当前位置: 仪器信息网 > 行业主题 > >

分光光度计最低检测

仪器信息网分光光度计最低检测专题为您提供2024年最新分光光度计最低检测价格报价、厂家品牌的相关信息, 包括分光光度计最低检测参数、型号等,不管是国产,还是进口品牌的分光光度计最低检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分光光度计最低检测相关的耗材配件、试剂标物,还有分光光度计最低检测相关的最新资讯、资料,以及分光光度计最低检测相关的解决方案。

分光光度计最低检测相关的论坛

  • 【讨论】有人用分光光度计做过在线检测吗?

    是否有人使用过分光光度计(法)做过在线检测工作?检测什么?使用什么分光光度计?能否交流一下。可能昨天的一个帖子写得繁琐了一点,不适宜讨论。见下链接http://www.instrument.com.cn/bbs/shtml/20090213/1735822/

  • 【分享】722分光光度计的性能检测

    分光光度计性能检测【实验目的】1、掌握分光光度计的性能检测,包括波长检测、杂光检测以及比色皿配对。2、掌握分光光度计的使用方法。【实验原理】1、波长检测:⑴可见光区域的黄光波段比较狭窄,适用于光度计波长的粗测;⑵镨钕滤光片在529nm±1~2nm处有较好的吸收峰,适用于光度计波长的细测。2、杂光检测:镨钕滤光片在585nm处吸光度A最大,透光率T最小,所产生的透光与杂光成正比,因此可用其透光率表示杂光的大小。3、比色皿配对:一套比色皿之间的材质、厚薄、色泽、空白吸收等应该一致,误差小于0.5%才能配套使用。【试剂与器材】1、镨钕滤光片、白纸条、黑纸片、蒸馏水等;2、722型分光光度计、比色皿。【操作步骤】一、操作1、波长检测(1)粗测:调仪器波长旋纽至580nm处,打开遮光板,在比色槽中光路经过处放一白纸条,观察是否有均匀的黄光。(2)细测:调波长至529nm处,打开遮光板,调0%T,盖上遮光板以空气调100%T,将镨钕滤光片插入光路,测出A值。再在529nm附近每隔1~2nm,各测其A值。2、杂光检测 (1)调波长为585nm,盖上遮光板,用黑纸挡住比色皿光路,调0%T。(2)盖上遮光板,用空气作空白调100%T。 (3)插入镨钕滤光片,盖上遮光板,测出585nm时的T%,即为杂光水平。3、比色皿配套(1)选取几支大小、材质、色泽相同的比色皿,洗净,装入占比色皿体积2/3的蒸馏水(D.W.),擦干,放入比色槽。(2)在585nm处,调第1支比色皿透光度为100%T,依次测出其他几支比色皿的T%。 不合格的需反复剔除极端值,或重新配对,直至有2个以上的比色皿合格。二、结果及讨论【参考范围】1、波长的检测:在529nm ± 1nm 处有最大吸收值为合格。2、杂光的检测:T% ≤ 5%为合格。3、比色皿配套:Tmax % – Tmin% ≤ 0. 5% 为合格比色皿配套。【注意事项】1、722型分光光度计的使用方法:选定检测波长,置调节模式为透光率T,将某一盛装参比介质的空白比色皿置于光路,打开遮光板,调0%T,盖上遮光板调100%T,再将盛装待测液体的比色皿置于光路,测出T值,或置调节模式为吸光度A,即可测出A值。注意每次测定均需重新调0%T、100%T。2、在杂光检测中,用于调0%T的黑纸片应完好无孔洞,否则会导致假合格现象。3、使用比色皿时,其盛装液体不能超过总体积的2/3,也不宜少于1/2,且在检测前必须用擦镜纸将比色皿外的液体擦拭干净。

  • 【求助】微量分光光度计光栅以及检测问题

    看了tutm老师几篇关于微型分光光度计发展的帖子,很受启发,现在有几个疑问,希望版上了解的前辈们不吝赐教。1、微型光度计采用微型光谱仪分光检测,比色皿或者点样台/头置于光谱仪前端,则样品吸收的是全波长光,这样吸光度是不是非常不准确?但是已经有很多仪器做出来了,这个应该不是大问题,只是按照我目前的水平难以理解2、经过样品后进入微型光谱仪再进行分光检测(其实是延续了第一个问题),光栅固定,这时通过CCD阵列去选择关注波长的吸光度即可?有时需要进行全波长扫描,为扫描要全波长扫描,目的是什么?这个全波长扫描是通过光栅分的单色光在CCD不同位置所记录下的光强来实现的是吗?那么设计时CCD阵列就要宽到光谱色散开的宽度是吗?3、一般微型分光光度计采用的光栅是闪耀还是其他类型?(注:网上没有查到他们用的光栅类型,希望有了解的人给予解答)若为闪耀光栅,则光强大部分集中在所闪耀的波长上,全波长扫描还有意义吗?这时如果需要测量其他样品,仪器是不是就需要换光栅,或者说换一台仪器?4、微型分光光度计光路传输采用光纤,而ND2000C采用点样头和比色皿共用方式测量,那么光路怎么实现切换,点样头相当于一根光纤中部切断这个比较容易理解,从氙灯出来的光如何经过微量比色皿?两根光纤?还是从氙灯出来的光纤分成相等的两路?PS:新手,问题比较多,也很白痴,望大家见谅,先谢过

  • 求助关于分光光度计的检测限

    请问,分光光度计的检测限是怎么确定的?有的说是以吸光度为0.01时的浓度作为检测限,不知道有没有什么依据,因为要写的是英文文章,所以最好是英文的,要在文章中引用。

  • 紫外分光光度计检测吸光度

    使用紫外分光光度计检测含量和溶出度前,都需要扫个最大吸收波长再测定吸光度吗?外标法和吸收系数法都要扫吗?有没有相关文件规定?

  • 用分光光度计检测SO2

    用分光光度计检测SO2时,SO2标液的浓度是根据样品变化的还是一个固定的浓度普遍适用?有没有更便捷的方法检测?

  • 【讨论】分光光度计被蚕食的检测项目(一)--重金属

    好多年前,分光光度法曾是全世界测定重金属的主力军,大家熟知的邻二氮菲测定铁,银盐法测定砷等,都是很经典的方法,应用几十年甚至更长时间。可是,随着原子吸收和ICP技术的大力发展,分光光度计检测方法的缺点暴露出来,检出限高,不能满足日益发展的检测需求,前处理麻烦,对检测人员要求比较高等。而原子吸收和ICP作为现在检测微量元素最主要的手段,蚕食了分光光度计作为检测重金属的大部分份额。对于此种情况,你有何看法?大家聊一聊

  • 【线上讲座之十】:分光光度计的检测器(答疑结束)

    [B] [size=4][color=red][marquee]欢迎大家前来与nemoium(nemoium)先生一起就分光光度计的检测器知识进行交流切磋~!活动时间:2009年3月17日——3月31日[/marquee][/color][/size] [/B][color=#FFF8DC]00[/color][size=5][B][center]线上讲座第十期:分光光度计的检测器[/center][/B][/size][color=#00008B][center]提问参与时间:2009年3月17日---3月22日答疑解惑时间:2009年3月23日---3月31日[/center][/color][color=red][B][center]我们再次热烈欢迎nemoium(nemoium)先生光临仪器论坛进行讲座![/center] [/B][/color][center][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625596_1622715_3.gif[/img][/center][B]导言:[/B]2009年的第一期线上讲座受到广大用户的热烈好评,而第二期的线上讲座又如期来至。我们很荣幸地又再次邀请到了nemoium(nemoium)先生对我们的分光光度计的各种检测器知识进行全面的普及和拓展,对研究这个方面的仪器人不失是一期很好的讲座内容。本期讲座共分五章,分别对分光光度计的五种检测器(电荷耦合检测器CCD、CMOS图像传感器、电荷注入检测器CID、PDA检测器、multi-anode PMT)进行详细的讲解和阐述,让我们更深刻地了解分光光度计的检测器系统。不管是刚接触者还是研究分光很深的人都有很大价值~再次感谢nemoium(nemoium)先生提供的丰富的讲座,也感谢nemoium(nemoium)先生与大家一起交流心得和经验。nemoium(nemoium)先生从事光谱维护和维修多年,有很丰富的仪器维护与维修的经验。欢迎大家就分光光度计关于检测器方面的问题前来提问,也欢迎高手前来与之切磋~[center][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_625596_1622715_3.gif[/img][/center][B]特邀佳宾:[/B]anping、tutm、zhouyuhu、 chemweb、renzhihai及各版面版主专家等[B]参与人员:[/B]全体注册用户[B]活动细则:[/B]1、请大家就分光光度计的检测器系统方面的学术问题进行提问,直接回复本帖子即可,自即日起提问截至日期2009年3月31日2、凡积极参与且有自己的观点或言论的都有积分奖励(1-50分不等),提问的也有奖励[U][B]3、提问格式:[/B][/U]为了规范大家的提问格式,请按下面的规则来提问 :[color=#DC143C]尊敬的nemoium(nemoium)先生您好,我是仪器信息网会员***,对于……很感兴趣,请问:……[/color]

  • 【求助】请教:分光光度计检测问题!

    岛津分光光度计和Ilis prisma 1010软件有用的吗?交流下这个软件上那可以找到?对应的分光光度计型号?有用的吗?交流下这个软件上那可以找到?对应的分光光度计型号?这个软件从那能弄到?还是仪器带的?我想测玻璃的紫外透过率,要用这个软件,但是只找到了ilis prsima 2010 demo,不知道是不是这个?

  • 单光束分光光度计与双光束分光光度计对比

    双光束分光光度计能降低方法检出限吗?目前单光束分光光度计吸光度分辨率在0.001A,仪器若有波动也是在0.001A这个数量级上面波动。对于仪器的RSD以及各种方法的检出限的影响其实很大。现在双光束吹的就是可以把波动降低10到100倍。如果真的有这个效果,那岂不是最低检出限和RSD也相对应的降低了10-100倍?有谁单光束和双光束都用过的,分享一下!

  • 【讨论】带紫外检测器的液相是否可以代替紫外分光光度计

    一直存在一个争论:带紫外检测器的液相是否可以代替紫外分光光度计。最近查了一写资料,对两者进行比较:1 从光学精密度来比较:分光光度计的高,而紫外检测器的低,具体低多少,俺还想再做进一步的试验。2 从信号稳定性来比较:分光光度计的低,紫外检测器的高,具体相差多少,也要进行数据比较。3 从光学能量角度来比较:分光光度计的高,而紫外检测器的低。 也许还有很多别的指标可以比较,有待大家一起讨论。

  • 原子吸收分光光度计应用在环境监测中

    环境监测中对主要阳离子分析可分为金属一大类即:Na、K、Ma、Ca、Cu、Zn、Pb、Cd、Fe、Mn、NI、Cr、Ag等的分析,这些元素都可用火焰或石墨炉原子吸收法测定。条件好的配有氢焰及笑气-乙炔火焰的话,测定范围更大了(可测60多种元素)。由此可见原子吸收分光光度计在环境监测中的重要性。  目前环境监测二、三级站都按要求配有一至两台原子吸收仪,基本上满足环境监测的需求。但是随着环境监测的发展,人们要求的提高,监测任务的不同,对仪器的要求也在提高,例如最低检出限,干扰扣除问题。仪器检出限太高不能满足监测需要,只能换方法。仪器干扰扣除方法单一,同样不能满足环境监测需要(例如石墨炉的塞曼效应背景校正法)。因此购置原子吸收仪时要考虑其性能、指标能否满足环境监测工作的需要。  原子吸收在环境监测中的地位  随着现代仪器水平的发展,测定金属元素的仪器也有了长足的发展,如ICP-AES(电感偶合等离子体发射光谱法),原子荧光法,极谱法等。原子吸收要被取代了吗?应该看到它们各有优缺点,而原子吸收在环境监测中仍起主要作用。它和原子发射光谱分析相比有其优点。(1)选择性强。(2)灵敏度高。(3)分析范围广。(4)抗干扰能力较强。缺点:测量不同元素需换灯、线性范围窄、精密度比分光光度差等。ICP-AES仪器价格昂贵,不易操作,谱线干扰比较严重,对一些复杂基体样品中微量元素的测定,ICP-AES法就显得力不从心,对超痕量元素的检测就更无能为力了。当然它也有它的优点:不用换元素灯,可同时测定多个元素等。目前大多数二、三级监测站还不具备实力购买ICP-AES。原子荧光光度计测定某些特定元素(As、Hg、Se、Sb)效果好,用它测定Cd、Pb等繁琐、干扰多,远不如原子吸收。可与原子吸收互补使用。极谱法也是作为原子吸收的补充方法。  原子吸收方面的应用情况  有两台原子吸收仪,一台为国产北京第二光学仪器厂由于购置时间较长,性能不稳,基本不用。另一台为岛津AA-6501型,94年使用到现在基本满足环境监测的需要,参加历次系统内“三基”考核、计量认证、优质实验室考核,能圆满完成任务。  关于岛津AA-6501型原子吸收分光光度计的维护及保养。我们在使用过程中出现的几次情况。  (1)正在点火工作中的仪器,由于雷雨天气导致突然断电来电,等电源稳定后再开机工作时,出现:Error#064:001(E$TrpTrom),Trapterminationwascalled?排除了残留气体后还是不能点火。第二天再点火时,出现点火标记,屏幕上字母变形,并伴有警鸣声,不能点火。请岛津公司人员维修后,确定为软件原因,而非CPU电板出现问题。  (2)仪器内乙炔表显示异常,慢滑而非迅速停稳,提高乙炔气压力也不能点火。乙炔气不纯,丙酮等杂质燃烧产生油状物质堵住乙炔进气阀,用针捅几下进气阀后,点火正常。而未换乙炔表。  (3)点火进样一段时间后,火焰不稳,并伴有嗤嗤声。排水管路堵塞,这是因为做大量有机样品后产生黄色絮状物质堵住管路与排水装置接口,拔下燃烧头通水解决。总结这些问题一般是由于燃气不纯,管路清洗及日常维护不仔细造成的,实践证明岛津的仪器性能稳定,维修率低,但在火焰法的最低检出限的提高(满足环境监测需要),石墨炉法的塞曼效应背景校正法上,有待提高。  原子吸收在环境监测中已有了较好的应用,但随着环境监测事业的发展,原子吸收分光光度计要更好的为环境监测服务,这一方面要求我们技术人员不断的学习、掌握。也要求厂家研制更新、更优质的仪器。只有这样原子吸收才会环境监测中继续发挥重要作用。本文来自:中国测控网

  • 荧光分光光度计的最低限

    我最近在用荧光分光光度计测大鼠血清皮质酮,做的标准曲线很乱,我将标准品稀释为40、30、20、15、10、7.5ug/100ml,想问下用荧光分光光度计最小能测到多少?我怎么知道稀释到多大读出的值才是有效的?谢谢。

  • 便携式分光光度计在现场检测中的优势

    在检测工作中,很多化学指标不稳定,容易发生化学反应,拿到实验室再测,数据会不准确,这些指标往往需要现场就确定符不符合排放或国家标准要求,这些指标就必须在现场完成检测,于是便携式仪器就应运而生了。[url=http://www.hach.com.cn/product/dr1900]便携式分光光度计[/url]是在台式分光光度计的基础上衍生出来的,它的特点是体积小,可以手持,携带方便,而且电源使用电池即可检测,在现场复杂恶劣的环境中也能稳定检测,数据可以用随时导出,为现场检测带来很多便利。

  • 【原创】原子吸收分光光度计在环境监测中的应用

    1、前言  环境监测中对主要阳离子分析可分为金属一大类即:Na、K、Ma、Ca、Cu、Zn、Pb、Cd、Fe、Mn、Ni、Cr、Ag等的分析,这些元素都可用火焰或石墨炉原子吸收法测定。条件好的配有氢焰及笑气-乙炔火焰的话,测定范围更大了(可测60多种元素)。由此可见原子吸收分光光度计在环境监测中的重要性。  目前环境监测二、三级站都按要求配有一至两台原子吸收仪,基本上满足环境监测的需求。但是随着环境监测的发展,人们要求的提高,监测任务的不同,对仪器的要求也在提高,例如最低检出限,干扰扣除问题。仪器检出限太高不能满足监测需要,只能换方法。仪器干扰扣除方法单一,同样不能满足环境监测需要(例如石墨炉的塞曼效应背景校正法)。因此购置原子吸收仪时要考虑其性能、指标能否满足环境监测工作的需要。  2、原子吸收在环境监测中的地位  随着现代仪器水平的发展,测定金属元素的仪器也有了长足的发展,如ICP-AES(电感偶合等离子体发射光谱法),原子荧光法,极谱法等。原子吸收要被取代了吗?应该看到它们各有优缺点,而原子吸收在环境监测中仍起主要作用。  它和原子发射光谱分析相比有其优点。  (1)选择性强。  (2)灵敏度高。  (3)分析范围广。  (4)抗干扰能力较强。  缺点:  测量不同元素需换灯、线性范围窄、精密度比分光光度差等。ICP-AES仪器价格昂贵,不易操作,谱线干扰比较严重,对一些复杂基体样品中微量元素的测定,ICP-AES法就显得力不从心,对超痕量元素的检测就更无能为力了。当然它也有它的优点:不用换元素灯,可同时测定多个元素等。目前大多数二、三级监测站还不具备实力购买ICP-AES。原子荧光光度计测定某些特定元素(As、Hg、Se、Sb)效果好,用它测定Cd、Pb等繁琐、干扰多,远不如原子吸收。可与原子吸收互补使用。极谱法也是作为原子吸收的补充方法。  3、原子吸收方面的应用情况  有两台原子吸收仪,一台为国产北京第二光学仪器厂由于购置时间较长,性能不稳,基本不用。另一台为岛津AA-6501型,94年使用到现在基本满足环境监测的需要,参加历次系统内“三基”考核、计量认证、优质实验室考核,能圆满完成任务。  关于岛津AA-6501型原子吸收分光光度计的维护及保养。我们在使用过程中出现的几次情况。  (1)正在点火工作中的仪器,由于雷雨天气导致突然断电来电,等电源稳定后再开机工作时,出现:Error#064:001(E$TrpTrom),Trap termination was called?排除了残留气体后还是不能点火。第二天再点火时,出现点火标记,屏幕上字母变形,并伴有警鸣声,不能点火。请岛津公司人员维修后,确定为软件原因,而非CPU电板出现问题。  (2)仪器内乙炔表显示异常,慢滑而非迅速停稳,提高乙炔气压力也不能点火。乙炔气不纯,丙酮等杂质燃烧产生油状物质堵住乙炔进气阀,用针捅几下进气阀后点火正常,而未换乙炔表。(3)点火进样一段时间后,火焰不稳,并伴有嗤嗤声。排水管路堵塞,这是因为做大量有机样品后产生黄色絮状物质堵住管路与排水装置接口,拔下燃烧头通水解决。总结这些问题一般是由于燃气不纯,管路清洗及日常维护不仔细造成的,实践证明岛津的仪器性能稳定,维修率低,但在火焰法的最低检出限的提高(满足环境监测需要),石墨炉法的塞曼效应背景校正法上,有待提高。  原子吸收在环境监测中已有了较好的应用,但随着环境监测事业的发展,原子吸收分光光度计要更好的为环境监测服务,这一方面要求我们技术人员不断的学习、掌握。也要求厂家研制更新、更优质的仪器。只有这样原子吸收才会环境监测中继续发挥重要作用。

  • 【求助】分光光度计

    做亚硝酸盐检测用的分光光度计是紫外还是可见光?这两个分光光度计有什么区别?够买哪一个比较好?另外,GB/T 5009.27中苯并芘的检测所用的荧光光度计是个啥东西?是原子荧光吗?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制