当前位置: 仪器信息网 > 行业主题 > >

单体含量氢火焰检测

仪器信息网单体含量氢火焰检测专题为您提供2024年最新单体含量氢火焰检测价格报价、厂家品牌的相关信息, 包括单体含量氢火焰检测参数、型号等,不管是国产,还是进口品牌的单体含量氢火焰检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单体含量氢火焰检测相关的耗材配件、试剂标物,还有单体含量氢火焰检测相关的最新资讯、资料,以及单体含量氢火焰检测相关的解决方案。

单体含量氢火焰检测相关的论坛

  • 聚合物中单体含量检测

    REACH法规中有针对聚合物单体注册的相关内容。请问聚合物中单体含量怎么检测?包括已反应单体和残留单体。我要检测的聚合物包含好几种聚合物成分,假设没有残余单体,是不是每种聚合物的成分含量就是构成该聚合物的单体单元含量?举例ABS树脂,其中A,B,S各个组分的单体含量如何检测?

  • 【资料】合成树脂乳液中残余单体含量的气相色谱测定方法探讨

    合成树脂乳液中残余单体含量的气相色谱测定方法探讨 吴亚虎,韩婷婷(广东中山市巴德士化工有限公司品控中心,528427) 摘要:讨论了用气相色谱内标法测定合成树脂乳液中未反应完的残余单体含量的方法,并对该方法的精密度、准确度进行了考察/实验表明,该方法简单易行,准确可靠,适用于各种合成树脂乳液样品。 关键词:气相色谱;极性小口径毛细管柱;内标法; 醋酸乙烯酯、甲基丙烯酸甲酯、苯乙烯、丙烯酸丁酯、丙烯酸异辛酯等单体。 0.引言 自国家十项强制性标准颁布以后,市面上各种涂料中的有害物质必须达到国家相关限量标准。由于合成树脂乳液中未反应的残余单体对人的身体健康和环境会带来不同程度的影响,为此必须设法控制乳液中残余单体的浓度……..目前国科多采用顶空进样技术分析乳液中的残余单体含量,由于仪器投资较大,且样品回收率也不理想,样品前处理较烦锁,对于中小企业这样投资较少,易于在中小企业中推广,该分析方法较难于推广,而我们介绍的是普通分析方法。采用小口径毛细管柱,用氢火焰离子化检测器(FID)进行检测,以内标法定量。柱温采用程序升温,分离效果十分理想。其加标回收率分别在94%-103%之间,分析结果的精密度、准确度完全达到检测要求。 1.实验部分: 1.1 仪器和试剂 电子分析天平(万分之一);GC5890F气相色谱仪(带有分流装置);1.0ul微量进样器;20ml带胶塞小玻璃瓶若干;医用注射器1ml、2ml各两只;小口径毛细柱DB-17HT(0.25mm x 30m x 0.15um;最高使用温度为360℃);积分仪或色谱工作站。醋酸乙烯酯VAM(色谱纯)、甲基丙烯酸甲酯MMA(色谱纯)、苯乙烯ST(色谱纯)、丙烯酸丁酯BA(色谱纯)丙烯异辛酯2-EHA(色谱纯)、丙酮(分析纯)配成4+1混合水溶液(作稀释剂),水(纯净水或蒸馏水)。内标物:环已酮(色谱纯) 1.2 测定原理试样中加适量内标物并用少许丙酮(4+1)稀释摇匀后,用微量注射器将稀释后的溶液注入气相色谱仪,样品被载气带入色谱柱,在柱内被分离成相应的组份,用氢火焰离子化检测器检测并记录色谱图,反数据用内标法计算试样溶液中各待测残余单体的含量。 1.3 测定条件 气化温度:280℃ 检测温度:320℃ 载气:氮气:纯度≥99.99%,变色硅胶+5A分子筛除水、除油,柱前压力为60Kpa(30℃); 氢气:纯度≥99.99%,变色硅胶+5A分子筛除水、除油,柱前压力为65Kpa(30℃); 空气:变色硅胶[/fon

  • 合成树脂乳液中残余单体含量的气相色谱测定

    摘要:讨论了用气相色谱内标法测定合成树脂乳液中未反应完的残余单体含量的方法,并对该方法的精密度、准确度进行了考察/实验表明,该方法简单易行,准确可靠,适用于各种合成树脂乳液样品。 0.引言 自国家十项强制性标准颁布以后,市面上各种涂料中的有害物质必须达到国家相关限量标准。由于合成树脂乳液中未反应的残余单体对人的身体健康和环境会带来不同程度的影响,为此必须设法控制乳液中残余单体的浓度……..目前国科多采用顶空进样技术分析乳液中的残余单体含量,由于仪器投资较大,且样品回收率也不理想,样品前处理较烦锁,对于中小企业这样投资较少,易于在中小企业中推广,该分析方法较难于推广,而我们介绍的是普通分析方法。采用小口径毛细管柱,用氢火焰离子化检测器(FID)进行检测,以内标法定量。柱温采用程序升温,分离效果十分理想。其加标回收率分别在94%-103%之间,分析结果的精密度、准确度完全达到检测要求。 1.1实验部分:1.1仪器和试剂电子分析天平(万分之一);GC7800气相色谱仪(带有分流装置);1.0ul微量进样器;20ml带胶塞小玻璃瓶若干;医用注射器1ml、2ml各两只;小口径毛细柱DB-17HT(0.25mmx30mx0.15um;最高使用温度为360℃);积分仪或色谱工作站。醋酸乙烯酯VAM(色谱纯)、甲基丙烯酸甲酯MMA(色谱纯)、苯乙烯ST(色谱纯)、丙烯酸丁酯BA(色谱纯)丙烯异辛酯2-EHA(色谱纯)、丙酮(分析纯)配成4 1混合水溶液(作稀释剂),水(纯净水或蒸馏水)。内标物:环已酮(色谱纯) 1.2测定原理 试样中加适量内标物并用少许丙酮(4 1)稀释摇匀后,用微量注射器将稀释后的溶液注入气相色谱仪,样品被载气带入色谱柱,在柱内被分离成相应的组份,用氢火焰离子化检测器检测并记录色谱图,反数据用内标法计算试样溶液中各待测残余单体的含量。 1.3测定条件以样品中各组分是否完全分离开为依据而确认测定条件: 气化温度:280℃检测温度:320℃载气:氮气:纯度≥99.99%,变色硅胶 5A分子筛除水、除油,柱前压力为60Kpa(30℃);氢气:纯度≥99.99%,变色硅胶 5A分子筛除水、除油,柱前压力为65Kpa(30℃);空气:变色硅胶 5A分子筛除水、除油,柱前压力为55Kpa(30℃);柱温采用程序升温:初温30℃,恒温3min,以10℃/mm升温速率升至140℃,再以50℃/min升温速率升至260℃保持4min.分流比:45:1进样量:0.2ul1.4相对校正因子的测定1.4.1标准样品的配制于20ml样品瓶中分别称取0.03g(精确至0.0001g)的醋梭乙烯酯VAM、丙烯酸丁酯Bt等待测单体的色谱纯品和内标物环已酮,加入纺2mL丙酮(4 1)稀释,用力摇匀3min.(注意:每次衡量后应立即将样品瓶盖紧,以防止样品挥发损失。) 1.4相对校正因子的测定待仪器稳定后,吸取0.2uL标准样品注入色谱仪,记录色谱图和色谱数据……。典型合成树脂乳液的色谱图各单体及内标物的相对保留时间分别是:VAM1.771’;MMA3.078’;BA5.498’;St5.683’;2-EHA8.495’;内标环已酮6.218’1.4.3相对校正因子的计算醋酸乙烯酯、丙烯酸丁酯、苯乙烯等各需待测的残余单体对环已酮的相对校正因子Fi按下式计算:式中:mi——待测残余单体各自的质量;gAs——内标物环已酮的峰面积;ms——内标物环已酮的质量;gAi——待没残余单体各自的峰面积。 1.5连续平行测得待测残余单体各自对环已酮(内标物)的相对校正因子Fi的平等偏差应小于0.05.1.5加标回收率试验为了证明测定结果的可靠性,称取一定量的各待测单体纯品配制一已知尝试溶液,按上述分析方法测定各溶液的浓度,计算各自的回收率,结果见表(1) 1.6样品的测定将样品搅拌均匀后,在20mL样品瓶中准确称取2g左右和一小滴(用1mL注射器)内标物(约0.001g)环已酮于样品瓶中,加入适量(2~3mL)的丙酮(4 1)稀释剂,立即加盖瓶塞,充分摇匀2min.在相同于测定校正因子的分析条件下,用1ul微量进样器取0.2ul该试液注入色谱仪,并记录色谱图和数据,根据待测残余单体各自对内标物的保留时间进行定性。 1.7结果的计算待测残余单体各自的质量分数按下式计算:式中:Fi——待没单体各自对内标物的相对校正因子;Ms——内标物的质量,gAi——试样中待测残余单体各自的峰存积;Mi——待没试样的质量,gAs——内标物的峰面积取平行测定2次结果的算术平均值作为试样中各待测单体的测定结果。 1.8重现性同一操作作者两次测定结果的相对偏差小于0.5%2.结果与讨论(1)该分析方法选用中等极性小口径耐高温的毛细柱,进样量不能大于0.2ul,且分流比要足够大。由于各残余单体的沸点相对较高,所以我们选用耐高温的毛细柱,且该柱对酯类有较佳的分离效果。 (2)汽化室内须配有石英玻璃衬管,内填适量经处理的玻璃棉,以防止残留物进入毛细柱,并要勤换衬管为妥。 (3)因各单体对内标物的相对响应值不同,的以在配制标准溶液时,称取的各单体质量不一定都是0.03g,原则是尽量使各单体的峰面积和内标物的峰面积之比值接近于1。 (4)某些样品经丙酮稀释旋转一段时间后会出现破乳分层,做样品时须取其上层清液进色谱仪分析。 (5)醋梭乙烯酯VAM存在水的现象。因此在做其回收率时溶剂用脱水分析砘丙酮这样能有效控制VAM水解。但测试样时,溶剂为丙酮水溶液(4 1),这是由于有些样品溶于丙酮(脱水)时会产生胶化现象。

  • 以高密度双峰聚乙烯为例用GPC-IR检测低含量单体

    方案优势全自动操作,基线稳定,重复性好,GPC ONE软件处理能力好。POLYMER CHAR的GPC-IR的使用实例应用领域:橡胶/塑料检测发布时间:2014-12-18检测样品:高密度双峰聚乙烯检测项目:低含量单体参考标准:分子链甲基分布原文详见:http://www.instrument.com.cn/netshow/SH101663/s493958.htm

  • 原吸火焰测铁含量样品的湿法消解

    大家好,我是一个新人,我想在这里请教高人一些问题,我现在用原吸火焰测食品中铁的含量,因为是产品中的铁含量极少,微波消解仪消解后的样品测的值为负数,加大消解量也遭到限制,想问下,湿法消解样品要注意什么,我测的是一个非常规检测,是过程产品,生产味精的前期样液,里面含有谷氨酸钠,请高人明示。我该怎么消解? 我单单用了硝酸进行消解,但是发现碳化现象极其严重,很容易发生爆炸,我该如何处理这个样品谢谢。

  • 原子吸收火焰法检测乳品中钙含量偏高

    用火焰法检测钙含量时标准曲线线性关系超过三个九,但是吸光度较之前降低接近一半,样品的浓度测出来超过第三方检测结果很多,且样品间差异较大,不稳定,是什么原因呢?

  • 请各位高手帮帮忙!——关于火焰燃烧法测定Pb含量的问题!

    我遇到个难题,请各位大师帮帮忙!根据国标的火焰燃烧法测定Pb的含量时,样品是需要萃取的,但标准曲线也需要萃取吗?标准曲线不萃取时线性相当好(R=0.999以上),但标准曲线萃取后就得不到线性曲线!请问这是为什么呢?是仪器的灵敏度(检测限)不够?还是手法问题?还是.....?请高手指点指点!

  • 【求助】用火焰法测定高盐物质中的金属含量该怎么办?

    我们想检测一下优级纯氢氧化钠中的铁,铜等金属含量,但由于钠含量太高了,每次检测,火焰都特别黄,进一下样品就把燃烧头污染了,清洗燃烧头是小事,关键是这样品在这样高盐的条件下很容易测不准,该怎么办?各位仁兄有没有好的方法来检测的。谢谢!!!

  • 【原创】有关:在线氢火焰离子化检测器

    [size=4][font=楷体_GB2312]在氢火焰离子化检测器中有一种特殊的装置,即甲烷化转化器。对于气体样品中的微量CO、CO[sub]2[/sub],氢焰检测器需要利用甲烷化转化器来进行转化。其工作原理如下:通过加氢催化反应,将CO、CO[sub]2[/sub]转化成甲烷和水,再送往FID检测器,通过测量甲烷,间接计算出CO、CO[sub]2[/sub]含量。甲烷化转化器中使用镍催化剂,转化炉的温度一般为350-380摄氏度。镍催化剂必须密封保存,防止与空气接触,降低催化剂活性。[/font][/size]

  • 【求助】火焰金属焊割气中添加剂含量检测方法

    我是学生物技术的,最近进了家生产火焰金属焊割气的能源公司,此种火焰金属焊割气也就是传统焊割气乙炔的替代品,是使用一种添加剂添加到液化气中然后装罐,我想检测这种添加剂装罐后占的百分比,请问可以用哪种方法呢?thank you very much indeed

  • 有机硅烷单体测氯含量

    有机硅烷,大多数属于油性!硅烷中的氯包含无机氯和有机氯,无机氯属于反应没有处理干净的;有机的则是包含在原料产品物质中(以基团的形式存在)。在论坛上搜索看了一下,有的说ICP测氯含量,也有说离子色谱测氯离子!还有微库仑滴定测氯的。(微库仑滴定好多说不准确,要燃烧处理,燃烧后生成固态的SiO2,可能会对检测有影响)。这里想请教一下专业人士:离子色谱仪器检测氯含量,测出来的是无机氯吗(毕竟是离子色谱仪)?譬如多氯联苯性质的有机氯,样品如何处理,如何检测?!请达人不吝赐教!

  • 【求助】请问TCD能用来检测单体吗?

    我们公司用TCD检测溶剂百分含量。用FID检测单体。请问下。为什么不可以用TCD检测单体呢?因为FID很不稳定,如果可以TCD检测不是更好,但是公司就是那样做的。为什么?弱弱的问,因为我不是做分析的。谢谢了!

  • 食品分析中镉含量的检测方法

    0 引言随着我国经济的快速发展,人们的生活水平和质量不断提高,对各类食品的要求也不断提高,同时也对食品中存在的各种有害物质的检测要求也越来越严格,食品中镉的主要来源为工业污染以及含镉农药和化肥的使用。镉及其化合物主要通过消化道和呼吸道进入人体,主要蓄积在肾脏和肝脏,对人体健康具有极大的毒害。镉的检测方法很多,本文就比较用的食品分析中镉含量的检测技术和方法作一综述。1 原子吸收光谱法具体可分为火焰原子吸收光谱法、石墨炉原子吸收光谱法和冷原子吸收光谱法。1.1 火焰原子吸收光谱法(FAAS)因该法分析精度好等优点而得到广泛应用。利用光纤压力自控微波密闭消解技术,采用正交试验,优选出最佳消解体系,方法检出限为 0.10ng/ml,RSD%为0.52%~ 1.74%,加标回收率为 97.0%~108.0%,用于食品分析中镉含量的测定,结果十分满意。改性花生壳固相萃取 - 原子吸收光谱法测定食品样品中痕量镉的方法,在优化的实验条件下,可成功应用于茶叶等食品样品中镉含量的测定,或加入 KI-MIBK 萃取食品中痕量铅和镉,导入 FAAS 测定,解决了食品基体物质干扰铅、镉测定的问题。采用配有螯合树脂微型柱的流动注射预富集原子吸收光谱联用技术,建立了镉的流动注射离子交换预富集原子吸收光谱测定法。巯基棉富集分离 - 火焰原子吸收法测定皮蛋中镉含量的分析方法,方法简便,选择性好。1.2 石墨炉原子吸收光谱法(GFAAS)GFAAS 测定镉的绝对灵敏度比火焰法高 3 ~ 4 个数量级,可分析固体或气体试样。因此,该法在食品安全卫生控制方面得到了迅速的推广应用。通过采用氢氧化镁共沉淀法对高盐食品中的铅和镉进行测定。也可采用 GFAAS 测食品中镉含量,方法检出限、批内相对标准偏差、批间相对标准偏差和回收率分别为 0.014μg/L、2.09%~ 3.33%、5.79%和 92.0%~ 106%。直接用固体进行测定食品包装纸中铅、镉的方法,与湿法消解方法相比较,该方法简便、快速,同时可避免样品的稀释以及试剂的交叉污染带来的分析误差。基体改进剂的选择对 GFAAS 有很大的影响,所以是一个研究热点,采用抗坏血酸和酒石酸作为基体改进剂,消除了 GFAAS 测定补钙食品中镉的基体干扰;用钯盐作为基体改进剂时测定效果较好;以 NH4H2PO4和Mg(NO3)2 作混合基体改进剂,消除了基体干扰。2 氢化物发生 - 原子荧光光谱法(HG-AFS)该法是在样品消解后加入能产生新生态氢的还原剂,将试样溶液中的待测元素还原为挥发性的共价氢化物,由氩气带入石英原子化器中进行原子荧光测定。用硼氢化钾 - 盐酸 - 铁氰化钾 - 盐酸羟胺发生挥发性镉蒸气的反应体系,并将发生器表面及玻璃导管进行硅烷化,提高了测定的灵敏度和精密度,或建立了 HG-AFS 同时测定食品中的镉和锡的方法。经前人研究证明在硫脲和抗坏血酸、硼氢化钾等存在下,用 HG-AFS 可一次性实现食品中镉、汞的同时测定,准确度、精密度及检出限均能够满足食品中镉、汞测定要求,且方法简单。采用 HG-AFS 测定海水及海产食品中的镉含量,结果表明,方法检出限为 0.0038μg/g,加标回收率为97.0%~ 103%。用 HG-AFS 同时测定样品的镉和汞,镉的相对标准偏差、线性相关系数、检出限、样品加标回收率分别为 2.4%~ 5.7%、0.9998、0.0031μg/g、95.0%~ 102.0%。加入二硫腙 - 四氯化碳作为掩蔽剂,消除基体中铜的干扰,应用于鱼肉类食品中镉含量的测定,效果很好。二硫腙 - 四氯化碳 - 硫脲和钴溶液作为掩蔽剂可准确有效地测定蔬菜中的微量镉。3 分光光度法分光光度法是利用显色剂与镉离子形成稳定的显色络合物,然后用分光光度计测定。此方法具有简便、仪器简单等优点。为了同时测定铅和镉,建立了以电荷耦合器件作为阵列光信号探测器,小型多色仪和专用微机组成的分光光度装置,研究了卟啉与铅和镉显色反应的最佳条件,测定了合成试样、陶瓷等浸泡液中铅和镉的含量;通过对新试剂 2,6- 二甲苯基重氮氨基偶氮苯与镉显色反应研究,建立了检测食品中镉含量的新方法。通过分析比较 FAAS、KI-MIBK 螯合萃取-FAAS 和镉 - 碘化钾 - 罗丹明 B 分光光度法三种方法,从灵敏度、检出限、仪器价格等方面进行比较,得出采用镉 -碘化钾 - 罗丹明 B 分光光度法测定食品中镉含量的方法最为简单易行,操作快速、灵敏度高、选择性好。4 高效液相色谱法近几年来,高效液相色谱法在无机分析中的应用研究取得了迅速发展,痕量金属离子与有机试剂形成稳定的有色衍生物,用高效液相色谱分离,克服了光度分析选择性差的缺点,可实现多元素同时测定。尹江伟等采用高效液相色谱法可同时检测食品中锌、铜、铅和镉。5 电感耦合高频等离子体发射光谱仪(ICP-AES)用 ICP-AES 可有效测定污泥中铜、镉等元素的含量;用ICP-AES 法直接测定奥沙利铂中微量银、镉等,对试样处理方法等多方面进行了研究;采用ICP-AES 测定了淀粉等的铅、镉等含量,经实验证明了 ICP-AES 可准确测定可迁移性镉的浓度。6 电化学方法目前镉测定中主要的电化学方法有溶出伏安法和极谱法。溶出伏安法是在适当的条件下电解被测物质一定时间,然后改变电极电位,使富集在该电极上的物质重新溶出,根据法测定了饲料级硫酸铜中的微量铅和镉,结果满意。以强碱型阴离子交换树脂为吸附剂,对铅、镉、锌进行静态阴离子交换分离富集,提高了测定灵敏度。将银汞膜电极阳极溶出伏安法与 88 笔录式极谱仪联用,测定食品中铅、镉含量,其灵敏度高、重现性好;阳极溶出伏安法同时测定食醋样品的铜、铅、镉 3 种元素;采用阳极溶出伏安法有效测定罐头食品中镉等元素。极谱法是利用极谱仪来捕捉待测物质在特定条件下产生的波,从而对待测物质的含量进行计算的一种方法。饮料中铅、镉的示波极谱法测定,对底液条件等进行了试验。Cd2+与氯化钾 - 酒石酸钠 - 三乙醇胺 - 明胶体系的二次导数极波,证明方法准确度高,简便可行。示波极谱法测定食品中的镉等微量元素,镉的检出限为 0.005mg/kg。7 其它检测方法用毛细管区带电泳法准确有效地测定了奶粉中的镉、铅、铜;王民通过观察试纸显色法实现了快速检测食品中镉含量的要求。8 五种主要检测方法的比较火焰原子吸收法操作简单、分析速度快、测定高浓度元素时干扰小、信号稳定;石墨炉原子吸收法灵敏、准确、选择性好,但基体干扰严重,不适合多种元素分析;电感耦合等离子体质谱法灵敏度高,选择性好,能同时分析多种元素,但价格昂贵,易受污染;紫外分光光度法简便、快速、灵敏度高、仪器简单、价格低廉、容易普及,但干扰因素较多,选择性较差。阳极溶出伏安法灵敏度高、分辨率好,仪器价格低廉,可同时测定几种元素。

  • 火焰原子吸收测银含量

    各位,我用的是火焰原子吸收分光光度计,用来测纳米银中银含量,用电导仪测大概在150ppm左右,我想问的是具体怎么操作,还有标准曲线配置有什么要求,多久就要重新做标准曲线?谢谢啦

  • 【求助】气相色谱检测多种组分气体中的氢气含量

    [em0716] 现在有的条件是 6890 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],载气为氮气,多种组分的气体为:氢气、甲烷、氮气、氧气、一氧化碳、二氧化碳。请教问题: 1、气体如何收集? 待检测的气体流量不是很大。现有的收集设备是10ml Aglient的进样针,不知取样后待测气体是否会被空气所污染? 2、色谱需要设定怎样的条件? 做了几个样,由于用氮气作为载气,检测出的氢气峰是倒峰,而且出现的峰主要只有一个,估计是氢气,几个样的峰尖位置时间都不在同一点,不知道什么原因造成? 3、如何通过出现的峰来反应出氢气的含量? 从实验条件考虑,用外表法得到特征曲线(具体用空气稀释纯氢得到不同含量的氢气标样),此方法是否合适?是否适用此种多组分的气体?或者是否有更好的方法? 谢谢帮忙解决@!!

  • PE900T 火焰法测Si含量积碳严重如何解决?

    仪器PE900T 目前只开发了火焰法。但是测Pb还好,但是测Al和Si有积碳问题积碳,尤其是测Si时非常严重,调整完火焰高度,再调雾化器时就非常的跳,只进了几个标样,燃烧头上就积了大概1mm多的碳,后面的样根本就没法测了。我们是测洗衣粉中Si的含量,大概是200ppm左右。为什么会出现这种现象呢?是不是和乙炔与笑气的气体流量设定有关?哪位高手请帮忙给看一下这个问题呀!!!

  • 如何检测混合气体中氢气含量

    氢量分析仪原理是什么? 如何检测混合气体中氢气含量?据贤集网小编了解,其原理利用混合气体中待测气体含量发生变化引起混合气体总的导热系效变化这一物理特性来测量气体成分的。氢量分析仪是一种热导式气份成分分析仪,常用于连续自动分析与指示和记录合成氨生产过程中新鲜气扣循环气中氢的百分含量。若是与自动控制装置相配合可以对合成氨工艺过程的氢氮况比进行自动控制。如何检测混合气体中氢气含量?由于氢气的导热系数很小导致直接测量很困难,所以在实际测量中常常把导热系效的变化转换成热敏电阻阻位的变化用来测出电阻位的变化,这样就可以得知混合气体中氢气的含量。 热导式氢分析仪主要由预处理装置与稳压器及发送器和显示仪表等环节组成。最为重要的是发送器,而发送器则是由测量桥路、电源变压器及调整电路等构成,其中测量桥路实现从氢气浓度到交流电压的转换。下面进行图解说明:http://www.xianjichina.com/data/editer/20160429/image/b237f2749af736c97ee3974c00c02ce3.jpg由上图可见,发送器的测量桥路是典型的的交流电源供电的一种双桥路结构,参比桥的四个桥臂足结构相同的热导池,在R2和R7,内封装着上限浓度的气体。在R6和R8内封装着下限浓度的气体。参比电桥输出固定电压U1。工作电桥热导池R2和R4中充以下限浓度的气体,而R1和R3中流过被侧气体。工作电桥的输出电压为U2。当被测气体从工艺管道中取样经预处理送入发送器工作电桥,在热导池中与铂电阻丝进行热交换,如果氢浓度就越高,会导致铂电阻的热量散失及阻值下降。这就将氮气浓度的大小转换成了热导池中铂电阻阻旅的变化。与参比桥的铂电用一起形成工作电桥。其输出电压为U1。当被测气体中氮气的浓度出现波动时,相应的R1和R3也会减小或增大,从而使U2跟随变化。U2与参比电压U1比较后,通过显示仪表进行指示与记录或调节,这时便可测得氢气的含量。氢量分析仪的优点是灵敏度高和反应快及可以连续测量,稳定可靠并且操作维护简便。

  • 【求助】火焰法如何测好高盐溶液中的铅含量

    火焰法如何测好高盐溶液中的铅含量,本实验室最近测铅含量总是低。前处理时,金属件盐酸硝酸搭配溶解,然后140度赶酸剩下5毫升左右。283谱线 3ppm铅标准溶液 吸光度0.1左右,线性系数很好,灰化法测试别的样品,数据正常,金属件酸解后上机测试,数据总是偏低。是不是氘灯扣背景过度了?氘灯光斑和铅灯光斑重合,但氘灯光斑有两个,一大一小,以前没注意,是不是氘灯出了问题?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制