当前位置: 仪器信息网 > 行业主题 > >

基线漂移和噪音检测

仪器信息网基线漂移和噪音检测专题为您提供2024年最新基线漂移和噪音检测价格报价、厂家品牌的相关信息, 包括基线漂移和噪音检测参数、型号等,不管是国产,还是进口品牌的基线漂移和噪音检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基线漂移和噪音检测相关的耗材配件、试剂标物,还有基线漂移和噪音检测相关的最新资讯、资料,以及基线漂移和噪音检测相关的解决方案。

基线漂移和噪音检测相关的资讯

  • 【步琦维修小课堂】ELSD3300基线噪音大,该如何排查?
    用户在使用 ELSD 3300 连接 HPLC 使用时,有时会遇到基线噪音大的问题,遇到 ELSD 基线噪音大问题时: 1请检查仪器右侧废液管的摆放位置是否正确,错误的摆放位置会导致废液积液,甚至回流。 2请检查仪器右侧的废液管末端插入废液瓶的位置是否正确,废液管口不要没入废液,以免废液液面高于管口,导致废液排放不畅。 3请检查仪器背后废气管的摆放位置是否正确,废气管应保证出气口后 1-1.5 米至少向上 45 度倾斜,以保证废气排放通畅,不被废气冷凝液堵塞。如果以上手段用户自行排查后,都无法解决基线噪音大问题,那可能是 ELSD 3300 检测器内部污染导致。请按照以下视频指导步骤来清洗漂移管:此外,基线噪音大还可能来自以下其它几方面:症状解决办法A:噪音来自色谱柱柱在线流动相接通雾化气接通激光开结果:移走色谱柱噪声消失。色谱柱可能泄漏硅胶或装柱材料。更换色谱柱。B:噪音来自流动相色谱柱已移走流动相接通雾化气体接通激光开结果:当泵停止时噪声消失。当前设定的漂移管温度和气体流速不能使流动相完全蒸发。或许雾化器、漂移管和/或光池脏。流动相或许被微粒污染。过滤当前使用的流动相或更换新配制的且过滤过的流动相。流动相或许气泡太多。对流动相脱气。泵也许就是噪音来源。检查泵是否有脉冲。确保泵已经充分排气操作。需要的话,加一个脉冲阻尼器到系统中。检查泵单向阀和密封垫,需要的话应更换。C: 噪音来自气体色谱柱已移走流动相停掉雾化气开激光开结果:关掉雾化气噪声消失气源可能被微粒污染。更换质量好、纯度高的气体。雾化器、漂移管和/或光池或许需要清洁。D:噪音来自光池色谱柱已移走流动相停掉雾化气开激光开结果:激光关掉噪声消失或许光池需要清洁。检查数据线是否引起噪音。检查光阱是否有冷凝物。E:噪音来自电路色谱柱已移走流动相关掉雾化气关掉激光关掉结果:在上述条件下基线噪声仍然存在电路故障。请与步琦售后联系。
  • XRF公司收购x射线荧光漂移监测业务
    位于墨尔本的XRF公司将收购Coltide 的x射线荧光漂移监测业务。   位于阿德莱德的Coltide是一家x射线荧光漂移监测设备的制造商和供应商,x射线荧光漂移监测器主要被矿业公司和研究机构用于元素的精确校准。   Coltide公司由Keith Norrish博士创立,Keith Norrish博士是波长色散x射线光谱法用于矿物分析研究的先驱。   Coltide的x射线荧光漂移监测设备的生产制造将被转移到XRF公司在墨尔本的工厂,XRF公司的专业生产工艺和模式将确保制造出高质量和高使用寿命的产品。(编译:刘丰秋)
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 上海科创推出网络化高纯气体分析气相色谱仪
    上海科创新推出网络化高纯气体分析气相色谱仪   一、*参数   1、检测器指标   氢火焰检测器(FID):   灵敏度(检测限) ≤5.0×10-12g/s(正十六烷)   基线噪音≤1×10-13A   基线漂移≤ 5×10-13A(30min)   线性范围:107   稳定时间≤1h   热导检测器(TCD):   灵敏度(检测限)≥3000-10000Mv.ml/mg(苯)   基线噪音≤0.01mv   基线漂移≤0.1mv(30min)   线性范围:105   稳定时间≤1.5h   *小检测浓度:(高纯氩中6组份)   H2≤0.5ppm,O2≤1.5ppm,N2≤2ppm,CO≤0.2ppm,CH4≤0.2ppm,CO2≤.5ppm   温度控制   温控范围:温度范围:室温以上8℃-400℃   温控精度:±0.5%   程序阶数:8阶   程升速率:0-39℃/min(调节增量0.1℃/min)   程序升温重复性:≤1%   二、网络化仪器特点:   1、全微机控制系统,电脑反控(一台电脑可控制N(N≦253)台色谱仪,具有六路温度控制系统 四路时间程序系统。   2、色谱仪采用**的10/100M以太网通讯接口,可以实现对仪器的远程监控和远程数据传输处理及监管。可连接到单位主管及上级主管,便于主管实行监管。还可以通过互联网连接到生产厂家,实现远程诊断、远程程序更新等。   3、数字信号输出(内置色谱工作站),信号网线直接输出。   4、可同时选配2种常用检测器。(FID、TCD、ECD、FPD中选1-2种)   5、大容量柱箱带自动后开门,可进行8阶程序升温 近室温控制功能(室温以上8℃)。   6、可配置填充柱进样器、毛细管柱进样器、气体进样器、转化炉、热解析装置、顶空进样器、热裂解装置、自动进样器等。   7、具有故障自我诊断功能,随时显示故障部位及性质 具有超温保护功能,*一路温度超过设定温度,均会自动停止加热。
  • 南京科捷发布GC 7900(AFC) 气相色谱仪新品
    性能特点●高精度气体流量控制系统(AFC)● 彻底摒弃了传统指针式压力表、采用EPC技术数字化控制、自动化水平和整体性能接近国际一线品牌● 高精度气体流量控制、确保GC分析的准确性、确保日常分析效率、EPC控制精度0.01psi● 实现了气路故障自我保护、自动点火、熄火重点、自动开启气路、达到了一键启动● 多种控制组合模式操作、压力流量全自动调节、控制和显示、可运行省气模式● 彩色宽屏,触摸按键的独特设计● 采用7寸工业彩色液晶屏设计、显示信息更全、界面操作更合理● 具有中/英文两套操作系统、满足不同的用户需求● 采用电阻式触摸屏、手感好、经久耐用、屏幕和软件双操作实现无缝连接领**的结构设计● 模块化的结构设计,便于升级,可选配多种高性能检测器如FID,TCD,ECD,FPD和NPD等,满足复杂样品的分析需求● 先进的进样器设计,独特的内衬管结构和特殊处理工艺,确保样品零吸附● 适配多种进样方式如:顶空进样器,热解析仪,液体自动进样器,轻松胜任各种样品类型的分析● 设计定时自启动程序,可轻松的完成气体,液体样品的实验室在线分析极具用户体验的软件操作系统●采用了先进的10/100M自适用以太网通信接口,内置IP协议栈,轻松组成局域网,实现远距离传输,远程控制,远程诊断● 具有界面简单,数据处理功能强大,实现的GC整套分析管理工作的严谨及高效自动化● 配备IBrainChrom工作站,可支持多台色谱仪(253台)同时工作,实现数据处理以及反控● 具有完整的审计追踪,用户权限管理,电子签名等功能,使得资料,文件均符合GMP管理要求● IBrainChrom工作站内建的Modbus/TCP服务器,可以方便地使分析结果接入DCS(集散控制系统)● 内部设计3个独立的连接线程,看连接到本地处理、单位主管以及上级主管部门,方便单位主管以及上级主管部门实时监控仪器的运行和对数据的分析主要技术指标● 界面显示:7寸工业彩色液晶屏● 温控区域:8路● 温控范围:室温以上5℃~450℃,增量:1℃,精度:±0.01℃● 程序升温阶数:16阶● 程升速率:0.1~40℃/min(普通型);0.1~60℃/min(高速型)● 外部事件:6路● 进样器种类:填充柱进样、毛细管进样● 检测器数目:3个(zui多);FID、TCD、ECD、FPD和NPD任选● 气路控制: AFC方式● AFC工作模式:2种;恒流模式、恒压模式● AFC量程:压力:0~0.6MPa;流量0~100mL/min或0~500mL/min(空气)● 压力传感器:准确度:满量程的重现性:重现性:● 电源:220V±10%,50Hz;2500W(zui大)● 体积:a×b×cmm● 重量:50kg(约)检测器技术指标● 检测限:Mt≤3×10-12g/s (正十六烷-异辛烷溶液);● 噪音:≤5×10-14A● 漂移:≤1×10-13A/30min● 线性范围: ≥106TCD● 灵敏度S≥3500mV• ml/mg(常规)5000mV• ml/mg(高灵敏)(苯-甲苯溶液)● 噪声:≤10μV● 基线漂移≤30μV/30min● 线性范围:≥104ECD● 检测限:≤1×10-14g/s● 噪声:≤0.03mV● 基线漂移:≤0.2mV/30min● 线性范围:≥103● 放射源:63NiFPD● 检测限:(S)≤5×10-11g/s ,(P)≤1×10-12g/s;● 噪声:≤0.03mV● 基线漂移:≤0.2mV/30min● 线性范围:≥103(S),102(P )创新点:1、彻底摒弃了传统指针式压力表、采用EPC技术数字化控制、自动化水平和整体性能接近国际一线品牌 2、实现了气路故障自我保护、自动点火、熄火重点、自动开启气路、达到了一键启动 3、多种控制组合模式操作、压力流量全自动调节、控制和显示、可运行省气模式 GC 7900(AFC) 气相色谱仪
  • 抽丝剥茧探案三:难以捉摸的保留时间漂移
    小伙伴们大家好,前面我们分别对鬼峰和肩峰离奇事件进行了分析,找出了根源。最近接到实验室小jie姐报案称实验过程保留时间有规律的漂移,小伙伴描述的着实诡异,跟本探长继续来探案吧,揭开谜底。先来看看备案笔录:User:老师,发现主峰每一针都向后移动半分钟。Engineer:只有保留时间移动?峰型和柱效有变化吗?User:没有,用了一个星期,峰已经从5分钟漂到10分钟了。Engineer:手动混匀走单泵还是双泵用的混合器走样?User:单泵… … 案情陈述客户做某单糖衍生成盐的物质A,色谱条件:色谱柱:氨基柱,4.6×250mm,5μm。柱温:35℃;流动相A:乙腈,流动相B:硫酸缓冲溶液(取磷酸氢二钾7.0g,用2000mL水溶解,加氨水0.5mL,用磷酸调节pH至7.5);流动相比例:流动相A:流动相B=75:25;流速:1.5mL/min;紫外检测波长:195nm;进样体积:20μL。样品由1:1乙腈水溶解制得。案情细节披露客户小jie姐在实验过程中发现在一个序列中保留时间有规律的后延,客户讲述峰形没有太大变化,峰面积RSD也还好,换过不同的实验人员多次重新配置了流动相,均存在这个问题,色谱图如下:漂移色谱图漂移重叠的色谱图这里要特别指出,用户小jie姐用的色谱柱和色谱仪不是月旭品牌的,仅仅是基于用户小jie姐对我们月旭工程师的信任,向我们的销售工程师寻求指导帮助,我们都是做好事不留名的月旭人。案情分析我们先来罗列一些导致保留时间漂移的原因,再结合用户的色谱图来分析一下。导致保留时间漂移的可能原因及解决办法:1、色谱柱原因:1)柱子没有达到平衡解决办法:延长平衡时间。2)色谱柱污染或键合相流失解决办法:更换新柱。2、仪器原因:1)柱温箱温度变化解决办法:保持室温恒定,柱温设定正确且恒定。2)仪器原因导致的流动相比例变化,如混合器,比例阀出现故障。解决办法:排查仪器流速恒定,检查比例阀及混合器是否正常。3、流动相配置原因解决办法:重新配置流动相,确保配置比例准确,对于易挥发的正相体系可使用安全瓶盖防止挥发;在使用缓冲盐的体系保证缓冲盐没有沉淀或析出,pH恒定。 4、系统漏液解决办法:排查系统的各接口处是否漏液,观察压力波动情况以及压力线。如有漏液应重新连接管路拧紧。 5、样品自身原因,如样品降解,保留时间发生变化解决办法:研究更利于样品稳定的流动相及溶剂体系。根据用户的情况给出建议1、重配流动相2、排查仪器3、排查柱子如此有规律的变化,考虑仪器的原因比较大。我们依据用户的陈述来判断一下:首先用户说柱温箱温度设定没问题而且温度恒定,我们排除这个原因。其次小jie姐说他们是等度而且是预混合之后才上机的,并且多人多次配置,这样基本可以排除流动相的问题。第三,针对色谱柱的问题客户强调他们延长了平衡时间,而且分不同工作日跑了几次序列均存在这个问题,故可以排除色谱柱的问题,最后只剩下仪器的问题了,由于用户没有时间慢慢排查,换了一台仪器,保留时间漂移的问题没有再出现,至此谜底解开了。Engineer: 老师您好,换了仪器之后,问题有改善吗?User: 昨天换了两台仪器,有一台仪器跑出来的时间漂移不明显,可以接受!Engineer: 这根柱子比较特殊,现在漂移情况如何?User: 嗯嗯,做了一天下来,漂移不到1分钟。Engineer: 太好了!征求用户同意我们编辑了本文,分享给更多的用户小伙伴,当实验过程中遇到保留时间漂移的情况时莫慌,我们可以逐一排查仪器、色谱柱、流动相、样品等因素,色谱图是以上各部分综合作用产生的结果,我们只要耐心一一排查就可以找出问题所在。
  • 检测分析充油电器设备中气体---得利特气相色谱分析仪
    在电力、石化、制药、科学研究等领域都有着重要的作用,各异的功能要求造成了多样繁杂的分析仪器仪表种类,即使是同样功能的分析仪器,具体到每个行业,又有不同的要求。各类分析仪表仪器之间的原理、设计、制造等有较大区别,每一款分析仪器涉及的专业知识广而深,导致自主研发和市场开发的难度非常大,存在较高的技术壁垒。繁杂多样的下游需求结构和技术壁垒造成了行业细分市场分割特征明显。 相色谱法至今已有50多年的发展历史,现在已成为一种成熟且应用广泛的分离复杂混合物的分析技术。其中,气相色谱仪由于适用性、分离能力及样品回收率等方面的优势,更是受到广大分析测试领域人员的欢迎。 近年来,我国对气相色谱仪的需求有增无减,整个气相色谱市场迎来发展的时机。尽管2020年新冠疫情肆虐,但气相色谱仪市场并未受到影响。A1220气相色谱分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。主要技术特点与参数:1、实现计算机实时控制和数据处理:仪器自带数字接口,通过一根通讯线在计算机上实现实时数据信号采集、数据处理及检测结果。仪器电脑连接互联网,可通过远程计算机与仪器连接,实现远程数据采集和管理。提高了装置的自由度,促进实验室的有效应用。通过人性化软件操作界面,极大方便用户设定包括各路温度、程升、检测器、桥流等参数;直观地操作包括FID点火(先已改成全自动的,无需人工操作),开关桥流,开启关闭控温,和各个时间事件等功能;2、高精度,稳定可靠的温度控制系统:主控电路采用了功能先进的微处理器、大容量存储器的采用,使数据的保存可靠;同时集测量、控制、电路板的一体化设计提高了仪器的抗干扰性和可靠性;采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; 柱箱具有超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;3、简洁明了的人机对话界面,操作简便,易学易用仪器采用大屏幕LCD液晶汉字显示,显示直观、操作方便、适合中国国情;自我诊断功能,能显示故障部位;数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;具有秒表、计数功能4、双重稳定的高精度气路控制系统。载气气路采用先稳压后稳流的双重稳定的气路系统流量调节阀采用旋钮调节,直观、可靠性好。配有电子压力显示系统,精度比压力表更高。5、柱室采用跟踪升温方式。6、仪器检测低含量的烃类和高含量的CO、CO2可分开检测,避免相互干扰。7、氢火焰离子化检测器(FID):圆筒型收集极结构设计,金属喷嘴,响应极高检测限:≤2×10-12g/s(正十六烷/异辛烷)基线噪声:≤2×10-13A基线漂移:≤2×10-12A/30min线性:≥106可调式全自动点火,稳定时间:30分钟8、热导检测器(TCD):采用半扩散式结构电源采用恒流控制方式灵敏度:≥5000mVml/mg。基线噪声:≤10μV。基线漂移:≤100μV/30min。线 性:≧1059、大屏幕LCD液晶显示:清晰显示各路温度的设定值,实测值和保护值实时显示仪器状态触摸式键盘,菜单式操作,全自动点火10、温控指标:温度范围:室温上5℃~420℃?精度±0.1℃11、其他参数:电源:220V±22V,50Hz,功率:≥2kW重量:55KG外形尺寸:60cm×50cm×50cm
  • 岛津司小令大讲堂丨第三期 溶解的空气(氧)对检测的影响
    ?疫情防控战还在继续,岛津将一如既往地依照国家要求,做好防控工作。今天,司小令大讲堂继续在线上为大家带来液相色谱小知识,防控不停学!第三期溶解的空气(氧)对检测的影响 形成气泡产生的影响较容易被理解,它往往使压力波动,造成基线噪声。然而,有时溶于溶剂的空气并不形成气泡,但其造成的影响依然是严重的,且不易被发现。 1.大量溶解的氧气对检测的影响溶解于溶剂的气体中,氧气对检测的影响最大,而且是多方面的。即使在当时的温度、压力下,溶解于溶剂的量并不饱和,不足以形成气泡,其影响还是相当严重的。 (I)荧光检测:当使用荧光检测器来测定萘、芘等多核芳香烃或维生素E等生育酚时,溶解于流动相中的氧,由于荧光猝灭而影响化合物荧光强度,干扰测定。此时,尽管基线稍有降低,峰高的降低则更为明显。例如,当大量氧气溶于流动相对;测得萘的荧光强度(峰面积)只有完全脱气以后萘的峰面积的25%。氧气有可能吃掉荧光(II)电化学测定:特别是在还原电位下测定时,由于氧的浓度高,产生还原电流使信噪比变差。 2.大量或可变的溶解氧对紫外检测的影响在紫外区,氧本身就有吸收,使测得结果和基线都偏高,例如在210nm饱和有空气的甲醇(氧的分压 0.2大气压)在过氦脱气以后,基线可降低0.32吸收单位(图一)。图一:210nm测定时脱气与否对基线的影响 由引可见,经过脱气可大大降低紫外区的背景。另一方面,氧气的存在不仅使基线变高,而且当氧气的浓度随着压力、温度等诸因素变化而变化时,将使基线波动十分严重。由上例可知,如果在满标尺 0.01吸收单位测定时,氧的浓度变化1%,将引起基线相当于30%满标尺的变化。此外,当使用含氧的甲醇等作梯度洗脱时,随着流动相甲醇的含量增多而升高的基线,有可能影响进一步的数据处理(见图二) 图二:水-甲醇梯度洗脱时,脱气与否对210nm处测定基线的影响,甲醇在30分钟内由20-60%变化,然后维持5分钟 溶解氧的影响在短波区较为明显,但也与溶剂种类有关,例如溶解氧对四氢呋喃的影响一直延伸至254mm处,在254 mm处,溶解氧的影响由四氢呋喃,甲醇、乙腈、水逐渐降低。就乙腈而言,即使在较短长区影响也不明显。因此,同样的氧气浓度、对不同的溶剂其影响也不同,可见其吸收的增加并非完全由于自身的吸收,也许还与氧与溶剂杂质之间的某些反应有一定的关系。 进行紫外波外区高灵敏测定时,一般采用乙腈较好,如果为了提高分离效率,则一定要控制好溶解氧的量,换言之,必须采用适当的脱气手段。 3.溶解空气量的变化引起示差检测时的基线漂移 折射率不仅与液体中固体或液体溶质的浓度有关,也与气体溶质的浓度有关。因此,由于温度变化而引起气体溶解量的变化,将使折射率基线漂移波动。例如以四氢呋喃为溶剂,在满标尺为8×10-6折射率单位的情况下测定时,溶剂中空气的溶解量改变1%,则导致10%以上的基线变化。要抑制此种干扰,需使流动相处于恒温,或用氦置换溶解的其它气体,相对而言,氦的溶解度随温度的变化较小。图三:对示差检测器基线的影响 综上所述,即使未形成气泡,溶解的空气对测定还是有影响的。 下期预告流动相脱气方法敬请期待!
  • 北京睿信捷环保发布RXJ5050型实验室气相色谱仪新品
    仪器特点:★ 显示窗口采用5.7寸工业彩色液晶屏设计,显示信息更全,界面操作更合理;★ 具有中、英文2套操作系统,满足不同的用户需求;★ 摒弃了易破、低档的PVC贴皮按键,采用塑料模具按键,手感好,经久耐用;★ 采用了先进的10/100M自适应以太网通信接口、内置IP协议栈,便于企业通过内部局域网、互联网实现远距离的数据传输;方便实验室架设、简化实验室的配置及数据的管理;★ 内部设计3个独立的连接线程,可以连接到本地处理、单位主管(如总工、技术厂长等)、以及上级主管部门(如环保局、技术监督局等),方便单位主管和上级主管单位实时监控仪器的运行以及分析数据结果;★ 配备的NETChrom® 工作站,可以支持多台色谱仪(253台)同时工作,实现数据处理以及反控;★ NETChrom® 工作站内建的Modbus/TCP服务器,可以方便地使分析结果接入DCS(集散控制系统;★ 采用模块化的结构设计,设计明了,便于更换升级,保护了投资的有效性,可满足复杂样品分析,可选配多种高性能检测器,如FID、TCD、ECD、FPD和NPD等;★ 彻底摒弃了传统指针式压力表,并可加载EPC技术进行气路控制,自动化水平和整体性能接近国际一线品牌;★ 实现了气路故障自我保护、自动点火、熄火重点、自动开启气路,达到了一键启动;★ 设计定时自启动程序,可以轻松的完成气体、液体样品的在线分析(需配备进样部件);★ 系统设计自动进样器接口,内置多款驱动程序,可随时加装自动进样器; 主要技术指标:★ 界面显示:5.7寸工业彩色液晶屏★ 温控区域:8路★ 温控范围:室温以上4℃~400℃,增量:1℃,精度:±0.01℃★ 程序升温阶数:8阶★ 程升速率:0.1~39℃/min(普通型);0.1~80℃/min(高速型)★ 外部事件:6路;辅助控制输出2路★ 进样器种类:填充柱进样、毛细管进样、六通阀气体进样、自动顶空进样任选★ 检测器数目:3个(最多);FID、TCD、ECD、FPD和NPD任选★ 气路控制:机械阀控制方式、EPC方式任选★ EPC、EFC工作模式:2种;恒流模式、恒压模式★ EPC、EFC工作气体:5种;氮气、氢气、空气、氦气、氩气★ EPC、EFC程升:4阶★ PC、EFC控制量程:压力:0~0.6MPa;流量0~100mL/min或0~500mL/min(空气)★ 压力传感器: n 准确度:满量程的★ 体积:572×552×465(高)mm★ 重量:50kg(约)★ 检测器技术指标n 氢火焰离子化检测器(FID)u 检测限:Mt≤3×10-12g/s (正十六烷-异辛烷溶液);u 噪音:≤5×10-14Au 漂移:≤1×10-13A/30minu 线性范围: ≥106n 热导检测器(TCD):u 灵敏度:S≥3500mV• ml/mg(常规)5000mV• ml/mg(高灵敏)(苯-甲苯溶液)(放大2、4、8倍任选)u 噪声:≤10μVu 基线漂移:≤30μV/30minu 线性范围:≥104n 电子捕获检测器(ECD):u 检测限:≤1×10-14g/su 噪声:≤0.03mVu 基线漂移:≤0.2mV/30minu 线性范围:≥103u 放射源:63Nin 火焰光度检测器(FPD):u 检测限:(S)≤5×10-11g/s,(P)≤1×10-12g/s;u 噪声:≤0.03mVu 基线漂移:≤0.2mV/30minu 线性范围:≥103(S),102(P) 创新点:采用了先进的10/100M自适应以太网通信接口、内置IP协议栈,便于企业通过内部局域网、互联网实现远距离的数据传输;方便实验室架设、简化实验室的配置及数据的管理; 内部设计3个独立的连接线程,可以连接到本地处理、单位主管(如总工、技术厂长等)、以及上级主管部门(如环保局、技术监督局等),方便单位主管和上级主管单位实时监控仪器的运行以及分析数据结果; 配备的NETChrom® 工作站,可以支持多台色谱仪(253台)同时工作,实现数据处理以及反控,达到了业界领先的水平; NETChrom® 工作站内建的Modbus/TCP服务器,可以方便地使分析结果接入DCS(集散控制系统; 采用模块化的结构设计,设计明了,便于更换升级,保护了投资的有效性,可满足复杂样品分析,可选配多种高性能检测器,如FID、TCD、ECD、FPD和NPD等; 彻底摒弃了传统指针式压力表,并可加载EPC技术进行气路控制,自动化水平和整体性能接近国际一线品牌; ★实现了气路故障自我保护、自动点火、熄火重点、自动开启气路,达到了一键启动; ★设计定时自启动程序,可以轻松的完成气体、液体样品的在线分析(需配备进样部件); ★系统设计自动进样器接口,内置多款驱动程序,可随时加装自动进样器; RXJ5050型实验室气相色谱仪
  • 正相色谱,出峰漂移,月旭带你一探究竟!
    正相色谱是我们色谱分离中一种常用的分离模式。其分离原理是基于固定相的极性大于流动相,通过吸附作用,实现不同极性物质之间的分离。正相色谱的优势是可用于分离反相色谱不保留或极性较强的化合物,且适用于绝不溶于水的物质分离。但是正相色谱也有困扰我们的难题。经常会有老师在使用正相色谱柱时出现出峰保留时间漂移的情况,有些是使用的正相柱子,样品出峰不断地有前移的趋势,有些是新买的正相柱子分离样品保留时间和原有的旧柱子不一致等。这到底是怎么回事呢,出现这类保留时间漂移的问题又该如何解决呢?今天小旭就带大家一探究竟。首先我们简单介绍下正相色谱+➱ 定义:固定相的极性大于流动相,基于固液吸附的原理,分离不同极性的样品。➱ 洗脱顺序:极性低的物质先被洗脱出来。流动相的极性越强,洗脱能力也越强。➱ 常见的正相色谱柱有:硅胶柱,二醇基柱,氨基柱,氰基柱。➱ 常用的流动相:主要试剂:烷烃(戊烷,己烷,庚烷,辛烷),芳香烃(苯,甲苯,二甲苯),二氯甲烷,四氯化碳。辅助试剂:甲基-t-丁基醚(MTBE),乙醚,四氢呋喃(THF),乙酸乙酯,乙腈,丙酮等。正相色谱的优势是可用于分离反相色谱中不保留或极性较强的化合物,且适用于绝不溶于水的物质分离,还可用于拆分异构体。但正相色谱中,却易出现保留时间漂移的情况。这究竟是什么原因呢?原来正相色谱柱的固定相,特别是硅胶柱中未改性的裸硅胶,其中的硅醇基的极性特别强,其对流动相中甚至是实验环境中的水分含量非常敏感。而由于正相色谱中固定相的水分含量常常是个影响选择性的关键参数,流动相中的水分含量通常影响保留时间和分离度。我们知道大部分溶剂都含有小部分的溶解水,比如正己烷在20℃下,其水分含量是0.0111%w/w。因此正相色谱中出现保留时间波动较大的问题,大多可归因于固定相或流动相中水分含量的变化,而填料可能还是完好的。那么正相色谱中,出现这种固定相或者流动相中的水分含量影响物质保留时间的问题,该如何解决呢?小旭给大家分享两个解决方法:1、去除固定相上的水分用含2.5%二甲氧基丙烷(dimethoxypropane)和2.5%冰醋酸的正己烷冲洗色谱柱30个柱体积;2、使用水分含量可控的流动相(比如:用水半饱和)半饱和流动相配置方式:将无水的非极性流动相分成两半;其中一半中加入一定量水,并混匀搅拌约一小时,静置分层后,将多余的水相全部除去;将两部分非极性流动相重新混合在一起就配成了“半饱和”流动相。快来看一个案例吧~ ● ● ● ● ● ● ● ➱ 售后案例背景客户新买的Topsil® (拓谱)Silica硅胶柱,在做一个老项目时,目标化合物的保留时间出现了漂移。同时对比旧柱子上目标化合物的保留时间是在10min左右,而新柱子的目标化合物的保留时间却出现在了20min左右。色谱条件:色谱柱:月旭Topsil® Silica(4.6×250mm,5μm)。流动相:乙酸乙酯/正己烷/甲醇/正丙醇=60/40/2/1;检测波长:256nm;柱温:30℃;流速:1.0mL/min;进样量:100μL。➱ 售后排查月旭实验室对该项目进行了验证,发现的确在新柱子上目标化合物的保留时间与客户实验室的做样结果一致,在20min左右。继而月旭实验室对该方法流动相中的主要试剂乙酸乙酯和正己烷进行了水半饱和的操作,使用水半饱和的流动相重复了实验,样品中目标物的保留时间稳定在了14min左右,与客户实验室用旧柱子做样的保留时间基本一致。如下图。通过月旭实验室的排查验证,流动相用水半饱和的方法,完美解决了客户在应用正相色谱柱时出现目标峰保留时间漂移的问题。我们回访客户后,还有彩蛋哦~产品详情
  • 得到完美的色谱图要跳过哪些坑?HPLC谱图常见故障及解决方法!
    p   液相色谱中的许多问题都能在谱图上反映出来,其中有一些问题可以通过改变设备参数得到解决 而其他的问题必须通过修改操作程序来解决。对于色谱柱和流动相的正确选择是得到好的色谱图的关键。 /p p   一、拖尾峰 /p p   1. 筛板阻塞,柱子两头的过滤筛板如果堵塞,样品就会在筛板部分受阻而形成时间延迟,使得样品在柱后流出时峰型形成拖尾。需要通过反冲色谱柱,或者更换筛板。 /p p   2. 色谱柱塌陷,是指色谱柱由于其它原因引起了柱效率丧失,不能对物质形成保留,使得物质不在固定相上保留而随流动相流出,但是又还有一点柱效,因此形成拖尾。需要重新填充色谱柱或者更换色谱柱。 /p p   3. 有污染,即样品不在同一起跑线起跑,从后面开始跑得到达终点稍晚,表现出拖尾。更换色谱柱或者采用有机溶剂梯度洗脱1h以上,以冲洗柱子。 /p p   4. 流动相PH值选择错误,如某PH下有的样品存在分子型和离子型的动态平衡,离子型的陆续向分子型转化就会表现出拖尾。调节PH值可抑制分子解离,改善拖尾,对于碱性化合物,相对较低的PH值更有利于得到对称峰。 /p p   二、前沿峰 /p p   1. 样品过载,被保留的样品在正常出峰时间前陆续出来,形成前沿峰。降低样品含量。 /p p   2. 样品溶剂选择不恰当,当样品溶剂的洗脱能力大大强于流动相时会出现前沿峰,例如,在反相色谱中用已腈做样品溶剂,而流动相的洗脱力较弱时会出现前沿峰。选择流动相或者接近流动相的比例作为样品溶剂。 /p p   3. 色谱柱损坏,色谱柱柱效损失,不能对物质形成保留。更换色谱柱。 /p p   4. 在大峰前有小峰出现,假象前沿峰,即大峰前包埋了没有分开的小峰。调整流动相洗脱梯度。 /p p   三、基线漂移 /p p   1. 柱温波动,即使是很小的温度变化都会引起基线的波动,通常影响示差检测器、电导检测器、较低灵敏度的紫外检测器或其它光电类检测器。使用柱温箱,控制好柱子和流动相的温度,在检测器之前使用热交换器。 /p p   2. 流动相不均匀,流动相条件变化引起的基线漂移大于温度导致的漂移。使用HPLC级的溶剂,流动相在使用前进行脱气处理。 /p p   3. 流通池被污染或有气体。用甲醇或其他强极性溶剂冲洗流通池。如有需要,可以用1N的硝酸(不要用盐酸)。 /p p   4. 流动相配比不当或流速变化。更改配比或流速,为避免这个问题可定期检查流动相组成及流速。 /p p   5. 样品中有强保留的物质,以馒头峰样被洗脱出,从而表现出一个逐步升高的基线。使用保护柱,如有必要,在进样之间或在分析过程中,定期用强溶剂冲洗柱子。 /p p   四、出现宽峰 /p p   1. 色谱柱污染或失效,造成塔板数降低。更换同样类型的色谱柱,如果新柱子可以提供对称的色谱峰,则用强溶剂冲洗旧柱子。 /p p   2. 柱子与检测器之间的管路太长或管路内径太大。更换内径较小的短管路。 /p p   3. 检测器对反应时间或池体积响应过大。减少响应时间或使用更小的流通池。 /p p   五、基线噪音 /p p   1. 在流动相、检测器或泵中有空气(尖锐峰)。流动相脱气,冲洗系统以除去检测器或泵中的空气。 /p p   2. 漏液。检查管路接头是否松动,泵是否漏液,是否有盐析出和不正常的噪音。如有必要,更换泵密封。 /p p   3. 流动相混合不完全。用手摇动使混合均匀或使用低粘度的溶剂。 /p p   4. 温度影响(柱温过高,检测器未加热)。使用柱温箱,减少温度差异或加上热交换器。 /p p   5. 在同一条线上有其他电子设备(偶然噪声)。断开LC、检测器和记录仪,检查干扰是否来自于外部,加以更正。 采用精密级稳压电源。 /p p   六、分离度不够 /p p   1.流动相梯度洗脱设置不合理。优化梯度洗脱程序。 /p p   2.流动相污染或变质(引起保留时间变化)。重新配置流动相。 /p p   3. 保护柱或分析柱阻塞。去掉保护柱进行分析,如果必要则更换保护柱 如果分析柱阻塞,可进行反冲 如果问题仍然存在色谱柱可能被强保留的污染物损坏,建议使用恰当的再生程序 如果问题仍然存在,进口可能阻塞了,更换入口处的筛板或更换色谱柱。 /p
  • 赛默飞发布新型UltraDry硅漂移(电制冷)探测器
    -- 为NORAN System 7微区分析系统提供最优的探测器尺寸、分析速度和分辨率 中国上海,2012年8月10日 &mdash &mdash 7月30日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2012显微镜学和微区分析大会上发布新型赛默飞UltraDry硅漂移(电制冷)X射线探测器。该探测器为同类最优,为金属和矿物、先进材料和半导体等行业应用提供更快速、准确的(微区)X射线分析。它进一步提升了广受赞誉的赛默飞NORAN System 7 X射线微区分析系统的性能。 赛默飞副总裁兼分子光谱和微区分析产品总经理John Sos指出:&ldquo 我们的UltraDry硅漂移(电制冷)探测器在超高的采集速率下具有优异的分辨率,这在当今的纳米技术和先进材料应用分析中是至关重要的!我们对该探测器的卓越改进使我们NORAN System 7系统整体能以最快的速度获得最多的数据。加之使用我们独有的高级数据处理工具 &mdash &mdash COMPASS软件和直接倒相软件,用户可以满怀信心地将其EDS分析结果提升至全新的水平。&rdquo UltraDry硅漂移(电制冷)探测器性能的提升是其设计和技术工艺改进的直接成果。该探测器提升了能量分辨率的界限,在Mn-K&alpha 的能谱谱峰分辨率高达123eV。采用尺寸较小先进的场效应晶体管(FET)与晶体一体化的卓越设计在最大程度上减小了导致电噪声的分布电容。UltraDry探测器能够高效地操控脉冲堆积处理,使其在高速处理中具有最佳的分辨率和最小的死时间比率。无需外部附属设备或液氮制冷。 新型的UltraDry探测器提供宽范围的晶体有效面积选择(10mm2,30mm2,60mm2 和100mm2),并具有先进的窗口工艺技术和独一无二的可分析至元素铍的轻元素完整的分析算法。其他关键特征包括: &bull 旨在使样品至探测器距离最小化和探测器立体角最大化的用户定制设计 &bull 独有的旨在创造最大工作距离范围的垂直开槽的准直器 &bull 操作环境温度至35° C NORAN System 7是非常适用于金属和采矿、先进材料、学术研究、半导体和微电子、失效分析、缺陷审查等材料电子显微微区应用分析的卓越平台! 欲了解更多有关NORAN System 7和UltraDry(电制冷)探测器的信息,请访问网站www.thermoscientific.com。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • GC/GC-MS基线噪声升高?氮氧峰比例不对?可能是捕集阱失效
    p style=" text-indent: 2em text-align: justify margin-top: 10px " 气相色谱质谱在调谐的时候,总是氮氧峰比例不对?氧峰过高?以为是漏气,就按照仪器漏气的故障,各种调整,然而氧峰还是降不下来? /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 可能是捕集阱失效! /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 捕集阱是气体净化系统,的目的是除去载气和检测器气体中的水分,氧气,和烃类等杂质.色谱柱与氧气和水分的持续接触,特别是在高温下,将会迅速导致色谱柱的严重损坏。如果气体在接头处有泄漏,捕集阱还可以起到一定的保护作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/1068f36f-569c-4d4a-863c-a270726156c7.jpg" title=" 捕集阱1.jpg" alt=" 捕集阱1.jpg" width=" 646" height=" 311" style=" width: 646px height: 311px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " GC载气中的常见的污染物有水分,氧气,烃类化合物和卤代烃,其对色谱柱的寿命及被分析物的检测有很大影响,不良的影响包括: /p p style=" text-indent: 2em margin-top: 10px " 水分: /p p style=" text-indent: 2em margin-top: 10px " 是色谱柱固定相降解的常见原因; /p p style=" text-indent: 2em margin-top: 10px " 可以损坏仪器。 /p p style=" text-indent: 2em margin-top: 10px " 氧气: /p p style=" text-indent: 2em margin-top: 10px " 最常见的污染物; /p p style=" text-indent: 2em margin-top: 10px " 是色谱柱固定相降解和进样口衬管性能下降的常见原因; /p p style=" text-indent: 2em margin-top: 10px " 可引起不稳定被分析物的分解。 /p p style=" text-indent: 2em margin-top: 10px " 烃类化合物和卤代烃: /p p style=" text-indent: 2em margin-top: 10px " 通过增加检测器背景噪音而降低检测器灵敏度; /p p style=" text-indent: 2em margin-top: 10px " 还可引起基线漂移或波动、污染物色谱峰、噪音或高的基线补偿。 /p p style=" text-indent: 2em margin-top: 10px " 水分,氧气,烃类捕集阱是GC中最常用的捕集阱。 /p p br/ /p p style=" text-indent: 2em text-align: justify margin-top: 10px " strong 何时更换捕集阱 /strong /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 判断什么时候需要更换捕集阱,可以根据气体捕集阱的类型来决定: /p p style=" text-indent: 2em text-align: justify margin-top: 20px " 如果是带指示剂的捕集阱,根据指示剂的颜色进行更换 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 以下图捕集阱上的标示为例 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 水指示剂和氧指示剂初始状态是绿色 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 饱和时,水指示剂状态是浅棕色,氧指示剂状态是深灰色 /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 当指示剂完全变色时需要更换 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/22e36df6-aabe-4064-8d64-b3619ccacf92.jpg" title=" 捕集阱2.jpg" alt=" 捕集阱2.jpg" width=" 600" height=" 350" style=" width: 600px height: 350px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 具体指示剂颜色的变化请参考自己配置的捕集阱上的标识 /p p style=" text-indent: 2em text-align: justify margin-top: 20px " 如果是不带指示剂的捕集阱,可以有两个办法进行判断 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/e058c008-68f3-46e9-9f8e-49110c8460b6.jpg" title=" 捕集阱3.jpg" alt=" 捕集阱3.jpg" width=" 557" height=" 284" style=" width: 557px height: 284px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 因为每个单位使用的气体纯度有可能不一样,每一瓶气的纯度也会有差异,所以可以使用第二种方法进行判断。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/9277842e-059f-43e9-88f1-1aea0a8227d6.jpg" title=" 捕集阱4.jpg" alt=" 捕集阱4.jpg" width=" 552" height=" 308" style=" width: 552px height: 308px " / /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 当然,基线噪声升高,可能的原因有很多,可以根据下图逐一排查。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/2d8b595a-18d2-4b1c-9c36-462f42b4708d.jpg" title=" 捕集阱5.jpg" alt=" 捕集阱5.jpg" width=" 547" height=" 317" style=" width: 547px height: 317px " / /p p style=" text-indent: 2em text-align: justify margin-top: 10px " 最后,一定要期检查更换捕集阱,一般半年或一年更换一次。切勿影响正常实验。 /p p br/ /p
  • 基线不稳?噪音较大?出现鬼峰?原因在这里!
    最近总有小伙伴咨询我司技术:色谱柱出现基线不稳、噪音较大、出现鬼峰怎么办?到底是什么原因造成的?我司技术把小伙伴提出的问题汇总并给出以下解决方法,快来一起看看吧!今日份疑难解答原因1:没有很好的老化柱子,或者柱子需要重新老化。解决方法:色谱柱老化流程:卸下色谱柱接检测器一端。40°C开始升温,升温速度10°C/min,达到色谱柱最高耐受温度以下20°C,维持1-2小时,老化完成。原因2:没有选择合适耐受温度的进样垫。进样垫在进样口高温下,挥发出杂质进入到毛细柱内,导致噪音变大。解决方法:更换耐受温度更高的BTO进样垫。原因3:进样垫渣滓进入到衬管内,高温下附着在衬管内壁。随载气不断挥发进入到色谱柱内。解决方法:更换进样垫和衬管。原因4:毛细柱安装的顺序不对。导致石墨环内的杂质进入到毛细柱内。解决方法:石墨环安装到毛细柱上以后,切割毛细柱4-5cm,再安装到进样口上。原因5:载气捕集阱到期没有更换。解决方法:载气捕集阱的周期一般是一年更换一次。原因6:自动进样器上的4ml进样针清洗小瓶内的液体没有更换,导致交叉污染。解决方法:定期清洗小瓶,更换内部的清洗溶剂。原因7:PLOT色谱柱的后面没有使用颗粒捕集阱。PLOT毛细柱内的颗粒进入到检测器内造成杆状鬼峰。解决方法:PLOT毛细柱末端与检测器之间安装颗粒捕集阱。原因8:色谱柱在老化过程中或者使用过程中,超出了其最高耐受温度,造成键合相的大量流失。解决方法:老化和使用之前一定要确认色谱柱的最高耐受温度。原因9:老化和使用过程中载气断了或者系统泄露导致空气中的氧气进入到毛细柱内,键合相被氧化流失。解决方法:确保系统没有泄露,载气可以持续供应。原因10:选用了不合适膜厚的色谱柱。解决方法:高温分析,建议选用小膜厚的毛细柱。膜厚越厚,色谱柱的流失越大。原因11:样品前处理过程中受到手套、进样瓶瓶垫等溶解带来的杂质。解决方法:这种杂质呈现规律的尖锐杂峰。原因12:检测器污染,需要更换部件或者进行清洗。解决方法:清洗MS源。更换FID喷嘴等。原因13:膨胀率大的溶剂,进样体积过大或者分流比太小,样品汽化后溢出衬管,接下来的几针样品会有鬼峰出现。解决方法:减小进样量、增大分流比。原因14:查看基线噪音大或者鬼峰是不是柱子流失造成的一个最简便的方法就是使用MS检测器对鬼峰和噪音进行定性。解决方法:荷质比是207,基本可以确认是柱子流失造成的。不是207的话,继续找其他原因。如果以上情况排除后,确保分析系统没有任何问题的情况下,请提供如下信息:分析物列表,基质描述:溶剂、杂质,进样口条件,程序升温条件,检测器种类,色谱仪品牌和型号,色谱柱货号,关键组分峰型图片给到我们,可直接在微信后台留言,也可以直接拨打我们的热线电话,欢迎您的致电!
  • 南京科捷新产品:LC-600B等度高效液相色谱仪
    南京科捷新产品&mdash &mdash LC-600B等度高效液相色谱仪销售热线:尹先生13951792301   标准配置   LC-600B高压恒流泵 :2台   SPD-600B紫外检测器 :1台   SCL-600B系统控制器 :1台   混合器 :1只   7725i手动进样阀: 1只   色谱工作站 :1 套 (VI2010、N2000、N3000选用)   液相色谱柱 :1支  (C18 4.6*250mn,5um)   微量进样器 :1支  (50ul/100ul)   反压阀 :1只   进样支架 :1只  (进样阀用)   (根据客户需求,配置会略有不同)   应用领域   可广泛应用于研究开发、医药检验、食品检测、化工分析、环境监测等众多分析领域。   主要特点   丰富的功能&mdash &mdash 符合客户对分析的不同需求   硬件具有VP功能,记录维护信息和操作记录,符合GLP/GMP要求 系统控制器增具有时钟、温度计、湿度计等人性化设计的功能。   卓越的性能&mdash &mdash 满足客户对仪器的严格要求   输液泵采用考虑材质结构制作的柱塞,增强型特氟龙密封圈,柱塞浮动式安装方式,增强仪器性能的稳定性和使用的持久性。   检测器采用进口氘灯、光电池以及1200条/mm凹面光栅组成的双光束单色器,精密加工的双透镜流通池,控制波长调节的高精度微处理器,双路高速采样频率,确保了低噪声、低漂移及超高灵敏度等特点。   混合器混合均匀,使用梯度程序采集的基线保持良好重现性。   可靠的结果&mdash &mdash 满足客户对结果的准确要求   与进口仪器做对比试验,分析结果具有高度的一致性。   简便的操作&mdash &mdash 便于客户对软件的熟练操作   软件采用多窗口模式,操作方便。   精美的外观&mdash &mdash 满足客户对仪器的视觉要求   外形精美,带来视觉上的享受。   技术指标 LC-600B高压恒流输液泵 输液方式 微体积串联双柱塞 最大输液压力 0~9999Psi流量设定范围 0.001~9.999ml/min(以0.001ml/min步长调节流量) 流量设定值误差 &le 0.5% 流量稳定性误差 &le 0.2%RSD 梯度误差 ± 1% (0~100%水/丙酮水溶液2液梯度) 压力脉动 小于15Psi (流量1mL/min,压力600~1600Psi 。) 泵密封性 压力为5400Psi,时间为10min,压降小于400Psi 。 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃ SPD-600B紫外可见可变波长检测器 波长范围 190nm~700nm 波长示值误差 &le ± 1nm 波长重复性误差 &le ± 0.1nm 动态噪声 &le ± 0.75× 10-5AU (甲醇,1ml/min,254nm,20℃) 静态噪音 &le ± 0.5× 10-5AU  (空池,响应时间1秒,20℃) 动态基线漂移 &le ± 1× 10-4AU/h  (甲醇,1ml/min,,254nm,20℃) 静态基线漂移 &le 0.5× 10-4  (空池,响应时间1秒,20℃) 线性范围 &ge 104 最小检测浓度 &le 1× 10-9 g/mL (萘/甲醇溶液) 定性重复性 RSD6&le 0.1% 定量重复性 RSD6&le 0.5% 光谱带宽 6nm 流通池体积 8&mu L 光程 10mm 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃   软件介绍   LC-600B等度高效液相色谱仪专用的色谱数据工作站内嵌于检测器中,有VI2010、N2000、N3000三套供客户选择性使用,满足不同用户使用需求。        VI2010 L2是VI2010色谱工作站中和液相色谱仪配套使用具有反控能力的软件,有用户账户管理、密码规则、权限设置、电子签名、审计追踪、设备监控、系统适应性评价、组分验证、时间程序等功能,符合GLP/GMP 、FDA 、21CFR Part Ⅱ,化学药品CTD格式申报资料撰写要求以及药品注册申报研究工作采用的色谱数据工作站的基本要求和色谱数据的管理要求等规范要求。
  • 东西分析EG-100型淋洗液发生器,“小不点,大能耐”
    简介随着离子色谱技术的进一步发展,其应用领域正被不断扩展,用户对离子色谱的分析精度也提出了更高的要求,智能化自动化的分析流程逐渐成为用户关注的重点。淋洗液发生器顺应了用户实际需求,实现了只通入纯水即可在线生成所需浓度淋洗液的功能,免除了人工配制淋洗液等耗时操作,大大提高了分析的自动化程度,避免由于人为因素造成的测试误差。同时智能化的控制方式可以实现淋洗液浓度的自定义设置,可实现以往单泵无法完成的复杂样品梯度洗脱分离操作,进一步提高了分析的准确性。想用户之所想东西分析EG-100型淋洗液发生器通过电解技术自动生成高纯度的KOH/NaOH淋洗液,节省淋洗液人工配制过滤脱气的时间,同时可用单泵进行梯度淋洗,只需要提供超纯水即可运行,提升实验效率及安全性。小不点,大能耐 EG-100型淋洗液发生器减少基线漂移、提高稳定性,简化离子色谱分析工作流程,EG模块适用于大部分离子色谱中阴离子等度或梯度应用。免配制无需每日进行繁琐的淋洗液手动配制,同时避免手动配制引入误差,提高实验效率;只加水只需要提供超纯水即可自动生成,可随时补充纯水;梯度淋洗无需添加额外多元泵,用单泵即可实现梯度淋洗,大幅提高分析方法多样性;高灵敏度降低背景电导及基线噪音,进一步提高检测灵敏度;高精度避免因淋洗液造成的基线漂移,提高检测精度;高重现性稳定的淋洗液浓度带来更好的批次间重复性、每日间重复性、系统间重复性及实验室间的重复性;输液泵免维护高压泵只输送纯水,减少单向阀污染,延长密封圈使用寿命,使输液泵更稳定;操作简单只需在软件中选择淋洗液种类、设置流速及浓度即可自动运行;提高安全性减少实验人员接触酸、碱等危险试剂,增加安全性;强大的兼容性EG-100淋洗液发生器可适配不同厂家的离子色谱仪。稳定的淋洗液浓度带来更好重复性色谱条件:淋洗液:KOH(Gradient);流速: 1mL/min;抑制电流:80mA;色谱柱: Esep-A10;温度:室温。连续8次-梯度淋洗-测定8种阴离子梯度淋洗保留时间重复性测试梯度淋洗保留时间重复性测试2D叠加图梯度淋洗保留时间重复性测试3D叠加图不同日期间-20次进样-梯度淋洗-测8种阴离子
  • 牛津仪器推出硅漂移探测器新产品X-Max Extreme
    p   牛津仪器推出了硅漂移探测器新产品X-Max Extreme,该探测器在场发射电镜及聚焦离子束扫描电镜应用中,能够获取突破性的超高分辨率。这款独特的探测器第一次使得能谱仪能够在非常低的加速电压下(1kV 到3kV之间)采集数据,并且在非常短的工作距离进行元素分析。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201508/insimg/b9960d21-eaf9-42f8-a404-d13bf995d3d4.jpg" title=" 555.jpg" / /p p   近年来,超高分辨率的场发射扫描电镜在更小的纳米结构、界面和表面观察中展示了令人激动的分析功能。然而,在非常短的工作距离、非常低的加速电压、和非常小的束流条件下,传统的硅漂移探测器很难进行元素表征。新的X-Max Extreme改变了这一切。X-Max Extreme为有效探测面积为100mm sup 2 /sup 的无窗型能谱仪,它能够在较短的工作距离下采集数据。利用X-Max Extreme,能够同时进行成像和EDS分析,而且能谱分辨率接近扫描电镜的分辨率。 /p p   X射线业务部门经理Simon Burgess表示:“X-Max提供超出传统微米或纳米分析的解决方案。例如,X-Max Extreme的灵敏度允许用户表征表面污染物和几个原子层厚的样品的成分组成及分布。对于轻元素,包括锂,它也能够提供一流的检测。” /p p br/ /p
  • DSC数据处理——基线的校正
    p   多位专家基于大量的科研文章审稿经验,发现了部分文章存在以下问题: /p p   1. 制图不规范、不完整,没有充分利用测试结果给予的信息(无温度、失重率、热量等标出) /p p   2. 无再现性说明(严格讲要5次) /p p   3. 样品制备和鉴定方面:样品错了,结果不对 样品纯度没有使用物质的量表示 未提及使用何种方法 晶体没有纯晶体数据 高压液相、质谱等,滥用元素分析。 /p p   4. 实验条件的选择不合适 /p p   5. 操作不规范 /p p   具体到DSC分析测试结果中,出现了3个需要注意的问题: /p p   strong  1. 基线需要修正 /strong /p p strong    /strong 一般来说,基线应该是水平的。但实际由于样品受热,热容的改变,曲线向上或向下是正常的。 /p p style=" text-align: center "    img style=" max-width: 100% max-height: 100% width: 400px height: 260px " src=" https://img1.17img.cn/17img/images/201906/uepic/515a1850-eec0-4722-b787-62f0121ec454.jpg" title=" 627-1.png" alt=" 627-1.png" width=" 400" height=" 260" border=" 0" vspace=" 0" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 269px " src=" https://img1.17img.cn/17img/images/201906/uepic/f0f92f9c-f771-4e52-8c97-f04cf60ae9e8.jpg" title=" 627-2.png" alt=" 627-2.png" width=" 400" height=" 269" border=" 0" vspace=" 0" / /p p    /p p   对于实际测得的DSC结果,基线的修正是很有必要的,基线修正的意义在于: /p p   (1)确保系统的稳定性和可靠性良好, 测量重复性高并且具有极高的灵敏度。 /p p   (2)基线处理方法的应用使得所获得的实验数据更加精确, 可靠性更强,从而为进一步的实验和分析工作可奠定良好基础, 提供有利的保障。 /p p   (3)每次实验的进行都应该进行基线的测量和相应的处理, 才能确保科学研究的严谨性和合理化. /p p style=" text-align: center "    img style=" max-width: 100% max-height: 100% width: 400px height: 342px " src=" https://img1.17img.cn/17img/images/201906/uepic/8de4e80b-5324-4bcb-8be0-8c9d63c3391c.jpg" title=" 627-3.png" alt=" 627-3.png" width=" 400" height=" 342" border=" 0" vspace=" 0" / /p p    strong DSC基线如何修正? /strong /p p   一般,DSC仪器自带的软件都具有基线校正、数据曲线平滑等功能。 /p p   TA 仪器设计了一种新的具有独特的内部 TzeroTM 参比温度的DSC 传感器, , 可检测到仪器不对称并在其测量电路中进行补偿。利用 TzeroTM 技术可以用含四个项的热流方程以及独特的电池校准技术消除由DSC 传感器的轻微不对称导致的基线失真问题的影响。其结果是真实地表示进出样品的热流信号本身, 不受仪器系统的影响。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 295px " src=" https://img1.17img.cn/17img/images/201906/uepic/b2927d59-e8da-41a1-83a4-b81a17ae6b82.jpg" title=" 627-4.png" alt=" 627-4.png" width=" 400" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 259px " src=" https://img1.17img.cn/17img/images/201906/uepic/3dc65ef6-86fd-4ed0-a5e0-2da20129e01a.jpg" title=" 627-5.png" alt=" 627-5.png" width=" 400" height=" 259" border=" 0" vspace=" 0" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 371px " src=" https://img1.17img.cn/17img/images/201906/uepic/9e6fdb1f-767f-4f93-9bb2-cd35b526b90c.jpg" title=" 627-6.png" alt=" 627-6.png" width=" 400" height=" 371" border=" 0" vspace=" 0" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 227px " src=" https://img1.17img.cn/17img/images/201906/uepic/66758c8f-97f8-4236-9886-5e6204537bae.jpg" title=" 627-7.png" alt=" 627-7.png" width=" 400" height=" 227" border=" 0" vspace=" 0" / img style=" max-width: 100% max-height: 100% width: 400px height: 329px " src=" https://img1.17img.cn/17img/images/201906/uepic/d982f393-083a-4331-960f-f08adb5be82b.jpg" title=" 627-8.png" alt=" 627-8.png" width=" 400" height=" 329" border=" 0" vspace=" 0" / /p p    strong 基线漂移对DSC曲线采样信号的特征信息准确提取带来很大困难,那么实验后期基线的修正是否可行呢? /strong /p p   现在很多仪器公司利用小波变换的良好分辨率分析特性,或者曲线拟合法以及FIR和IIR滤波的方法,提出基于多分辨率分析的DSC基线漂移矫正算法,并编程,使用软件“平滑”实验曲线。 /p p   专家以为这是不妥的。因为这样的处理很易丢掉小的峰形、改变原先的峰形,造成失真。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 258px " src=" https://img1.17img.cn/17img/images/201906/uepic/1fc4970b-81c3-4ee1-a765-b07168be7b1a.jpg" title=" 627-9.png" alt=" 627-9.png" width=" 400" height=" 258" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 国产RD496-2000型热量计使用了矫正 /strong /p p   对反应前后基线不变或变化甚微的热谱,一般不作基线移位热动谱峰面积的校正。对反应前后基线变化的热谱,都作基线移位热动谱峰面积的校正。 /p p    strong 2.人为取点位置(同样样品,结果的曲线取点温度范围)应统一 /strong /p p   取点方法不同,DSC测试得到的结果也会产生很大的不同。现在比较常用方法是切线法外推出对应的温度。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 267px " src=" https://img1.17img.cn/17img/images/201906/uepic/bfed997d-25b4-4b40-bfda-850e8595fa19.jpg" title=" 627-10.png" alt=" 627-10.png" width=" 400" height=" 267" border=" 0" vspace=" 0" / /p p    strong 3.应该建立物质测定的统一标准 /strong /p p   对于一个同样的样品,即便做到操作规范,但结果也往往不一致,原因是多因素对实验结果的影响,比如升温速率、气氛、样量、坩埚& #8230 & #8230 /p p   因此,为了确保实验的重复性和可靠性,对实验过程的基本要求是:操作要规范,测定要准确,解析要合理,结果要全面。 /p p    /p p   参考文献 /p p   张均艳, 李成栋, 田学雷. 山东大学学报(工学版), 2002, 32(6): 552 /p p   夏郁美, 韩 莉, 王世钧. 分析测试技术与仪器, 2014, 20(1): 52 /p p   致谢:本文由西北大学教授高胜利所提供相关资料经编辑整理撰写而成,特此致谢! /p
  • 南京科捷推出LC-10Tvp梯度高效液相色谱仪测定饲料中维生素E
    南京科捷推出LC-10Tvp梯度高效液相色谱仪测定饲料中维生素E 销售热线:尹先生13951792301 郑经理13951691728 简要: 近期,随着经济的复苏,维生素类饲料添加剂销售量大大增加,尤其是维生素E饲料添加剂,所以饲料中维生素E的检测就显得尤为紧急和重要。 南京科捷应用检测部参考国标(GB/T 17812-2008),利用全新高性能的LC-10Tvp高效液相色谱仪经实践检测可提供饲料中维生素E的HPLC检测方案,得出的结果准确可靠,检出限好,适用于配合饲料、浓缩饲料、复合预混合饲料、维生素预混合饲料中维生素E(dl-&alpha -生育酚)的测定,仅供广大用户参考。 LC-10Tvp梯度高效液相色谱仪简介: LC-10Tvp梯度高效液相色谱仪配置 LC-10Tvp高压恒流泵:2台 SPD-10Tvp紫外检测器:1台 SCL-10Tvp 系统控制器:1台 7725i手动进样阀: 1套 色谱工作站:1套 (VI2010、N2000、N3000选用) 液相色谱柱:1支 (C18 4.6*250mn,5um) 微量进样器:1支 (50ul/100ul) 进样支架 :1只 (进样阀用) LC-10Tvp梯度高效液相色谱仪特点 LC-10Tvp梯度高效液相色谱仪是南京科捷分析仪器有限公司为了快速地满足多样化的客户需求,在原有的STI501液相色谱仪的基础上经过优化,利用美国先进技术开发设计,国内加工生产的的一款新型的液相色谱仪。LC-10Tvp等度高效液相色谱仪实现了人机对话,可实时对仪器的运行状态进行监控,并可对潜在和已出现的故障做出判断,同时提供在线解决方案。该仪器也全面实现了远程的准无人操作,大大提高了仪器的使用效率,同时通过高精度的AS1000自动进样系统,实现自动化进样,最大程度抑制了样品的交叉污染,提供样品分析精度。LC-10Tvp等度高效液相色谱仪可广泛应用于研究开发、医药检验、食品检测、化工分析、环境监测等众多分析领域。 主要特点 丰富的功能&mdash &mdash 符合客户对分析的不同需求 硬件具有VP功能,记录维护信息和操作记录,符合GLP/GMP要求;系统控制器增具有时钟、温度计、湿度计等人性化设计的功能。 卓越的性能&mdash &mdash 满足客户对仪器的严格要求 检测器采用进口氘灯、光电池以及1200条/mm凹面光栅组成的双光束单色器;精密加工的双透镜流通池,控制波长调节的高精度微处理器以及双路高速的采样频率,确保了低噪声、低漂移及超高灵敏度等特点。 VI2010工作站符合多种法规要求。 可靠的结果&mdash &mdash 满足客户对结果的准确要求 与进口仪器做对比试验,分析结果具有高度的一致性。 简便的操作&mdash &mdash 便于客户对软件的熟练操作 软件采用多窗口模式,操作方便。 精美的外观&mdash &mdash 满足客户对仪器的视觉要求 外形精美,带来视觉上的享受。 LC-10Tvp梯度高效液相色谱仪技术指标: LC-10Tvp高压恒流输液泵 输液方式 微体积串联双柱塞 最大输液压力 0~9999Psi 流量设定范围 0.001~9.999ml/min (以0.001ml/min步长调节流量) 流量设定值误差 &le 0.5% 流量稳定性误差 &le 0.2%RSD 压力脉动 小于15Psi (流量1mL/min,压力600~1600Psi 。) 泵密封性 压力为5400Psi,时间为10min,压降小于400Psi 。 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃ SPD-10Tvp紫外可见可变波长检测器 波长范围 190nm~700nm 波长示值误差 &le ± 1nm 波长重复性误差 &le ± 0.1nm 动态噪声 &le ± 0.75× 10-5AU (甲醇,1ml/min,254nm,20℃ 。) 静态噪音 &le ± 0.5× 10-5AU (空池,响应时间1秒,20℃ 。) 动态基线漂移 &le ± 1× 10-4AU/h (甲醇,1ml/min,254nm,20℃ 。) 静态基线漂移 &le 0.5× 10-4 (空池,响应时间1秒,20℃ 。) 线性范围 &ge 104 最小检测浓度 &le 1× 10-9g/mL (萘/甲醇溶液) 定性重复性 RSD6&le 0.1% 定量重复性 RSD6&le 0.5% 光谱带宽 6nm 流通池体积 8&mu L 光程 10mm 时间程序功能 有 尺寸 W260× H130× D420mm 重量 11kg 使用环境温度范围 4~40℃ 南京科捷分析仪器有限公司是专业生产气相色谱仪,液相色谱仪的厂家,并代理销售进口、国产、色谱配件、耗材、实验仪器、分析仪器和卫生环保仪器等实验科研仪器设备的高科技企业。公司成功研制了氦离子气相色谱仪填补了国内的空白.公司成立以来与国内外多家仪器厂商建立了友好的合作关系,是多家供应商的省级总代理或一级经销商。面向化学、化工、医药、生物、食品等行业,全面及时地提供各种色谱零配件、耗材,实验室分析仪器和分析技术信息,为广大实验室分析工作者的生产、教学和科研工作提供便利。
  • 科创新品GC9800型网络化气相色谱仪正式上市
    网络化气相色谱仪是将现代网络通信控制*具体应用在对气相色谱仪运行参数及分析参数的测控,实现对色谱参数进行远程监控和管理的近代*的气相色谱仪。   与传统气相色谱仪相比,GC9800型网络化气相色谱仪的创新特点和*性: (1)采用了**的10/100M以太网通信接口,实现对仪器的运行参数(温度、流量及*检测器操作参数)的远程测控和故障自诊断,可方便连接实验室主管、单位行政或*主管和行业主管,便于*主管实时远程监管; (2)可以通过互联网连接到仪器生产厂家,实现远程诊断、远程程序更新等,实现*及时*直接的售后*服务; (3)仪器内置的*工作站,在同一局域网内,可以同时支持多台(*多250台)气相色谱仪工作,可实现对多台气相色谱仪的色谱数据处理及反控,减少了实验室的投资,并简化了文档的管理,大大提高了工作效率; (4)仪器*具有定时启动程序,可以轻松地完成自动进样器工作和完成在线分析; (5)仪器内置高分辨率AD电路,可在内部完成多倍信号放大,而噪音不放大,从而*地提高了信噪比,信号线性输出范围可达到± 1250mv,同时具有基线存信号,基线漂移扣除功能; (6)仪器*有USB接口,支持通用的有USB接口打印机,随时可打印谱图及分析结果,并且支持U盘存储谱图及数据,以备日后存档、重分析之用; (7)GC9800型网络化气相色谱仪的电控系统采用了标准化、系列化、模块化*方案,给生产、维修、改装、仪器*等带来了极大方便; (8)仪器具有扩展功能的*,可方便地完成对配套装置和设备的控制功能。
  • 研究成果:低降温速率冷冻制样消除蛋白质快速漂移
    近期,QRB discovery在线发表了中国科学院生物物理研究所研究员章新政课题组题为Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames的研究论文。研究发现了在冷冻电镜成像过程中导致电子束诱导蛋白质样品快速漂移的新机制,并提出通过降低冷却速率制备无快速漂移的冷冻电镜样品的新方法。该方法可以有效恢复辐照损伤最少,含最多高分辨信号的成像数据质量,提升重构分辨率,实现辐照损伤敏感氨基酸的高分辨重构,高分辨信号的恢复也为冷冻电镜达到原子分辨率奠定了基础。  1980年代,有科学家把含水样品快速投入到-183℃的液态乙烷中,制备包埋在玻璃态冰中的低温样品来减少生物样品受高能电子束照射产生的损伤。一般认为,降温速率越快越容易产生玻璃态冰,但是玻璃态冰中的蛋白质在电子束照射初期会产生快速漂移,无法矫正,使冷冻电镜前几帧成像模糊而无法有效应用于三维重构。电子束曝光初期的冷冻电镜数据具有最小的辐照损伤,含有最主要的高分辨信号,所以电子束诱导的快速漂移是实现原子分辨率结构解析以及易辐照损伤氨基酸高分辨重构所需要克服的壁垒,有科学家称其为冷冻电镜中的“Key outstanding problem”。  经过近5年的攻关,研究人员发现快速漂移源自玻璃态冰在急速冻结时产生的应力,该应力和过高的降温速率相关,可以通过降低冷却速率来减少。通过优化冷冻制样技术,降低冷冻过程中样品的降温速率,研究实现了蛋白质快速漂移的消除(如图)。在降低冷却速率制备得到的冷冻样品中,数据分析展示出冷冻电镜前几帧数据被有效恢复,从恢复的电子密度图中可以清晰看到在普通冷冻样品结构中无法得到的辐照损伤敏感的氨基酸侧链信息。  研究工作得到国家重点研发计划、国家自然科学基金委员会重点项目、中科院战略性先导科技专项(B类)、中科院基础前沿科学研究计划项目的支持。  论文链接 降低样品冷却速率消除快速漂移示意图。a.通过降低样品冷却速率,冷冻电镜前几帧数据明显恢复。b-c.增加载网与镊子的传热在载网形成的冷却速率梯度和在不同冷却速率下GDH样品前几帧的恢复情况。d-e.提高液态乙烷温度至-110℃时制备的铁蛋白样品,以及在不同温度下铁蛋白前几帧的恢复情况。f.冷冻电镜前几帧恢复后,易受辐照损伤的氨基酸侧链密度图对比
  • 某环保局近期采购全部要求国产
    近期某环境保护局拟采购一批仪器设备,所有设备全部采购国产,让我们再一次看到国产设备在某种程度上是可以与国外产品相比拟的,技术参数不输于国外产品,同时也看到了各级机构、单位在支持国产仪器发展上所做的努力。 更详细的情况如下: 依据大余县政府采购办公室批复[批复号:余采购公字(2015)11号],赣州市南康区环宇招标代理有限公司受大余县环境保护局的委托,现就2015年实验室仪器设备标准化验收仪器项目进行电子化公开招标,现欢迎国内符合资格条件的投标供应商前来参加投标。 (一)招标编号: NKHY2015-DY-G011 (二)招标内容: 序号 项目名称 数量 单位 主要技术规格及要求 预算金额(元) 1 应急监测数据库(国产产品) 1 套 1、软件平台可同时支持B/S和C/S两种模式,可部署于服务器、台式机、笔记本和平板电脑,在任何地方可接入系统使用,在线用户数:不限。 2、系统采用纯模块化开发,可方便快速的进行功能扩展。 3、系统内置有害物质1361种,并可以随着行业的发展进行动态增加。危险品信息完整全面,包含理化特性、成分及组成信息、危险性概述、急救措施、消防措施、泄露应急处理、操作处置与存储、接触控制、个体防护、稳定性和反应活性、毒理学资料、生态学资料、废弃处置、运输信息、对应法规信息共十五大方面,82项具体参数指标。 4、内置多种化学危险品检索模式,可从拼音、中文笔画、英文、模糊查询、分类查询、包装标志分类查询。 5、应急资料:可对应急预案、应急监测标准、应急监测方法、应急监测法规、历史污染事故进行管理和参考。 6、应急资料:对专家库、应急监测设备、应急监测试剂、应急通讯进行管理和调用。 7、应急响应:从事故接报到现场对危险品进行推断,设立监测点及现场监测工作的开展到后续对事态的跟踪监测进行全程的记录和跟踪。 8、GIS模块:系统可通过GIS操作模式,对污染源信息进行定位和查看,对事故现场进行定位和为应急决策提供参考。GIS污染源点位信息与国家污染源数据库数据一致。 516060.00 2 便携式流速测量仪(国产产品)1 台 1、测速范围:0.1~4m/s 2、测量误差: 0.2﹪ 3、电源:可充电锂电池 4、特点:自动显示、打印流速、流量。 3 发光细菌毒性检测仪(国产产品) 1 台 1、 18个样品管位。 2、 光电倍增管为探测器核心部件。 3 、带有微型打印机,可打印测量结果。 4 、自带数据保存功能,并可以由计算机读取。 5 、液晶触摸屏,可在液晶屏上直接操作并显示测量数据。 6 、智能化操作,数据可上传至电脑。 7 、仪器具有一般数据分析和处理功能。 8 、可探测光谱范围:300nm~650nm 。 9 、工作温度:5℃~40℃。 4 空盒气压表(国产产品) 1 台 1、 测量范围:800~1060hpa. 2 、使用温度范围:-10~+40℃. 3 、经过温度、示度和补充正后的测量误差不大于2.0hpa. 4 、示度盘最小分值:1hpa。 5 、附温表最小分值:1℃ 5 便携式综合气象观测仪(国产产品) 1 套 风向风速表参数: 1、风速技术指标(1)测量范围:0~30m/s。 (2)起动风速:0.8m/s。 (3)测量精度: n (0.3+0.03v)m/s(v指示风速)。(4)风速参数:瞬时风速、平均风速、瞬时风级、平均风级、及其对应浪高。 (5)显示分辨率:0.1m/s(风速)1级(风级)0.1m(浪高)。 2、风向技术指标 : (1)测量范围:0~360 ,16个方位。 (2)起动风速:1.0m/s。(3)测量精度: n 1/2方位。 (4)风向定北:自动 便携式数字温湿表参数: 1.温度测量范围:-30℃C~+50℃。 2.温度测量精度: n 0.5℃(-10℃~+50℃); n 1℃(-30℃~-10℃)。 3.湿度测量范围:(0~95)%RH。 4 .湿度测量精度: n 3%RH [(30~90)%RH 23℃ n 2℃]。 数字式气压表参数: 1.气压测量范围:500hPa~1070hPa。 2.气压测量分辨率:0.1 hPa。 3.气压测量精度: n 1.5 hPa(1070hPa~500hPa) 4.使用环境: (1)温度: -15℃~+50℃。 (2)湿度:<90﹪RH。 5.仪器供电: (1)电压:5.0V~3.3VDC(5号1.5V干电池或5V稳压直流电源)。 (2)耗电:<7mA(投电状态);<2uA(断电状态) 6 磁力搅拌器(国产产品) 1 台 1、电源电压:220V/50Hz。 2、加热功率:500kw。 3、电机功率:20w。 4、搅拌速度:0-1600r/min。 5、加热盘尺寸:170 170mm。 6、搅拌容量:1000ml 7 离心机(国产产品)1 台 1 、最高转速:4000rpm(转/分)。 2 、最大相对离心力:1430( g)。 3 、角转容量:15ml 6。 4 、定时范围:0min~99min。 5 、电源:220v 50Hz 180w。 8 万分之一电子分析天平(国产产品) 1 台 1、分辨率0.1mg,称量值0~220g 2、外置校正砝码 9 pH计(实验室用)(国产产品) 1 台 1、测量范围:pH:(-2.00~18.00)pH mV:(0~ n 1999)mV ;温度:(0~99.9)℃。 2 、分 辨 率: pH:0.01pH mV:1mV 温度:0.1℃。 3 、基本误差: pH: n 0.01pH n 1个字 mV: n 0.1%(FS);温度: n 0.3℃ n 1个字。 4、 输入阻抗:不小于1 1012 。 5、 稳 定 性: n 0.01pH n 1个字/3h 6 、温度补偿范围:(0.0~99.9)℃。 7 、被测溶液温度:(0~60)℃ 10 气相色谱仪(国产产品) 1 台 1 基本要求(带预处理自动进样设备): 1.1 温度要求: 5℃ 35℃; 1.2 湿度要求; 25% 80%; 1.3 电源要求: 220V n 10%,50Hz; 1.4 功率要求: 最大2500 W; 2 技术要求: 2.1 功能特点: 2.1.1 采用大屏幕液晶显示,人性化的操作界面设计,显示直观、操作简洁,中英文相互切换;2.1.2 通过键盘、反控工作站设定,可同时对六个模块进行温度控制,完美实现对各模块的温度精确控制; 2.1.3 配备灵敏度更高的FID、TCD、FPD、NPD、ECD五种检测器,可任意选择组合; 2.1.4 配备反控工作站,可对分析过程中实施全程反控; 2.1.5 实时文字直观反馈仪器故障信息,方便用户故障检索。 2.2 主机 2.2.1 温控区:6路独立控温; 2.2.2 载气控制:精密压力、流量阀控制(实时反控显示); 2.2.3 显示器:320 240液晶大屏幕显示器,信息量更大,中英文切换; 2.2.4 进样器:可配2个进样器(填充柱进样器、分流毛细进样器、分流/不分流毛细进样器);2.2.5 检测器:可最多选配3个检测器(FID、TCD、FPD、ECD、NPD); 2.2.6 辅助进样装置:可选配进样阀、顶空进样器、热解析进样器; 2.2.7 操作性:可反控; 2.2.8 工作站:反控工作站; 2.2.9 其他:阀控制外部事件板。 2.3 柱箱 2.3.1 尺寸:柱箱尺寸: 260 250 150[mm](长 宽 高),色谱柱安装间隔尺寸:152.4mm;(6英寸标准接口); 2.3.2 柱箱温度控制:室温上6℃~399℃ (以0.1℃增量任设); 2.3.3 温度波动: n 0.1℃(环境温度变化10℃或电源电压变化10%),温度梯度: n 1%(温度范围100℃~350℃); 2.3.4 程序升温:8阶; 2.3.5 升温速率:0.1~40℃/min(以0.1℃增量任设); 2.3.6 降温速率:柱箱温度从200 ℃降至100℃时间不大于3min; 2.3.7 持续运行时间:999.9(min)。 2.4 进样系统 2.4.1 最高使用温度:400℃; 2.4.2 进样口数量:最多可配2个; 2.4.3 进样模式:填充进样、分流毛细进样、分流/不分流毛细进样。 2.5 检测系统 2.5.1 氢火焰检测器(FID):最高使用温度:400℃;最小检测限: 5 x 10-12g/s(正十六烷)基线噪音: 2 x 10-13 A,基线漂移: 5 x 10-13 A/30 min(仪器稳定2小时后);线性动态范围: 107 2.5.2 热导池检测器(TCD):双柱平衡方式,四臂高灵敏热导TCD; 最大操作温度:400℃ ,温度控制精度: n 0.1℃;灵敏度: 8000mv t ml/mg(正十六烷);基线噪声: 20uv,基线漂移: 100uv/30min(仪器稳定2小时后);线性动态范围: 104 2.5.3 火焰光度检测器(FPD):最高使用温度:400℃;最小检测限: 1.4 10-12g/s(P) , 5 10-11g/s(S);基线噪声: 2 10-11A,基线漂移: 4 10-11A/30min(仪器稳定2小时后);线性动态范围:P 103 S 102 2.5.4 电子捕获检测器(ECD):最高使用温度:350℃;最小检测限: 1 10-13g/ml( -666); 基线噪音: 20 uV,基线漂移: 50 uV/30min(仪器稳定2小时后);线性动态范围: 104;辅助配件:脱氧管 2.5.5 氮磷检测器(NPD):最高使用温度:400℃;最小检测限: N: 1 10-12g(N)/s(偶氮苯)P: 5 10-13g(P)/s(马拉硫磷)基线噪声: 4 10-13A,基线漂移: 2 10-12A/30min(仪器稳定2小时后); 线性动态范围:N 103 P 103。 2.6 其他选配件 2.6.1 转化炉:用于 100ppm CO、CO2的甲烷化; 2.6.2 事件板:用于进样阀的驱动时间事件控制; 2.6.3 阀箱:用于进样阀及切换阀的温度控制。 2.7 工作站/数据处理软件 2.7.1 运行环境:Windows 2000/wingdows XP /Windows 98操作系统; 2.7.2 配置要求:512M内存、80G硬盘、液晶显示器、232/USB数据采集串口; 2.7.3 输出信号范围:-1500~+1500mV; 2.7.4 信号分辨率:全量程0.1 V; 2.7.5 最高采样频率:60点/秒;2.7.6 采集灵敏度:0.025 V/s; 2.7.7 采集精度:0.05%; 2.7.8 色谱工作站功能:分析过程实时监控、压力/流量/温度实时显示、原始数据跟踪、统计汇总、RSD计算、校正归一法、外标法、内标法、谱图报告打印。 3、配置要求: 气相色谱仪 1套 色谱工作站 1套 原装反控 不锈钢气路管 10米 3 空气发生器 1套 氢气发生器 1套 气体净化器 1台 气相色谱柱 1根 30*0.32*0.25 气相色谱柱 1根 污水分析专用柱 电脑:1套 CPU系列:英特尔 酷睿i5 4代系列 。CPU型号: Intel 酷睿i5 4590 。CPU频率:3.3GHz 。最高睿频:3700MHz 。总线规格:DMI 5 GT/s 。 缓存:L3 6MB 。核心架构:Haswell 。核心/线程数:四核心/四线程 。制程工艺:22nm 。内存容量: 4GB 。内存类型:DDR3 1600MHz。 硬盘容量: 500GB 。硬盘描述:7200转。光驱类型:DVD刻录机 。光驱描述:支持DVD SuperMulti双层刻录。 显卡类型:独立显卡 。 显卡芯片:NVIDIA GeForce HD8470 。显存容量:1GB DirectX:DirectX 11 音频系统:集成 。显示器尺寸: 19英寸。显示器描述:LED宽屏。 有线网卡:1000Mbps以太网卡。前面板I/O接口:2 USB2.0;1 读卡器;1 耳机输出接口;1 麦克风输入接口 背板 I/O接口:6 USB2.0+1 USB3.0;2 PS/2;1 DVI-D;1 HDMI;1 VGA;1 RJ45(网络接口);6 S/PDIF输出;1 电源接口。 扩展插槽:1 PCIe x16;1 PCIe x1 。 打印机:1台 产品类型:黑白激光打印机 。最大打印幅面:A4 。最高分辨率:600x600dpi 。黑白打印速度 A4:达到14ppm,Letter:15ppm 。处理器:234MHz。 内存:2MB 。网络打印:不支持有线网络打印 。 双面打印:手动 。预热时间:0秒预热。首页打印时间:小于10秒。 接口类型:高速USB2.0 氮气钢瓶 1个 纯度99.999%(含气) 氮气减压阀 1个 11 液相色谱仪(国产产品) 1 台 1 基本要求(带预处理自动进样设备) 1.1工作室温:5~35℃。 1.2 湿度要求:25%~80%。 1.3 电源要求:交流220V n 22V,50Hz n 0.5Hz。1.4 功率要求:最大消耗功率450W 2 技术要求: 2.1 串联式双柱塞往复泵。 2.1.1流量范围:0.001mL/min~10mL/min,递增率0.001mL/min。 2.1.2流量设定值误差: n 1% 流量稳定性误差: 0.1%。 2.1.3压力范围:0~420bar。 2.1.4压力脉动:在整个压力范围内,1mL/min流量时,10mV。 2.1.5可压缩性补偿:根据流动相自动调节或用户选择。 2.1.6 材质要求:耐腐蚀泵头以不锈钢为材料,耐酸耐碱,抗腐蚀。 2.1.7 具有在线柱塞杆清洗功能,可有效防止因缓冲盐析出而导致柱塞杆和密封圈的磨损。2.1.8 采用压力反馈技术及毛细管技术。2.1.9采用浮动的柱塞杆系统,自动校正机械加工误差。 2.2柱温箱 2.2.1柱温范围:室温上3~80?C。 2.2.2控温精度: 0.1?C。 2.2.3可安装2根色谱柱。 2.2.4控温方式:半导体模块加热方式(可制冷)。 2.3紫外检测器 2.3.1波长范围: 190-700nm。 2.3.2波长精度: n 1nm。 2.3.3波长重复性: 双波长紫外检测器 1个 高压进样阀 1个 元梯度混合器 1个 液相色谱柱 1根 色谱工作站软件 反控工作站 1套 声波清洗器 1个 溶剂过滤器 (含耗材): 1套 电脑:1套 CPU系列:英特尔 酷睿i5 4代系列。 CPU型号: Intel 酷睿i5 4590。 CPU频率:3.3GHz。 最高睿频:3700MHz 。总线规格:DMI 5 GT/s 缓存:L3 6MB 。核心架构:Haswell 。核心/线程数:四核心/四线程 。制程工艺:22nm 。内存容量: 4GB 。内存类型:DDR3 1600MHz 。 硬盘容量: 500GB。 硬盘描述:7200转。光驱类型:DVD刻录机。 光驱描述:支持DVD SuperMulti双层刻录。 显卡类型:独立显卡。显卡芯片:NVIDIA GeForce HD8470 。 显存容量:1GB 。 DirectX:DirectX 11 。 音频系统:集成 。 显示器尺寸: 19英寸。 显示器描述:LED宽屏 。有线网卡:1000Mbps以太网卡。前面板I/O接口:2 USB2.0;1 读卡器;1 耳机输出接口;1 麦克风输入接口。 背板 I/O接口:6 USB2.0+1 USB3.0;2 PS/2;1 DVI-D;1 HDMI;1 VGA;1 RJ45(网络接口);6 S/PDIF输出;1 电源接口;扩展插槽:1 PCIe x16;1 PCIe x1 。 打印机:1台 产品类型:黑白激光打印机。 最大打印幅面:A4 。最高分辨率:600x600dpi。 黑白打印速度 A4:达到14ppm,Letter:15ppm 。处理器:234MHz。内存:2MB 。网络打印:不支持有线网络打印。 双面打印:手动 。预热时间:0秒预热 。首页打印时间:小于10秒 。接口类型:高速USB2.0 (三)投标供应商应具备的资格条件: 1、具有独立承担民事责任能力的法人; 2、具有良好的商业信誉和健全的财务会计制度; 3、具有履行合同所必需的设备和专业技术能力; 4、有依法缴纳税收和社会保障资金的良好记录; 5、参加政府采购活动前三年内,在经营活动中没有重大违法记录。 (四)招标文件的购买:有意向的投标供应商可在投标截止时间前(在江西省公共资源交易网(网址:http://ggzy.jiangxi.gov.cn/jxzbw/)上报名和下载招标文件,并在开标现场支付招标文件费用,招标文件工本费300元/本,文件售后不退。 (五)电子投标文件的上传:投标供应商必须在投标截止时间前将电子投标文件上传至江西省公共资源交易网(网址:http://ggzy.jiangxi.gov.cn/jxzbw/),逾期作无效投标处理。 (六)投标保证金:投标供应商的投标保证金人民币壹万元整;须在开标的前一天17:00(北京时间)之前到账,从投标供应商的基本账户转入政府采购代理机构,否则投标无效。 (七)投标截止时间及开标时间、地点:2015年06月30日15:00(北京时间),开标地点:大余县公共资源交易中心六楼开标大厅,届时请投标供应商的法定代表人或经正式授权的代表携带CA数字证书出席开标大会,签到时间以递交CA数字证书时间为准。 (八)联系方法: 赣州市南康区环宇招标代理有限公司 地址:大余县行政服务中心四楼 电话:0797-8719344 传真:0797-8712955 邮箱: nkhydy@sina.com 联系人:刘梅燕 开户行:工行南康市政广场支行 户名:赣州市南康区环宇招标代理有限公司 账号:1510200409025915762 大余县环境保护局 地址:大余县南安镇金莲山大道西侧 电话:0797-8712113 联系人:黄泽阔 赣州市南康区环宇招标代理有限公司
  • 仪器情报,科学家突破钙钛矿X射线探测器性能瓶颈!
    【科学背景】随着科学技术的进步,X射线检测技术在医学成像、无损检测和天体物理等领域得到了广泛应用。X射线的不同光子能量具有不同的穿透能力,这使得在不同应用中对X射线探测器的要求也各不相同。例如,软X射线(25–50 keV)主要用于乳腺摄影和胸部X光检查,而硬X射线(80–150 keV)则用于现代计算机断层扫描和工业检测。然而,现有的商业化半导体探测器,如α-Se、Si和CdZnTe(CZT),存在吸收系数低、载流子输运性能差和高制造成本等问题,亟需开发新型的高性能X射线探测材料。近年来,金属卤化物钙钛矿因其高衰减系数、大的迁移-寿命(μτ)积以及低制备成本,成为新一代X射线探测材料的研究热点。钙钛矿材料在直接X射线检测、光子计数X射线成像和能量分辨γ射线检测等方面展示了巨大的潜力。然而,钙钛矿材料中的离子迁移会导致大噪声和基线漂移,严重影响探测器的性能。特别是,对于高能量硬X射线检测(100 keV),现有钙钛矿探测器的灵敏度和检测限仍然难以满足高性能的要求。为了应对这些挑战,山东大学陶绪堂教授、张国栋教授团队合作开发了新型气氛导模法来开展了钙钛矿单晶的优化研究。通过在Ar和HBr混合气氛中生长CsPbBr3单晶,成功地改善了材料的电阻率、离子迁移活化能以及迁移-寿命(μτ)积。与传统的垂直布里奇曼法生长的CsPbBr3单晶相比,EFG-CsPbBr3单晶具有显著更低的陷阱密度、更高的电阻率(1.61 × 1010 Ω cm)和更大的离子迁移活化能(0.378 eV),从而有效地降低了漏电流和基线漂移。基于EFG-CsPbBr3单晶的X射线探测器展示了优秀的平衡性能,包括极低的暗电流漂移(1.68 × 10-9 μA cm-1 s-1 V-1)、极低的检测限(10.81 nGyair s-1)以及在5,000 V cm-1高电场下的高灵敏度(46,180 μC Gyair-1 cm-2)。此外,该探测器在30天内保持了稳定的响应。【科学亮点】1. 实验首次采用气氛导模法,在Ar和HBr混合气氛中成功生长了高质量的形状控制CsPbBr3单晶(SCs),并获得了较低的陷阱密度、高电阻率(1.61 × 1010 Ω cm)以及较大的离子迁移活化能(0.378 eV)。2. 实验通过与采用垂直布里奇曼法生长的CsPbBr3单晶对比,验证了EFG-CsPbBr3单晶在电阻率、离子迁移活化能和漏电流控制方面的显著改进。EFG-CsPbBr3单晶显示出更低的漏电流和基线漂移,从而提高了X射线探测器的性能。3. 基于EFG-CsPbBr3单晶的X射线探测器,在5,000 V cm-1的高电场下展现出出色的性能,包括极低的暗电流漂移(1.68 × 10-9 μA cm-1 s-1 V-1)、极低的检测限(10.81 nGyair s-1)以及灵敏度高达46,180 μC Gyair-1 cm-2。此外,该探测器在30天内保持了稳定的响应,证明了其长期稳定性和高性能。4. 研究提出了一种有效的策略,通过优化铅卤化物钙钛矿单晶的生长工艺,提高了其在X射线检测和成像中的性能,为未来的高性能X射线探测系统提供了新的思路。【科学图文】图1:导模法edge-defined film-fed growth,EFG生长的CsPbBr3单晶single crystals,SCs。图2:导模法EFG-CsPbBr3和垂直Bridgman法VB-CsPbBr3的光电性能比较。图3:导模法EFG-CsPbBr3和垂直Bridgman法VB-CsPbBr3的离子迁移特性。图4: X射线检测响应和灵敏度。图5:X射线检测极限和成像。【科学结论】本文提出了一种高效的新型气氛可控导模法生长(EFG)技术,以解决钙钛矿材料在X射线检测中的关键问题。传统的钙钛矿探测器面临的主要挑战是离子迁移导致的噪声和基线漂移,这严重影响了探测性能和成像质量。通过优化生长环境,EFG技术显著降低了CsPbBr3单晶的陷阱密度,提高了电阻率和离子迁移活化能,从而减少了漏电流和暗电流漂移。这种改进不仅增强了探测器的灵敏度(46,180 μC Gyair-1 cm-2),还降低了检测限(10.81 nGyair s-1),并且设备在高电场(5,000 V cm-1)下保持了稳定的性能,能够在无封装条件下持续工作30天。此研究为提升钙钛矿材料在X射线检测和成像中的应用性能提供了一种切实可行的解决方案,展现了在高性能辐射探测器领域的广阔前景。原文详情:YWang, Y., Sarkar, S., Yan, H. et al. Critical challenges in thedevelopment of electronics based on two-dimensional transition metal dichalcogenides. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01210-3
  • “扫描探针显微镜漂移测量方法”国际标准发布
    日前,由中国科学技术大学工程科学学院黄文浩教授主持制订的国际标准“扫描探针显微镜漂移测量方法(ISO11039:2012)”已由国际标准化组织正式发布。   自20世纪80年代扫描探针显微镜(Scanning-probe microscopy,SPM)发明以来,由于其具有原子量级的分辨能力,极大地促进了纳米科学技术的发展,并已逐步形成了一种高新技术产业。SPM的工作原理是通过微小探针在样品表面进行扫描,将探针与样品表面间的相互作用转换为表面形貌和特性图像。由于扫描速率较慢,漂移现象在扫描过程中普遍存在,这制约了SPM在纳米测量和纳米加工方面的进一步应用。   黄文浩教授近二十年来一直从事纳米技术与精密仪器领域的研制工作。在2006年,他向国际标准化组织ISO/TC201(表面化学分析技术委员会)提出了“扫描探针显微镜漂移速率测量方法标准”的提案,目的是要将SPM工作时纳米/秒的漂移大小和方向测量出来,以规范这类仪器的使用方法。2007年该提案正式立项,黄文浩教授被指定为该项目工作组的召集人。经过四年多的努力,SPM漂移测量方法标准的最终草案于2011年经全体成员国投票后顺利通过,并于2012年正式发布。   该标准定义了描述SPM在X、Y和Z方向的漂移速率的专业术语,规定了SPM漂移速率的测量方法和测量程序,对仪器的功能和工作环境以及测量报告内容均作了严格要求。该标准为SPM仪器生产厂家制定了漂移速率的有效参数规格,并且能帮助用户了解仪器的稳定性,以便设计有效的实验。该标准不仅适用于基于SPM测量图像的漂移速率评价方法,对其它纳米级测量仪器稳定性的评价也有着重要参考价值。   相关研究工作受到国家自然科学基金、中科院知识创新工程重要方向性项目和科技部973项目资助。   背景资料: 黄文浩教授 博士生导师   1968年毕业于清华大学精密仪器及机械制造系精密仪器专业。1978年至今在中国科技大学精密机械与精密仪器系任教,现任教授,博士生导师。其中1989-1991年,西班牙马德里自治大学, 1993-1994年日本东京大学访问学者。主要研究领域:微纳米制造和测量技术 SPM科学仪器技术 飞秒激光微纳米加工技术 纳米技术与标准化。曾承担国际科技合作项目有: 中-日大学群合作先进制造领域中方负责人(1996-2002),中国-西班牙国家级科技合作项目(2001-2004) “纳米技术与仪器”负责人。主持国家自然科学基金面上项目、重点项目、973子课题等多项。在国内外刊物发表论文200余篇。现任国家纳米技术标准化委员会委员,国际标准化组织ISO/TC201/SC9/WG2召集人。《光学 精密工程》《纳米技术与精密工程》杂志编委。2011年担任国际纳米制造趋势论坛NanoTrends2011组委会主席。2011年当选国际纳米制造学会会士(Fellow of ISNM)。
  • 水质检测设备---全自动红外测油仪(红外光度法)
    产业调研网发布的中国水质监测行业现状调研及未来发展趋势分析报告(2021-2027年)认为,水质监测行业今后将会继续稳定、持续地发展;运营市场方面,随着有关部门监管力度的加强,运营企业的数量将逐渐缩小,少数规模大、实力强的运营企业将逐渐成为运营市场的主力军。随着国家对环保的日益重视,水质监测行业竞争将不断加剧,国内的水质监测企业将迅速崛起,逐渐成为水质监测行业中的翘楚。 B1171全自动红外测油仪符合国家标准“HJ637-2018水质 石油类和动植物油的测定 红外光度法”,由全自动操作软件,红外分光系统和磁力搅拌萃取系统组成,使用萃取溶剂按一定萃取比例,采用滚筒式立体搅拌技术将水体中的油类萃取出来,再将萃取溶液通过过滤装置除水除杂质导入比色皿中,然后红外分光系统进行分析测量。加装专用的硅酸镁过滤装置可以测量石油类和动植物油的含量。测量完毕仪器自动排废清洗管道。全过程自动化,无须操作人员接触四氯乙烯,即自动进样、自动萃取、自动除水除杂质、自动测量、自动清洗、自动排液和存储数据。仪器特点:1、全自动化:全自动进样、萃取、除水过滤、测量、排液、清洗,可连续做8-10个水样。2、健康安全:萃取等操作无须分析人员的参与,不和四氯乙烯的接触,保证了操作人员的健康安全。3、萃取方法符合新国标HJ637-2018,萃取结果和国标方法的结果一致。4、拥有核心技术:配置**油水分离膜一次分离过滤,不配无水硫酸钠除水,一膜可使用百次左右。5、厂家配备**技术产品标准油滤光片,可进行单点校正,一次标准曲线终身免更换,免除配置标准油试剂。6、内置多点触控计算机控制终端,体积小可放置在常规标准1.2米通风橱中,可外接台式计算机控制操作。7、采用效率高的滚筒立体式侧面磁力搅拌萃取技术,萃取效率高于95%,全密闭萃取无挥发无毒害。8、采用Windows10操作系统控制。9、采用稳定成熟的.NET4.0平台绿色免安装测油仪软件。10、真正的三波数,红外三波数谱图清晰,刻度准确,清晰显示三个波数产生的吸收谱图和吸光度。11、四氯乙烯内置3L储液瓶 ,萃取排废全密闭不挥发。12、内置硅酸镁吸附柱可测量矿物油和动植物油,加装自动采样器可升级为在线监测仪。13、一键定标:空白和标准油样自动检测自动校正。14、一键完成:调空白加多个水样检测可以一键完成,减少操作人员的工作量。15、整个萃取系统采用防酸碱防四氯乙烯,全防腐不亲油的材料,运行清洗流程,减少高低浓度交叉污染。16、自动稀释富集:可以任意设定稀释富集比例。17、自动分离水和四氯乙烯废液,自动收集废液四氯乙烯等试剂,排放废水。18、基线稳定性:零点自动实时调整(消除基线漂移影响)。技术参数: 仪器检出限 DL0.999 取水样体积 5ml--600ml或5ml--1000ml 检测样品量 连续检测8-10个样品 四氯乙烯萃取量 10-25ml的整数倍 单个样品自动检测时间 2-5min(取样量越多萃取时间越长) 分辨率 0.001mg/L 萃取试剂 四氯乙烯 波数准确度和波数重复性 ±1cm-1 主机净重 25kg 使用电源 (220±22)V、(50±1)Hz、50VA 使用温度和湿度 温度范围1℃-40℃,湿度≤80﹪ 主机外型尺寸 750mm(长)×420mm(宽)×420mm(高)
  • 最新钛系统Ultimate3000高效液相色谱仪
    Ultimate3000钛系统为生物系统的分析提供了一个完好的解决方法。系统的核心就是一个惰性的泵,能够用于单泵以及双泵的配置,并且提供高准确度以及精确度。系统的流路也是完全惰性的,保证试剂以及样品在通过整个管路的时候不会将管路腐蚀使铁中的污染物进入柱子以及样品。流速范围为0.001-6ml/min,能轻易的满足半制备,标准,微流甚至是毛细管流路的梯度应用。对于等度分离能够提供一个更加宽的流速范围,流速范围为0.001-10ml/min. 该系统是生物分子分析的理想选择,像蛋白质,缩氨酸,核苷以及氨基酸的分析。 生物惰性的流路系统在分离蛋白质基体的药物时能够保持蛋白质的完整性以及易变化的基因转译后的修正,像单克隆抗体(Mab`s) 生物惰性流路保证充足可靠的分离,即使是在高盐条件下以及在一个很宽的pH范围内(1~13) 于行业主要的离子交换色谱柱像ProPac以及ProSwift柱能够完全兼容 单泵以及双梯度系统使应用广泛并且效率高。 新的自动进样器提供了精确度以及可靠性,通过全PEEK的流路,进样阀,样品环以及进样针,再加上与样品冷却系统的结合,Ultimate3000钛系统在分析样品的过程中保证了每个样品的完整。UV-Vis吸收检测器提供高灵敏度,低噪音以及低基线漂移,检测器的波长范围为190-900nm,加上高数据采集频率即使对于超快速液相色谱的分析也能保证样品完整性。 screen.width-300)this.width=screen.width-300"
  • 海洋光学发布新一代QE Pro高性能光谱仪
    海洋光学最新推出的QE Pro光谱仪是一款配备了背照薄型CCD阵列的高灵敏度光谱仪。它具有超高的量子效率、宽动态范围以及极低的噪声,因此非常适用于弱光检测以及需要检测很宽的浓度范围时的应用。QE Pro的光学设计使得它具有最佳的性能表现,可以满足众多应用的需要。同时由于配备了18位A/D转换器,QE Pro因而具有超高的动态范围,成为当前市场上灵敏度最高的微型光谱仪。产品适用于监控发射光谱、尤其适用于检测荧光和拉曼等信号微弱甚至无法获取最低浓度可测样品的物质;对这些领域的用户具有非凡意义。另外,在那些进行质量控制的吸光度与反射率检测应用中,QE Pro也可以提供很低的检测限,同时还可在很宽的浓度范围条件下进行准确检测。为了满足动力学科研人员快速获取全光谱的需要,QE Pro还专门增加了板载缓冲区。该缓冲区可保留15000张光谱,因此可以先缓冲带时间标记的光谱,再通过USB传输,从而保证数据的完整性。这个缓冲功能使得那些全谱动力学检测,如化学动力学与酶动力学,以及蛋白质折叠等应用可以每8毫秒获得一个全谱(每秒125张全谱)。检测器的热电控制可减低噪音,控制基线漂移,可大大改善长时间检测稳定性,因此在高端光谱仪中具有很重要的地位。QE Pro 对其热电控制部分进行了进一步的改进,可在高达60摄氏度的温度变化范围内保证其暗噪声仅为4 counts,并大大提高了其基线稳定性。这使得QE Pro非常适合于对于稳定性要求非常严苛的在线与线旁质量控制检测以及易受环境温度变换影响的检测应用。QE Pro光谱仪同样配备了可用于SMA905与FC接口的可更换的精确激光切割的狭缝与光阑组件。可更换式狭缝在配置上可给客户更大的自由度,仅需要装卸几个螺丝,客户即可以在如荧光和吸光度这样检测要求完全不同的应用之间切换配置,从而使得每个应用的测试结果都可达到最佳。该狭缝可单独用于SMA905或FC接口,其规格包括5um、10um、25um、50um、100um、200um宽度以及无狭缝的SMA接头。点击链接了解更多:www.oceanoptics.cn/qe-pro
  • 赛默飞推出一体式UHPLC系统Vanquish(图)
    近日,赛默飞世尔发布了一款UHPLC系统&mdash &mdash Vanquish&trade UHPLC,该系统在外观上与标准的UHPLC系统不同,其有简洁设计的优势。一体机的设计既有集成系统的耐用性又有模块化系统的灵活性和可维护性。Vanquish矗立高度比模块化系统低了25%,更有利于实验室安全和便利。   赛默飞HPLC副总裁兼总经理Fraser McLeod 表示,&ldquo 与其对现有的UHPLC进行改进,不如从头进行设计。其结果是产生了一个系统,该系统结合了分离性能、样品通量、易于使用、可重复性和方法转移效率等优势。&rdquo   与Vanquish概念密切相关的是赛默飞Accucore Vanquish UHPLC色谱柱新品,其专门为优化性能而设计。 新色谱柱的特点是采用1.5微米固体实心颗粒,由此可以完全利用Vanquish系统1500bar(22000psi)的最大泵压力和最大5mL/min的流速,实现超短扩散路径和高效分离。   Vanquish系统还在性能、通量及可用性方面有改进,包括:   &bull 专为高度可重复的保留时间和低基线噪音而设计的SmartFlow泵输送技术,提高检测的灵敏度。   &bull 温度控制功能,其中包括直接加热和柱温箱中强制空气温度控制模块,从而进一步提高分离效率和选择性,以及保留时间重现性。   &bull 一个隔热的自动进样器室,采用了新的空气对空气冷却技术,防止即使在炎热和潮湿的环境中,进样瓶水凝结。   &bull 黄金标准的赛默飞戴安变色龙色谱数据系统,它可以自动、无人值守地校准系统。 eWorkflow和智能运行控制自动化是专为提高数据质量和仪器直接数据处理的高效;相比于手动操作,Smart Link可以显著加快数据审查。变色龙软件同时支持色谱和质谱分析功能。   &bull 可选的手持平板电脑控制,用户可以方便地监控系统状态,检查运行并进行更改。   &bull 对于高通量样品,可选Vanquish Charger,它是一个完全集成的机器人模块,提供无人值守,操作样品管理和装载。它可容纳多达九个样品架、深孔板或20浅孔板。用户可以在任何时间添加的样品,即使在??仪器工作时也可以,从而实现了最大通量和可用性。   &bull 硬质碳涂层的陶瓷注射阀和泵活塞设计保证20万次进样的一致性和重复性,减少维护进一步提升正常运行时间。   &bull Vanquish二极管阵列检测器的设计实现在高信噪比情况下有宽的线性范围,产生高可信度的数据,超出了可变波长检测器的功能。低色散的10mm和60mm流通池为苛刻应用提供高灵敏度水平和宽线性范围。熔硅光管流通池专为利用可重复定量的低基线漂移而设计。客户可以同时获取多达10个信号通道,以及在采集频率200Hz时的一个光谱三维场。灵敏度、线性和光谱分辨率可以根据不同应用选择光学狭缝1nm?8nm的四个可变光程。(编译:杨娟)
  • 上海科创新推出环境监测*气相色谱仪
    为了按*的*发展观适应*稳定的持续经济发展的需要,*对环境监测工作越来越重视。为了更好地贯彻实施*标准GB/T15263-94《环境空气总烃的测定 气相色谱法》、*环境保总局标准HJ/T38-1999《固定污染源排气中非甲烷总烃的测定 气相色谱法》和行业*的大环境中低含量非甲烷总烃测定的热解吸法以及环境空气中低含量苯系物测定的热解吸法。上海科创色谱仪器有限公司*成功了这种用于环境空气监测的多功能*气相色谱仪。 一、仪器配置组成:   整机仪器由*改装的科创色谱仪器[可选用GC9800HFF机型或GC900(II)HFF机型]与HL-800型二次热解吸仪及非甲烷总烃/TVOC分析*双通道色谱工作站配套组成。*气相色谱仪主机上带有双FID、双放大器、三汽化室进样器、双管定体积进样阀切换系统、三根*分析柱。 二、主要*性能 气相色谱仪 1.FID检测限:DF ≤ 2× 10-11g/s(nC16) 2.稳定性: 基线漂移≤ 0.06mV/0.5h 基线噪声≤ 0.01 mV 3.温度控制:柱箱 室温以上10℃~350℃± 0.1℃ 程升速率 0.1~25℃/min 检测器 50℃~350℃ 二次热解吸仪 1.温度控制 ①一次热解炉:80℃~350℃± 1℃ ②二次热解炉:80℃~350℃± 1℃ ③切换阀:80℃~180℃± 1℃ ④制冷器:-10℃~+10℃± 1℃ ⑤输出管线:≥200℃~250℃ 2. 载气控制 ① 载气1:分析用载气气路,用大口径毛细柱时,流量调节范围:3~10ml/min,用填充柱时,可达60ml/min; ② 载气2:是一次热解吸及致冷浓缩吸附用载气气路,流量调节范围:50~100ml/min。 三、主要功能和特点 1.应用双管定体积进样阀进样,可一次进样分析检测污染源排气中总烃/非甲烷总烃,*,*度高,相对标准偏差小于3%; 2.可应用吸附采样/热解吸法分析大环境空气中微量非甲烷总烃; 3.应用二次热解吸*,可**地分析环境空气中苯系物或(TVOC),对比活性炭管的二硫化碳提取法,具有无实验室污染、*(RSD≤3%)、回收率高(99%以上)、方法检测灵敏度提高100-1000倍以及分析时间快等优点。 screen.width-300)this.width=screen.width-300"
  • 气相色谱仪维修手册(堪称最全,没有之一!)
    哎呀,我的气相色谱进样后咋不出色谱峰?咦,怎么气相色谱基线又出现漂移问题了?气相色谱出了小故障,维修工程师不愿来,我这实验数据得马上出,咋办?   &hellip &hellip   各位是不是快被各种莫名其妙的气相色谱故障逼疯了?别发愁了,快来看看这篇《气相色谱仪维修手册》吧。它几乎囊括了气相色谱所有的常见故障,每种故障还列出了5种以上的排除方法;同时还包括N多种图谱分析方法,这可是从事色谱实验室分析工作的同学们必看的&ldquo 红宝书&rdquo 啊! &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析方法(一)   ▲故障分析的基础:   组成:由哪些部分组成?   作用:各部分起什么作用?   原理:各部分的工作原理是怎样的?   判别:如何判别工作正常与否?   注意事项:检修过程中哪些方面必须注意? 故障分析方法(二)   ▲故障分析的思路:   注意事项:   1.保护人体,安全第一,防止事故发生。   2.保护设备,避免故障扩大、转移。   确定范围:   确定与该故障有关的部分和相关因素。   故障检查:   1.顺序推理法:根据工作原理顺序推理,检查、寻找故障原因。   2.分段排除法:逐个排除,缩小范围,检查、寻找故障原因。   3.经验推断法:根据经验积累,检查、寻找故障原因。   4.比较检查法:参照工作正常的仪器,检查、寻找故障原因。   5.综合法:综合使用上述各种方法,检查、寻找故障原因。 故障分析方法(三)   ▲GC故障的种类:   气路部分故障:气体输入不正常、气体品种不对或纯度不够、气路泄漏、气路堵塞、气路污染、气路部件故障、流量设置不正常、色谱柱问题、等等。   主机电路部分故障:启动或初始化不正常、温度控制部分故障、键盘或显示部分故障、开关门不正常、点火不正常、电流设置不正常、量程或衰减设置不正常、其他功能性故障、等等。   检测器输出信号不正常:无信号输出、输出信号零点偏离、输出信号不稳定、输出信号数值不对、等等。   其他故障:气源不正常、电网电压不正常、二次仪表不正常、机械类故障、等等。 故障分析方法(四)   ▲故障的判别:   基础:检查、寻找故障原因的基础是掌握故障判别的方法。掌握故障判别方法的基础是熟悉和了解仪器各部分的组成、作用、工作原理。   输入与输出:通常仪器的每个部分、部件、甚至零件都有它的输入和输出,输入一般是指该部分正常工作的前提,输出一般是指该部分所起的作用或功能。   举例:例如FID放大器,它的输入是FID检测器通过离子信号线传送过来的微电流信号、放大器的工作电源、以及放大器的调零电位器,它的输出是经过放大并送到二次仪表的电信号。判别FID放大器是否工作正常的方法是:A.如果输入正常而输出不正常,则放大器故障。B. 如果输入输出均正常,则放大器正常。C.如果输入不正常,则放大器是否正常无法判定。   收集与积累:积极收集、认真记录、不断积累仪器各个部分工作正常与否的各种判别方法,并了解、熟悉、掌握、牢记这些故障判别方法。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析举例(一)   ▲气路部分不正常。   ⊙指气路系统出现堵塞、泄漏、无压力指示、无气体输出等故障。   A.检查气源部分(气瓶、气体发生器等)是否正常。   B.利用输入气体压力表检查气体输入是否正常,否则检查净化器等外部气路及稳压阀等是否正常。   C.如果是载气流路,则可在色谱柱前后检查进样器的气体输出是否正常,否则检查稳压阀至色谱柱这一段。   D.如果是氢气或空气流路,则可利用仪器顶部的气路转接架检查气体输出是否正常,否则检查稳压阀至气路转接架这一段。   E.检查检测器的气体输入、输出是否正常。   F.在气路系统的适当地方进行封堵,并观察相应压力表的指示变化,是检查漏气的常用方法。   G.安全起见,可以利用氮气对氢气流路进行检查。 故障分析举例(二)   ▲仪器启动不正常。   ⊙指接通电源后,仪器无反应或初始化不正常。   A.关机并拔下电源插头,检查电网电压以及接地线是否正常。   B.利用万用表检查主机保险丝、变压器及其连接件、电源开关及其连接件、以及其他连接线是否正常。   C.插上电源插头并重新开机,观察仪器是否已经正常。   D.如果启动正常,而初始化不正常,则根据提示进行相应的检查。   E.如果马达运转正常,而显示不正常,则检查键盘/显示部分是否正常。   F.如果显示正常,而马达运转不正常,则检查马达及其变压器、保险丝等是否正常。   G.必要时可拔去一些与初始化无关的部件插头,并进行观察。   H.如果初始化仍不正常,则基本上可确定是微机板故障。 故障分析举例(三)   ▲温度控制不正常。   ⊙指不升温或温度不稳定。   A.所有温度均不正常时,先检查电网电压及接地线是否正常。   B.所有温度均不稳定时,可降低柱箱温度,观察进样器和检测器的温度,如果正常,则是电网电压或接地线引起的故障。   C.如果电网电压和接地线正常,则通常是微机板故障,一般来说各路温控的铂电阻或加热丝同时损坏的可能性极下。   D.如果是某一路温控不正常,则检查该路温控的铂电阻、加热丝是否正常。   E.如果是柱箱温控不正常,还要检查相应的继电器、可控硅是否正常。   F.如果铂电阻、加热丝等均正常,则是微机板故障。   G.在上述检查过程中,要注意各零部件的接插件、连接线是否存在断路、短路、以及接触不良的现象。 故障分析举例(四)   ▲点火不正常。   ⊙指FID、NPD、FPD检测器不能点火或点火困难。   A.检查载气、氢气、空气是否进入检测器,否则检查气路部分。   B.检查各种气体的流量设置是否正确,否则重新设置。   C.观察点火丝是否发红,否则检查点火丝是否断路或短路、接触不良,以及检查点火丝形状是否正常。   D.点火丝正常的情况下,FID、FPD检测器观察点火继电器吸合是否正常,点火电流是否加到点火丝上,否则检查相应的电路部分。   E.NPD检测器在确认铷珠正常的前提下,观察电流调节是否正常,否则检查相应的电路部分。   F.检查检测器是否存在污染、堵塞现象。   H.检查检测器内部是否存在漏气现象。 故障分析举例(五)   ▲出部分反峰:   ⊙指大部分峰为正向出峰,但一部分峰为反向出峰,或基线往负方向偏移。   A.使用空气压缩机时,检查确认反向出峰或基线往负方向偏移是否与空气压缩机的动作(空气压力不足时空气压缩机自动动作)在时间上是否同步。   B.较多水份进入离子化检测器时,火焰的燃烧状态短时间会起变化,伴随出现反峰(这不是异常)。   C.检查各种气体的流量设置是否正常,以及是否存在漏气现象。   D.检查载气的纯度,如果载气里面有微量不纯物,而样品的纯度如果比载气的纯度高,就会出反峰。   E.气路切换时有压力冲击,也会出现反峰,此时气路中应加接稳压装置。   F.使用TCD时,如果载气和样品的热导系数过于接近,也会出现一部分或全部的反峰。 故障分析举例(六)   ▲出峰后零点偏移:   ⊙指样品出完溶剂峰等平顶峰后基线不能回到原来的零点。   A.各气体流量是否正常(数值、稳定)。   B.柱箱、检测器的温度是否正常(数值、稳定)。   C.检测器是否被污染,如果污染进行清洗或更换零件   D.必要时在通入载气的情况下,将检测器的温度设置在200℃以上进行数小时的老化。   E.色谱柱是否老化不足,必要时在载气进入色谱柱的情况下,将色谱柱箱的温度设置在色谱柱的最高使用温度下30度左右进行10小时以上的老化,或用程序升温方式进行老化。   F.减少进样量。   G.使用TCD时,如果大量的氧成分注入TCD,会引起TCD钨丝的阻值发生变化,使得基线无法回零,钨丝的寿命也会减短。 故障分析举例(七)   ▲基流过大、无法调零(1):   ⊙指对基线进行调零时,发现基流增大,零点与平时相比有偏离或无法调零。   A.将火焰熄灭或关闭电流之后基线还是无法回零时,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:   1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查检测器温度是否正常,必要时对检测器进行老化。   4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   5).使用TCD时,检查TCD钨丝电流的设定是否太大。   B.色谱柱箱温度冷却到室温,调零还是不正常时,要考虑检测器自身的原因:   1).检查各种气体是否污染或流量不正常、漏气。   2).检查检测器是否被污染,如果污染请进行清洗。 故障分析举例(八)   ▲基流过大、无法调零(2):   C.降低进样口温度后基始电流也不减少时:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。   3).检讨是否色谱柱老化不足,比要时在载气进入色谱柱的情况下对色谱柱进行老化。   D.降低进样器温度后基始电流有缩减少时,可以判定是进样口、进样垫或进样衬管等有污染现象,应对进样器部分进行清洗。 故障分析举例(九)   ▲基线扭动(1):   ⊙指基线上下扭摆不停超出标准范围、无法走直稳定。   注意:发现基线扭动时,请先检查电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。同时检查仪器的接地是否正确并且良好。   A.将火焰熄灭之后基线如果还是扭动:   1).检查检测器是否被污染,如果污染请进行清洗。   2).检查检测器的温度是否正常,必要时检测器进行老化。   3).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   B.将火焰熄灭之后基线停止扭动,降低色谱柱箱的温度扭动幅度却不变小:   1).检查使用的空气是否有污染现象,注意更换气体过滤器的过滤剂,及对空气压缩机进行放水。   2).检查空气压缩机的起动与基线扭动有没有关系,否则维修空气压缩机。   3).检查检测器是否被污染,如果污染请进行清洗。   4).检查检测器的温度是否正常,必要时检测器进行老化。 故障分析举例(十)   ▲基线扭动(2):   C.降低色谱柱温度后基线扭动减少,但降低进样器温度扭动幅度却不变小,则基线扭动的原因与色谱柱或载气有关:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,必要时对色谱柱进行老化。   D.降低进样口温度之后基线扭动减少,要考虑是否进样口有污染现象:   1).如果确认进样器污染,请进行清洗。   2).更换新的进样垫。   3).检查进样器温度是否波动。 故障分析举例(十一)   ▲基线漂移过大(1):   ⊙仪器刚启动、色谱柱更换后不久,基线的漂移是正常现象。基线漂移过大是指基线的漂移比正常的标准高很多,并且始终无法稳定下来。   A.将火焰熄灭之后如果基线还是漂移很大,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:   1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。使用TCD时,检查TCD的钨丝及引线是否接触不良。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查检测器的温度是否正常,必要时对检测器进行老化。   4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   B.将火焰熄灭之后基线不再漂移,降低色谱柱箱的温度漂移幅度却不变小,这种情况是色谱柱之后的部分有问题:   1).检查各种气体是否污染或流量不正常。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检测器的使用温度在350℃以上时,某些毛细管色谱柱外侧的树脂成分可能受热分解引起基线漂移,这种情况请把FID温度降到350℃以下。   4).检查检测器温度是否波动。   5).使用TCD时,检查TCD钨丝电流的设定是否太大。 故障分析举例(十二)   ▲基线漂移过大(2):   C.降低色谱柱温度后基线漂移减少,但降低进样口温度漂移幅度却不变小,这种情况基线漂移的原因与色谱柱或载气有关:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。   3).是否色谱柱老化不足,必要时对色谱柱进行老化。   4.检查检测器温度是否波动。   D.降低进样口温度之后如果基线漂移减少,要考虑是否进样口有污染现象,请进行下列项目的检查:   1).如果确认进样器污染,请进行清洗。   2).更换新的进样垫。   3).检查进样器温度是否波动。 故障分析举例(十三)   ▲进样不出峰(1):   ⊙指进样后没有峰被检测出来,基线只画一条直线。   注意:发现进样不出峰时,首先要考虑载气是否进入仪器(包括色谱柱、检测器),否则可能会造成色谱柱的损伤或检测器的污染。因此发现进样不出峰时,应立即降低色谱柱恒温槽的温度让色谱柱冷却。使用TCD时,必须先将钨丝电流关闭。在确定载气系统正常之后方能进行其他项目的检查。   A.检查检测器的火焰是否熄灭,如果熄灭请重新点火 如果点不着火或者点着后又很容易熄灭时,请进行下列项目的检查:   1).检查点火线圈是否发红,如果不发红应该是点火极部分故障。   2).检查各种气体的流量是否正常,适当加大氢气流量试试。   3).使用TCD时,检查TCD钨丝及钨丝电流的设置是否正常。  B.检查离子信号线与检测器、放大器电路板的连接,以及输出信号线与仪器、积分仪/工作站的连接是否正常可靠。 故障分析举例(十四)   ▲进样不出峰(2):   C.调零也不正常时,要考虑是否电路系统的故障,请检查是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。   D.如果进甲烷等常规溶剂还是不出峰或保留时间变慢时,在确认了色谱柱箱的温度降到了室温左右后,请进行下列项目的检查:   1).检查色谱柱是否存在折断现象。   2).检查载气流量是否正常,并进入色谱柱、FID检测器等部分。   E.其他不出峰的原因,请按照下列项目进行检查:   1).注射器不正常。   2).检查色谱柱温度、进样器温度、检测器温度、量程设定等分析条件是否合适。   3).检查样品浓度、样品进样量是否正确。   4).检查样品的取用、色谱柱的选择有没有错误。 故障分析举例(十五)   ▲噪声过大(1):   ⊙气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。   注意:发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。   A.改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。   B.将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:   1).检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。   2).检查检测器是否被污染,如果污染请进行清洗。   3).要考虑是极化电压、放大器电路板、工作电源的故障。 故障分析举例(十六)   ▲噪声过大(2):   C.将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:   1).检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。   D.降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。   E.降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。 故障分析举例(十七)   ▲全部出反峰   ⊙指所有样品均反向出峰。   A.检查气相色谱仪相应检测器的信号输出线与积分仪或记录仪、色谱工作站的信号输入端的连接是否正确,将信号输出线的正负两端对换即可。   B.对于具有极性切换功能的检测器,检查其输出信号的正负极性设置是否正确,必要时更改正负极性的设置即可。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 维修注意事项(一)   ▲关于人体安全与环境保护:   ⊙在维修仪器的过程中,首先一定要注意安全和注意保护环境。GC维修中可能造成安全事故与环境污染的因素大致如下所述:   A.氢气泄漏造成爆炸、燃烧等安全事故。   B.电子捕获放射源造成人体伤害、环境污染事故。   C.易燃易爆、有毒、腐蚀性等危险性样品造成安全事故、人体伤害、环境污染事故。   D.高电压、大电流造成触电事故。   E.高温造成的烫伤事故。   F.其他说明书上已有描述的相关注意事项。   上述各项在维修仪器的过程中必须认真对待,例如严密仔细地进行氢气的漏气检查;热导检测器用氢气做载气的情况下,未安装色谱柱或未使用热导检测器时必须关闭气源;避免打开电子捕获检测器 按规范取用危险性样品;可以断电检修的部分尽量断电检修,并在检修时将电源插头拔掉;必须通电时应避开高电压、大电流部分;避免接触高温部分或先将温度降低,等等。 维修注意事项(二)   ▲关于仪器的保护:   ⊙在维修仪器的过程中,还要注意按规范认真仔细地操作,避免损坏仪器,造成新的故障或将故障扩大。应该注意的内容如下所述:   A.已安装色谱柱的仪器,在通电之前应先通入载气,一般来说,载气对保护仪器是有利的。   B.热导检测器必须先通载气,然后才能加电流,否则可能烧断钨丝。热导检测器还必须防止氧气、空气进入,否则可能造成钨丝氧化。   C.电子捕获检测器必须防止氧气、空气、杂质进入,否则极易污染。   D.热导检测器和氮磷检测器的电流不能加得太大,否则可能烧断钨丝和铷珠。氮磷检测器的氢气也不能开得太大,否则也会烧断铷珠。   E.火焰光度检测器的光电倍增管必须避免长时间的强光照射。   E.检修时,在仪器通电之前,必须仔细确认各个接插件已正确地插好。   F.任何时候都要避免污染仪器的气路系统、进样及检测系统、色谱柱。   G.柱箱温度的设置不得大于色谱柱允许的最高温度。   H.其他说明书上已有描述的相关注意事项。 维修注意事项(三)   ▲关于老化。   ⊙在很多情况下,所谓的故障是由于老化不充分引起的,所以在必要的时候(例如一段时间未用或更换色谱柱后)应该进行老化,避免出现不必要的所谓故障。各种老化的方法如下所述:(注:老化时应适当增加载气流量)   A.色谱柱的老化:在载气进入色谱柱的情况下,将柱箱温度设置在色谱柱允许的最高温度以下30℃,或正常使用温度以上30℃,进行十小时以上的恒温老化;或设置3-5℃/min的升温速率, 40~60℃ 的起始温度,色谱柱允许的最高温度以下30℃的终止温度,进行一阶程序升温老化。   B.进样器/检测器的老化:在载气进入进样器/检测器的情况下,将进样器/检测器温度设置在200℃以上进行数小时的老化。   C.电子捕获检测器的老化:在载气进入电子捕获检测器的情况下,将电子捕获检测器温度设置在200℃以上进行十小时以上的老化。   D.热导钨丝的老化:在载气进入热导检测器的情况下,将热导电流设置在使用值以上10-20mA,进行数小时的老化。   E.氮磷检测器铷珠的老化:在载气进入氮磷检测器的情况下,将铷珠电流设置在使用值以下0.4A和0.2A,各进行二十分钟左右的老化。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 谱图分析(一)   ▲保留时间重现性差:   ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,保留时间变化较大、重现性较差。   A.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。   B.进样垫、色谱柱、过渡衬管的安装连接处是否存在漏气现象。   C.载气的输入压力是否正常。   D.载气流量是否正常或出现变化。   E.进样器、柱箱、检测器等的温度是否稳定。   F.如果保留时间与峰高/峰面积的重现性同时变差,则进行了上述检查后再参照[峰高/峰面积重现性差]中的各项进行检查。   注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。 谱图分析(二)   ▲峰高/峰面积重现性差:   ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,峰高/峰面积变化较大、重现性较差。   A.注射器的性能是否正常以及进样时是否存在操作失误。   B.样品浓度(特别是挥发性样品)是否因放置时间过长而起变化。   C.各种气体的输入压力是否正常。   D.各种气体的流量是否正常或出现变化。   E.进样器、柱箱、检测器等的温度是否稳定。   F.如果峰高/峰面积与保留时间的重现性同时变差,在进行了上述检查后再参照[保留时间重现性差]中的各项进行检查   注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。 谱图分析(三)   ▲出刀形峰:   ⊙指样品出峰时上升缓慢而下降迅速,形如刀状。   A.减少样品的进样量。   B.提高色谱柱箱的温度。   C.改用较大内径的色谱柱。   D.增加固定液的涂层的厚度。   E.选用样品的溶解度较高的固定液。   F.尝试提高进样器的温度,改善峰的形状。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制