当前位置: 仪器信息网 > 行业主题 > >

便携火焰离子化检测

仪器信息网便携火焰离子化检测专题为您提供2024年最新便携火焰离子化检测价格报价、厂家品牌的相关信息, 包括便携火焰离子化检测参数、型号等,不管是国产,还是进口品牌的便携火焰离子化检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携火焰离子化检测相关的耗材配件、试剂标物,还有便携火焰离子化检测相关的最新资讯、资料,以及便携火焰离子化检测相关的解决方案。

便携火焰离子化检测相关的资讯

  • 山东省地方标准《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》发布实施
    2020年4月3日,山东省地方标准DB37/T 3922《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》正式颁布啦! 从2017年到2020年,历经三年多的时间,经过大量实验室和现场验证,对于固定源废气总烃、甲烷和非甲烷总烃指标的测定在原HJ38-2017方法标准的基础上引入了便携式现场直读方法。 此方法标准的出台对于山东省非甲烷总烃的现场测定实现了有法可依,对于已出台的山东省挥发性有机物排放标准体系(共7个部分)提供了非甲烷总烃指标的现场方法支撑,同时可用于在线仪器的现场比对和应急保障等各方面现场工作。山东省地方标准DB37/T 392201标准制订的重要内容标准明确规定了对于固定污染源废气 总烃、甲烷和非甲烷总烃的测定使用氢火焰离子化检测器(FID)法,对于甲烷的分离使用催化氧化的方法,根据大量现场验证,适用于绝大多数的工况现场要求。标准同时明确了适用范围、仪器结构组成、监测频率、结果计算方式、质控措施以及使用注意事项等方面的具体要求。02构建了新的指标体系,有法可依结构组成:采用FID检测器+催化氧化单元+定量环方式进样;监测频率:按分钟计算测量数据,取连续 5 min~15 min 测定数据的平均值,作为一次测量值;结果计算:明确标准状态下废气中的质量浓度表示;质控措施:要求测试前后用标气验证示值误差等指标,且要求每半年检查仪器的催化效率,须达到90%以上。03现场工作要符合以下需求标准对仪器现场工作所需要的气源——燃烧气、标气和除烃空气均做出明确规定。其中燃烧气氢气纯度需达到99.999%,须以安全形式存储;标气必须为有证可溯源甲烷/丙烷等气体等等;同时作为现场直读仪器,标准要求仪器同屏显示总烃和甲烷的数值,具备显示实时数据和曲线、查询历史 数据功能,具有远程数据传输功能和现场打印功能等等。青岛环控设备有限公司的POLLUTION PF-300便携式甲烷、总烃和非甲烷总烃测试仪有幸参与到此标准的现场测试与方法验证过程,为标准的严谨、规范与合理提供了有力的数据支撑。该产品符合标准所有要求,在全国已有广泛的用户群体。
  • 关于公开征集臭氧前体挥发性有机物火焰离子化检测器有效碳数测试的通知
    火焰离子化检测器(以下简称“FID”)是挥发性有机物监测常用的重要检测器,被广泛应用于各类臭氧前体物和非甲烷总烃监测仪器。有效碳数(ECN)是影响FID准确定量各类挥发性有机物和非甲烷总烃的关键计量参数,但受分子结构的影响,不同挥发性有机物在FID上的有效碳数存在明显差异。为进一步提升FID原理臭氧前体物和非甲烷总烃监测系统的准确度,保障应用于校准、质控等工作的ECN准确、可靠,总站现向社会公开征集具备57种臭氧前体物(附件1)标气制备与高精度FID定值能力的计量技术机构开展ECN测试。欢迎符合条件的单位报名,有关事项公告如下:一、项目名称臭氧前体挥发性有机物火焰离子化检测器有效碳数测试二、项目内容详见《臭氧前体挥发性有机物火焰离子化检测器有效碳数测试项目需求书》三、经费预算本项目预算经费为人民币20万元。四、申报单位条件(一)申报单位须是在中华人民共和国境内注册,具有独立法人资格,具有独立承担民事责任和履行合同能力,具有良好的商业信誉和健全的财务、保密管理制度,有依法缴纳税收的良好记录,在近三年内的经营活动中没有违法记录。不接受联合申报或个人申报。(二)项目负责人必须是该项目实施全过程的真正组织者和指导者,须具有较强的组织协调能力、较高的理论素养、较高分析和解决问题的能力,能够保证全过程担任实质性工作;项目负责人应具备高精度臭氧前体挥发性有机物计量工作经验,并为臭氧前体挥发性有机物研制/定值的高级技术人员,并对环境空气臭氧前体挥发性有机物监测技术与量值溯源技术具有深刻的认识,主持或参与过气体领域多个国家参与的国际计量比对或亚洲计量比对的研发人员优先;中央和地方政府公务员不能作为项目负责人。(三)申报单位应具有高精度臭氧前体挥发性有机物标准气体研发/定值经验,并具有研究所需的高精度标准气体与测试装置;主持或参与过臭氧前体挥发性有机物标准气体研制、比对的机构优先。五、申报受理及评选程序(一)本公告在中国环境监测总站网站(www.cnemc.cn)公开发布,公开征集工作自本公告公布之日起开始,申报单位可自行下载相关材料。(二)申请文件由申请函和项目申报书(申报书中应包含拟开展的臭氧前体挥发性有机物火焰离子化检测器有效碳数测试的主要内容、臭氧前体挥发性有机物火焰离子化检测器有效碳数测试、机构已有的能力和前期数据、相关证明文件)等构成。申请文件以中文编写,一律用A4纸,仿宋体四号字打印并装订成册,同时以光盘形式附上电子版(word格式)。纸质版和电子版均需提交。(三)项目申报书及有关资料应由法定代表人(或委托授权人)签字并加盖公章,全部申请文件须包装完好,封皮上写明申请项目名称、申报单位名称、地址、邮政编码、电话号码、联系人及注明“臭氧前体挥发性有机物火焰离子化检测器有效碳数测试”字样,并加盖单位公章和骑缝章。(四)申报书一式4份,正本1份,副本3份,每份文件均要注明正本和副本,正、副本分别封装并在封面上注明。一旦正本和副本不符,则以正本为准。(五)纸质版申请文件及光盘需于2021年11月23日中午12点(以送达时间为准)前寄送或快递至中国环境监测总站质管室(地址:北京市朝阳区安外大羊坊8号乙,邮编:100012),并将电子版发送至quality@cnemc.cn,邮件主题请标明“臭氧前体挥发性有机物火焰离子化检测器有效碳数测试项目+公开征集”。对申请文件在邮寄过程中可能出现的遗失或损坏,征集单位不予负责。六、项目管理和实施中国环境监测总站将按照公开、公平、公正的原则,通过“自由申报、专家评审、择优委托”等程序确定项目的承接单位,经公示后,与承接单位签订合同。七、其他说明申报单位若在填写申报材料过程中遇到问题,可通过邮件向联系人咨询。八、联系方式联系人:王瑜、师耀龙联系电话:010-84943156、84943292
  • 中山市质量技术协会批准发布《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准
    各有关单位:根据《中山市质量技术协会团体标准管理办法》规定,现批准《环境空气 104种挥发性有机物的测定 罐采样/气相色谱-氢火焰离子化检测器/质谱联用法》为本协会的团体标准,标准编号为T/ZSZJX 010-2023。2023年12月29日发布,自2024年1月1日起实施,现予公告。中山市质量技术协会2023年12月29日【50号文】关于《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准发布的公告.pdf
  • VOC快检利器——光离子化气体传感器(PID)!!
    提起VOC检测,可能环境的小伙伴比较熟悉,今天主要跟大家分享一下光离子化气体传感器(PID)方法检测VOC。1、什么是VOC?VOC是挥发性有机化合物(volatile organic compounds)的英文缩写,是在室温以气态分子的形态排放到空气中的所有有机化合物的总称。VOC 所涵盖的有机物种类繁多而且其组成成分多样,主要有:氯化物、苯类化合物、氟利昂化合物、有机醇、有机酮、有机醚、有机醛、有机酯、有机胺、有机酸以及石油烃化合物等。VOC及所形成的二次污染物不仅本身具有较强毒性对人们的健康带来负面影响,而且VOC作为臭氧和PM2.5的前体也影响着大气质量,是复合型空气污染的主要“贡献者“之一。2、VOC的检测方法检测VOC常见的方法有PID检测、GC-FID及GC-MS检测,其中GC-FID和GC-MS都是用来检测VOC气体总值的,在混合气体环境中不能检测出单独某一种VOC气体。GC-FID与GC-MS也可以测出具体某一种VOC气体成分,但价格昂贵,且体积大。其中PID传感器体积小、价格低廉、工作条件简单、能耗低,更适合作为便携式检测器。表1 VOC检测方法参数GC-MSGC-FIDPID使用方式氦气瓶氮气瓶、氢气瓶、空气瓶便携式重量非常重较重很轻尺寸体积非常大体积较大很小检测范围(ppm)更宽0~500000~10000数据线性全范围线性较好全范围线性较好低浓度线性良好选择性无选择性无选择性低能量灯增加选择性检测气体VOC气体VOC气体VOC气体、某些无机气体样品破坏检测破坏检测无损检测可回收操作使用极为复杂较为复杂简便简洁检测费用极其高高极低检测速度极其慢慢极快3、什么是PID?对于仪器分析的小伙伴,可能对GC-FID(氢火焰离子化检测器)与GC-MS(气质联用仪)使用更清楚,我们今天重点讲一下PID(光离子化检测器)。光离子化气体传感器(简称PID)由紫外光源和气室构成。PID 中激发待测气体离子化的源头就是电离室中的紫外灯,被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。紫外发光原理与日光灯管相同,只是频率高,能量大。图1 PID传感器结构PID工作原理:1、在真空玻璃腔内充入高纯稀有气体例如惰性气体。2、用可透紫外光的窗口将玻璃腔体密封。3、外加电磁场进行激发。4、在外加电磁场的作用下,被电离气体产生电流,进而被检测到。图2 PID传感器工作原理4、PID传感器类型与品牌调研PID传感器可以按照紫外灯能量、寿命及检测气体分类,主要可以分为以下类型。表2 PID传感器类型紫外灯能量(eV)9.6eV10.6eV11.6eV紫外灯寿命6个月12~24个月6个月检测气体种类114250300在VOC快检领域, PID传感器品牌几乎都是进口仪器公司,国产采用PID技术的检测设备仅镁汇科技一家企业。表3 PID传感器品牌品牌典型产品英国阿尔法AlphasensePID-A1英国离子科学Ion Science Ltd.FirstCheck F Ex6000,世界上首台PPB级PID检测器的多组分气体检测仪美国贝斯兰Baseline–MOCONPID-TECH FirstCheck F Ex6000MeiHui镁汇科技PID-GH,专注PID研发可替代进口品牌PID配件5、PID的国产替代通过分析比对,可以看出采用PID技术的检测设备与动辄花费大几十万的GC-FID、GC-MS相比,具有明显的优势,不但便携快捷而且设备成本低。表4 国产配件与进口配件对比类型价格货期特点进口配件国产3~5倍综上所述,目前国内PID气体传感器有了较大发展,对已知气体可以实现快速实时检测,有着广泛的应用前景。转载自公众号:实验室仪器分析
  • 【解决方案】东西分析EW-4400型便携式光离子化气体检测仪检测固体废弃物砷渣中的AsH3及H2S
    概 况在砷的冶炼及其化合物的生产使用过程中,大量的砷渣被引入环境中,污染水源,危害人体健康,因此人们对砷毒危害给予了极大的关注。我过《工业企业卫生标准》规定:地面水中砷的最高允许质量浓度为0.04mg/L,居民区大气中砷化物(按砷计)日平均最高允许质量浓度为0.003mg/L。在固体废弃物砷渣的移除挖掘过程中,会有AsH3及H2S气体散出,工作环境及其危险,因此保障工作环境安全,检测有害气体AsH3及H2S含量尤为重要。近日,东西分析工程师携EW-4400便携式光离子化气体检测仪进入砷渣现场实地检测,为客户提供完整解决方案,为居民健康保驾护航。实验部分仪器条件:仪器:EW-4400型便携式光离子化气体检测仪柱子型号:GDX-301检测器:PID柱箱温度:室温载气流速:30mL/min结果:东西分析实验室工程师客户现场检测关于我们北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 国瑞力恒发布国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理新品
    GR-3012C型手持式VOCs检测仪产品概述 土壤VOCs检测仪 PID光离子化检测原理GR-3012C型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。适用范围土壤VOCs检测仪 PID光离子化检测原理适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。依据标准土壤VOCs检测仪 PID光离子化检测原理HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》GB 12358-2006 《作业场所环境气体检测报警仪通用技术要求》GB 37822-2019 《挥发性有机物无组织排放控制标准》GB 20950-2007 《储油库大气污染物排放标准》技术特点土壤VOCs检测仪 PID光离子化检测原理1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器10000PPM1ppb负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:传感器量程精度做了很大的变化,10000ppm分辨率可达到1ppb国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理
  • 华爱色谱氦离子化检测器专利获批
    由上海华爱色谱分析技术有限公司设计并申请国家的氦离子化检测器近期由国家知识产权局批准,此举标志着华爱色谱在氦离子化气相色谱仪的应用研究方面走在前列,为氦离子化气相色谱仪在国内的研发及普及打下良好的基础。     上海华爱色谱分析技术有限公司   2010年1月6日
  • 逸云天手持式光离子化检测仪(PID),为鹤壁市生态环境局助力!
    随着近年来生态环境保护力度不断加大,执法支队努力克服人员少、压力大、任务重等诸多困难,始终坚持以改善环境质量、维护群众健康为目标,全力推进各项执法工作有序开展。  环保综合执法部门对产生VOCs工业废气的企业也是严格监管,更在这两年的两会上陆续提及打赢环境污染攻坚战等各种实际可行的方法举措,这些都再次印证了环境对整个社会发展的重要影响性,由此也衍生出一批专注手持式光离子化检测仪(PID)的厂家,比如专业气体检测监控解决方案商-逸云天。  逸云天拥有强大的研究开发迭代能力,研发团队超20名,研发占销售额投入比高达17%,历经艰辛,研发出了新一代便携式VOCs走航监测设备——MS600手持式光离子化检测仪(PID)。  MS600手持式光离子化检测仪(PID)有利于地方各级生态环境部门不断加强队伍装备建设,持续提升执法能力,是推进生态环境保护综合行政执法科学化、规范化的重要保障。  除了在科研方面的持续投入,在产品品质方面也有着严苛的要求。气体安全是一项生命工程,关系到生命的安危,容不得半点马虎,为了更好地保障产品品质和质量,逸云天不仅通过了ISO9001:2008质量管理体系认证,ISO14001:2015环境管理体系认证,防爆资格证等,而且产品出厂均要通过30余项工艺检测,10万级测试,所有产品都历经来料、半成品到成品三道关口重重考验。优质的产品和服务,不仅帮助客户创造了更大的价值,更得到了广大客户的一致认可。  因此,为推动生态环境执法大练兵活动走深走实,进一步提升生态环境系统综合行政执法能力,锻造执法铁军,近日,鹤壁市生态环境局举办执法能力建设项目操作培训会,各分局环境执法业务骨干、市生态环境保护综合行政执法队全体执法人员共同参加培训,同时邀请了逸云天专业技术人员为我市环境执法系统工作人员进行操作培训。  1、开展理论培训  逸云天技术人员采用理论学习和实操培训相结合的方式,对手持式光离子化检测仪(PID)的构造、原理、功能、操作流程等进行了详细讲解,让执法人员能够掌握相关设备日常操作和使用的基本常识。  2、进行实操训练  通过“以老带新”的方式,发挥好执法骨干的传帮带作用,由大队执法骨干现场演示执法设备的基本操作流程,指导新入职执法人员对购置设备进行试用,让每名执法人员都能熟练掌握手持式光离子化检测仪(PID)的使用方式和操作方法。  3、提高执法效能  手持式光离子化检测仪(PID)能够帮助执法人员在执法过程中快速有效认定环境违法行为,在前期巡查、中期取证、后期督查中发挥重要作用。  通过本次培训,参训人员熟练地掌握了手持式光离子化检测仪(PID)的基本操作和简单维护,切实提升了生态环境现场执法能力和打击环境违法行为能力。下一步,鹤壁市生态环境局将组织全市生态环境系统利用专业执法设备对企业进行帮扶指导,实施科技化执法监管,助力企业绿色发展。
  • 130万!辛集市生态环境局辛集市购买挥发性有机气体泄漏检测红外热像仪、本安防爆氢火焰离子法便携式挥发性有机气体分析仪设备项目
    项目编号:ZCHX-2022-0335项目名称:辛集市生态环境局辛集市购买挥发性有机气体泄漏检测红外热像仪、本安防爆氢火焰离子法便携式挥发性有机气体分析仪设备项目预算金额:1300000最高限价(如有):1300000采购需求:购买挥发性有机气体泄漏检测红外热像仪1套、本安防爆型氢火焰离子法便携式挥发性有机气体分析仪1套合同履行期限:交货期:签订合同一个月本项目不接受联合体投标。
  • 上海精科气相色谱光离子化检测器通过评定
    上海精密科学仪器有限公司自主研发的GC126━PID 气相色谱仪光离子化检测器,于2011年7月通过了上海市计量院的型式评定。该产品具有自主知识产权,获国家专利局发明专利授权,研发论文已刊登在《分析化学》杂志上,目前装备在公司生产的GC126气相色谱仪上。   精科公司由“质谱开发团队”开发的GC126━PID 气相色谱仪光离子化检测对苯类、含羰基类化合物等有较高的选择性与分析灵敏度 灵敏度比FID高50-100倍,可与毛细管连接,克服了传统填充柱易流失、柱效低等弊端。具有线性范围宽、可检测环境中0.5ppb-500ppm的苯系物等。其主要性能指标达到了国际同类检测器的标准。该产品配套使用相应的仪器,一可以监测大气中苯、甲苯、乙苯、二甲苯、苯乙烯、甲醛和乙醛 二可以监测汽车尾气(一氧化氮) 三可以检测食品中有机溶剂的残留(6号溶剂)和对食品进行保鲜度分析(硫醇、硫醚、硫化氢等) 四可以检测航空航天推进剂生产中产生的有毒气体(苯、苯乙烯、丙酮、肼等)。   该产品如与FID、质谱、 红外检测器等实行联用,可获取更多的信息,它无辐射,无需氢气、助燃气体,可用高纯氮气或空气作载气,无需复杂的化学前处理(如热解析等),安全可靠,有直接进样分析的优点。 科技人员在调试气相色谱仪光离子化检测器 精巧的小型的气相色谱仪光离子化检测器
  • 便携式总烃、甲烷和非甲烷总烃监测行业标准正式发布
    近日,生态环境部发布了HJ 1331-2023《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》和HJ 1332-2023《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》两项行业标准,规范了固定污染源废气中总烃、甲烷和非甲烷总烃的便携式测定方法。此两项标准均在2024年7月1日实施。一、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023)本标准为首次发布。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、山东省生态环境监测中心、新疆维吾尔自治区昌吉生态环境监测站。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心。本标准规定了测定固定污染源废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气中总烃(以甲烷计)、甲烷的检出限均为0.2mg/m3,测定下限均为0.8mg/m3。二、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023)本标准为首次发布。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、山东省生态环境监测中心、江苏省南京环境监测中心、山东建筑大学。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心、山东微谱检测技术有限公司。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气总烃(以甲烷计)、甲烷的检出限为均为0.4mg/m3,测定下限均为 1.6mg/m3。附:1、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023).pdf2、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023).pdf
  • 深圳市检验检测认证协会发布《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见稿
    各有关单位及专家:由深圳市检验检测认证协会归口管理,协会成员等相关单位共同起草的《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准已完成征求意见稿,现面向社会各界公开征求意见。有关意见反馈,请填写《团体标准征求意见反馈表》, 并于 2024年2月15 日之前以邮件方式反馈至联系邮箱,逾期未回复意见的按无异议处理。联系人:彭建新/13326997196 ;文子瑞/17608991213邮箱:sztic2019@163.com;地址:深圳市宝安区新安街道兴东社区群辉路3号优创空间2号楼428 附件:《团体标准征求意见反馈表》深圳市检验检测认证协会2024年01月15日关于对《果蔬中多组分农药残留的快速检测 直接离子化小型质谱法》团体标准征求意见的通知.pdf团体标准征求意见反馈表(果蔬中多组分农药残留的快速检测 直接离子化小型质谱法).docx水果蔬菜中多种农药残留量的快速测定 直接离子化小型质谱法(征求意见稿).pdf
  • 创新基金项目“GC-4400型便携式光离子化气相色谱仪”顺利通过项目验收
    5月16日下午,在市科委创业中心召开了科技型中小企业技术创新基金项目----&ldquo GC-4400型便携式光离子化气相色谱仪&rdquo 的项目验收会。 本次验收会由市科委创业中心组织,由五位专家组成验收专家组。会上,专家组成员认真听取了项目承担单位---北京三雄科技公司的工作总结汇报,观看了项目产品演示,检查了合同执行情况,同时也提出了一些技术和应用问题,承担单位都一一作了详细回答。最后经专家组讨论一致通过了项目验收。    专家组希望企业总结经验,把项目成果更广泛应用到国民经济建设中去。   三雄科技公司代表对科技部、北京市科委及与会专家表示感谢,感谢国家对本企业的信任。并表示虽然项目验收工作结束,但项目不会结束,还会继续进行,并且要把项目产品做得更好,为国家经济建设服务。
  • 崂应发布崂应3035型 便携式总烃/甲烷和非甲烷总烃监测仪新品
    崂应3035型 便携式总烃/甲烷和非甲烷总烃监测仪 一、产品概述 本仪器是一款基于催化氧化+FID技术的总烃、甲烷和非甲烷总烃监测仪,可测量环境空气及固定污染源废气中的总烃和甲烷,可自动连续取样,连续监测,响应速度快。取样系统与分析系统全程保持在受控的高温状态,有效防止样品冷凝或损失。催化氧化装置能将除甲烷以外的其它有机化合物转化为二氧化碳和水,实现总烃/甲烷/非甲烷总烃的测定。二、执行标准GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 1012-2018 环境空气和废气总烃、甲烷和非甲烷总烃便携式监测仪技术要求和检测方法DB 11/T 1367 固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法三、产品特点仪器操作便捷,智能化,配置专用软件搭载10英寸触摸彩屏,4G/128G存储卡,Windows10操作系统配备GPS定位模块,温湿度及大气压力传感模块,自动获取现场环境信息可配手持式操控仪,通过4G/WIFI连接,实现对仪器的远程操控高灵敏、宽量程氢火焰离子化检测器,线性范围可达107气路采用EPC控制,控制精度达到0.01Psi一体式采样系统,全程伴热(最高180℃),防止样品冷凝,保证测量准确可靠配备固态金属氢化物储氢器选用新型无刷隔膜泵,耗电量低,且低噪声实时采集监测,历史数据查询、打印及上传仪器自检与故障报警功能自动点火,氢气泄露保护采用进口不锈钢接头、管线,避免样品吸附与腐蚀防水、防尘、防震机箱催化氧化效率高,催化剂抗中毒,使用寿命长 说 明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符, 请以实机为准,本内容仅供参考。 创新点:1、采样管采用优质PTFE内衬管路连接,极大降低加热状态下有机物的析出,减小采样管对测量的干扰,降低系统偏差 2、配备高性能采样泵及流量控制器,保证采样流量的稳定性 3、催化氧化效率高,对非甲烷总烃的催化效率满足ENIS025140-2010的要求,参照HJ1012标准要求,转化效率可达99.5%以上。 崂应3035型 便携式总烃/甲烷和非甲烷总烃监测仪
  • 迈向标准化的一大步:《直接电离质谱离子化装置》行业标准正式发布实施
    仪器信息网讯 2021年3月,《直接电离质谱离子化装置》行业标准经中国仪器仪表学会标准化工作委员会专家组最终审定后正式发布实施。该标准2019年1月在中国仪器仪表学会立项,由宁波大学闻路红教授、东华理工大学陈焕文教授共同牵头,联合国内从事直接电离质谱技术研究和应用的张峰、赵会安等专家,成立了标准起草工作组。在制订过程中,标准工作组广泛征求了我国公共安全、食品药品检验、药物分析、环境监测、科学研究等应用领域的专家学者和用户意见。标准制订单位除了宁波大学、东华理工大学,还有宁波华仪宁创智能科技有限公司、中国检验检疫科学研究院、山东食品药品检验研究院、江西省公安厅刑事科学技术研究所、青岛理工大学等单位。《直接电离质谱离子化装置》标准的正式发布实施,将极大地推动我国敞开式大气压直接电离质谱相关技术的研究、核心关键部件和仪器产业化,加快直接电离质谱技术在毒品检测、食品安全、药物分析、环境应急、危爆品检测、中毒救治、体外诊断(POCT)等应用市场的应用推广。  敞开式大气压直接电离质谱技术最早于2004年由美国普渡大学R. G. Cooks教授首次提出并发表在国际著名学术期刊《Science》上。直接电离质谱技术可在大气压环境下,对被分析样品直接电离后进行质谱分析,分析样品无需前处理或简单处理即可检测。直接电离质谱技术解决了传统质谱技术需要复杂样品处理、色谱分离、真空电离环境,检测时间长、检测成本高、对使用环境和操作人员要求高的不足,非常适合公安禁毒、食品安全快检、环境事故应急、危爆品检测、药物质量监测、中毒救治、体外诊断(POCT)等行业对定量要求不太高,但需要现场、实时、高通量快速定性检测,检出限高于0.05ppb的应用场合。该质谱技术出现以来,引起全世界质谱分析领域的高度关注,很多分析化学家认为它是质谱分析技术领域的一次重大革命,成为过去17年来质谱技术研究的热点和前沿之一。  根据文献调研统计,从2004年至今有超过40中敞开式大气压直接电离质谱分析技术方法被世界各个国家的科学家提出。目前,有10余种直接电离质谱技术已突破了关键核心技术,经过大量应用研究找到了适合的应用场景、证明了技术的应用价值,并成果转化研制出了商品化的质谱电离质谱产品,代表性的有:DESI、DART、DBDI、PSI、EESI等。这些直接电离质谱技术已经被科学研究、公共安全、食品检验、药物分析、中毒救治等应用领域的尝鲜者采用并获得认可,越来越多的用户对使用直接电离质谱技术用于快速检测有兴趣。而要实现直接电离质谱技术在应用端的大量使用,直接电离质谱离子化装置和应用方法的标准化迫在眉睫。  直接电离质谱离子化装置标准的正式发布实施,其规范了直接质谱离子化装置产品需要满足的技术要求,构建了保证产品适用性的统一判定和验证方法,制定了研究、生产或应用机构开展对国内外各类直接质谱离子化装置的质量评价,解决了直接电离质谱离子化装置产业化推广的标准化问题,扫除了后续应用方法标准制订时仪器装置产品标准缺失的问题,有助于推进并实现直接电离质谱离子化技术体系化标准建设。  宁波大学科学仪器创新团队及成果转化企业宁波华仪宁创智能科技有限公司是我国专业从事直接电离质谱仪及核心部件自主创新和产业化的科研团队和企业。2016年,华仪宁创作为牵头单位联合清华大学、北京大学、哈尔滨工业大学、中国医学科学研究院等国内从事直接电离质谱技术研究的团队共同申报承担了国家“重大科学仪器设备开发”重点研发计划专项“新型敞开式质谱离子源研制与产业化”项目。在国家重大科学仪器项目的支持下,团队成功研制了6款不同的新型敞开式直接电离质谱离子化装置。其中团队与清华大学张新荣教授团队合作,实现了DBDI直接电离质谱离子化装置的成果转化,成果被鉴定为“国际首创”,荣获国内装备制造业首台套产品、中国仪器仪表行业协会自主创新金奖、首届分析仪器创新成果奖、中国仪器仪表学会科学技术奖等荣誉。过去5年,华仪宁创依托国家公共安全、食品安全重大专项支持,基于自主创新的敞开式大气压直接电离质谱技术研制了直接电离便携式质谱仪产品,与国内公安禁毒、法医毒物、食品检验、药物分析、中毒救治等领域的代表性用户单位合作,已开发了大量的应用方法,证明了直接电离便携式质谱仪在各种现场快检领域的实用价值。  从2020年开始,团队已联合国内公安禁毒、法医毒物、食品检验、药物分析、中毒救治等领域科研团队和检测机构申请直接电离质谱技术应用方法标准制订工作,加快推动直接电离质谱技术在各行各业的应用推广,欢迎感兴趣的科研团队和用户合作制订应用方法标准,共同推动我国质谱电离质谱技术及仪器的发展。笔者:宁波华仪宁创智能科技有限公司/宁波大学 闻路红教授
  • 前处理时间仅为MALDI法的1/10,滨松新研辅助离子化基板
    滨松公司新开发了使用多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理,与目前主要的离子化方法之一基质辅助激光解析电离(Matrix-Assisted Laser Desorption/Ionization、下面简称MALDI)方法相比,它将前期处理时间缩短到十分之一。因此可以用在市场上已有的MALDI-TOF-MS设备,主要面向目前正在使用MALDI-TOF-MS设备的制药、工业领域的国内外企业以及大学研究人员。该产品将于2018年5月11日(星期五)面世。本产品由滨松公司和光产业创成大学院大学的内藤康秀副教授共同研发,将于5月15日(星期二)到5月18日(星期五)为止为期4天,在阪急酒店(大阪府吹田市)举办“日本质量分析学会暨日本蛋白质组学会2018年联合大会”上展出。※多孔氧化铝:细小的规则排布的氧化铝通孔。※TOF-MS:飞行时间质谱。按照离子的飞行时间来测定质量的质量分析方法。 关于质量分析质量分析是通过对待测样品进行电子束、激光等照射方法,使待测样品的原子、分子发生离子化,通过对质量的测定,对待测样品中包含原子、分子的种类、数量、分子结构等进行精密分析的方法。质谱仪由将待测样品离子化的离子化部分、分离离子的离子分离部分、分离后的离子探测部分等组成,针对待测样品结合各种离子化方法、离子分离法,广泛应用于环境、食品、化学、法医学、生命科学等领域。质量分析结构研发背景MALDI是将能吸收激光能量的低分子有机化合物(下面称matrix)与待测样品混合,通过激光照射,对待测样品进行离子化的方法。并且,因为它不破坏蛋白质等大分子结构就可以进行离子化,通过同时得到的离子质量和位置信息,实现对待测样品的成分、分布状态进行质谱成像分析,尤其是在生命科学领域和制药领域,应用预计会不断扩大。但是,利用MALDI进行的质谱成像,与Matrix的混和、涂抹、到干燥的前期处理的过程大概需要30分钟,而且它需要在待测样品上均匀的涂抹Matrix,所以想要寻找不需要采用Matrix的离子化方法。 产品概要本产品采用的是利用单独孔径直径为200nm左右(纳米,10亿分之1)的多孔氧化铝,是面向质谱成像的离子化辅助基板。将本产品放置到待测样品上,利用毛细管现象,将待测样品的分子上升到表面,通过激光照射分子使之离子化,不会破坏分子结构,在不使用Matrix的情况下,实现质谱成像。另外,除了提供有效直径为17mm的产品外,还研发了不需要获得位置信息的有效直径为2mm的产品,该产品面向一般的质量分析。多孔氧化铝具有铝着色等用途,所以采用它作为离子化的辅助基板的部分材料,而成功研发了本产品。※毛细管现象:在细管内侧,液体从管子中上升的现象。MALDI采用DIUTHAME的激光离子化法 MALDI是对混合了基质的待测样品进行激光照射使之离子化的方法。采用DIUTHAME的激光离子化方法是利用多孔氧化铝的毛细管现象,对基板表面上升的待测样品的分子进行激光照射,使之离子化。本产品只要放在待测样品上,就能完成前期处理,在无需处理待测样品的情况下,待测的液体样品的分子会自动上升到产品表面,所以不需要向MALDI一样将基质均匀的涂在待测样品表面的过程。放置后3分钟左右就可以完成质谱成像分析的前期处理,不需要熟练的基质涂抹技术,且能得到重现性高的测定结果。此外,在对小分子样品进行质谱分析时,与待测样品一起离子化的Matrix是不能使用的,因此,MALDI中所不能测定的小分子,在使用本产品是也能进行准确的测量。本产品可以用在既有的MALDI-TOF-MS设备上,可以提高目前正在使用MALDI-TOF-MS的制药领域和工业领域的研发效率。今后,我们仍会在产品的结构设计上继续钻研,开发离子化效率更高用途更广泛的产品。本产品的特点1、将质谱成像分析的前期处理时间缩短为十分之一因只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理工程,将原本MALDI需要30分钟处理时间缩短为3分钟左右。2、实现高质量的质谱成像分析只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理,不需要像MALDI中需要熟练地将基质均匀涂抹。因此,不会出现前期处理中随机误差,以及获得比MALDI的质谱成像更高的重现性。3、 高精度测量低分子本产品不使用像MALDI与待测样品一起离子化的小分子基质,因此,它可对工业材料、兴奋剂禁药等的MALDI无法测定低分子进行高精度的测量。主要规格离子化辅助基板DIUTHAME系列
  • 广东发布NMHC-CEMS技术规范 明确便携式仪器做参比验收
    p   广东省生态环境厅办公室于2020年6月发布了《固定污染源废气非甲烷总烃连续监测系统氢火焰离子化检测器(FID)法技术规范》(试行),本技术规范规定了固定污染源废气非甲烷总烃连续监测系统的组成和功能、监测站房、安装、技术指标调试检测、技术验收、日常运行管理、日常运行质量保证、数据审核和处理等有关要求。本技术规范适用于 strong 广东省辖区内 /strong 安装氢火焰离子化检测器(FID)法测量固定污染源废气中非甲烷总烃的连续监测系统。 /p p   与环境标准《HJ 1013-2018 固定污染源废气非甲烷总烃连续监测 系统技术要求及检测方法》相比,此技术规范增加了站房要求、安装要求以及技术验收等内容。 /p p    strong 对于仪器准确度验收,此技术规范规定了实验室法和便携式氢火焰离子化检测器法,其中用于参比的便携式氢火焰离子化检测器应符合 HJ 1012 的技术要求 /strong ,具体要求增设了规范性附录 F——固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法。 /p p   附录F中明确了非甲烷总烃的测定原理为:废气样品直接进入 strong 毛细管色谱柱分离柱或催化转换单元 /strong ,经氢火焰离子化检测器(FID)测定总烃及甲烷的含量(以碳计),两者之差即为非甲烷总烃的含量(以碳计)。 /p p   规范全文: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202006/attachment/c56ec28b-564a-4745-bf46-8f3082eb746b.pdf" title=" 《固定污染源废气非甲烷总烃连续监测系统氢火焰离子化检测器(FID)法技术规范》(试行).pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 《固定污染源废气非甲烷总烃连续监测系统氢火焰离子化检测器(FID)法技术规范》(试行).pdf /a /p p br/ /p
  • 环保展热门VOCs监测系统盘点——“走航、便携”是热点!
    2023年4月13日,由生态环境部和北京市人民政府主导,国家发展改革委、工信部、科技部、商务部等政府部门指导,有关行业组织和境外有关机构支持,中国环境保护产业协会主办的第二十一届中国国际环保展览会(CIEPEC 2023)盛大开幕。环保展期间,众多环境领域热门产品一一亮相。本次环保展中,VOCs同样是被高频提及的监测项目之一。VOCs是细颗粒物PM2.5和臭氧形成的重要前体物,也是引起光化学烟雾、灰霾复合污染等大气污染的主要因素之一。而PM2.5和臭氧的协同控制更是在国家“十四五”规划中被特别提及。进行细颗粒物与挥发性有机物组分协同监测,其对于大气污染防治具有积极意义,也将是国家未来推进的重点工作之一。以交通、工业园区和排污单位为重点开展污染源专项监测,实现多污染物协同监测和污染源专项监测双轮驱动,组建和完善全省协同控制监测网络是防治VOCs污染的基础。基于此,仪器信息网现独家策划“直击环保展!热门展品盘点”系列,今天带来的是VOCs监测系统篇(排名不分先后)。仪器信息网特别关注到,“走航监测”是本次环保展VOCs监测领域的热门方向之一,即在走航车上装载VOCs多组分走航监测仪等仪器,并在走航中摸清目标区域VOCs污染物浓度水平及其相应的臭氧生成潜势等情况。本次环保展中,这几款走航监测产品广受关注——禾信仪器SPI MS 2000大气VOCs秒级多组分走航监测禾信仪器的SPI MS 2000大气VOCs秒级多组分走航监测系统可实时获取不同物种浓度分布和变化规律,快速建立区域污染画像,全面动态掌握污染情况,为VOCs污染精细化管理提供数据支撑。样品无需前处理,通过膜进样系统直接进入仪器,进行杂质过滤及样品富集浓缩,然后VOCs物种被真空紫外灯进行软电离,产生分子离子峰,最后由飞行时间质量分析器实现微秒级快速监测,得到全质量范围内瞬态全谱,以实现VOCs物种秒级准确定性及定量分析,从而实现走航监测。谱育科技 EXPEG 3500PLUS VOCs双通道走航质谱监测谱育科技EXPEG 3500PLUS VOCs双通道走航质谱监测集直接质谱分析与气质联用分析于一体,利用单质谱秒级连续响应迅速找到VOCs污染高值点,实时获取VOCs单组分和TVOCs浓度分布和变化规律,同时结合快速气质联用分析方法对现场污染组分进行准确定性定量分析,解决了走航监测中要求的“快速”和“准确”需要兼顾这一难题,为大气VOCs精细化管理提供重要抓手。双谱科技CMS MRS 1000 VOCs多路轮巡在线监测质谱系统双谱科技的CMS MRS 1000 VOCs多路轮巡在线监测质谱系统由远距离多通道轮巡采样装置、飞行时间质谱仪、多路轮巡监测平台组成,可实现园区多点位、上百种VOCs物质实时快速监测,精准识别工业园区内VOCs状况。此外,该系统可提供实时监控报警,支撑污染溯源,实现对园区的精细化管理,助力改善园区环境质量。皖仪科技 TOF2000 VOCs多组分走航监测皖仪科技参展的TOF2000 VOCs多组分走航监测系统以单光子电离飞行时间质谱仪(SPI-TOF-MS)为核心分析部件,具有分析快、定量准、灵敏度高等优点,可同时在线分析多达300多种大气挥发性有机物,实时获取不同污染物浓度分布和变化规律,可快速建立区域污染分布地图,全面动态掌握污染情况,精准追溯污染物来源;系统搭配功能强大的走航数据处理软件,可根据客户需求提供信息丰富的走航报告及污染分析报告,为VOCs的精准治理提供有力的数据支撑。子曰 大气VOCs环境监测车+VOCs气质联用仪子曰多功能便携式气质联用仪集自动进样、富集、解析、色谱分离、质谱检测和数据处理于一体,采用全新的大抽力静态离子真空泵。该系统具有抗震不怕颠簸,断电真空保持,开机自动调谐,预置方法自主运行等优点。在保证仪器不受外界干扰的同事,该系统可以准确监测预警,实时远程传输等功能。走航监测以外,便携式VOCs监测也是各环境监测站等单位的重要需求。本次环保展,这些便携式仪器展出——ABB 便携式非甲烷总烃测量仪ABB 便携式非甲烷总烃测量仪基于FID测量原理,能够连续、快速测量污染源烟气中的总碳氢(THC)、甲烷(CH4)、及非甲烷总烃(NMHC)的含量。轻巧便携,可用于手工监测、比对监测等场合。分析过程全程180°C高温,保证样气无冷凝、无腐蚀,确保分析更准确。众瑞 ZR-7221 便携式甲烷非甲烷总烃分析仪众瑞 ZR-7221 便携式甲烷非甲烷总烃分析仪采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“环境空气、固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。并且,该仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量。明华电子 MH3500-A型便携式甲烷非甲烷总烃分析仪MH3500-A型便携式甲烷非甲烷总烃分析仪采用色谱法分离甲烷+FID检测技术,通过双定量环定量,色谱柱分离技术分离甲烷,实现甲烷、总烃以及非甲烷总烃浓度的现场检测,是目前市场上集成度较高的用于非甲烷总烃监测的便携检测设备。其广泛应用于固定污染源甲烷非甲烷总烃的现场测定、汽车尾气的排放检测、燃烧装置排放检测、油漆喷涂车间气体检测、天然气泄露检测等。炫一科技 P6000+便携式气相色谱仪便携式分析仪需要具备与在线分析仪相同功能的全套硬件,如高温取样、过滤器、色谱分析仪、气源、电池、打印机等。便携式分析仪也需要具备远高其他仪器的可靠性、灵活性和完整性。本次炫一科技展出的P6000在经过四年超过五个版本的升级后,集成了炫一科技超过10年的设计经验,采用业界高要求的工控电脑、触摸屏、进样阀、减压阀、检测器等关键部件,为用户提供最可靠的现场分析工具。该产品具备多项优势,如体积小集成高,自动便携,现场快速运行;带触摸屏、标配自供电样品加热防止冷凝;可远程控制仪器,出色完成TVOC、CH4、NMHC等组分测定。碧兴物联 ZE-VMS-6000型环境空气挥发性有机物自动监测系统该系统通过双通道(无盲点采样)冷阱除水、富集、冷聚焦设计实现低浓度有机物高效捕集,利用GC-FID进行环境空气中VOCs组分(57种PAMS)的定性定量分析。该系统包括采样单元、在线预浓缩仪、动态校准仪、气相色谱仪(GC-FID)、数据采集与传输单元等,系统稳定性好,安全可靠性高,测量结果实时准确,且维护少,运行成本低,性能指标达到高水平,满足国家标准和行业标准对挥发性有机物的监测要求。昂泰克 Ontech880四级冷阱预浓缩仪Ontech880四级冷阱大气预浓缩仪,是乐氏科技旗下昂泰克品牌推出的新品。该款仪器采用四级浓缩技术辅以液氮深度冷冻捕集,突破了传统三级冷阱技术高沸点化合物在除水阱冷凝丢失的弊端,具备更强的除水效果和工作效率。该产品可以实现对挥发性有机物的有效富集。该仪器可与不同配置的GC-MS联用,有效实现对VOCs的监测。ALPHAPEC 5040 多组分空气质量检测仪ALPHAPEC 5040 多组分空气质量检测仪是对空气中 CO、CO2、O2、CH4 和 VOC 气体(挥发性有机物)浓度及成分 进行实时检测并提供预警的检测仪器。该仪器融合红外光谱吸收法、光离子技术、荧光氧等先进技术,结合精密光 学设计和稳定可靠的电路制作而成,相比传统电化学传感方式,具有检测精度高、抗干扰性强,零点漂移低、使用 寿命长,维护方便等特点。仪器使用方法简单,连接好电源线开机预热 30 分钟后即可实现对密闭或半密闭空间的 环境空气质量的进行实时在线检测。
  • 沃特世收购直接分析离子化技术REIMS
    2014年7月22日,沃特世宣布从MediMass公司收购快速蒸发电离质谱(REIMS)技术的所有资产,包括专利申请、软件、数据库和REIMS技术的专业知识,具体交易金额没有披露。   沃特世全球营销和信息副总裁Rohit Khanna表示,&ldquo REIMS技术显著增强了沃特世技术在生命科学市场的地位,同时也展现沃特世跨多种应用领域的承诺。这项技术的收购,以及我们最近与Prosolia签订的解吸电喷雾电离(DESI)技术在临床应用的独家代理协议是沃特世新兴健康科学计划的重要组成部分。直接从样品离子化的技术是战略性技术,我们期待它会对质谱在整个健康科学的应用产生冲击。&rdquo   REIMS技术可以实现&ldquo 智能刀(Intelligent Knife ,iKnife)&rdquo ,这种设备正处于开发阶段,其可能被用于手术中的实时诊断。沃特世致力于探索这种应用合乎所有应用法规要求的可行性。迄今为止,还没有监管部门批准此类设备用于临床。   沃特世与REIMS技术的渊源要追溯到3年前,当时,沃特世与MediMass、伦敦帝国大学合作重点发展REIMS技术。合作的目标是继续推动REIMS技术在健康科学方面的应用能力。   REIMS是一种离子化技术,其可作为质谱直接进样分析的离子源。迄今为止,REIMS技术已经显示出将常压下电离进样方式应用于真实世界的能力,如食品安全、微生物学和临床诊断应用等。   REIMS产生瞬时信号信息非常适合于沃特世飞行时间质谱仪。REIMS离子源将被商品化,以成为沃特世通用离子源平台的补充。   编者注:原位电离质谱技术(又称直接分析离子化技术)是本世纪初才兴起的一项技术。2002年,普渡大学R. Graham Cooks教授首次推出直接分析离子源DESI(解吸电喷雾离子化),随后各种原位电离质谱技术如&ldquo 雨后春笋&rdquo 般涌现出来,如DART(实时直接分析)、DBDI(介质阻挡放电离子化)、EESI(萃取电喷雾离子化)、DCBI(解析电晕束离子化)和ASAP(大气压固体分析探针)等,同时也有更多的质谱供应商加入到原位电离技术商品化产品供应的队伍中。   截至目前,商品化的直接分析离子化技术有:ionSense的DART、Prosolia的DESI、沃特世的ASAP、PerkinElmer的DSA、岛津的DCBI等。(编译:杨娟)
  • 国产质谱进样离子化系统获实用新型专利授权
    据仪器信息网编辑获悉,合肥美亚光电技术股份有限公司近日成功获得&ldquo 一种用于质谱仪器的进样离子化系统&rdquo 实用新型专利(ZL201520187374.9)。   该专利涉及一种用于质谱仪器的进样离子化系统,包括进样装置和离子源,所述进样装置包括进样管,样品容器和脉冲阀,所述进样管与样品容器和脉冲阀相连通,所述离子源为脉冲高压放电电离源,包括与脉冲阀相连的晶体和用于脉冲高压放电的电极 所述电极施加高压脉冲电对从脉冲阀出口通过的样品分子进行电离。本实用新型所述的进样离子化系统,可以用于引入气体样品或液态样品的蒸汽,制造简单,可以替代常用的EI电离源以及激光溅射电离源等昂贵的离子源。   据仪器信息网编辑了解,合肥美亚光电技术股份有限公司承担了2012年度国家重大科学仪器设备开发专项&mdash &mdash &ldquo 红外激光解离光谱-质谱联用仪的研制与产业化&rdquo 。该项目由美亚光电牵头,项目第一技术支撑单位为中国科学技术大学,其他参与单位包括复旦大学、同济大学、东华理工大学、安徽大学、第二军医大学附属东方肝胆外科医院。   项目起止时间:2012年10月至2017年9月。   项目经费预算总经费9082万元,其中国家重大科学仪器设备开发专项资金4541万元,该项目公司将以自有资金投入经费4541万元。   项目预期在验收后3年内,建立产品中试生产线,预计实现年产10台的生产能力,同时具备特殊需要定制生产的能力 预计约可实现年销售收入1.2亿元的直接或间接经济效益。 编辑:刘玉兰
  • 滨松发布滨松辅助离子化基板DIUTHAME新品
    滨松多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),可大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理,与目前主要的离子化方法之一基质辅助激光解析电离(Matrix-Assisted Laser Desorption/Ionization、下面简称MALDI)方法相比,它将前期处理时间缩短到十分之一。因此可以用在市场上已有的MALDI-TOF-MS设备,主要面向目前正在使用MALDI-TOF-MS设备的制药、工业领域的国内外企业以及大学研究人员。特点1、将质谱成像分析的前期处理时间缩短为十分之一因只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理工程,将原本MALDI需要30分钟处理时间缩短为3分钟左右。2、实现高质量的质谱成像分析只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理,不需要像MALDI中需要熟练地将基质均匀涂抹。因此,不会出现前期处理中随机误差,以及获得比MALDI的质谱成像更高的重现性。3、 高精度测量低分子本产品不使用像MALDI与待测样品一起离子化的小分子基质,因此,它可对工业材料、兴奋剂禁药等的MALDI无法测定低分子进行高精度的测量。主要规格创新点:滨松多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),可大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理,与目前主要的离子化方法之一基质辅助激光解析电离方法相比,它将前期处理时间缩短到十分之一。因此可以用在市场上已有的MALDI-TOF-MS设备,主要面向目前正在使用MALDI-TOF-MS设备的制药、工业领域的国内外企业以及大学研究人员。 滨松辅助离子化基板DIUTHAME
  • 中日VOCs监测技术对比
    仪器信息网讯 2015年5月6-8日,第十六届中国环博会在上海新国际博览中心召开。会议期间,针对大家目前关注的环境问题,多场研讨会同期举行。其中,关于大气中挥发性有机物的两场研讨会&ldquo 第二届重点行业有机废气(VOCs)污染治理及监测技术交流&rdquo 和&ldquo 中日VOC测试处理技术研讨会&rdquo 均受到了大家的热捧。 会议现场   日本的挥发性有机物管控自2004年开始,至今已形成了比较完善的监测方法。日本环境省要求测定的是VOCs体积浓度,且全部换算为碳来计算。其规定了两种VOCs的测定方法,两种方法均使用采样袋进行取样,测定仪器分为催化氧化-非分散红外线分析仪和氢火焰离子化分析仪。催化氧化-非分散红外线分析仪用加热的催化剂,将VOC氧化为CO2,再通过红外线的吸收强度来测定其浓度,此方法的优点是灵敏度不受VOC种类限制,稳定 缺点是如果混入氯系的VOC气体,催化剂活性可能会降低,而且不能测定燃烧废气。氢火焰离子化分析仪对气体进入氢火焰后产生的离子流进行测定。此方法的优点是可测定燃烧气体 缺点是灵敏度因VOC种类产生差异,对含氧VOC灵敏度较高。   此外,日本目前使用的测定方法还有高分子薄膜传感器和氧化物半导体式气体传感器。高分子薄膜传感器是基于高分子薄膜溶胀的干涉放大反射法。氧化物半导体式气体传感器的原理为添加了贵金属的金属氧化物用于气敏材料,加热到一定温度后,便可与VOC气体发生反应,电阻值会急剧下降。此外也使用傅里叶红外光谱仪和气质联用仪进行分析。   目前我国挥发性有机物的检测方法多为气相色谱、气质联用,对某些气体也可采用分光光度法,对于便携式仪器可选用火焰离子化检测器、光离子化检测器和红外吸收检测器等满足一定要求的仪器。虽然我国挥发性有机物测定的是各组分的含量,但据与会专家介绍,即将出台的挥发性有机物排污收费制度中,收费标准按照挥发性有机物的总质量,暂不考虑毒性问题。 编辑:李学雷
  • 8项国家生态环境标准正式发布,完善相关污染物排放监测工作
    为支撑相关污染物排放标准实施与新污染物治理等工作,近期,生态环境部发布了《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)等8项国家生态环境标准,所有标准均2024年7月1日起实施。一、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、上海市环境监测中心、江苏省南京环境监测中心和河南省生态环境监测和安全中心。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用热学-光学校正法或热学-光学衰减法的环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统。二、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准主要起草单位:中国环境监测总站、河南省生态环境监测和安全中心、河北省石家庄生态环境监测中心、上海市环境监测中心和江苏省南京环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg+、Ca2+)连续自动监测系统。三、 环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、河南省生态环境监测和安全中心和上海市环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用能量色散 X 射线荧光光谱法的环境空气颗粒物(PM2.5)中无机元素连续自动监测系统,适用目标元素参见附录 A。四、 固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准主要起草单位:中国环境监测总站、重庆市生态环境监测中心、浙江省生态环境监测中心。本标准验证单位:上海市环境监测中心、山东省生态环境监测中心、福建省环境监测中心站、浙江省绍兴生态环境监测中心、浙江省台州生态环境监测中心、杭州谱育检测有限公司。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准适用于固定污染源有组织排放废气中 NH3和 HCl 的测定。NH3、HCl 的方法检出限均为1mg/m3,测定下限均为4mg/m3。五、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、山东省生态环境监测中心、江苏省南京环境监测中心、山东建筑大学。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心、山东微谱检测技术有限公司。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气总烃(以甲烷计)、甲烷的检出限为均为0.4mg/m3,测定下限均为1.6mg/m3。六、 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、山东省生态环境监测中心、新疆维吾尔自治区昌吉生态环境监测站。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心。本标准规定了测定固定污染源废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气中总烃(以甲烷计)、甲烷的检出限均为0.2mg/m3,测定下限均为0.8mg/m3。七、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acid and perfluorooctanesulfonate, PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate, PFOA)的测定。取样量为0.5L,定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为0.6ng/L,测定下限为2.4ng/L,PFOA(以对应酸的浓度计)的方法检出限为0.5ng/L,测定下限为2.0ng/L。八、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定土壤和沉积物中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于土壤和沉积物中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acidandperfluorooctanesulfonate,PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate,PFOA)的测定。取样量为2g,试样定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为 0.4μg/kg,测定下限为1.6 μg/kg;PFOA(以对应酸的浓度计)的方法检出限为0.5μg/kg,测定下限为2.0μg/kg。附:1、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023).pdf2、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023).pdf3、环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023).pdf4、固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023).pdf5、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023).pdf6、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023).pdf7、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1333—2023).pdf8、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1334—2023).pdf《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023)等3项标准与采用实验室手工分析方法的现行标准相比,3项标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)与现行相关监测标准相比,具有灵敏度高、抗干扰能力强等优点,可用于现场快速监测,支撑《大气污染物综合排放标准》(GB 16297-1996)、《玻璃工业大气污染物排放标准》(GB 26453-2022)等标准实施及环境监管执法工作。《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)等与现行相关监测标准相比,具有自动化程度高、抗干扰能力强等优点,可用于现场快速监测,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施及碳监测评估试点工作。《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)、《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)等填补了水、土壤和沉积物中相关分析方法标准空白。
  • 众瑞仪器发布ZR-7220型 便携式甲烷非甲烷总烃分析仪新品
    ZR-7220型便携式甲烷非甲烷总烃分析仪产品简介:ZR-7220型便携式甲烷非甲烷总烃分析仪是我公司精心研制的用于非甲烷总烃监测的便携设备,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。本仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量,其广泛应用于有机化工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测。 适用范围:l 固定源废气排放中非甲烷总烃的测定;l 烟气连续测量仪器准确度的评估和校准;l 其它可应用的场合。 执行标准: GB 16297-1996《大气污染物综合排放标准》 HJ/T 397-2007《固定源废气监测技术规范》 HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术 要求及检测方法》 HJ/T 38-2017 《固定污染源废气总烃、甲烷和非甲烷总烃的测定 气相色谱 法》 DB11/T 1367-2016 《固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢 火焰离子化检测器法》 技术特点:l 全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预; l 全程高温伴热,有效的避免高温高湿场合样品冷凝损失;l 主机进样口内置滤芯,可有效过滤颗粒物进入主机影响测试;l 配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠;l 单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式;l 测试数据可打印数据凭条,并输出PDF格式测试谱图;l 仪器状态动态显示,方便用户掌握仪器工作情况;l 采用进口隔膜阀,避免死体积及气体泄漏造成测试误差,使用寿命更长;l 管路为气相色谱专用不锈钢管,避免样管路本底值及吸附造成测试误差;l 样品分离采用填充色谱柱,预热时间小于30min,稳定更快;l 每2分钟可测出一组数据并保存测试数据,导出excel表格,选配大容量硬盘,数据无限存储;l 实时查询检测数据,标配蓝牙打印机(选配针式打印机),可按照选定的测试结果进行现场打印;l 采用高性能低功耗工控机,宽温高亮度彩色触摸屏,能够在恶劣工况下连续稳定运行;l 选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息。创新点:ZR-7220型便携式甲烷非甲烷总烃分析仪,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟管、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。 产品特点: 1、全流路EPC(电子压力控制器)设计,两定量环,一次进样自动测定总烃(THC)、甲烷(CH4)含量,测量精度高,无需人工干预; 2、全程高温伴热,有效的避免高温高湿场合样品冷凝损失; 3、配备自主知识产权的柱箱模块、FID检测器模块、电器控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠; 4、单点校准和多点校准设计,内置多条校准曲线,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准方式。 ZR-7220型 便携式甲烷非甲烷总烃分析仪
  • 检科院马强团队基于小型便携式质谱快速检测技术取得系列新进展
    中国检科院首席专家马强研究员团队在小型便携式质谱快速检测技术研究领域取得新进展,研究团队将小型便携式质谱与毛细管内微萃取、功能化核酸适配体探针、双阳离子型离子液体、原位电离等技术集成融合,实现了目标待测物的原位识别、高效萃取、亲和富集和快速检测。相关研究工作已在Chemical Engineering Journal, TrAC Trends in Analytical Chemistry, Biosensors and Bioelectronics ,Green Chemistry, Analytical Chemistry等国际权威学术期刊上发表,充分展示了我院在相关领域的科研能力、技术水平和创新成果。  1.基于核酸适配体功能化磁性纳米颗粒的毛细管内动态转移富集和分析方法研究  研究团队成功开发了一种创新性分析策略,集成了毛细管内核酸适配体功能化分散磁性固相微萃取、纳升电喷雾电离以及小型便携式质谱等技术,通过核酸适配体功能化的磁性纳米颗粒对目标待测物进行高选择性捕获,并利用磁力驱动在毛细管内不同溶液相间实现动态转移富集,同时借助电荷反转反应,实现了对目标待测物的高灵敏度质谱分析。  相关研究成果发表在国际权威学术期刊《Chemical Engineering Journal》(2024, 485: 149997 中国科学院1区Top期刊,影响因子15.3)和《TrAC Trends in Analytical Chemistry》(2024, 170: 117424 中国科学院1区Top期刊,影响因子13.1)。论文的第一完成单位为中国检科院,第一作者李林森博士,通讯作者马强研究员。  2.基于核酸适配体传感器与质量标签信号放大策略的超灵敏多重分析方法研究  研究团队利用核酸适配体传感器和质量标签技术,构建了一种由核酸适配体修饰、有机小分子标记的新型质谱探针,实现了对目标待测物的特异性识别、高效标记及信号放大功能。结合纳升电喷雾电离和小型便携式质谱技术,开发了适用于小体积微量样品的质谱分析新方法。相较于传统的色谱-质谱联用技术,该方法在样品体积、溶剂用量、能量消耗和检测灵敏度等方面均具有显著优势。  相关研究成果发表在国际权威学术期刊《Biosensors and Bioelectronics》(2024, 249: 116010 中国科学院1区Top期刊,影响因子12.6)和《TrAC Trends in Analytical Chemistry》(2024, 170: 117412 中国科学院1区Top期刊,影响因子13.1)。论文的第一完成单位为中国检科院,第一作者张莹博士,通讯作者马强研究员。  3.基于双阳离子型离子液体基质辅助离子化与电荷反转反应的绿色分析方法研究  研究团队秉持绿色分析化学理念,集成了基于双阳离子型离子液体的基质辅助离子化和电荷反转反应等技术,采用小型便携式质谱实现了对全氟和多氟化合物的绿色分析检测。与传统分析方法相比,信号响应增强了2个数量级,显著提升了检测灵敏度。  相关研究成果发表在国际权威学术期刊《Green Chemistry》(2024, 26: 1542-1550 中国科学院1区Top期刊,影响因子9.8)。论文的第一完成单位为中国检科院,第一作者郭项雨副研究员,通讯作者马强研究员。  4.基于差分离子淌度“后离子化分离”和实时直接分析质谱的快速检测方法研究  研究团队将差分离子淌度“后离子化分离”与实时直接分析质谱集成融合,并应用于玩具质量安全快速筛查检测。这一技术弥补了传统分析方法对目标待测物分离能力上的不足,在1分钟内实现了布绒玩具、儿童泡泡水、手指画颜料等玩具产品中11种初级芳香胺同分异构体的快速分离检测。  相关研究成果发表在国际权威学术期刊《Analytical Chemistry》(2024, 96: 265-271 中国科学院1区Top期刊,影响因子7.4)。论文的第一完成单位为中国检科院,第一作者闫萌萌博士,通讯作者马强研究员。
  • 离子阱还是四极杆?便携质谱究竟如何选
    十年一届的“全国生态环境监测专业技术人员大比武”正在如火如荼的进行,其现场操作部分中,各家的便携式气相色谱-质谱联用仪各显神通,帮助环境监测者检测空气中的挥发性有机物。目前市场中的便携式气质联用仪五花八门,原理也不尽相同。本文将对质谱进行简单介绍,并对不同家便携式气质联用仪在原理、和使用上的区别简要分析。 一、质谱的简介与分类质谱,是根据质量的差异对物质进行分析的设备。其具体的分析过程包括1分子的离子化、2离子质量分析、3离子检测三个过程。据此,质谱的分类也就可以根据不同的“离子化的方法”和“离子质量分析方式”两种思路来分类。 目前市售的便携气质均采用相同的离子化方式。按照质量分析器的不同可以分为以下两大类:四极杆质谱、离子阱质谱,如图1。对于不同种类的质谱,我们一般通过对比1质量范围、2检出限、3分辨率、4扫描速度、5最大工作真空度五个维度[1]对其进行评价。 图1 市场中主流便携式气相色谱-质谱联用仪 二、不同类型质谱的原理 不论是四极杆质谱,还是离子阱质谱,其分析原理是相似的,其差别在于具体的分离过程。在离子化的过程中,待测的物质被一定能量的电子束撞击,解离成离子,并碎裂成一系列能反映其物质性质信息的碎片离子。接下来,这些碎片离子被离子阱或四极杆分离并检测,按照质荷比m/z的大小绘制成一张可以体现物质定性信息的质谱图,如图2。图2 有机氯农药DDT的质谱图 四极杆分析不同离子的过程类似于原始的筛选稻谷的过程,如图3。不符合条件的稻谷(如空壳稻谷)会在筛选的过程中被风吹走,所以不会落入最终收集优质稻谷的篮子里。同理,在四极杆质谱仪中,离子化后的离子沿图3中z轴通过四极杆,在离子的飞行过程中,我们通过射频电压RF和直流电压DC产生的四极电场对离子进行操控,使得只有符合一定质荷比条件(如m/z=a)的离子才能到达四极杆另一端的检测器,给出在该质荷比下离子的数量的检测结果。此时如果我们按一定规则持续改变该筛选离子的条件,使得符合其他的质荷比(如m/z=b、m/z = c… … )的离子可以通过,那么我们就就可以根据每一个质荷比离子数量的多少,绘制出该待测物质的特征质谱图。 图3 四极杆的结构和其分离的过程 离子阱质谱分离的过程类似于喝鸡尾酒的过程,如图4。喝鸡尾酒时,如果我们正常的将鸡尾酒从酒杯中倒出,则不同颜色的酒会依次的流出。与此类似,在离子阱质谱的分析过程中,先操控离子阱的电极电压,将离子储存在离子阱中心的区域中,之后改变该四极场,使离子按照一定的顺序依次从离子阱中弹出。弹出的离子依次到达检测器后被检测器记录,根据不同时刻不同离子弹出数量的多少,我们也就可以绘制一张代表物质定性信息的质谱图。 图4 离子阱的结构和分离过程 以上两种不同的原理,使得两种质谱各自有其各自的特点和适用的领域,如表1。虽然以上的方式筛选离子制作质谱图的原理不同,但是同种物在这两种质谱中离子化后所产生的碎片是相同的,故其质谱图也是相似的。在得到质谱图后,电脑会自动将得到的质谱图与电脑中存储的标准质谱图谱库进行比对,给出物质的定性信息。以上两种质谱均配备了NIST库(美国国家标准与技术研究院National Institute of Standards and Technology) 、NIOSH库(美国国家职业安全卫生研究所National Institute for Occupational Safety and Health)并配备AMDIS解卷积软件(Automated Mass Spectral Deconvolution and Identification System),均可以可靠的给出物质鉴定的结果。表1 台式四极杆质谱与台式离子阱质谱各自的优势 三、两种质谱小型化后的区别 使用不同的技术路线,两种质谱在使用过程中的多个方面有所不同。 除了上文提到过的5个质谱核心参数的差异之外(见表2),不同的便携式质谱在使用过程中还有一些其他的区别。表2 两种便携式质谱仪在核心参数上的对比 两种质谱对真空的不同需求,会带来使用成本的差异。不同类型的质谱有其不同的适宜工作的真空度,使得使用成本上有近百倍的区别。一般而言,四极杆质谱一般需要10^(-6)的高真空,若真空度没有达到该值,会使得设备无法做到单位质量分辨。而离子阱质谱仅需要10^(-3)的真空[2],在该条件下其分辨率就可以超过单位质量分辨的需求。由于对真空度需求存在巨大的差异,不同质谱采用了不同的真空泵系统。目前四极杆质谱采用非蒸发吸气剂泵(NEG)和小型溅射离子泵,分别对设备内的活性气体、和非活性气体进行吸附。由于吸附存在饱和,故吸附泵寿命远低于机械泵:NEG泵仅有150小时的使用寿命,到达150小时使用时间后需更换,更换成本接近10万元。与此同时,目前市售的离子阱质谱一般采用涡轮分子泵、隔膜泵的组合。得益于技术的进步,以上两种真空泵不但使用寿命是NEG泵的100倍以上,也不会因现场的震动、跌落而损坏。如果将更换真空泵的成本均摊至每次检测中,便携四极杆质谱的样品检测成本,仅在更换新泵方面就需要200元/每个样品。 离子阱强大的定性能力,在现场分析中仍待进一步挖掘。由于离子阱质谱具备储存离子的能力,故其可以将目标离子存储,碰撞,并再次检测,这就使得了单一的离子阱具有等同于三重四级杆的定性能力。由于目前还没有便携式的三重四级杆气质联用仪,故离子阱在定性方面的优势可谓是一枝独秀。如果能将离子阱质谱的这一优势充分利用,可以帮助应急监测工作者在现场处理更为复杂、棘手的检测难题。 台式四极杆较宽的动态范围,在便携四极杆质谱上并未实现。对便携式气质联用仪而言,线性范围的大小主要依赖于检测方法的多样性。受制于色谱柱容量、真空泵抽速等多个条件制约,目前便携式四极杆质谱、以及离子阱质谱的检测的线性范围都在三个数量级左右,故谁的进样方式更丰富,谁就能能将检测浓度范围进一步扩大。得益于丰富的进样方式(直接进样/定量环进样、吸附-热脱附进样),Mars-400系列的便携式气质联用仪可以在不更换仪器组件的情况下于0.1-1000mL的数量级范围内调整进样量,使得仪器动态范围达到7个数量级。想要达到类似的动态范围,四极杆质谱需手动更换吸附管或定量环。综合使用不同的进样方式后,两种便携式质谱在动态范围上并没有显著差异。图5 Mars-400 Plus线性范围可达7个数量级 参考文献[1] Fitzgerald, Robert L., et al. "Comparison of an ion-trap and a quadrupole mass spectrometer using diazepam as a model compound." Journal of analytical toxicology 21.6 (1997): 445-450.[2] Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
  • 共话质谱原理及应用 “质谱离子化技术”圆桌论坛成功举行
    p style=" text-align: justify line-height: 1.5em text-indent: 2em " strong 仪器信息网讯 /strong & nbsp 2019年11月14日,为共同探讨质谱离子化技术的原理、应用以及未来的发展方向,探索促进我国质谱技术发展新思路。“质谱离子化技术”圆桌论坛在江西省南昌市东华理工大学(广兰校区)召开。论坛邀请了多位质谱技术专家与会,近50位专家学者、师生代表出席了本次活动,仪器信息网作为特邀媒体进行了报道。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/532706ad-de91-4006-baaa-8b4a18a5a500.jpg" title=" IMG_3993.JPG" alt=" IMG_3993.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 会议现场 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/70955211-6675-45d9-a6b1-166f800301bf.jpg" title=" IMG_3990.JPG" alt=" IMG_3990.JPG" / /strong /p p style=" text-align: center line-height: 1.5em " strong 浙江好创生物技术有限公董事长司朱一心主持开幕式 /strong /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d3f866e3-f593-4faa-b314-611050ed4565.jpg" title=" IMG_3997.JPG" alt=" IMG_3997.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 北京蛋白质组研究中心秦均致辞 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在专家报告环节,来自浙江好创生物技术有限公司朱一心、北京蛋白质组研究中心秦均、深圳华大基因有限公司王融、西湖大学冯杉、暨南大学李雪、暨南大学胡斌、东华理工大学徐加泉等7位质谱技术及应用专家分享了精彩的报告。报告内容上既涉及了质谱离子化技术的原理及研发应用的讨论,也包含利用质谱技术进行蛋白质组学及临床分析的探讨,以及直接质谱技术的研发及相关应用等内容。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/e16e16e0-d16b-4090-9a49-ed2b95d04c7e.jpg" title=" IMG_4005.JPG" alt=" IMG_4005.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 报告人:浙江好创生物技术有限公司 朱一心 /strong /p p style=" text-align: center line-height: 1.5em " strong 报告题目《电喷雾离子源机理的修正及应用》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " ESI离子源是目前在质谱领域应用范围最广泛的离子源之一。报告针对ESI离子源机理存在的一些疑问,提出质子氢的来源、为什么只有电喷雾离子化才可产生多电荷分子离以及为何会产生离子抑制现象等三个问题。并介绍了多年来的对此的相干研究和思考,提出了“异裂氢离子静电结合极化液滴”的电喷雾电离创新理论,并在报告中展示了其关于理论的相关验证。同时,在报告中,也展示了基于其创新的机理研究,浙江好创研制出的CEESI离子源技术。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/a016cfdf-0caa-4de7-be40-a1f14cd7be77.jpg" title=" IMG_4014.JPG" alt=" IMG_4014.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:北京蛋白质组研究中心 秦均 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《临床蛋白组学对质谱分析的新挑战》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在报告中,秦均首先介绍了过去十数年间,国家蛋白质科学设施-凤凰中心近年来在蛋白质组方面所做的工作,并主要介绍了团队基于蛋白质组研究,所进行的胃癌精准医疗体系相关工作。利用蛋白质组,对胃癌分型为7个亚型,并对不同亚型对化疗的敏感度以及不同化疗药物的效果等进行了分析研究。在报告的最后,他也对未来用于精准医疗的蛋白质检测IVD提出了相关的趋势见解。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/5edd86ed-4e07-4063-a8dd-05e6969477a7.jpg" title=" IMG_4026.JPG" alt=" IMG_4026.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 报告人:深圳华大基因有限公司 王融 /strong /p p style=" text-align: center line-height: 1.5em " strong 报告题目《朱氏离子源揭示电喷雾分子的质子化》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 质谱技术发展至今,已经被广泛应用在多个领域。然而目前绝大部分质谱的电离效率仍然不足10%,如何进一步提高电离效率是质谱技术发展面临的重要问题。报告主要介绍了利用改进型的CEESI离子源,通过改变ESI腔室条件,对多肽、咖啡因等物质进行分析,根据质子化的结果,提出气相中的质子对于ESI分子的质子化至关重要。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/edecd6e1-2fd6-4967-ba1c-b48ad548b394.jpg" title=" IMG_4065.JPG" alt=" IMG_4065.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:西湖大学 冯杉 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《发展谷胱甘肽化及蛋白质硝基化的富集鉴定方法》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 报告介绍了冯杉近年来在利用质谱技术在谷胱甘肽化及蛋白质硝基化的富集鉴定方法相关的研究工作。同时也分享了利用CEESI离子源在分析修饰蛋白质组样品时的一些优劣。 /p p br/ /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/1219292c-05b1-4aa8-9955-0c5be29db836.jpg" title=" IMG_4070.JPG" alt=" IMG_4070.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:暨南大学 李雪 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《呼气直接质谱分析方法研究》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 呼气质谱分析对于疾病诊断、环境暴露监测等领域都有着良好的应用前景。报告介绍了团队近年来在呼气质谱方法相关的研究工作。包括对仪器装置的相关改进以及利用数据分析对呼气质谱信息来源解析等相关研究工作。 /p p br/ /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2847085a-ec0d-48ef-847d-391b00e2387d.jpg" title=" IMG_4075.JPG" alt=" IMG_4075.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:暨南大学 胡斌 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《直接质谱分析技术的发展与应用》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 报告主要介绍了团队近期在直接质谱分析技术方面的研究工作。包括研究的一系列直接电离质谱技术及具有分离功能和富集功能的电喷雾电离技术,并利用直接质谱技术在农业食品安全、药品质量控制、毒品检测、临床分析、蛋白质分析以及人体健康等领域的相关的应用研究。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/41c0adb7-00bb-4ee5-8f00-04d4bebb8b91.jpg" title=" IMG_4077.JPG" alt=" IMG_4077.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:东华理工大学 徐加泉 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《混杂样品直接质谱分析》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 混杂样品由多种理化性质各异、含量丰度不等、赋存状态不同组分叠积构成。面对混杂样品时,如何顺次获取获取样品各组分的多维信息是目前的分析难点,目前,常见的方法一般采取对样品进行预处理并采取多方法多仪器联用进行分析,不仅费事费力,还会造成成分、含量、分布等信息失联的问题。报告介绍了团队对混杂样品直接质谱分析的相关研究工作,以及利用该技术对混杂样品,包括金属材料及细胞、稀土等分析应用的研究。 /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong style=" text-align: center " /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/2cd79daa-0482-4573-b38f-3d30d42cf599.jpg" title=" IMG_4033.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/b9c60fa4-22fd-4b18-8e8d-3d0a7f65861d.jpg" title=" IMG_4030.JPG" / /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong style=" text-align: center " 讨论现场 /strong br/ /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在自由讨论环节,在场质谱相关专家就质谱离子化技术的原理展开了热烈讨论,并参观了江西省质谱科学与仪器重点实验室质谱科学与仪器国际联合研究中心的实验室。 /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/9627f83a-83d6-442f-8c42-bbd0904ac348.jpg" title=" IMG_4043.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/60ee754e-20fc-489f-8f35-112b6caeb4d3.jpg" title=" IMG_4040.JPG" / /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong 参观实验室 /strong br/ /p p style=" line-height: 1.5em text-indent: 2em text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/32a757e4-275a-4452-9a79-67d609aee97a.jpg" title=" IMG_4051.JPG" alt=" IMG_4051.JPG" / /p p style=" line-height: 1.5em text-indent: 2em text-align: center " strong 合影 /strong br/ /p
  • 8项环境监测标准7月1日起实施!涉及质谱、红外等仪器
    近年来,随着国家对环境保护意识的不断增强,生态环境标准的制定与更新也不断进行中,旨在应对气候变化、生物多样性减少、水资源污染等紧迫的环境问题。这些密集发布的生态环境标准不仅涵盖了空气质量、水质、土壤、污染源等多个方面,还对监测技术、监测仪器的标准化提出了要求,推动社会向绿色、可持续发展模式转型。据不完全统计,自2024年7月1日起,一批与监测技术、仪器等相关的标准正式开始实施了,小编列出了8项标准,供大家查看。一、《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组 成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判 断等技术要求。本标准的附录A~附录D 为资料性附录。本标准为首次发布。二、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中水溶性离子连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准的附录A 为规范性附录,附录B~附录F 为资料性附录。本标准为首次发布。三、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023) 为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范环境空气颗粒物(PM2.5)中无机元素连续自动监测工作,制定本标准。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。 本标准的附录A~附录E 为资料性附录。本标准为首次发布。四、《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中氨(NH3)和氯化氢(HCl)的便携式测定方法,制定本标准。本标准规定了测定固定污染源废气中NH3 和HCl 的便携式傅立叶变换红外光谱法。本标准的附录A 为资料性附录。 本标准为首次发布。五、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的测定方法,制定本标准。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准的附录A 为资料性附录。本标准为首次发布。六、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染, 改善生态环境质量,规范固定污染源废气中总烃、甲烷和非甲烷总烃的便携式测定方法,制定本标准。 本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准的附录A 为资料性附录。本标准为首次发布。七、《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国水污染防治法》和《中华人民共和国海洋 环境保护法》,防治生态环境污染,改善生态环境质量,规范水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定本标准。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准的附录A~附录C 为资料性附录。 本标准为首次发布。八、《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的 测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)为贯彻《中华人民共和国环境保护法》《中华人民共和国土壤污染防治法》,防治生态环境污染, 改善生态环境质量,规范土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的测定方法,制定 本标准。本标准规定了测定土壤和沉积物中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准的附录A~附录C 为资料性附录。本标准为首次发布。
  • 崂应关于环境监测现场执法装备的解决方案(2022版)
    2021年12月14日,生态环境部印发《“十四五”生态环境保护综合行政执法队伍建设规划》(以下简称《规划》),要求地方按照国家有关规定积极推进执法装备配备,力争到 2022 年底前配齐装备。同时,积极推动新技术、新装备在大气监督帮扶等重点执法工作中的应用,加大无人机、走航车等应用,进一步拓展日常执法检查手段。 为进一步协助生态环境保护综合行政执法机构加强执法装备现代化建设,崂应根据《规划》和《生态环境保护综合行政执法装备标准化建设指导标准(2020年版)》更新环境监测现场执法装备配型方案,内容涵盖便携式氢火焰离子化检测仪、油气回收三项检测仪、无人机、手持式光离子化检测仪、粉尘快速测定仪、多参数气体检测仪、便携式油烟检测仪、移动源执法监测设备等十余种现场执法必备的辅助设备,详情如下:崂应解决方案现场执法辅助设备
  • 有色金属研讨会落幕 火焰原子荧光助力贵金属检测
    2017年8月6日,在北京举行的第三届全国有色金属分析检测与标准化技术交流研讨会缓缓落下帷幕。在为期两天的研讨会期间,来自中国矿冶检测机构联盟、中国矿业联合会选矿委员会、北京材料分析测试服务联盟及各检测机构等近300位有色金属界的专家、学者齐聚一堂,就我国有色金属行业中遇到的矿产检测和货物交割中存在的取样验货、分析检测中的热点、难点问题进行讨论。北京金索坤技术开发有限公司应邀参会并做了“化探样品中痕量金测试研究”的报告。目前原子吸收光谱法和原子发射光谱法是检测金的主要方法。然而这两种方法在对于化探样品中0.1个ppb以下痕量金的检测却有一定困难。在此次研讨会上,来自北京金索坤技术开发有限公司的高级工程师为参会人员分享了应用SK-880火焰原子荧光光谱仪对于化探样品中痕量金的测试方法。火焰原子荧光光谱仪(FAFS)不同于传统的氢化物发生法原子荧光,突破了其原理上的限制,液态样品经高效雾化器雾化后形成气溶胶,气溶胶在预混合雾化室中与燃气充分混合均匀,再通过燃烧的热量使进入火焰的试样蒸发、熔融、分解成基态原子,基态原子被高性能空心阴极灯激发至高能态,处于高能态的原子不稳定,在去激发的过程中以光辐射的形式发射出原子荧光。原子荧光的强度与被测元素在样品中的含量成正比,从而测定样品中金的含量。火焰原子荧光光谱仪是为了使冶金地质行业用户高效节省地测试痕量金专项研发的新品。金索坤工程师为与会各检测人员分享了火焰原子荧光和原子吸收石墨炉分别从检出限、精密度、线性范围、测试效率和测试成本几个方面进行对比。图一:实测Au检出限DL=0.0073ng/mL;RSD=0.28%图二:1.0ng/mL溶液的稳定性数据通过上述两个图中的测试数据可知,其检出限及稳定性满足对于0.1个ppb以下痕量金的测试需求。金标液浓度在1.0 ng/mL到 1.0 μg/mL范围内,荧光强度值与浓度值成线性关系。应用SK-880火焰原子荧光光谱仪测试金(Au)时,其灵敏度已经超过石墨炉原子吸收方法,并且线性范围大大超过石墨炉原子吸收方法。石墨炉原子吸收分析高浓度样品时精密度不够,且线性范围窄,而火焰法原子吸收分析高浓度样品时精密度很好,但是灵敏度不佳。表1 测试速度对比结果测试方法测试过程所需时间/s全过程总时间/s石墨炉原子吸收法干燥4063灰化10原子化3进样10火焰-原子荧光法进样(包括换样)1014积分4 表2 使用成本对比测试方法耗材耗材单价(元)单个耗材可测样品个数(个)平均每个样品所需价格(元)每个样品总成本(元)石墨炉原子吸收法石墨管进口45010000.45进口0.59国产0.235国产806000.13元素灯进口3500700000.05国产600400000.015氩气18020000.09火焰-原子荧光法喷雾器650200000.03250.0805元素灯900200000.045液化石油气150500000.003从测试效率及仪器运行成本比较而言,使用SK-880火焰原子荧光光谱仪进行测试时,只需进样测试即可,测试效率大大提高。石墨炉原子吸收光谱法测试需干燥、灰化、原子化、进样测试四个阶段,每个阶段均需一定时间完成,因此每个样品的测试时间会相对较长。由表1可知,石墨炉原子吸收法测试一个样品所需时间为63 s,而使用火焰-原子荧光法测试时间缩短至14 s,效率大大提高。运行费用方面,以石墨炉分析金元素为例,一个国产石墨管80元左右平,平均600次进样就要消耗一根石墨管,而用进口的石墨管要达到450元左右,平均1000次进样就要消耗一根石墨管。有时候由于氩气保护不好,或除酸不彻底,几十次进样就会损坏一根石墨管,分析费用相当可观。由表2中数据可知,测试一个样品,石墨炉原子吸收法的使用成本是火焰-原子荧光法使用成本的3~7倍。 此外,工程师还分享了在测试金前处理过程中,吸金泡沫种类的选择和解析液硫脲浓度的选择与测试结果之间的影响。对于火焰原子荧光光谱仪测试金元素的注意事项及如何应用扣除背景技术测试粮食及化妆品中镉元素,请关注金索坤近期网络讲堂。此次研讨会的主旨在于以检测技术、国内贸易仲裁规范与联盟标准促进矿产贸易公平和绿色发展。北京金索坤技术开发有限公司作为中国氢化法原子荧光技术的发源地以及原子荧光行业的领跑者,会一如既往的为原子荧光技术的发展探索乾坤,研发更适用于矿产样品重金属检测的新型原子荧光光谱仪。金索坤SK-880火焰原子荧光光谱仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制