量范围-50 ... 70 °c精度±2.0 °c (无加热且无太阳照射或风 4 m/s的情况下)分辨率0.1 °c气压原理mems 电容测量范围300 ... 1200 hpa精度±1.5 hpa分辨率0.1 hpa
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 福岛核电站放射性物质乘北风向日本各地扩散
    环球网记者张哲报道 韩联社3月15日援引日本媒体的报道称,因福岛核电站爆炸而泄露的放射性物质正在乘北风向日本各地扩散开。   报道称,包括东京在内的日本关东地区,已检测到比通常更高的放射性物质。在茨城县检测到的放射性物质比平常高出100倍,神奈县的放射性物质含量比平时高出近10倍。此外,在千叶县及市原县也检测到了较高的放射性物质。   日本文部科学省表示,现在检测到的数值虽然对人体健康没有太大影响,但已要求各地的有关部门提高测定频率。   另据日本共同社3月15日消息,福岛核电站3号机组附近测量结果显示,核辐射水平比法定标准高出400倍。
  • 煤矿用气象站——一款鸿运当头的防爆气象监测站#2023已更新
    煤矿用气象站——一款鸿运当头的防爆气象监测站#2023已更新  【万象环境】型号WX-FBQ2【顺丰包邮发货】  雪依旧在下,孩子们追逐嬉戏,懒汉们忙于铺被卧床,主妇们拿起针线,倒是酒鬼们最为潇洒,眺望窗外大雪纷纷,回眸桌上美酒佳肴,抖落一身的烦倦,换上一幅好的心境,呼出一腔万丈豪情,举杯畅饮,大有“对酒当歌,人生几何”之韵意。    一、 产品简介  WX-FBQ2型防爆气象站是万象环境根据市场需求,针对化工厂、油库等特殊场所而研发生产的一款一体化气象站。它集数据采集、存储、通讯、显示于一体,通过有线通讯方式直接在防爆屏幕实时显示数据。  此款防爆气象站采用了防腐、防爆、防水、防震、防尘等高防护等的设计理念,可满足化工厂、油库、隧道、矿井等场景的使用需求。  二、 产品特点  1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡  2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向  3、风速、风向、空气温度、湿度、大气压力五要素一体式传感器  4、RS232传输到防爆屏幕,内屏幕尺寸1米*0.5米,由9块P10单元板拼接而成  三、 技术参数  1)风速:0~60m/s(±0.1m/s)   2)风向:0~360°(±2°)   3)空气温度:-40℃~85℃(±0.3℃)  4)空气湿度:0~100%RH(±2%RH)  5)大气压力:300-1100hpa(±0.25%)  6)单机版数据存储:不少于50万条   7)功耗:202W  8)生产企业具有Ex ia IIC T6 Ga 高等防爆证书☆  9)通过国家电器安全质量检验检测中心检验☆  10)设备通过GB/T 3836.1-2021《爆炸性环境 第1部分:设备 通用要求》  11)设备通过GB/T 3836.4-2021《爆炸性环境 第4部分:由本质安全型“i”保护的设备》  四、 功能特点  1、一体化结构设计,安装拆卸简单   2、传感器外壳ASA材质,耐腐蚀,抗氧化   3、支持定制,可根据用户需求灵活配置监测要素   4、PC/LED防爆屏幕多种监测模式,有线传输  5、五防设计:防水、防爆、防尘、防震、防腐   6、标准modbus协议,支持多种后台协议对接,为客户提供方便   8、低功耗设计,AC220V供电   五、上位机软件介绍  1、PC单机版数据接收、存储、查看、分析软件  2、支持串口数据接收、处理、展示  3、支持json字符串、modbus485等通信方式  4、可自设置存储时间,modbus485采集模式下可自设置采集时间  5、支持自助增加、删除、修改监测参数的协议、名称、图标等  6、支持数据后处理功能  7、支持外置运行javascript脚本  六、 设备安装  1、确认现场工况,由本公司设定安装方案  2、安装简单,无需业人员操作,远程指导即可安装  3、使用方无需自配零部件,由本公司精细化配置,设备到场即装即用
  • 超声波环境监测站-一款超内卷的一体式自动气象站#2022已更新
    超声波环境监测站-一款超内卷的一体式自动气象站#2022已更新بالموجاتفوقالصوتيةمحطةالرصدالبيئي-سوبرالتلقائيمحطةالطقس【品牌型号:天合环境TH-CQX8】经常下雨会影响农作物的生长。植物的生长需要一定的阳光,空气,水等等元素,缺一不可;经常下雨可以提供充足的水分,但是会减少阳光的摄入,同样会影响其生长;而且过量的雨水会导致收成不好,这会对农民造成一定的损失,对普通人而言就是物价上涨,同时粮食产量少对于国家粮食的储存也会有影响。所以,经常下雨不利于农作物的生长。一、产品简介TH-CQX8超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用八要素一体式传感器,可对风速、风向、温度、湿度、气压、pm2.5、pm10、噪声等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将八项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压、pm2.5、pm10、噪声八要素一体式传感器4、标配GPRS、蓝牙、485转USB三种传输方式5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°);分辨率:1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃),分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH),分辨率:0.1%RH;5、大气压力:测量原理压阻式,30-110Kpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)7、PM10:测量原理光散射,0-1000ug/m3(±10%)8、噪声:测量原理电容式,30-120dB(±1.5dB)9、采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,10、传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V11、太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%12、数据上传间隔:60s-65535s可调13、7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD14、整机取得国家气象计量站校准证书15、整机取得实用新型号ZL 2020 2 3208599.816、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证17、生产企业具有知识产权管理体系认证证书和计算机软件注册证书
  • 超声波自动气象站-一款新款全自动气象监测站介绍
    超声波自动气象站-一款新款全自动气象监测站介绍#2022已更新بالموجاتفوقالصوتيةالتلقائيمحطةالطقس-عرضجديدالتلقائي【品牌型号:天合环境TH-CQX9】在日常生活中,人们对于天气的关心往往胜过对于气候的关心,这是为什么呢?其实,原因很简单,就是天气可以瞬间改变人们的生活,给社会经济带来严重损失,给人类带来沉重灾难。一、产品简介TH-CQX9超声波气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用九要素一体式传感器,可对风速、风向、温度、湿度、气压、光学雨量、辐射、pm2.5、pm10等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将九项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压、光学雨量、辐射、pm2.5、pm10九要素一体式传感器4、标配GPRS、蓝牙、485转USB三种传输方式5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1)风速:测量原理超声波,0~70m/s(±0.1m/s);2)风向:测量原理超声波,0~360°(±1°);3)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃);4)空气湿度:测量原理电容式,0~100%RH(±2%RH);5)大气压力:测量原理压阻式,300hPa~1100hPa(±0.02hPa);6)PM2.5:测量原理光散射,0-1000ug/m3(±15%)7)PM10:测量原理光散射,0-1000ug/m3(±15%)8)总辐射:0-2000W/m2(0.1W/m2)9)光学雨量:测量原理光电式,0.001-0.1mm/min(10%);10)采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,11)传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V12)太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%13)数据上传间隔:60s-65535s可调14)7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD15)整机取得国家气象计量站校准证书16)整机取得实用新型专利,专利号ZL 2020 2 3208599.817)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证18)生产企业具有知识产权管理体系认证证书和计算机软件注册证书
  • 便携式自动气象站
    便携式自动气象站 背景便携式自动气象站是一款便于携带、使用方便、测量精度高,集成多项气象要素的可移动观测的现场自动气象站,用于对风向、风速、气温、相对湿度、气压、雨量或太阳辐射等多个气象要素进行全天候现场监测,广泛应用于气象、环保、机场、农林、水文、军事和科学研究等领域,如:野外短期科学探测、突发事件(如火灾、洪涝灾害、有毒气体扩散)的应急响应、临时气象观测点、科研教学和森林火险气象指标监测等范畴,提供实时气象数据。 系统介绍便携式自动气象站由气象传感器、电源系统、野外防护箱、不锈钢支架、短距离无线传输模块和终端软件等部分构成。其中,气象传感器选用德国LUFFT WS系列气象传感器,可测量大气温度、湿度、风速、风向、大气压力、太阳辐射或降水量。无线传输模块采用RS485串口转Wifi服务器。终端软件采用LUFFT自己开发的安卓版APP读取、显示和存储数据。 【功能特点】 便携式结构设计,传感器采用一体化设计理念,无需安装拆卸工作,开箱即可测量,高度集成、体积小巧、携带方便,便于现场应急性气象服务,可以有效的保证数据的及时性、准确性。低功耗,绿色节能设计,内部采用节能模式设计,若用太阳能电池板供电方式,可保证在无电地区长期使用,也可采用市电或汽车电源等方式供电。 外部采用抗恶劣环境结构设计,在恶劣的天气条件下不影响仪器的使用效率,可以在雷雨、风雪环境中持续不间断工作。无线传输模式,节省空间,直接连接手机APP读取、存储数据,数据显示支持表格和图形显示。各观测气象要素可根据用户实际需求选配不同WS型号,可定制五要素、六要素、七要素等自动气象站。观测支架有三脚式和车载式两种,采用不锈钢材料制造,表面光亮处理在腐蚀气候环境下防止生锈。 LUFFT WS气象传感器内置电子罗盘,可以计算出真风向,在已知安装地点磁偏角的情况下,在现场无需再次对准正北,极大地降低了数据采集的操作难度。LUFFT WS气象传感器温湿度有强制通风装置,可以快速、准确地测量温湿度。 LUFFT WS气象传感器具备测风质量通道和风速的标准偏差,可以用来评估风速风向测量结果的可靠性。 LUFFT WS气象传感器使用超声波测量风速风向,没有活动部件,免维护。超声波带加热功能,但在电池供电情况下不加热。如需确保在恶劣天气地区可靠工作,小型配电箱提供点烟器外接电缆,通过车载点烟器插座为自动气象站提供加热电源。系统可以提供露点温度、风寒温度、湿球温度、比焓、空气密度等重要气象参数。 LUFFT WS气象传感器可通过配置软件,对温度、湿度、气压进行偏移量设置,实现对这些物理量的标定;可通过二次校准软件,在风洞中对风速风向进行标定。 系统防水等级:IP66 气象传感器性能指标下表以Lufft WS500-UMB为例,列出其指标参数。WS500-UMB取得国内CNAS检测报告也说明其具有可靠、稳定的性能。技术参数规格直径150mm 高度287mm重量小于等于1.2Kg接口RS485, 双线连接方式,半双工电源4-32VDC工作温度-50… 60°C工作湿度0… 100%RH加热功率典型的20VA @24VDC,支持12VDC温度原理NTC负温度系数热敏电阻测量范围-50… 60 °C单位°C °F精度±0.2 °C (-20… 50 °C),其他 ±0.5 °C (-30 °C)相对湿度原理电容式测量范围0… 100 % RH单位% RH g/m³ g/kg精度±2 % RH气压原理MEMS电容式测量范围300… 1200 hPa单位hPa精度±0.5hPa (0 … +40°C)风向原理超声波测量范围0 – 359.9°单位°精度均方根误差1.0 m/s)风速原理超声波测量范围0… 75m/s单位m/s km/h mph kts精度 测量值±0.3 m/s 或3% (0~35 m/s) , ±5% (35m/s)RMS 系统安装 便携式自动气象站(以WS500-UMB为例)采用2米可拆卸式折叠不锈钢支架,支架展开后可以用地钉固定在泥土地面上防止大风或外力误触碰导致倾倒。安装在立柱顶部的LUFFT WS500-UMB一体化气象传感器通过导线从小型配电箱中的电池取电,并通过配电箱中的RS485转WIFI模块,和普通安卓智能手机建立通讯连接。 用户可以在车辆中,使用App软件(Lufft UMB Config Tool.NET for Android)就可以直接读取气象数据,并保存在手机的指定目录下,用户可以通过PC平台的手机管理软件,将历史数据从手机中导出,并在Windows Excel中打开查看。
  • 超声波自动气象站有哪些-天合厂家来一一讲解#2022已更新
    超声波自动气象站有哪些-天合厂家来一一讲解#2022已更新بالموجاتفوقالصوتيةالتلقائيمحطةالطقسالتي-مصنعتيانخه【型号介绍:TH-CQX8】风和雨一样具有“净化空气”的特性,它有助于分散污染物,阻止它们集中在我们的市中心。当空气停滞时,污染物和灰尘颗粒会聚集在一起,形成低空气质量区域。风有助于吹走污染物,清除PM2.5和PM10颗粒,改善一些地区的空气质量。但是空气质量的好坏我们肉眼是看不出来的,气象站的出现,让我们对各项气象要素的变化都有了实质性的了解。气象站的种类也有很多:超声波气象站、小型气象站、校园气象站、农业气象站等,根据需求种类的不用,应用也不同。一、产品简介TH-CQX8超声波自动气象站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。该设备免调试,可快速布置,广泛运用于气象、农业、林业、环保、海洋、机场、港口、科学考察、校园教育等领域。与传统的超声波气象站相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。该设备创新性的采用八要素一体式传感器,可对风速、风向、温度、湿度、气压、pm2.5、pm10、噪声等气象要素进行实时观测,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将八项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、气压、pm2.5、pm10、噪声八要素一体式传感器4、标配GPRS、蓝牙、485转USB三种传输方式5、两米碳钢支架,顶部无需法兰盘可直接套接传感器6、传感器外壳采用进口ASA材质,更有效对抗盐雾等环境,防护等级达到IP65以上三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°);分辨率:1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃),分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH),分辨率:0.1%RH;5、大气压力:测量原理压阻式,30-110Kpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)7、PM10:测量原理光散射,0-1000ug/m3(±10%)8、噪声:测量原理电容式,30-120dB(±1.5dB)9、采集器供电接口:GX-12-3P插头,输入电压5V,带RS232输出Json数据格式,采集器供电:DC5V±0.5V峰值电流1A,10、传感器modbus、485接口:GX-12-4P插头,输出供电电压12V/1A,设备配置接口:GX-12-4P插头,输入电压5V11、太阳能供电、配置铅酸电池,可选配30W 20AH/50W 40AH/100W 100AH.充电控制器:150W,MPPT自动功率点跟踪,效率提高20%12、数据上传间隔:60s-65535s可调13、7寸安卓触屏,屏幕尺寸:1024*600 RGB LCD14、整机取得国家气象计量站校准证书15、整机取得实用新型专利,专利号ZL 2020 2 3208599.816、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证17、生产企业具有知识产权管理体系认证证书和计算机软件注册证书上位机软件介绍1、PC单机版数据接收、存储、查看、分析软件2、支持串口数据接收、处理、展示3、支持json字符串、modbus485等通信方式4、可自设置存储时间,modbus485采集模式下可自设置采集时间5、支持自助增加、删除、修改监测参数的协议、名称、图标等6、支持数据后处理功能7、支持外置运行javascript脚本
  • 全新热式风速仪6006跃然上市
    过去,手持式热式风速仪6004是加野Kanomax家族成员中最为精致小巧的一款产品,品质优良经济耐用。如今加野推出了6004升级版产品&mdash 全新热式风速仪6006,这款在任何领域内都能灵活运用的风速仪将再次绽放光彩。 下面让我们一起来了解全新热式风速仪6006: 操作简单,单一按钮即可进行风速和温度的测量。 测试范围广:风速精确至0.01~20米/秒,温度范围扩展至-20~70℃。 风速传感元件采用稳定性很好的白金绕线,仪器内部设有温度补偿回路,在可测试的温度范围内能保持很高的精度。 探头互换,高性价比。 加野Kanomax作为全球知名的测试仪器制造者,凭借多年自身积累的前沿科技再次推陈出新,相信经典热式风速仪升级版6006凭借其性能和价格上的优势势必在环境测试领域掀起一股浪潮。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制