当前位置: 仪器信息网 > 行业主题 > >

土壤有机质分析标准

仪器信息网土壤有机质分析标准专题为您提供2024年最新土壤有机质分析标准价格报价、厂家品牌的相关信息, 包括土壤有机质分析标准参数、型号等,不管是国产,还是进口品牌的土壤有机质分析标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤有机质分析标准相关的耗材配件、试剂标物,还有土壤有机质分析标准相关的最新资讯、资料,以及土壤有机质分析标准相关的解决方案。

土壤有机质分析标准相关的资讯

  • 济南盛泰发布济南盛泰ST303G土壤有机质消解仪新品
    v 产品研发背景介绍:土壤有机质是泛指土壤中来源于生命的物质。土壤有机质是土壤固相部分的重要组成成分,是植物营养的主要来源之一,能促进植物的生长发育,改善土壤的物理性质,促进微生物和土壤生物的活动,促进土壤中营养元素的分解,提高土壤的保肥性和缓冲性的作用。检测土壤有机质含量是衡量土壤肥力重要指标的主要工作之一,也是对了解土壤肥力状况,进行培肥、改土具有一定的指导意义。v 参考国标:v 应用范围:适用于检测有机质含量低于15%的土壤样品消解预处理或各种食品、制药、农业等样品的消解处理。 v 操作原理:在加热条件下,用过量的重铬酸钾-硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁标准溶液滴定,由消耗的重铬酸钾量按氧化校正系数计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。 v 主要仪器设备:土壤有机质消解器自动调零滴定管温度计(300℃)v 操作步骤:精密称取样品0.05-0.5g(精确到0.0001 g),放入硬质玻璃管中,准确加入10.00 mL 重铬酸钾-硫酸溶液(0.4mol/L),摇匀。将玻璃管插入已升温至175℃的加热腔体里,等试管中的溶液沸腾时开始计时,5min±0.5min后取出,冷却片刻,将试管内的消煮液和土壤残渣无损地转入滴定杯中,用水冲洗试管,洗液并入滴定杯中,使杯内溶液总体积在50-60mL。用硫酸亚铁溶液滴定至终点。每批分析需做两个空白试验,此次空白试验未用其他代替物,其他步骤与土样测试相同。 产品主要特点优点:全程智能化消解技术消解温度与消解时间均可人工设定,自动运行,实时监测,消解结束自动停止加热,自动报警;全新设计隔热防腐技术加热腔体采用新型隔热技术,杜绝隔热材料外露,加热过程腔体散热迅速,升温小,整机表面做防腐处理,经久耐用;消解试管整体迁移技术可整体移动24支消解管,消解结束可迅速整体移出加热腔,快速降温,大幅提升工作效率;加热腔PID控温技术整体采用24块铝合金加热腔模组设计,环绕式加热,整体升温迅速,孔间温差小,消解效果一致性好;大容量消解管设计100ml大容量消解管,采用耐高温耐酸碱腐蚀材料,消解过程无需额外增加回流设计;智能式人机对话操控模式操控端采用5寸彩色液晶触摸屏,60度人性化仰角设计,可实时监控整个消解过程。 技术规格:1、主机尺寸:355mm×338mm×228mm2、额定功率: 2300W
  • 使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘
    中国农业发生于新石器时代。中国农业的生产结构包括种植业、林业、畜牧业、渔业和副业;但数千年来一直以种植业为主。东北地区的黑土地,是宝贵的农业资源。黑土地的土壤富含有机质,深黑色的沃土,沉甸甸的感觉让人感受到这片土地的肥沃。在现代农业生产中,科技的应用在这片沃土上也发挥着至关重要的作用,科研团队利用机载高光谱对黑土地的土壤有机质做了相关研究。使用无人机高光谱图像和小型校准数据集对田间土壤有机质进行高分辨率测绘快速获取田间尺度土壤有机质(SOM)的高分辨率空间分布对于精准农业至关重要。无人机成像高光谱技术以其高空间分辨率和时效性,可以填补地面监测和遥感的研究空白。本研究旨在测试在中国东北典型低地势黑土地区使用无人机高光谱数据(400–1000 nm)和小型校准样本集进行1 m分辨率SOM绘图的可行性。该实验在大约20公顷的土地上进行。为了进行校准,使用 100 × 100 m 网格采样策略收集了 20 个样品,同时随机收集了 20 个样品进行独立验证。无人机捕获空间分辨率为0.05×0.05 m的高光谱图像。然后对每 1 × 1 m 内提取的光谱进行平均以代表该网格的光谱。在应用各种光谱预处理(包括吸光度转换、多重散射校正、Savitzky-Golay 平滑滤波和一阶微分)后,SOM 光谱相关系数的绝对最大值从 0.41 增加到 0.58。最佳随机森林(RF)模型的重要性分析表明,SOM 的特征波段位于 450-600 和 750-900 nm 区域。当使用RF模型时,无人机高光谱数据(UAV-RF)能够成功预测SOM,R 为0.53,RMSE为1.48 g kg&minus 1。然后将预测精度与使用相同数量校准样本的普通克里金法(OK)和基于近端传感的射频模型(PS-RF)获得的预测精度进行比较。然而,由于采样密度较低,OK 方法无法预测 SOM 精度(RMSE = 2.17 g kg&minus 1;R2 = 0.02)。半协方差函数无法有效描述SOM的空间变异性。当采样密度增加到50×50 m时,OK成功预测了SOM,RMSE = 1.37 g kg&minus 1,R2 = 0.59,其结果与UAV-RF的结果相当。PS-RF的预测精度与UAV-RF基本一致,RMSE值分别为1.41 g kg&minus 1和1.48 g kg&minus 1,R2值分别为0.57和0.53,表明基于UAV的SOM预测是可行的。此外,与PS平台相比,无人机高光谱技术可以同时提供数十甚至数百个连续波段的光谱信息和空间信息。该研究为进一步研究和开发无人机高光谱技术进行少量样本精细尺度SOM测绘提供了参考。研究区土壤样本分布研究区域位于中国吉林省梨树县,面积20公顷。该地区属季风气候,年平均降水量553.5毫米,平均气温6.5℃。此外,它的特点是地势平坦,平均海拔160 m。由于这些特征,该地区成为北半球三大富含有机质的黑土地之一,主要农作物是大豆。Resonon-Pika-L 机载高光谱成像仪本研究采用Resonon公司的Resonon-Pika-L高光谱成像仪由高光谱成像光谱仪、六旋翼无人机、GPS和计算机组成。于2020年6月15日获取了覆盖整个研究区、像素大小为0.05×0.05 m的高光谱图像。高光谱图像提取的光谱范围为400~1000 nm,光谱分辨率为2.1 nm。经过 (a) 吸光度转换、(b) 乘性散射校正、(c) Savitzky–Golay 后土壤有机质 (SOM) 与土壤光谱特征的相关系数(窗口大小为 5,拟合次数为 2) )和(d)一阶导数方法。根据Pearson相关系数的绝对值评价预处理方法的性能,以选择最佳的预处理方法组合。如所示,基于吸光度转换的MSC后,最小相关系数值发生变化(450-500 nm处为-0.4-0.6),总体相关系数在600-700 nm处增加,相关系数绝对值最大 在 700–800 nm 处增加,相关系数发生变化(800–900 nm 处为 -0.35–0.3 至 -0.5–0.3)。使用无人机高光谱 (UAV-RF) 预测土壤有机质 (SOM) 的 RF 模型的重要性分析 (a) 和图 (b)本研究比较了使用无人机高光谱数据、观测到的土壤数据和 RF 模型进行田间尺度 SOM 预测的 OK 技术。研究结果如下01 吸光度转换、MSC、SG 和 FD 技术对SOM的预测效果良好。经过这些预处理后,光谱和 SOM 之间的绝对最大相关系数从 0.41 增加到 0.58。02 SOM的特征波段位于450-600 nm和750-900 nm,这可能是由于O-H、C-H和N-H特征官能团的振动频率造成的。03 采用100 m × 100m网格采样设计,UAV-RF模型预测SOM的R2为0.53,RMSE为1.48 g kg&minus 1,而采用相同采样策略的OK方法未能预测SOM(RMSE = 2.17g kg&minus 1;R2 = 0.02)。预测精度较差是因为样本密度低从而削弱了半协方差函数描述SOM空间变异性的能力。只有当采样密度增加时,才能使用 OK 成功预测 SOM,其结果与UAV-RF相当。04 基于PS-RF的SOM预测结果与基于UAV-RF的预测结果基本一致,RMSE值为1.41 g kg&minus 1和1.48 g kg&minus 1,R2值为0.57和0.53。这些研究结果为未来研究和发展无人机高光谱技术在减少样本量的情况下进行SOM预测提供了参考。
  • 应用丨全自动有机质分析仪测定土壤中的有机质
    土壤有机质是指土壤中来源于生命的物质,主要来源于植物、动物及微生物残体。有机质是衡量土壤肥力高低的重要指标,测量有机质有利于及时了解土壤的物理状况,便于合理施肥、改良土壤、加强土壤环境管理。2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,其中有机质是测定项目之一。本文参考NY/T 1121.6-2006《土壤检测 第6部分:土壤有机质的测定》采用睿科AT200全自动土壤有机质分析仪实现对大批量土壤的有机质进行测定,土壤质控样实验结果准确度高,精密度好,满足标准质控要求,可以替代人工进行土壤有机质的自动测定。仪器与耗材1.1仪器睿科AT200全自动土壤有机质分析仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂重铬酸钾-硫酸溶液(0.4000mol/L):19.613g优级纯重铬酸钾(120℃烘2h)溶于500mL水中,溶解后少量多次加入500mL浓硫酸(加液时杯子放入水中降温),冷却后用50%硫酸溶液定容至1L,常温保存(低温保存重铬酸钾可能会析出)。硫酸亚铁标准溶液:称取40g硫酸亚铁铵或28g硫酸亚铁溶于800mL水中,缓慢加入20mL浓硫酸,冷却后用水定容至1L,避光保存。邻菲罗啉指示剂:称取1g硫酸亚铁铵或0.7g硫酸亚铁溶于100mL水中后称1.49g 1,10-菲啰啉溶于硫酸亚铁溶液中,超声溶解后使用,避光保存。土壤质控样1:编号为VIP(T)10219,真值为5.50g/kg(不确定度0.49 g/kg),研制厂家为信阳市中检计量生物科技有限公司。土壤质控样2:编号ERM-510501,真值为10.7g/kg(不确定度1.5 g/kg),研制厂家为坛墨质检科技股份有限公司土壤质控样3:编号为RMU081,真值为51.7g/kg(不确定度4.6g/kg),研制厂家为东莞市精析标物计量科技有限公司。分析步骤2.1标定在同一杯盘上放4个干净空杯子,4滴定位各一个,置于仪器上。仪器方法标定那一栏选择好设定的方法。建立序列,在序列上选择杯子所在杯盘的位置,样品类型选择“标定”,点运行,仪器自动对硫酸亚铁溶液进行标定。2.2测定a) 称取已过0.25mm孔径筛的风干试样0.05g-0.5g(精确至0.0001g)于仪器自带玻璃杯中,杯中加入干净的搅拌子,将杯子放入杯架中,在软件界面建立序列,选中杯子放置在杯架中的位置,选择好样品类型和其他参数,点击预热,仪器预热完成后仪器自动开始测试。b) 方法设置界面如下图所示,可根据实验测试需要自行增减步骤。准确度及精密度实验分别称取3种土壤质控样各0.05g-0.5g于玻璃杯中,每种质控样做6份平行,按照上述方法设置进行有机质测定,实验结果如下表所示。所有测试数据均在质控要求范围内,准确度良好;含量小于10g/kg质控样重复性测试绝对相差≤0.5g/kg,含量10g/kg-40g/kg控样重复性测试绝对相差≤1.0g/kg,含量40g/kg-70g/kg控样重复性测试绝对相差≤3.0g/kg。表-1.土壤质控样准确度及精密度(n=6)注意事项4.1 本方法测试土壤必须是风干过筛样品,且不宜用于测含氯化物较高的土壤。4.2 温度对仪器参数有一定影响,仪器方法中冷却时间的长短受温度影响,冷却时间需需根据不同温度进行调整。建议温度保持在室温25~28摄氏度。4.3 操作过程中不要将头伸入仪器内。4.4 仪器所用试剂中重铬酸钾-硫酸溶液硫酸含量有50%,使用时须小心,且长期使用硫酸溶液对注射器也有一定腐蚀作用,注射器如有损坏需及时更换,测试完成后要对注射器进行排空清洗,不要让硫酸溶液在注射器中过夜。4.5 杯子外壁要洗干净,否则会影响摄像头读取RGB信号进而影响滴定结果;还有杯盖隔一段时间要取出清洗干净再放回抽屉中。4.6 若长时间不用仪器则需要将管路用水清洗干净然后将管路排空。
  • 应用丨全自动有机质分析仪测定土壤中的有机质
    土壤有机质是指土壤中来源于生命的物质,主要来源于植物、动物及微生物残体。有机质是衡量土壤肥力高低的重要指标,测量有机质有利于及时了解土壤的物理状况,便于合理施肥、改良土壤、加强土壤环境管理。2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,其中有机质是测定项目之一。本文参考NY/T 1121.6-2006《土壤检测 第6部分:土壤有机质的测定》采用睿科AT200全自动土壤有机质分析仪实现对大批量土壤的有机质进行测定,土壤质控样实验结果准确度高,精密度好,满足标准质控要求,可以替代人工进行土壤有机质的自动测定。仪器与耗材1.1仪器睿科AT200全自动土壤有机质分析仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂重铬酸钾-硫酸溶液(0.4000mol/L):19.613g优级纯重铬酸钾(120℃烘2h)溶于500mL水中,溶解后少量多次加入500mL浓硫酸(加液时杯子放入水中降温),冷却后用50%硫酸溶液定容至1L,常温保存(低温保存重铬酸钾可能会析出)。硫酸亚铁标准溶液:称取40g硫酸亚铁铵或28g硫酸亚铁溶于800mL水中,缓慢加入20mL浓硫酸,冷却后用水定容至1L,避光保存。邻菲罗啉指示剂:称取1g硫酸亚铁铵或0.7g硫酸亚铁溶于100mL水中后称1.49g 1,10-菲啰啉溶于硫酸亚铁溶液中,超声溶解后使用,避光保存。土壤质控样1:编号为VIP(T)10219,真值为5.50g/kg(不确定度0.49 g/kg),研制厂家为信阳市中检计量生物科技有限公司。土壤质控样2:编号ERM-510501,真值为10.7g/kg(不确定度1.5 g/kg),研制厂家为坛墨质检科技股份有限公司土壤质控样3:编号为RMU081,真值为51.7g/kg(不确定度4.6g/kg),研制厂家为东莞市精析标物计量科技有限公司。分析步骤2.1标定在同一杯盘上放4个干净空杯子,4滴定位各一个,置于仪器上。仪器方法标定那一栏选择好设定的方法。建立序列,在序列上选择杯子所在杯盘的位置,样品类型选择“标定”,点运行,仪器自动对硫酸亚铁溶液进行标定。2.2测定a) 称取已过0.25mm孔径筛的风干试样0.05g-0.5g(精确至0.0001g)于仪器自带玻璃杯中,杯中加入干净的搅拌子,将杯子放入杯架中,在软件界面建立序列,选中杯子放置在杯架中的位置,选择好样品类型和其他参数,点击预热,仪器预热完成后仪器自动开始测试。b) 方法设置界面如下图所示,可根据实验测试需要自行增减步骤。准确度及精密度实验分别称取3种土壤质控样各0.05g-0.5g于玻璃杯中,每种质控样做6份平行,按照上述方法设置进行有机质测定,实验结果如下表所示。所有测试数据均在质控要求范围内,准确度良好;含量小于10g/kg质控样重复性测试绝对相差≤0.5g/kg,含量10g/kg-40g/kg控样重复性测试绝对相差≤1.0g/kg,含量40g/kg-70g/kg控样重复性测试绝对相差≤3.0g/kg。表-1.土壤质控样准确度及精密度(n=6)注意事项4.1 本方法测试土壤必须是风干过筛样品,且不宜用于测含氯化物较高的土壤。4.2 温度对仪器参数有一定影响,仪器方法中冷却时间的长短受温度影响,冷却时间需需根据不同温度进行调整。建议温度保持在室温25~28摄氏度。4.3 操作过程中不要将头伸入仪器内。4.4 仪器所用试剂中重铬酸钾-硫酸溶液硫酸含量有50%,使用时须小心,且长期使用硫酸溶液对注射器也有一定腐蚀作用,注射器如有损坏需及时更换,测试完成后要对注射器进行排空清洗,不要让硫酸溶液在注射器中过夜。4.5 杯子外壁要洗干净,否则会影响摄像头读取RGB信号进而影响滴定结果;还有杯盖隔一段时间要取出清洗干净再放回抽屉中。4.6 若长时间不用仪器则需要将管路用水清洗干净然后将管路排空。
  • 通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中
    摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物。图 2. 研究区域概览。(a)研究区域的地理位置;(b、c)分别为站点 1 和站点 2 的土壤采样点;(d、e)“裸土期”的土壤表面。试验点2 位于中国吉林省黑土耕地保护区,如图 2 所示,面积为 713 km2。站点地势平坦,海拔在 189 至 237 m 之间。该区域为东部湿润山区与西部半干旱平原区的过渡地带。研究区属温带大陆性半湿润季风气候,年平均气温 4.6 ℃,年降水量 600—700 mm。该区域河流水系丰富,农业水资源相对丰富,地表土壤空间异质性强。该区域土壤主要为黑土,腐殖质层厚度为 0.6—1.0 m。试验点2的土壤类型、地表特征等环境因素与试验点1有明显差异,可以验证本研究中SOM含量预测模型的时空可迁移性。2022 年 10 月 29 日至 30 日,共从试验点 1 采集了 104 个表层土壤样品(图 2b)。2023 年 4 月 14 日至 15 日,从试验点 2 采集了 40 个表层土壤样品(图 2c),用于测试模型的时空可迁移性。图3. 样区内土壤样品采集与参数测量示意图。(a)象限采样示意图;(b)土壤表面点云数据测量。研究过程样品运回实验室后,通过称重、烘干等方法获得每个象限9个子样本的SM和SBW,并计算子样本的平均值。然后,将9个子样本混合成复合样本,在实验室内使用(ASD FieldSpec 4地物光谱仪)进行光谱测量(取十次测量的平均值)和使用重铬酸钾加热法测定SOM含量。为保证每个样品的SBW相同,将土壤样品装入一次性培养皿中进行光谱测量。对每个测量点的土壤表面点云数据进行拼接、裁剪和滤波。利用处理后的点云数据建立三维相对坐标系(图3b),提取所有点云数据的Z坐标,计算该象限的RMSH。资源一号02D(ZY1-02D)高光谱图像数据来自中国科学院空天信息创新研究院,图像生成时间与土壤采样时间同步,所有图像的云量均小于1%。本研究选取450~1290nm、1408~1828nm和1963~2460nm波段作为光谱波段。为了验证ZY1-02D高光谱图像的可靠性,将土壤像素光谱与土壤地面光谱进行了比较(图4)。尽管土壤像素光谱的形状与土壤地面光谱相似,但在可见光-近红外(VNIR)波段范围内存在一些噪声和平滑度较低的情况。此外,土壤像素的光谱反射率略低于实验室测量的反射率。计算了像素反射率与地面反射率之间的斯皮尔曼相关系数(SCCs)和皮尔逊相关系数(PCCs)。结果表明,大多数波长范围内的PCCs低于0.5,而在480至680nm和2000至2500nm波长范围内的SCCs基本大于0.5,表明可能存在非线性关系。为了揭示影响像素光谱的因素,比较了不同物理属性梯度下土壤反射率的差异。随着SM的增加,土壤光谱反射率显著下降,尤其是在500至1300nm和1450至1700nm波长范围内(图5)。随着SBW的增加,土壤光谱反射率的下降幅度相对较小。RMSH对土壤光谱的影响最为显著,反射率随着RMSH的增加显著下降。综上所述,SM、SBW和RMSH对光谱的耦合效应是导致两组光谱数据偏差的重要原因,严重限制了成像光谱仪对土壤“纯光谱”的获取。因此,有必要在像素光谱数据中分离土壤的物理和化学信息,以提高高光谱遥感对土壤有机质(SOM)预测的准确性。图4. 成像光谱、实验室光谱及其相关系数。图5. 不同物理性质土壤的光谱特征。图6. 基于多参数估计模型的土壤物理参数与土壤像素光谱拟合的R² 值。图 7. 使用试验点 1 数据建立的 XG-Boost 模型,基于 (a) 原始像素光谱、(b) 地面光谱、(c) 四阶多项式校正光谱和 (d) XG-Boost 校正光谱和站点 2 数据测量和预测的 SOM 含量的散点图。结果本研究利用卫星和地面高光谱数据以及土壤物理参数数据,分别基于四阶多项式和XG-Boost构建了两种土壤光谱校正模型,以缓解土壤物理性质对像素光谱的耦合效应。通过使用来自两个试验点的数据,评估了土壤光谱校正模型的性能及其对SOM预测模型精度和时空可迁移性的影响。主要结论如下:土壤像素光谱反射率与土壤地面光谱反射率呈非线性关系。表面物理性质的差异是导致这两种光谱数据类型偏差的主要因素。RMSH对土壤像素光谱的影响最为显著,其次是SM和SBW。四阶多项式和XG-Boost模型具有良好的土壤光谱校正精度。基于XG-Boost的土壤光谱校正模型精度更高,时空可转移性更强,因为它考虑了所有特征,持续调整树的权重,防止结果陷入局部最优。土壤光谱校正显著缓解了土壤物理性质对土壤像素光谱的耦合效应,有效提高了SOM预测模型的准确性,更重要的是,大大增强了基于像素光谱的SOM预测模型的时空可转移性。未来,通过充分考虑更多土壤特性,可以获得更准确的SOM预测结果。本研究为预测其他区域的土壤性质参数提供了一种新的研究范式。
  • 186.9万!福建省三明环境监测中心站计划采购GC-MS、全自动土壤有机质分析仪等仪器设备
    一、项目基本情况 项目编号:[350400]ZCFJ[GK]2022003 项目名称:2022年环境监测仪器设备采购项目 采购方式:公开招标 预算金额:1869200元 包1: 采购包预算金额:1869200元 采购包最高限价:1869200元 投标保证金:37384元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100415-环境监测仪器及综合分析装置GC-MS1(台)否详见招标文件7705001-2A02100415-环境监测仪器及综合分析装置全自动土壤有机质分析仪1(台)否详见招标文件3900001-3A02100415-环境监测仪器及综合分析装置有机配标仪1(台)否详见招标文件1935001-4A02100415-环境监测仪器及综合分析装置全自动真空平行浓缩仪1(台)否详见招标文件2700001-5A02100415-环境监测仪器及综合分析装置信息化试剂管理柜副柜1(台)否详见招标文件600001-6A02100415-环境监测仪器及综合分析装置信息化试剂管理柜1(台)否详见招标文件745001-7A02100415-环境监测仪器及综合分析装置信息化试剂迷你柜1(台)否详见招标文件420001-8A02100415-环境监测仪器及综合分析装置一氧化碳/碳氢去除器1(台)否详见招标文件470001-9A02100415-环境监测仪器及综合分析装置台式电导率仪1(台)否详见招标文件180001-10A02100415-环境监测仪器及综合分析装置样品冷藏柜1(台)否详见招标文件3700 合同履行期限: 详见招标文件 本采购包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:单位负责人授权书 描述:参加投标的投标方代表需手持本人身份证原件及CA认证卡(数字证书)用于现场解密电子版投标文件。如果投标方代表不是单位负责人,投标方代表还需手持《单位负责人授权书》(附单位负责人身份证及被授权人身份证正反面复印件)以便现场核查。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 小型、微型企业符合财政部、工信部文件(财库〔2020〕46号),适用于(本项目)。监狱企业,适用于(本项目)。促进残疾人就业 ,适用于(本项目)。信用记录,适用于(本项目),按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格四、获取招标文件 时间:2022-07-22 17:07至2022-08-06 23:59:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-08-12 09:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省三明市梅列区乾龙新村16幢汇鑫大厦18楼2号-3号 - 中采(开标室)六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 无八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:福建省三明环境监测中心站 地 址:三明市三元区绿岩新村76幢 联系方式:05988236263 2.采购代理机构信息(如有) 名 称:中采(福建)招标咨询有限公司 地  址:三明市三元区徐碧街道乾龙新村16幢汇鑫大厦18楼2号-3号 联系方式:0598-8281783 3.项目联系方式 项目联系人:小张、小肖 电   话:0598-8281783 网址:zfcg.czt.fujian.gov.cn 开户名:中采(福建)招标咨询有限公司 中采(福建)招标咨询有限公司 2022-07-22
  • 精准助力土壤三普之快速测定土壤中有机碳
    国务院于今年2月份发出第三次土壤普查的通知,其土壤普查理化性状检测指标中,就有机质项目的检测要求。土壤有机质主要来源于土壤中动、植物的残体以及微生物生命活动所产生的有机物质,主要成分为C和N的有机化合物;其含量将决定植物的生长发育,并且对土壤的养分结构、理化性状起着关键性作用。东北黑土地就由于其富含有机质而土壤肥沃,素有“谷物仓库”之称。目前,测定土壤中有机质的方法多采用先测定土壤中的有机碳含量(TOC),再乘以与有机质的换算系数1.724,即为土壤有机质的含量。所以需准确测试土壤中的有机碳。土壤有机碳检测方法一般分为燃烧氧化法和化学氧化法两类。Ø 化学氧化法——做样速度较慢(大于0.5h),受基体影响较大化学氧化法是较为传统的方法,主要通过重铬酸钾-浓硫酸溶液将土壤溶液中的有机碳氧化,再通过硫酸亚铁滴定或分光光度法进行定量测定。此类方法虽然所需设备较为简单,但是实际测试时却有较多不足:(1)需要试剂种类较多,操作步骤复杂,做样周期较长,往往需要半小时以上;(2)由于土壤中的基体非常复杂,且各个地方的土壤成分差异大,同计量的试剂对有机碳的氧化是否彻底,将会影响测定结果;(3)在滴定法或分光光度法测定时,样品基体不同,也对其显色产生不同程度的干扰,造成数据不准,需根据样品再摸索掩蔽剂等条件。Ø 燃烧氧化法——做样3-4min即可出结果,不受基体影响燃烧氧化法方法是较新的方法,该方法是将土壤样品称量后,加酸加热去除无机碳,后置于高温灼烧(1100℃左右)使土壤样品中的有机碳氧化为二氧化碳,最后用仪器检测器测定产生的CO2值,并转换为TOC浓度。此方法有以下优势:(1)样品固体进样即可,制备流程少、做样简单、可操作性强;(2)做样速度快,固体样品进入仪器只需3-4min即可完成测试;(3)无需多种试剂,只需加酸即可,试剂损耗小;(4)不受样品基体影响,由于燃烧温度高,可更加充分地将有机碳氧化,所以无论什么样品基体,均可得到准确结果。以下为土壤有机质测定相关标准对比 :标准氧化方式检测原理试剂耗时NY/T 85-1998土壤有机质测定法重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时NY/T 1121.6-2006土壤检测第6部分:土壤有机质的测定重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时LY/T 1237-1999森林土壤有机质的测定及碳氮比的计算重铬酸钾-硫酸溶液加热硫酸亚铁滴定重铬酸钾、硫酸、硫酸亚铁、邻菲啰啉0.5小时HJ 658-2013 土壤 有机碳的测定 氧燃烧—滴定法高温燃烧氢氧化钡吸收,草酸滴定氢氧化钡、草酸、酚酞、盐酸5小时HJ 615-2011 土壤 有机碳的测定 重铬酸钾氧化-分光光度法重铬酸钾-硫酸溶液加热分光光度法重铬酸钾,硫酸,硫酸汞8小时HJ 695-2014 土壤 有机碳的测定 燃烧氧化-非分散红外法高温燃烧非分散红外法(NDIR)磷酸或盐酸3-4分钟德国耶拿可为您提供燃烧法测试土壤中TOC的全套解决方法:方案1:总有机碳分析仪multi N/C+ HT 1300采用燃烧法可直接测量土壤固体中的TOC含量,具有以下特点,保证实验的高效准确。可分析液体或固体样品… … … … … … … … … … … … … … … … … 软件切换,无需机械移动冷开机20分钟内即可工作,进样3-4min出结果… … … … 实验效率高直接称量于陶瓷舟中… … … … … … … … … … … … … … … … … … … 操作简便最高称样量达3g… … … … … … … … … … … … … … … … … … … … … 保证样品代表性燃烧温度可达1300℃ … … … … … … … … … … … … … … … … … … 充分氧化无需催化剂… … … … … … … … … … … … … … … … … … … … … … … … 低耗材成本高聚焦NDIR检测器 … … … … … … … … … … … … … … … … … … … 抗干扰,宽范围方案2:元素分析仪multi EA 4000全自动固体TOC分析,可全参数分析TOC、TIC、TC参数。具备自动加酸处理等功能。应用实例:通过测定多种标准土验证方法准确性,测试结果均在质控范围内,且测试6次,RSD在0.76~6.29%。具体数据如下:标准品号平均值%RSD (n=6)%标准值相对误差%GBW073140.876.290.86% ± 0.1%1.2NST-62.190.862.2% ± 0.1%0.3GBW07416a0.720.760.73% ± 0.05%0.69GBW074591.280.991.27% ± 0.05%0.39注:multi N/C+ HT 1300方案测定通过以上数据可知,采用耶拿的快速燃烧法测定土壤有机碳,准确度、精密度等指标均符合土壤分析要求,从根本上解决了人为分析误差、污染和环境污染等弊端,消除了基体干扰对结果的影响;提高工作效率,可实现批量化分析。
  • 文献分享丨最新研究发现土壤有机碳分解热适应的调控机制
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达18篇。 今天与大家分享的文章是东北林业大学林学院周旭辉教授团队首次从底物消耗与微生物适应角度,揭示了土壤有机碳分解热适应的调控机制的研究论文。在该研究中,采用了PRI-8800作为关键设备之一,我们来具体了解一下吧~ 长期以来,学界普遍认为气候变暖加速土壤有机碳分解,进而使得地球平均温度上升,形成正反馈效应。而近期的一些长期增温实验发现土壤有机碳分解速率可能会随着增温时间呈逐渐下降趋势,表现出热适应现象。当前,针对土壤有机碳分解的热适应调控机制,国内外生态学家仍存在较大争议,其根本难点在于无法有效区分底物消耗与微生物适应在土壤碳分解中的相对贡献。为了解决这一难题,何杨辉等研究人员依托长期野外增温实验平台,巧妙地使用土壤微生物灭菌-接种方法区分底物与微生物的调控作用,研究结果表明土壤底物可利用性是调控土壤有机碳分解热适应的主要因素。这一重要发现将增进人们对土壤有机碳分解热适应性的理解,为准确预测陆地土壤碳-气候反馈提供重要的科学依据。 土壤有机碳分解热适应潜在调控机制 值得注意的是,在实验过程中,研究团队通过PRI-8800连续变温培养和高频土壤呼吸在线测量的优势,克服了恒温培养模式土壤微生物对特定培养温度的适应性和底物消化不均的难题,加速研究进程并获得可靠的研究结果。 研究成果“Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability”为题,在线发表于国际顶级生态学期刊Global Change Biology(IF=13.211),何杨辉教授为论文的第一作者,周旭辉教授为论文通讯作者。相关论文信息:He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022.全文链接:https://doi.org/10.1111/gcb.16523 UPGRADED! 土壤有机质是陆地生态系统最大的碳库,在全球变暖背景下,土壤有机质分解对温度变化的响应很大程度影响着陆地生态系统对全球气候变化反馈效应。气候变暖如何影响土壤有机质分解,以及陆地生态系统碳排放如何响应气候变暖已成为目前科学家主要关注的内容之一。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。 01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matterdecomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.16.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.18.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2022. 如果您对我们的产品或本期内容有任何问题,欢迎致电垂询:地址:北京市海淀区瀚河园路自在香山98-1号楼电话:010-51651246 88121891邮箱:support@pri-eco.com
  • 《自然》成果揭示: 微生物碳利用效率对全球土壤有机碳储起决定作用
    近日,清华大学和美国康奈尔大学的研究者带领国际团队,在生态学和计算机科学领域开展深度学科交叉,利用人工智能和数据同化技术,揭示了微生物碳利用效率对全球土壤有机碳储量的决定性作用。日前,该研究成果发表在《自然》杂志上。目前,促进土壤有机碳形成和积累是人们降低大气二氧化碳浓度、应对气候变化的自然解决方案。传统研究主要关注植物有机碳输入和土壤有机质分解这两类机制对土壤有机碳的影响。然而近年来,新的研究开始强调微生物过程在土壤有机碳形成和储存中的关键作用。微生物碳利用效率对土壤有机碳的两种控制途径 清华大学供图微生物既是土壤中主要的有机质分解者,同时也通过其生长和死亡直接产生土壤有机质。解析微生物过程对土壤有机碳储存的双重控制机制以及定量评估其相对重要性,是理解土壤碳循环及其响应气候变化的关键。为此,清华大学地球系统科学系教授黄小猛、博士生陶凤以及康奈尔大学教授骆亦其组织的国际研究团队,以微生物碳利用效率为变量整合了微生物过程对土壤有机碳储存的双重控制机制,并探讨了其与全球土壤有机碳储量的关系。研究团队通过将一个描述复杂土壤碳循环的机理模型与5万多条土壤碳观测数据相融合,发现在全球范围内,微生物碳利用效率与土壤有机碳储量正相关 。微生物代谢中对有机合成较高的碳分配比例最终导致了土壤有机碳的积累而不是流失。涌现的微生物碳利用效率与土壤有机碳储量关系 清华大学供图研究还发现,微生物过程在土壤碳储存中发挥着最为关键的作用,准确描述微生物碳利用效率的空间格局,也是准确模拟全球土壤有机碳储和空间分布的关键。其重要性是土壤有机质分解和植物碳输入等其他所有过程的4倍以上。“我们的团队突破性地解决了在全球尺度评估微生物过程与其他过程对土壤碳储存的相对重要性这一难题。”骆亦其说。据介绍,该研究立足于过去两百年的土壤碳循环理论,整合了世界最大的土壤有机碳数据库并结合先进人工智能和数据同化技术,首次系统评估了各种土壤碳循环过程对全球土壤有机碳储存的相对贡献。该研究还揭示了微生物碳利用效率与土壤有机碳储量的关系,为通过土地管理影响微生物过程促进土壤固碳和实现碳中和目标,提供了科学理论基础研究构建的机理模型。生态大数据与人工智能相融合的的新范式也为其他相关领域研究提供了新思路。
  • 文献上新!PRI-8800助力土壤有机碳分解对温度变化响应的研究
    土壤有机碳是指土壤中各种正价态的含碳有机化合物,是土壤极其重要的组成部分,对地球碳循环有巨大的影响,既是温室气体“源”,也是其重要的“汇”。由于土壤有机碳的组成成分和结构十分复杂,加之受到环境与测量技术的限制,目前对其分解特征和循环转化尚未得到充分的认识。 2018年,由北京普瑞亿科科技有限公司与中国科学院地理科学与资源研究所联合研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展,相关文章发表已达17篇。 今天与大家分享的文章是罗忠奎课题组关于揭示剖面土壤有机碳分解对温度变化的响应特征及其控制因子的研究。 在该项研究中,针对土壤培养和Q10估算,采用PRI-8800作为关键设备之一,该成果发表于《Soil Biology and Biochemistry》,我们一起学习一下吧! 在气候变暖的背景下,土壤有机碳分解温度敏感性(Q10)的研究主要集中在表层土壤,而深层土壤有机碳分解特征及其控制因子还未得到充分的认识,这将会明显增加陆地生态系统土壤碳库—气候反馈的强度和方向预测的不确定性。 针对上述问题,浙江大学环境与资源学院遥感所罗忠奎研究员课题组在中国西藏东南部,采集沿着海拔区间约2500米(约2100米至约4600米)的样带(从常绿阔叶林到高寒草甸)10个地点、5个连续土层深度(0-10、10-20、20-30、30-50和50-100 cm)土壤样品,结合13C-NMR和物理化学分组技术表征了有机碳的化学分子结构和物理化学稳定性,并对剖面土壤进行培养(128天),评估了土壤有机碳分解的温度敏感性及其主要影响因子。图1.不同海拔和土层间Q10值的分布,Q10-cum,基于128天累积培养呼吸计算;Q10-q,基于累积消耗碳组分0-0.1%、0.2-0.3%、0.4-0.5%计算;Q10-k基于模型模拟快库、慢库、惰库计算。表1.海拔和土层对不同Q10的影响 研究结果发现不同海拔和不同土层土壤有机碳的化学稳定性和物理化学稳定性都存在显著差异。高海拔地区(海拔3600米以上的冷杉林和高山草甸)土壤有机碳的化学抗性高于低海拔地区。土壤有机碳分解的Q10受土壤深度和海拔高度的显著影响。而深度对Q10的影响远小于海拔梯度对Q10的影响。高海拔地区土壤有机碳矿化的温度敏感性高于低海拔地区。图2.随机森林模型明确气候因素、土壤理化性质、化学组分和物理保护对Q10-q的影响 土壤有机碳的化学性质在土壤有机碳矿化温度敏感性的变异中起主要解释作用,其中有机碳疏水性、累积矿化碳组分和烷基碳/氧烷基碳比率为重要性前三的土壤有机碳化学性质;土壤有机碳物理保护作用次之。图3.气候、土壤理化性质、化学组分和物理保护对Q10的影响 有机碳的化学组成及其对分解的物理化学保护对Q10值的解释方差贡献了80%。路径分析表明,气候通过调控土壤有机碳的化学组成及其物理化学稳定性间接影响Q10。基于数据约束的碳模型进一步揭示,快速、缓慢和被动碳库的Q10表现出显著差异,这是由于其分解过程中化学组成参与和物理化学保护的不同造成。 研究成果以“Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile”为题,于2022年6月2日在线发表于土壤学科领域著名期刊Soil Biology and Biochemistry(5年影响因子8.312)。浙江大学环境与资源学院助理研究员毛霞丽为第一作者,博士研究生郑金阳成为共同第一作者,浙江大学环资与资源学院研究员罗忠奎为通讯作者。该项目得到国家自然科学基金项目(41930754、32171639),国家重点研发政府间国际科技创新合作项目(2021YFE0114500),中央高校基础研究基金(226-2022-00084)。相关论文信息:Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.全文链接:https://doi.org/10.1016/j.soilbio.2022.108743UPGRADED!为了更好地助力土壤研究服务国家“双碳”目标普瑞亿科从未停止创新的脚步历时一年的研究与探索2022年全新升级的PRI-8800重磅上线升级后的系统有哪些亮点?我们一起了解一下~ 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。01 主要特点可进行恒温或变温培养设定;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶适配25位样品盘;具有CO2预降低的双回路设计;一体化设计,内置CO2 H2O模块;可以外接浓度和同位素分析仪等。02 PRI-8800 实验设计1)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。PRI-8800全自动变温培养土壤CO2 H2O在线测量系统主要包含自动进样器、水槽、压缩机、CO2 H2O 分析仪、内部计算机、25位样品盘等,25个样品瓶。PRI-8800除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。2)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800可以通过手动调整土壤含水量的做法,并在PRI-8800快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。3)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。4)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。03 PRI-8800相关文献信息1.Li, C., Xiao, C.W., Guenet, B., Li, M.X., Xu, L., He, N.P. 2022. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe. Soil Biology and Biochemistry 167, 108589. https://doi.org/10.1016/j.soilbio.2022.108589.2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forestswamps. Catena, 194: 104684.5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.
  • 聚焦第三次全国土壤普查,有机质和阳离子交换量全自动检测方案出台
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。土壤有机质全自动检测方案:全文下载:土壤有机质全自动检测方法研制报告土壤阳离子交换量自动检测方案:全文下载:土壤阳离子交换量全自动检测方法验证报告
  • 岛津土壤有机物分析解决方案研讨会成功举办
    日前,由岛津公司举办的土壤有机物分析解决方案研讨会在中日友好环境保护中心成功召开。国家环境分析测试中心、第三方检测机构、分析中心等领域的十余名相关技术人员及负责人出席了此次研讨会。岛津公司薛志勇经理主持会议,国家环境分析测试中心主任董亮就新土壤环境质量标准进行了全面的解读,就质量标准中的检测技术进行了深入的讲解。国家环境分析测试中心主任董亮董亮主任深入讲解检测技术国家环境分析测试中心杨文龙就土壤有机物污染分析前处理技术进行了讲解。国家环境分析测试中心杨文龙老师介绍多环芳烃的前处理过程岛津分析中心杜世娟博士就土壤有机物解决方案挥发/半挥发有机物检测进行了演示实验。岛津分析中心杜世娟博士讲解岛津气相质谱仪的批处理功能会后,参会人员纷纷表示此类研讨会对检测认证工作与检测操作规范都有很大帮助。
  • 想用更短的时间,分析更多的土壤有机物?
    想用更短的时间,分析更多的土壤有机物?关注我们,更多干货和惊喜好礼土壤污染防治法》2016年5月,国务院发布实施《土壤污染防治行动计划》,这是我国“十三五”乃至更长一个时期全国土壤污染防治工作纲领,也是“净土保卫战”的重要遵循。2019年1月《土壤污染防治法》的出台,为“净土保卫战”提供了法治保障。2020年作为“十三五”收官之年,环保“净土保卫战”也进入攻坚之年。土污染防治和土壤污染物检测成为当前社会各界关注的重点。土壤污染物包含无机污染物和有机污染物,有机污染物包含挥发性有机物(VOCs)和半挥发性有机物(SVOCs)。如下是土壤分析常见标准。不难发现,土壤中有机污染物的种类巨多,项目繁杂,依据标准众多,仪器分析时间又长,实验室的样品又多,如何快速高效的检测样品成为分析人员的难题。请不要担心,亦无须崩溃,针对该分析难题,赛默飞可以提供如下两种方案:方案1 GC快速分析方法(具体方法,请点击链接查看往期推文)方案2 多组分一针进样同时分析法一. 161种半挥发性有机物(SVOCs)解决方案Thermo GCMS ISQ7000GCMS 仪器条件161种100ppb标准溶液TIC色谱图本方案具有如下优势:该方案除了满足土壤和沉积物检测标准(HJ834-2017,HJ743-2015 ,HJ805-2016, HJ835-2017,EPA8270C)之外,还能满足水质中的多个标准(HJ 716-2014,HJ 744-2015, GB5749-2006)可以参考标准方法,针对标准方法单独出具标准对应的数据结果。本方法采用赛默飞独有的Timed-SIM模式,无需分组,161个化合物一针进样完成检测。该161种化合物涵盖范围广,含有机磷、有机氯、多环芳烃、酞酸酯、苯胺类、苯酚类等众多化合物。可以参考标准方法,针对标准方法单独出具标161种化合物的仪器检出限在0.1~10.0 μg/L范围之间,可远远满足国内外各种法规的限量要求。其中,87.6%的化合物检出限小于1.0 μg/kg。161种化合物线性范围在10.0-200.0μg/L之间,91.3%的化合物线性相关系数大于0.995。二. 61种半挥发性有机物(SVOCs)解决方案 Thermo GCMS ISQ7000 Thermo 顶空 TriPlus 500GCMS 仪器条件61种50ppb标准溶液TIC色谱图本方案具有如下优势:该方案整合了3个标准(HJ642-2013, HJ736-2015, EPA 5021),含有3个标准中的所有化合物,且一针样品运行时间小于30分钟,大大提高了工作效率。60种化合物的方法检出限均低于2 μg/kg,可远远满足国内外各种法规的限量要求。各化合物线性范围在10-500 μg/kg之间,线性相关系数大于0.999,平均相对响应因子%RSD加标回收率大部分化合物在80-120%之间,远优于国家环境标准要求。4.5天的时间里,128个样品之间穿插的10针浓度为200 μg/kg QC样品的重复性和回收率非常好。最hou划重点!!!以上2种方案均可提供eWorkflow方法包,整合仪器方法,分析方法,报告模板,一键启动分析,解决用户方法开发的烦恼!!!eWorkflow方法包示意图eWorkflow运行流程图如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • CIF发布土壤有机碳消解仪新品
    CIF土壤有机碳消解仪土壤有机碳消解仪又名土壤有机碳恒温加热器 ,CIF所生产的土壤有机碳消解仪采用环绕立体加热技术,消解快速、高效、便捷。并且严格按照国标法生产的消解土壤有机碳的仪器设备。本产品适用于国标《HJ 615-2011 土壤有机碳的测定 重铬酸钾氧化-分光光度法》,Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method。可同时消解24-48个样品,主要适用于各行业中土壤中有机碳的测定。产品特点u 更安全:加热模块和控制模块分体式设计,控制模块可置于通风橱外使用,不但保证操作人员的安全,而且避免腐蚀性气体对控制模块的损害。u 更高效:采用环绕立体加热技术,“一站式”消解理念,快速、高效、便捷。u 更防腐:整个加热模块都是采用耐酸碱、耐高温、高传导性、高保温性能的等静压石墨材料制作,并经过耐高温的特氟龙防腐涂层处理。u 更稳定:加热系统采用嵌插(镶)式设计,性能稳定,加热快速高效,维修简单方便,大大延长了仪器的使用寿命,是其他同类产品寿命的2-3倍。u 更准确:控制系统采用智能程序化梯度控温技术,温度可校准,保证了控温的准确性、均匀性和稳定性,样品间温度差小于±1℃。加热模块上没有任何金属附件,无污染,保证实验结果的准确性。u 更美观:外观设计新颖,美观大方。u 更耐用:可连续工作48小时以上。u 更可信:企业通过 ISO9001-2008 质量管理体系认证,产品通过欧盟CE认证。技术参数型号控温范围℃控温精度℃功率kw孔径mm孔深mm孔数外形尺寸mm电源V/HzTOC-24RT-260±0.1或±11.8Φ315024320X235X165220/50Φ445015TOC-482.4Φ315048400X315X165Φ445030附:《土壤 有机碳的测定 重铬酸钾氧化-分光光度法》(土壤有机碳消解仪的依据)适用范围本标准规定了测定土壤中有机碳的重铬酸钾氧化-分光光度法。 本标准适用于风干土壤中有机碳的测定。本标准不适用于氯离子(Cl-)含量大于2.0×104 mg/kg的盐渍化土壤或盐碱化土壤的测定。当样品量为0.5g时,本方法的检出限为0.06%(以干重计),测定下限为0.24%(以干重计)。规范性引用文件 本标准内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。 HJ 613 土壤 干物质和水分的测定 重量法HJ/T 166 土壤环境监测技术规范方法原理 在加热条件下,土壤样品中的有机碳被过量重铬酸钾-硫酸溶液氧化,重铬酸钾中的六价铬(Cr6+)被还原为三价铬(Cr3+),其含量与样品中有机碳的含量成正比,于585 nm波长处测定吸光度,根据三价铬(Cr3+)的含量计算有机碳含量。干扰和消除u 土壤中的亚铁离子(Fe2+)会导致有机碳的测定结果偏高。可在试样制备过程中将土壤样品摊成2~3 cm厚的薄层,在空气中充分暴露使亚铁离子(Fe2+)氧化成三价铁离子(Fe3+)以消除干扰。 u 土壤中的氯离子(Cl-)会导致土壤有机碳的测定结果偏高,通过加入适量硫酸汞以消除干扰。试剂和材料除非另有说明,分析时均使用符合国 家标准的分析纯化学试剂,实验用水为在25℃下电导率≤0.2mS/m的去离子水或蒸馏水。u 硫酸:ρ(H2SO4)=1.84 g/ml。u 硫酸汞 u 重铬酸钾溶液:(K2Cr2O7)=0.27 mol/L。 u 液称取80.00 g重铬酸钾溶于适量水中,溶解后移至1000 ml容量瓶,用水定容,摇匀。该溶液贮存于试剂瓶中,4℃下保存。 u 葡萄糖标准使用液:ρ(C6H12O6)=10.00g/L 。u 称取10.00 g葡萄糖溶于适量水中,溶解后移至1000 ml容量瓶,用水定容,摇匀。该溶液贮存于试剂瓶中,有效期为一个月。仪器和设备u 6分光光度计:具585 nm波长,并配有10 mm比色皿。u 天平:精度为0.1 mg。 u 土壤有机碳消解仪:温控精度为135±1℃。恒温加热器带有加热孔,其孔深应高出具塞消解玻璃管内液面约10 mm,且具塞消解玻璃管露出加热孔部分约150 mm。u 具塞消解玻璃管:具有100 ml刻度线,管径为30~45 mm。 u 离心机:0-3000 r/min,配有100 ml离心管。 u 土壤筛:2 mm(10目)、0.25 mm(60目),不锈钢材质。u 一般实验室常用仪器和设备。创新点: 土壤有机碳消解仪又名土壤有机碳恒温加热器 ,CIF所生产的土壤有机碳消解仪采用环绕立体加热技术,消解快速、高效、便捷。并且严格按照国标法生产的消解土壤有机碳的仪器设备。本产品适用于国标《HJ 615-2011 土壤有机碳的测定 重铬酸钾氧化-分光光度法》,Soil–Determination of Organic Carbon–Potassium Dichromate Oxidation Spectrophotometric Method。可同时消解24-48个样品,主要适用于各行业中土壤中有机碳的测定。 产品特点 ?更安全:加热模块和控制模块分体式设计,控制模块可置于通风橱外使用,不但保证操作人员的安全,而且避免腐蚀性气体对控制模块的损害。 ?更高效:采用环绕立体加热技术,“一站式”消解理念,快速、高效、便捷。 ?更防腐:整个加热模块都是采用耐酸碱、耐高温、高传导性、高保温性能的等静压石墨材料制作,并经过耐高温的特氟龙防腐涂层处理。 ?更稳定:加热系统采用嵌插(镶)式设计,性能稳定,加热快速高效,维修简单方便,大大延长了仪器的使用寿命,是其他同类产品寿命的2-3倍。 ?更准确:控制系统采用智能程序化梯度控温技术,温度可校准,保证了控温的准确性、均匀性和稳定性,样品间温度差小于± 1℃。加热模块上没有任何金属附件,无污染,保证实验结果的准确性。 ?更美观:外观设计新颖,美观大方。 ?更耐用:可连续工作48小时以上。 ?更可信:企业通过 ISO9001-2008 质量管理体系认证,产品通过欧盟CE认证。 土壤有机碳消解仪
  • 土壤有机物检测,可以如此简单
    导 语2016 年 5 月 31 日,国务院印发实施《土壤污染防治行动计划》(又称“土十条”),正式启动全国土壤详查工作。会议明确要求于 2020 年 10 月底前全面完成重点行业企业用地土壤污染状况初步采样调查工作,还将对土壤污染实施常态化的监测。针对土壤中的有机污染物检测,岛津公司与国家环境分析测试中心联合推出了土壤有机物解决方案,助力检测单位轻松打赢土壤污染详查攻坚战。我们的优势 国家环境分析测试中心长期从事土壤样品的分析检测,在土壤样品前处理和分析方面积累了丰富的经验。岛津公司的Smart 数据库具有独特的优势。岛津公司与国家环境分析测试中心强强联合、共同合作,推出以Smart 数据库为核心的土壤有机物检测解决方案。 解决方案的光盘内包括土壤分析方法的Smart 数据库、土壤方法包操作视频、样品分析前处理操作指导手册、仪器操作指南以及数据库应用文集。 岛津土壤有机物检测解决方案可以完美应对以下标准针对上述每一个标准,我们都建立了相应的文件夹。文件夹里包括对应标准的AART采集方法、Smart数据库以及操作指南。对于用户来说,操作起来是十分便捷的。下图是标准HJ 743-2015文件夹内容展示。 Smart数据库亮点: Smart数据库操作简便快捷,三步(选择目标化合物、加载正构烷烃文件、点击创建方法文件)即可完成方法建立,极大提升实验室的工作效率;即便你是实验室小白,在我们视频的引导下,你也可以轻松地创建分析方法; Smart数据库使用AART(保留时间自动调整功能)功能,即使没有标准品,也可以对待测样品中的化合物进行快速筛查; Smart数据库依据岛津公司和国家分析测试中心共建实验室多年有机物检测经验建立,优化了复杂基质检测参数,得到的峰型更好,精心筛选的定性定量离子可以避免杂质干扰,使得定量结果更准确。
  • 土壤检测如何解放双手?这家仪器公司给您支招了...
    土壤是农业生产和人类赖以生存的物质基础,土壤质量的优劣直接关系到农产品质量、人类健康以及经济社会的可持续发展。国务院发布关于开展第三次全国土壤普查的通知,普查对象为全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。土壤检测数据是客观评价土壤质量状况、实施土壤利用评价、管理和决策的基本依据。本次土壤普查时间紧、任务重,对检测数据的质量和准确性要求很高。如何高效、高质地执行土壤的检测,对每个土壤检测实验室都是一项极大的挑战。按照《国务院关于开展第三次全国土壤普查的通知》中检测实验室的条件要求,入围的实验室必须具备《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范》中规定的场地条件、设备设施、检测能力、仪器设备、人员队伍和资质认定批准等资格,故此常规检测项目必备的仪器设备需求量并不会太大,一些实验室可以根据自身实际情况增购部分仪器。而在应对土壤质地、酸碱度、全盐量、有机质、总碳、全氮和养分等理化指标的检测,绝大部分实验室还在采用传统的手工分析法,而手工法分析速度慢、分析过程耗时复杂、需占用大量的人力物力、结果的准确度依赖于具体操作者的主观意识和操作技能,无法满足实验室大批量、高质量的检测需求。面对检测任务不断增加、部门减员增效的要求和检测质量的提高等,要求检测实验室要优化工作步骤并将实验室分析过程标准化。实验室的自动化分析及由此带来的信息化的改进特别值得关注。斯卡拉分析仪器公司根据土壤的标准方法,结合不同的自动化检测技术,将多项经典的手工操作的分析方法组合起来,实现了检测分析的自动化和分析过程的标准化。提高效率、将人从繁琐的分析过程中解放出来、标准化的分析过程得到了更精准的分析结果。标准不同,检测项目也不尽相同,在该领域中对于仪器的需求及要求是相当高的。根据《第三次土壤普查土壤样品检测技术规范》的规定和要求,土壤机械组成、土壤酸碱度-全盐量、有机质/总碳&全氮以及各种形态碳和营养元素等都需要使用不同理化指标进行检测。1. 土壤机械组成(土壤质地)的自动分析1.1 土壤机械组成的检测标准土壤机械组成的测定,就是测定不同直径的土壤颗粒组成,进而确定土壤质地。土壤质地在土壤形成和土壤的农业利用中具有重要意义。根据LY/T 1225-1999、GB/T 33469-2016、《耕地质量等级》附录D、《土壤分析技术规范》等标准规范,检测方法有吸管法和比重计法。吸管法繁琐,但精确,比重计法操作简单,精度较差,而且计算麻烦。这两种方法都是以司笃克斯(Stokes)定律和土粒在静水中沉降的规律为基础。无论吸管法还是比重计法,均大致分为土粒的分散、粗土粒的筛分、细土粒的沉降分离和测定四个步骤。整个测量过程耗时较长,中间过程控制比较困难。1.2 斯卡拉的土壤机械组成机械人自动分析仪斯卡拉根据吸管法提供了两款机器人分析仪用于机械组成的自动化分析。机器人分析仪实际上是一个三维样品处理平台,搭载相应机械臂、机械手、样品和液体处理装置、精确的电子移液系统和加热控制单元将手工处理的步骤自动化。仪器可执行24小时无人值守地工作、确保整个分析过程的可靠性。SP2000机器人分析仪SP50样品制备机器人2.土壤酸碱度-全盐量的自动测定土壤pH是土壤的基本性质和肥力的重要影响因素之—。土壤pH的测量根据GB/T 33469-2016和LY/T 1239 - 1999 标准规范采用电极法测定:称取10g风干土壤样品至高型烧杯中,加入25ml水搅拌1-2分钟,使土粒充分分散,静置30分钟后用pH计测定。每测5-6个样品后需用标准溶液检查。土壤水溶性盐总量是盐碱土的一个重要属性,是限制作物生长的障碍因素,全盐量的测定根据GB/T 33469-2016、LY/T 1251-1999标准规范有质量法和电导法,质量法测量过程耗时繁琐,电导法是利用土壤的电导率和土壤水溶性盐总量呈线性关系得出,比质量法简便快速得多。斯卡拉的土壤pH&EC机器人自动分析仪可同时测量土壤的pH和EC值(电导)。由于土壤的pH和EC的土水比不同,仪器的设计实际是两通道独立分析系统,一个机械手装载pH&搅拌器&浸提液注液装置,另一个机械手2装有电导率&搅拌器&浸提液注液装置,两通道独立分开测量。可以自动执行电极自动校正、自动添加浸提液、样品搅拌、清洗、测量pH-EC值、自动温度补偿ATC、计算结果和报告输出等。3. 有机质/总碳&全氮的自动测定3.1 有机质&总碳测定的标准方法:传统的有机质的分析有重铬酸钾氧化法,该方法对个别形态的有机碳存在氧化不完全的问题,分析时必须严格控制体系的温度,防止酸性重铬酸盐溶液在高于180 ℃时分解。土壤中存在的Cl-、Fe2+及锰化合物的干扰。在实际应用中,这种方法操作繁琐,重铬酸钾是一类致癌物,硫酸是强腐蚀性的易制毒化学品,也带来了安全和环境污染的严重问题。《第三次全国土壤普查土壤样品检测技术规范》中也给出了杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》 。该方法实际符合ISO10694;EN15936和HJ 695-2014,目前在国际和国内的土壤分析领域早已被大量应用,但国内相对应的标准方法还比较滞后。据斯卡拉了解,有关部门已经开始该方法的编制。燃烧法的主要优点是:高温下保证样品中各种形式的碳燃烧完全,样品前处理的工作量最小,分析速度快、不产生有毒有害物质、整个过程可实现全自动化分析。3.2 各种形态碳的定义标准对总碳的定义实际上是样品以有机碳、无机碳和元素碳形式存在的碳的总量。现有的ISO10694、EN15936等标准,TOC的值可通过差减法和直接测量法检测:差减法是通过TC和TIC测量结果的差值获得。总碳(TC)通过高温燃烧法测量。无机碳(TIC)的测定是通过酸化反应-曝气吹扫的方法测定。直接测量法是首先手工酸化除去土壤样品中的无机碳,ISO10694规定,为确保完全除去无机碳,加酸除无机碳的过程需要等待至少4小时,除去无机碳后,样品通过高温燃烧分解,可直接测量出总有机碳的值。有机质=有机碳*1.724无论差减法、直接测量法还是通过重铬酸钾氧化法所测出的有机碳实际上均包含了元素碳的量,元素碳的形式包括木炭、煤和石墨等,它实际上也在自然界广泛存在,元素碳是有别于有机碳的另外一种碳源,不是生物可利用的,不能供应土壤微生物所需的能量和养分,不能促进植物生长发育。故此,在土壤管理中,单独测量这种第三类碳可以更准确地测定生物可利用的碳含量,从而确定与微生物、土壤生物活动和环境有关的碳源。为此,DIN19539-2016标准采用不同温度下测量各种形态的碳,用于TOC,EC和TIC的测量,该方法是在有氧的条件下,使用高温燃烧炉在不同温度下分解各种形态的碳。400℃释放检测的是有机碳,600℃下检测元素碳,900℃下检测无机碳。一次进样分别测量出有机碳,元素碳和总无机碳的值。3.3 全氮的标准方法:NY/T 1121.24-2012法采用传统的凯氏定氮法,该方法虽然精确的、可靠的,但是它也存在很多明显的缺点,例如:a)需要较长的分析时间 ;b)使用浓硫酸和强碱溶液,带来严重的安全和环境污染的问题;d)必须由熟练的技术人员操作。LY/T 1228-2015连续流动分析仪法(森林土壤):《森林土壤氮的测定》规范采用连续流动法测量全氮实际上是半自动的方法,样品也必须先进行外部消解,消解完成后通过分析仪完成后面的自动分析工作。LY/T 1228 - 2015 元素分析仪法(森林土壤):《森林土壤氮的测定》是全自动的方法,通过自动进样器连续进样,不需要人看管 不需要复杂的样品前处理过程 不产生有毒有害物质;精度高,而且操作简便。3.4 斯卡拉Primacs系列土壤有机质/总碳&总氮元素分析仪Primacs系列采用高温催化燃烧的原理、可提供快速、高效、精确的总氮(蛋白质)、总有机碳(有机质)、总碳(TC)、无机碳(TIC)和元素碳(可选)的全自动分析。内置双检测器,采用热导检测器(TCD)测量氮,非分散红外检测器(TCD)测量碳。内置100为自动进样器,采样自动除灰的坩埚进样,可直接分析固体和液体样品。该仪器既可按照传统的燃烧法通过差减法或直接测量法全自动测量土壤TC,IC、TOC和有机质。也可按照DIN19539-2016方法A和方法B测量TOC,TIC和EC的含量,无需任何硬件切换,仅需软件中选择即可执行不同模式的分析。Primacs系列是目前全球唯一一款可全自动分析土壤有机质的分析仪,该仪器具有自动休眠和自动唤醒功能,可在夜间无人值守自动运行,大大提高分析效率。该仪器将土壤有机质分析过程全自动化,将操作者从繁琐的湿化学分析过程中解放出来,标准化、快速、环保、安全、大批量地进行分析,消除了人为主观因素和操作水平差异造成的影响,得到更精确可靠的分析结果。4. 土壤养分的自动分析-斯卡拉San++系列连续流动分析法用于土壤的全磷/有效磷、全氮/铵、全钾/速效钾/缓效钾、钠、全硼/有效硼、全硫/有效硫/硫酸根、硝态氮、有效硅、有效铁等指标的自动分析仪连续流动分析仪由自动进样器、蠕动泵、化学反应单元、分析模板、检测器和数据处理器组成。仪器最大的意义是将繁琐的化学分析如消解、蒸馏、萃取、透析及离子交换等过程自动化。适用过程繁琐的化学指标的分析。连续流动分析仪其实在土壤养分的分析已经应用很普遍了。不同指标根据标准方法处理土壤样品,如全磷、全钾通过碱熔、有效磷通过碳酸氢钠浸提,速效钾通过乙酸铵浸提,处理后的样品溶液放在自动进样器上即可通过仪器完成各指标的自动分析。San系列是集适用性和多功能性于一体的全自动化学分析仪器,可完成从开机、停机、稀释、重复、清洗到原始数据储存的过程全部自动化。利用各种自动模式组合,对分析过程的稀释、加样、混合、加热、透析、抽提、UV消解等进行自动控制。斯卡拉的土壤自动化分析仪的检测的方法完全符合《全国第三次土壤普查土壤样品检测技术规范》中的方法 ,通过自动化的分析,我们可以将一部分人从疲于应付常规的测量中解放出来,既节约了人力资源和分析成本,也提高了工作效率和分析结果的质量,有效地优化您的工作流程,提高您的质量管理能力,助您将实验室分析的可靠性和效率都提升到更高水平。
  • 睿科:提升土壤有机物检测效率 需从样品前处理着手
    p   随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在众多的土壤污染物中,有机化合物由于品种多、化学结构和性质各不相同、待测组分复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。 /p p   为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请睿科集团应用工程师叶维鹏就土壤有机物检测技术相关的问题发表了自己的观点。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/19b9a10e-0b03-4ca6-ad4d-68fff2857acf.jpg" title=" 睿科1.jpg" alt=" 睿科1.jpg" / /p p /p p style=" text-align: center " strong 叶维鹏 睿科仪器应用工程师 /strong /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善? /strong /span /p p    strong 叶维鹏: /strong 土壤中的污染物检测不像人们的想象那样简单,存在很多复杂的有机污染物,甚至有许多无法解释的东西,给相关的检测部门带来了相当大的难度。总体而言,有机物和重金属是土壤污染的最主要来源,为保证土壤有机物检测有标准可依,国家相关部门定期地对现有的土壤有机污染物进行编制,目前现行的土壤有机物污染物检测标准几乎能满足绝大多数的检测要求,但某些标准还未细致划分到每种物质,以致于有些有机污染物无法参照相应的标准,比如没有明确的苯胺类气质标准,目前已经发布的有《土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》征求稿。 /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪? /strong /span /p p    strong 叶维鹏: /strong 目前我们比较关注的是苯胺类化合物、有机氯农药以及半挥发性有机物的检测,难点主要还是在于前处理(萃取、浓缩、净化)。比如低沸点目标化合物的回收率相对较低,必须控制好氮吹或旋转蒸发过程中的浓缩温度;酚类目标化合物则主要看仪器灵敏度,因为仪器的灵敏度决定最低检出限;邻苯二甲酸酯类目标化合物需尽可能避免用到塑化剂前处理设备,做空白基底扣除,否则做出来回收率相对较高,有可能偏离标准;极性相对大沸点相对较高目标化合物可选择二氯甲烷和丙酮(1:1)取代正己烷和丙酮进行萃取,效果明显。 /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p    strong 叶维鹏: /strong 我们可提供多种土壤有机物检测前处理组合、提取设备,例如HPFE高通量加压流体萃取仪+浓缩设备、MPE高通量真空平行浓缩仪+净化设备、Fotector plus高通量全自动固相萃取仪等。其中HPFE高通量加压流体萃取仪一次可运行6个样品(30分钟),按照正常工作时间8个小时来计算,日处理最多可达96个样品。而且HPFE的收集瓶可兼容MPE,可直接将萃取后的收集液转移至MPE ,一次可处理16个大体积120mL的收集液或36个小体积40mL的收集液,浓缩时间30分钟左右,大大提高浓缩效率,再将预浓缩后的样品转移至Fotector plus 进行净化,一次可同时运行6个样品,可批量处理60个样品,解放人工手动净化,整个实验只需将架子转移,无需其他手动操作,避免目标化合物的损失。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/7ab83486-b71e-4b06-a804-8feffea67c4f.jpg" title=" 睿科2.jpg" alt=" 睿科2.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p /p p style=" text-align: center " strong 图一、睿科HPFE高通量加压流体萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 376px " src=" https://img1.17img.cn/17img/images/201909/uepic/fa430f98-ead0-458e-91fe-8f40ca18dd7e.jpg" title=" 睿科3.jpg" alt=" 睿科3.jpg" width=" 500" height=" 376" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图二、睿科Fotector plus高通量全自动固相萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/1f9ba127-13d1-454e-8942-bf28240697e9.jpg" title=" 睿科4.jpg" alt=" 睿科4.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图三、睿科MPE高通量真空平行浓缩仪 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案? /strong /span /p p    strong 叶维鹏: /strong 我们可提供土壤和沉积物以及固体废物等相关应用解决方案,符合标准如下: /p p   1& nbsp & nbsp 固体废物 半挥发性有机物的测定 气相色谱-质谱法(HJ 951-2018) /p p   2& nbsp & nbsp 固体废物 多环芳烃的测定 高效液相色谱法(HJ 892-2017) /p p   3& nbsp & nbsp 固体废物 多环芳烃的测定 气相色谱-质谱法(HJ 950-2018) /p p   4& nbsp & nbsp 固体废物 多氯联苯的测定 气相色谱-质谱法(HJ 891-2017) /p p   5& nbsp & nbsp 固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017) /p p   6 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017) /p p   7 土壤和沉积物 多氯联苯的测定 气相色谱法(HJ 922-2017) /p p   8 土壤和沉积物 多氯联苯混合物的测定 气相色谱法(HJ 890-2017) /p p   9 土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017) /p p   10 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017) /p p   11 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法(HJ1021-2019 /p p   12 GB5085.3-2007《危险废物鉴别标准 浸出毒性鉴别》 /p p   正如以上所言,土壤有机物检测工作的难点在于样品前处理,耗时、耗力、且容易产生操作误差,有资料表明有60%的分析误差产生于样品前处理,而不是最后的分析过程。如何快速、高效且准确地完成样品前处理,是土壤有机物检测工作中亟待解决的问题。睿科集团作为自动化样品前处理解决方案领先供应商,通过多种高通量、自动化样品前处理设备组合,为土壤有机物检测,如多环芳烃、有机氯、半挥发性有机物、多氯联苯、石油烃等,提供从提取、预浓缩、净化再到富集浓缩的全套土壤样品前处理自动化、批量化应用解决方案。 /p p br/ /p
  • 尹伟伦院士:过度疲劳的土壤亟待减肥提质
    p   目前,我国人均农业耕地不足1.3亩,相当于美国的1/6、阿根廷的1/9、加拿大的1/14。随着工业化、城镇化步伐加快,我国耕地数量减少趋势难以逆转。 /p p   土地在减少,而粮食却靠化肥和农药在增产。 /p p   过去60年间,我国化肥施用急剧增长,有机肥施用几乎降至零点。缺少有机肥导致化肥增、产量退、地力衰、污染重。同时,我国每年农药用量约为180万吨,受农药污染耕地有1300-1600万公顷,占全国耕地10%以上。化学农药过量使用,但有效利用率不足30%,造成土壤有机污染严重,且导致食品中的有害残留。 /p p   我国粮食产量占世界的16%,化肥用量占世界的31%,每公顷用量是世界平均水平的4倍以上。氮、磷、钾养分的不平衡供应和过量化学氮肥的施用,造成化学氮肥利用率低(仅30%左右),磷、钾肥利用率分别为10%-15%和40%-60%,损失严重。 /p p   重施化肥、轻施甚至不施有机肥,使有机质积累缓慢而消耗多。我国土壤有机质平均含量为1.8%,而西方发达国家则为3.5%,我国约为发达国家的1/2。土壤质量整体没有显著提高,有的甚至在退化。目前我国耕地基础地力对粮食生产的贡献率仅为50%-60%,比40年前低10个百分点左右,比欧美等发达国家低20个百分点。 /p p   由于我国土壤肥力低,农民为了确保高产而过量施用化学氮肥,造成氮肥供应与作物需求严重不同步。长期不合理过量使用化肥,造成土壤结构变差、土壤板结、地力下降、农作物减产,农产品硝酸盐含量过高、重金属含量超标。大量和过量的氮肥和重金属流失于环境中,污染土壤、水体、空气,威胁人类的食物安全和健康。 /p p   虽然目前我国污染土壤比例并不比欧美国家高,但全国范围内土壤重金属含量在过去20-30年间呈明显上升趋势。环保部与国土资源部组织的土壤污染状况调查表明,与“七五”时期全国土壤环境背景值调查的点位坐标相比,表层土壤中无机污染物含量增加比较显著,其中镉的含量在全国范围内普遍增加,在西南地区和沿海地区增幅超过50%,在华北、东北和西部地区增加10%-40%。 /p p   由于追求产量,连作和过量施用化肥导致土壤酸化严重、土壤生物活性下降、土壤养分转化很慢,很多露地土壤已经成为或正在变成“僵土、死土”。为缓解土传病害状况,很多农民只好每隔2-3年施用一次土壤消毒剂,不仅加大成本,而且严重污染土壤,影响农产品安全。 /p p   土壤状况决定着整个农业产业以及人类食物链的安全问题。我们已经度过了商品短缺的时代,现在处在生态短缺的时代。土壤是生产食品重要的基础条件,它的安全性、可靠性需要高度关注。 /p p   为此,建议从政策、技术、经济路径保护土壤环境。尽快启动耕地质量保护立法,开展耕地质量和农田环境质量普查,建立耕地质量和土壤污染监测网络体系,根据食用农产品安全生产需求制定国家土壤保护区划,颁布食用农产品和土壤环境中各种污染物的环境质量标准,强化耕地质量提升与土壤污染防控的科技支撑,加大有机肥的资源化利用,改良中低产田和提高土壤基础地力,强化修复病原土壤技术途径与配套措施。 /p
  • GEODERMA丨肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 今天与大家分享的是肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展,在该项研究中,研究团队利用PRI-8800对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,为研究结果提供了有力的数据支撑。 来自植物根际和凋落物层淋溶的易分解外源碳(LOC)输入土壤是生态系统常见的自然现象,其在微生物介导的土壤碳循环中发挥着关键作用,尤其是在植物根系密集的草原生态系统。然而,外源碳的输入并不总是意味着土壤碳的净增加,因其能为异养微生物群落提供可用的碳和能量,进一步对土壤有机质的分解产生影响,即激发效应(Priming Effect,PE)。长期以来,尽管许多研究已经探讨了由外源碳添加诱导的激发效应,但很少有研究关注其短期效应。其次,输入土壤的外源碳是高度动态变化的,会迅速融入微生物、土壤有机质,或分解为CO2,但由于土壤微生物对外源碳输入的反应很快,来自外源碳的呼吸作用对微生物呼吸作用的相对贡献及其影响因素仍不确定。此外,围栏禁牧被认为是实现草地生态系统自我恢复的重要途径,其对土壤碳氮特性具有重要的积极影响,而围栏禁牧所导致的土壤碳氮特征变化可能进一步影响微生物对外源碳和土壤有机质的分解,但目前仍然缺乏对此的全面了解。 针对以上科学问题,肖春旺教授团队在中科院内蒙古草原生态站开展了相关研究,研究人员采集了3个不同围封禁牧时间(42年、22年和0年[自由放牧])和4个不同土层深度(0–10、10–30、30–50、50–100 cm)的土壤。通过向土壤中添加δ13C标记的葡萄糖以模拟自然界的碳输入,并使用北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,在105-h内实现了分钟尺度上对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,主要探究了土壤碳氮特征变化对土壤微生物响应外源碳输入的短期过程以及对外源碳和土壤有机质分解的影响及机制。 研究结果发现,土壤微生物对外源碳的输入反应迅速,由土壤有机碳和碳氮比控制的微生物生物量是直接影响微生物对外源碳输入反应强度的最重要因素。放牧和较深的土壤层减少了来自外源碳的呼吸作用及其对总呼吸作用的相对贡献(图1),主要归因于土壤碳氮比和真菌/细菌的变化。此外,外源碳添加促进了所有土壤中有机质的分解,使土壤有机质的呼吸作用增加了11.3–92.4 mg C g-1 SOC,相当于18.7–266.1%的激发效应。放牧和土壤深度增加导致了更大的激发效应和土壤碳损失,其中土壤碳氮比和有机碳含量是最重要的调节因素。图1 不同土壤中来自外源碳和土壤有机质的累积碳矿化量及其比值注:GE42(10)、GE22(10)和GE0(10)分别代表围栏禁牧42年、22年和0年样点的0–10 cm土壤;GE42(10)、GE42(30)、GE42(50)和GE42(50)分别代表围栏42年样点的0–10、10–30、30–50、50–100 cm的土壤。 禁牧被认为是实现草原生态系统自我恢复的重要途径,了解放牧对外源碳输入下草原碳循环的影响可能有助于提高我们对未来草原土壤碳动态的预测。因此,结合本研究结果,研究人员建立了一个概念框架,阐明了禁牧年限和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态的影响(图2)。禁牧对植被的积极影响进一步提升了土壤有机质的质和量,进而通过影响微生物特性导致更多的外源碳被微生物呼吸代谢,并增大其对总微生物呼吸的贡献,但是却会减小其诱导的激发效应和土壤碳损失。然而,对于不同深度的土壤而言,增加土层深度会影响土壤有机质的质和量,导致来自外源碳的呼吸及其对总微生物呼吸的贡献均减小,但是却会减小其诱导的激发效应和土壤碳损失。目前在世界大部分地区,由于受到人类活动的影响,草原正面临着严重退化的困境,而禁牧可能是实现表层土壤碳固持的有效措施。图2 禁牧和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态影响的概念图 相关研究成果以“The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands”为题在线发表于国际土壤学领域主流期刊《Geoderma》(中科院一区Top,IF5 = 7.444)上。 生命与环境科学学院2019级博士研究生李超为本论文第一作者,肖春旺教授为本论文的通讯作者。中国科学院地理科学与资源研究所何念鹏研究员为本研究的重要合作作者,另外,中国科学院地理科学与资源研究所的徐丽副研究员和李明旭博士也参与了本研究。来源丨中央民族大学生命与环境科学学院官网相关论文信息:Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.原文链接:https://doi.org/10.1016/j.geoderma.2023.116385. 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X,Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, HeNP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochesion: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
  • 土壤固碳是实现碳中和与土壤健康的双赢解决方案
    近日,农业农村部发布中国再次启动土壤普查意义重大相关报道,其中提到土壤普查是认识和保护土壤资源的基础,将有助于保障粮食安全,并助力碳达峰、碳中和目标的实现。40年来中国土壤至少有以下三方面发生了变化:(1)土壤重金属污染快速加重;(2)土壤的快速酸化;(3)土壤的有机质变化。第三次土壤普查的意义重大“十四五”规划和2035年远景目标明确要求以保障国家粮食安全为底线,坚持最严格的耕地保护制度,深入实施“藏粮于地、藏粮于技”战略。我们期待第三次土壤普查能够服务两大目标:一、促进土壤的自身健康,实现粮食在质和量上的安全;二、通过促进土壤健康,增强土壤的固碳能力,助力中国达成“2030年碳达峰,2060年碳中和”的宏伟目标。 (1)粮食安全方面 第三次土壤普查的对象为全国耕地、园地(果园、茶园等)、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。针对耕地、园地,普查将检测样本中45项理化指标,此外还将开展土壤动物和微生物调查。 (2)生物固碳方面 土壤构成最大的陆地有机碳库,是目前大气中约8300亿吨碳含量的3倍,和当前每年的化石燃料碳排放量约100亿吨的240倍。土壤既可以释放二氧化碳和甲烷而成为温室气体的来源,又可以通过土壤有机质固碳而作为碳汇。因此减少土壤的温室气体排放、增加土壤的碳固定对于缓解气候变化的意义重大。第三次土壤普查并没有为土壤固碳能力设定具体目标和明确的任务。但是,其检测指标中包含了土壤有机质和碳酸钙(无机碳)这两个含碳的指标,这将为本次调查中不同土地类型的土壤碳库的核算、土壤固碳潜能的评估,以及推进土壤固碳技术的发展打下坚实的基础。 土壤固碳是实现碳中和与土壤健康的双赢解决方案。我们期待,在第三次土壤普查之后,中国能将土壤固碳作为农业固碳减排技术正式纳入官方文件,制定具体目标、明确的任务和行动方案。
  • 重磅上市|土壤呼吸测定仪评估土壤健康与活性
    型号推荐:重磅上市|土壤呼吸测定仪评估土壤健康与活性 ,土壤呼吸作为土壤生态系统中的关键过程,直接反映了土壤的健康状况、微生物活性及碳循环动态。土壤呼吸测定仪作为现代土壤科学研究的得力工具,其在农业、生态及环境科学领域发挥着不可替代的作用。本文将详细阐述土壤呼吸测定仪的四大作用。 一、评估土壤健康与活性 土壤呼吸测定仪通过精确测量土壤释放的二氧化碳量,直接反映了土壤中微生物的呼吸作用强度和土壤有机质的分解速率。这一 数据是评估土壤健康状态和生物活性的重要指标,为土壤管理和改良提供了科学依据。 二、指导农业生产与施肥 土壤呼吸与土壤肥力及作物生长密切相关。通过土壤呼吸测定仪的监测,农民可以了解土壤中有机物质的分解速率和养分供应情况,从而制定科学的种植计划和施肥方案。这有助于提高农业生产效率,减少化肥的过量使用,降低环境污染。 三、监测生态系统碳循环 土壤是全球碳循环的重要环节,土壤呼吸作用的变化直接影响大气中二氧化碳的含量。土壤呼吸测定仪的应用,使得科研人员能够深入探究土壤碳排放规律,为理解全球气候变化、制定碳减排政策提供重要数据支持。 四、评估生态修复效果 在生态修复项目中,土壤呼吸测定仪可用于监测修复后土壤生态系统的恢复情况。通过对比修复前后的土壤呼吸速率,可以评估修复措施的有效性,为优化修复方案提供数据支持。 五、仪器特点 1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量可通过仪器设定,可以进行不同流量下土壤呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、支持wifi、4G联网;数据可无线上传至云平台 6、存储空间16G,可存储100000+条数据 7、数据可直接通过USB接口导出到U盘 8、检测完成可直接打印并上传检测数据结果 9、支持GPS定位; 土壤呼吸测定仪在评估土壤健康、指导农业生产、监测碳循环及评估生态修复效果等方面发挥着重要作用。随着科学技术的不断进步,土壤呼吸测定仪的精度和智能化程度将不断提高,为土壤科学研究和生态环境保护贡献更大力量。
  • 赛默飞谈土壤有机物检测:关注时效性和检测方法稳定性
    随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在土壤污染物检测中,有机污染物种类众多、类型复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。  为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请赛默飞公司市场部经理胡忠阳就土壤有机物检测技术相关的问题发表了自己的观点。  仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善?  胡忠阳:作为服务科学的世界领导者,我们始终在关注着环境检测市场动态,并不断更新我们的解决方案以满足不断变化的需求。   早在2016年5月,国务院发布“土壤污染防治行动计划”,正式拉开了土壤污染大决战序幕,充分掌握土壤污染状况被置为第一要务,我们就注意到监测市场需求将会大幅增长。很快在同年年底,当时的环保部公布全国土壤详查实验室筛选技术规定,明确了土壤详查计划的检测项目,以及对实验室应配备的仪器设备基本要求。关于《土壤环境质量标准》修订进程明显加快,我国《土壤环境质量标准》自1995年发布实施以来,在土壤环境保护工作中发挥了积极作用,但正如生态环境部土壤环境管理司有关负责人所说:“随着形势变化,该标准不适应农用地土壤污染风险管控的需要,也不适用于建设用地,已不能满足当前土壤环境管理的需要。”现行土壤质量标准实施自2018年8月1日,区别于原GB 15618-1995《土壤质量标准》发生了很大变化。  新标准立足于我国现阶段经济社会发展状况,充分考虑我国土壤环境的基本特征及土壤污染的特点,农用地标准检测指标增加了苯并芘检测项,建设用地检测指标增加到85项,充分考虑了我国土壤环境管理实际需求。颁布的两个土壤管理新标准,对农用地实施分类管理、保障农业生产环境安全;实施建设用地准入管理、防范人居环境风险,提供了重要的技术标准支撑,对我们土壤污染防治工作战略的具体细化具有重要意义。  正如一开始我们所提到的,环境威胁不断演变,污染治理也不可能一蹴而就。许多污染物已知是有害的,比如这次新标准中监控清单受到政府相关部门法律和法规的严格管控。对于环境中许多其他污染物并不在这个清单里,其对健康的影响尚未了解清楚, 或者在环境中的含量和暴露频率不明确,或者用于定量和表征的有效分析方法尚不可用,需要我们加快对它们的研究。这也预示着我国环境质量监测的合规标准和法律法规将持续更新、日趋严格。  仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势?  胡忠阳:从有机污染物检测的标准我们可以看到,涉及GC、GCMS、 HPLC、HRGC-HRMS等方法,涵盖VOCs, SVOCs, 有机农药、石油烃、多氯联苯、多溴联苯和二噁英等众多类型污染物。我们能提供全系列的色谱-质谱产品组合,全面满足标准要求。有一点需要强调,仅仅提供分析仪器本身是远远不够的,检测工作包括从样本前处理到数据的交付整个过程,我们很早就耕耘在这个领域,利用我们广泛的产品优势,率先于市场就提出了“土壤有机污染检测高效分析流”整体解决方案,兼顾效率和准确性,这是我们最为突出的优势,一站式解决方案和服务得到市场的广泛欢迎与认可。  除了整体的方案优势以外,涉及到流程中各个环节,也有其独特的优势, 下面做一个简要的介绍。  首先,样品前处理是整个分析流程中最繁琐、最花时间的步骤。根据LC-GC杂志对1000多个实验室进行的调查,在色谱分析过程中,实际仪器分析仅仅占6%的时间,而样品前处理所花费的时间则高达60%以上。很明显,样品前处理已经成为阻碍我们提高分析效率的瓶颈。因此,要提高分析效率,就必须解决样品前处理过程中标准化、自动化、高通量等问题。对此,我们充分整合优势提出萃取-净化-浓缩一体化高效方案,将 ASE系统含In-Cell净化和Rocket火箭蒸发器的结合,完全省去了手工样品转移步骤。这种结合对实验室产率的影响十分显著,可确保获得高准确度、高重复性的样品制备效果。比如,土壤和固体废物中的多氯联苯 (PCB)项目,我们使用加速溶剂萃取以及在线净化来萃取受污染土壤中的多氯联苯时,加标回收率和重现性都很好。使用在线净化选择性地消除干扰避免了耗时和昂贵的萃取后手动净化程序。使用加速溶剂萃取处理样品仅需 20 分钟并且只需 40mL 溶剂。Rocket 蒸发器不需要繁琐的氮吹浓缩,通过使用 Flip-Flop 系统,可以直接将样品浓缩到 GC 小瓶中,节省时间并降低实验室成本。EXTREVA™ ASE™ 加速溶剂萃取仪  在仪器分析这一块,赛默飞可以提供从气相色谱、单四极杆气质、三重四极杆气质以及高分辨气质综合解决方案。应对常规检测,提供可以满足环境法规中常见VOCs,SVOC等污染的解决方案,也可以提供环境中未知化合物筛查的解决方案,提高突发事件的定性能力,十分全面。在分析效率方面,提供超快速分析方法,6分钟分析土壤中的总石油烃,8分钟分析64种SVOC;另一方面不断开发针对多种VOCs,SVOC的一针分析多种化合物的方案,如一针进样40min分析环境中160余种SVOC,提高实验室分析效率。为了最大化方便操作者,我们将环境监测项目转化为eWorkflow方法包随机提供给客户,客户在实验室只需下载方法包即可一键快速建立合规方法,大幅缩短实验室方法开发的时间和重复投入。 ISQ 7610™单四极杆 GC-MS  另一个值得一提的是双三元液相色谱在土壤中多环芳烃检测中的应用,HJ 784-2015《土壤和沉积物多环芳烃的测定 液相色谱法》国标方法采用索式提取,后续还要转移依次进行过滤、浓缩、净化等繁琐的操作,不仅耗时而且还会消耗大量溶剂并存在样品损失和污染风险。我们创新性推出ASE-Online SPE-HPLC法测定土壤中的PAHs,简化了前处理步骤,减少了有机试剂与人的接触,重现性更好,是一个环境友好、自动化的全新方法,代表了仪器分析方法的未来发展方向并受到市场的认可。其原理是利用DGLC双梯度液相双泵设计,可以同时单独控制三种不同的流动相来进行复杂的样品分析。双三元梯度系统具有独特的阀切换系统,柱温箱部分放置的两个切换阀可以通过变色龙软件的控制在设定的时间进行阀切换,从而实现流动相流路和色谱柱连接的不同组合切换。该方法就是在DGLC上轻松实现在线样品净化SPE-LC用于全自动样品制备和分析的。赛默飞 Vanquish™ UHPLC超高效液相色谱系统  二噁英项目近年来越来越受到关注,也为土壤质量标准所收录,相应的HJ 77-4作为方法标准成为监管的有力技术支撑,方法中使用的高分辨磁式质谱仪DFS代表了二噁英分析的黄金标准,DFS GC-HRMS 在世界范围内完全遵循任何官方 Dioxin、PCB 或 PBDE 方法(如 EPA 1613、1668、1614)。通过大体积离子传输, 将 Dioxin 的灵敏度和稳健性发挥到极致。赛默飞关于二噁英检测方案不仅于此,同时也提供配套的自动、高效的完整样品前处理解决方案,包括快速溶剂萃取(ASE)、全自动净化设备、和快速溶剂浓缩设备Rocket Evaporator。在土壤二噁英分析领域,赛默飞所提供的不单是仪器,而是全流程的解决方案。赛默飞DFS高分辨率磁式气质联用仪  仪器信息网:当前土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪?  胡忠阳:新的建设用地采用土壤污染风险管控标准,基本项目45项,其它项目即选测项目表中有40项,大部分是有机污染物项目。检测项目数量猛增,土壤调查或普查等涉及的样品量也是很大的,土壤样品尤其有机项目检测对时效性的要求也更为严苛,加上其复杂的基体干扰,这些对检测工作者来说是不小的挑战。我们和一线检测人员也常有沟通,以下几点值得我们特别重视:一个是实验室分析整个工作流程中的效率问题,不仅仅是标准所推荐的仪器方法,这其中包括从样品前处理到数据结果的处理整体的提升,其中任何一个短板都会对整体方案形成瓶颈;一个是检测方法的稳定性、灵敏度和抗基质干扰,对仪器设备和操作人员的水平也提出了更高的要求,面对如此庞大的样品量,如何降低这些因素的风险是我们要特别关注的;如上面提到的众多有机污染物类型,需要不同的前处理和检测方法,复杂程度不一,建设一个完备的土壤检测实验室需要从整体的视角来把控,值得管理人员和方案提供者共同思考。  仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案?  胡忠阳:正如我上面提到的对于最新土壤标准,我们可以提供所有目标污染物检测方案,在这里不仅仅是一个孤立的仪器方法,还包括了从样品到结果交付的整个过程的解决方案,而且以一个方法包的形式提供给使用者,这些也可以在我们的《土壤污染物分析解决方案》中作进一步了解。总之,客户无论是扩项需求还是要新建一个土壤检测实验室,都可以从赛默飞得到最佳和最全面的解决方案。  在世界各地,环境威胁不断演变,合规标准和各项法规也随之改变。从样品输入到数据输出,赛默飞能提供最全面的色谱、质谱和光谱仪器。各种仪器、软件、应用、色谱柱和耗材完美组合,我们的环境分析技术组合不仅设计用于满足当前法规要求,也同样适用于未来的需求,能够提供可靠而精准的结果。所有这一切,均旨在让世界更洁净、公众更健康。
  • 南京土壤所首次利用稀土元素和C双向标记研究团聚体动态变化
    p   团粒结构是肥沃土壤的物质基础,有机质是形成团粒结构的重要胶结剂。如何提高土壤有机碳,促进团粒结构形成一直为土壤学研究热点。团聚体形成稳定与有机质周转密切相关,目前已形成共识认为团聚体物理保护是土壤有机质周转的关键机制。但是我们不知道有机质腐解过程中团聚体是由哪些小团聚体形成的,有机质矿化过程中大团聚体又破碎成哪些小团聚体,也不清楚有机质如何进入团聚体。其关键原因是缺乏类似于13C/14C示踪有机质周转的方法来示踪团聚体周转路径,也导致团聚体动态模型模拟研究难以取得突破。 /p p   最近,中国科学院南京土壤研究所研究员彭新华团队发现干湿交替显著提高了稀土元素氧化物与土壤颗粒的结合能力,湿筛后回收率接近100%,加上稀土元素氧化物对微生物活性影响弱、氧化物颗粒小、易测定等特点,提出了稀土元素标记团聚体的方法(图左),即每一粒级团聚体用一种稀土元素标记,然后组合成土壤。根据稀土元素在不同粒级团聚体的重新分布,提出了团聚体周转路径与速率计算方法(图右)。发现团聚体向相邻粒级的周转比重较大,大团聚体周转速率要快于小团聚体。添加外源有机质显著提高了周转速率,团聚体周转速率与13C累积含量呈线性关系。这一成果近期发表于土壤学期刊Soil Biology & amp Biochemistry(Peng et al., 2017,109: 81-94),得到国际同行的高度评价,认为这是首次利用稀土元素和13C双向标记研究团聚体动态变化,这篇文章最重要的贡献是提出了计算团聚体周转速率,这一工作真正代表了团聚体研究的领先水平。稀土元素示踪团聚体周转研究方法将为揭示土壤有机碳物理固碳机制,构建团聚体周转模型等提供强有力的手段。 /p p    center img alt=" " src=" http://n.sinaimg.cn/translate/20170502/G9kq-fyetwtf9521839.jpg" width=" 550" height=" 310" / /center p /p p & nbsp /p p style=" TEXT-ALIGN: center"   稀土元素标记团聚体的方法(左)和周转路线图(右) /p /p
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biologyand Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respi
  • 浙江大学罗忠奎研究团队揭示青藏高原不同气候梯度下土壤碳矿化与微生物群落组成之间的解耦
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达26篇。 今天与大家分享的是浙江大学环境与资源学院罗忠奎研究团队在研究土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间关系方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤CO2排放速率,为研究结果提供了有力的数据支撑。 土壤微生物驱动着有机碳的矿化,由于不同微生物群落在代谢效率以及对不同温度变化的响应存在差异,因此土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间应该存在密切的关系。然而,这些关系很少被检验。 基于此,浙江大学环境与资源学院罗忠奎研究团队通过室内培养实验,评估了藏东南地区不同海拔(气候)梯度中土壤微生物α多样性对温度的响应以及r-和k-策略微生物的相对丰度。图.培养第128天的土壤有机碳矿化速率及其Q10与门水平微生物群落丰度的相关性。灰色表示相关性不显著(即P 0.05),彩色网格表示相关性显著(P 0.05),颜色梯度表示相关性的大小和强度。R5°C-128和R25°C-128分别为5°C和25°C培养温度下第128天的有机碳矿化速率。Q10-128为土壤有机碳在128天培养期间的温度敏感性。F:新鲜土壤样品;5、25分别为在5°C和25°C培养的土壤样品。 在土壤培养实验设计及有机碳矿化测定的过程中,研究团队采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统测定土壤CO2排放速率(μg CO2-C g&minus 1 SOC day&minus 1),每个土壤样品测定时间设置为3分钟,此数据的获取为该项研究提供了有力的数据支撑。基于不同温度下测定的土壤CO2排放速率,计算了有机碳矿化的温度敏感性(Q10)。 研究结果表明:培养128后测定的α多样性以及r-和k-策略微生物的相对丰度受温度的显著影响(P 0.05),但是这些微生物变量并不能很好地预测同步测定的土壤有机碳矿化速率。相反,新鲜土壤的微生物群落多样性以及r-和k-策略微生物的相对丰度对不同培养阶段的土壤有机碳矿化速率及其Q10的影响是一致且显著的(P 0.05)。与此同时,路径分析表明,当考虑到气候、土壤有机碳化学、物理保护和土壤性质的变化时,微生物α多样性以及r-和k-策略微生物对土壤有机碳矿化速率及其Q10的影响并不是独立的。本研究结果表明,虽然土壤微生物群落的多样性和组成是土壤有机碳质量和有效性的重要指标,但它们并不是土壤有机碳矿化速率及其Q10的根本的决定因素。 相关研究成果以“Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau”为题发表在国际SCI期刊Geoderma(IF2022=6.1,中科院一区)。Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.https://doi.org/10.1016/j.geoderma.2023.116736 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
  • 东北地理所等在土壤有机碳热稳定性研究方面取得进展
    土壤有机碳的稳定性影响土壤固碳潜力。如何提取土壤活性与稳定性碳组分用以定量表征土壤有机碳稳定性,是土壤固碳研究领域的关键科学问题。当前,提取土壤有机碳活性及稳定性组分的方法多样,包括物理、化学及生物手段,导致结果难以比较,同时存在耗时长、成本高及操作步骤繁琐等缺点,亟需一种高效、可信度高且应用广泛的测定方法。对比分析不同热分解技术的优缺点, 包括热裂解气相-质谱联用测定技术、热重分析技术、差示扫描量热分析技术及Rock-Eval(RE)热分解方法,人们普遍认为RE方法操作简单、耗时短、成本低、结果易于分析,可信度较高,可以很好地表征土壤有机碳稳定性,有利于土壤有机碳研究的横向对比。   中国科学院东北地理与农业生态研究所研究人员依托保护性耕作长期定位实验(建于2001年)在国内首次开展了相关研究,包含免耕玉米-大豆轮作(NTCS)、秋翻玉米-大豆轮作(MPCS)、免耕玉米连作(NTCC)、秋翻玉米连作(MPCC)、常规耕作玉米连作且秸秆不还田(CTCC)5个处理。该研究采集了不同深度的土壤样品,测定其土壤热稳定性(图1),计算RE相关指标,同时与土壤异养呼吸及微生物残体进行相关分析。RE方法分为热解和氧化两个阶段,包括S1-S5五个阶段,具有多个相关指标,TMAX(℃)代表在S2热解阶段释放的富氢化合物达到峰值时对应的温度,可作为指示土壤有机碳成熟度的指标。HI表示在土壤有机碳中富氢化合物的相对含量,OIRE6表示在土壤有机碳在S3阶段释放的O2相对含量,代表土壤有机碳的相对氧化状态。T50代表在氧化阶段(S4)释放的CO2达到该部分总释放值50%时的温度,用来表征稳定性碳库。研究结果表明,耕作方式对RE指标影响很大(TMAX、HI、T50),但是作物轮作对其无显著影响,其中免耕显著提高了土壤表层的有机碳热稳定性(TMAX)。RE指标(HI)在短期室内培养实验中(100天)可以很好地表征土壤异养呼吸情况,也在国际上首次发现TMAX指标与真菌残体(GluN)有很高的相关性(R2=0.93)(图2)。该研究为未来RE方法在国际上的推广应用提供了有效的数据支撑。   相关研究成果以Linking Rock-Eval parameters to soil heterotrophic respiration and microbial residues in a black soil为题发表在Soil Biology and Biochemistry上。研究工作得到中科院战略性先导科技专项、国家自然科学基金等项目的资助。图1 RE方法测定图谱(以免耕玉米大豆轮作及秋翻玉米大豆轮作0-5 cm土层为例)图2 真菌残体GluN与TMAX线性回归关系
  • 案例分享丨复旦大学聂明团队在土壤碳循环方面取得新进展
    近日,复旦大学生科院聂明团队在全球变化生态学研究领域取得重要进展。相关成果以“Rising temperature may trigger deep soil carbon loss across forest ecosystems”为题发表于Advanced Science 杂志。 因大气CO2浓度升高引起的全球变暖问题是21世纪人类社会所面临的最严峻挑战之一。全球土壤有机碳库储量约是大气碳库的三倍,因此通过土壤有机碳分解释放的CO2对大气CO2浓度有着重要的影响,进而改变区域乃至全球气候。土壤有机碳的分解强度受到温度的调控,其对温度的敏感性被认为是决定未来气候变化态势的关键因素之一,也是陆地气候预测模型的关键假设与重要参数。底层土壤储藏着与表层土壤相当的有机碳,然而以往研究主要集中于表层土壤,对底层土壤碳分解的温度敏感性还知之甚少,这直接制约了对未来气候变化态势的判断。 为此,该研究团队选取我国90个典型森林生态系统(图1),涉及热带雨林、亚热带森林、暖温带森林、寒温带森林与北方森林。每个森林中分6个土层采集了1米深度的土壤,探究土壤有机碳分解温度敏感性随土壤剖面变化的一般性规律及其调控机制。 图1 中国森林90个典型土壤剖面采样点空间分布图。 研究发现,随着土壤深度的增加,有机碳分解的温度敏感性随之增大,表明底层土壤碳分解对全球变暖的响应更为敏感(图2a)。此外,表层土壤碳分解温度敏感性主要受气候因子调控,而底层土壤主要受气候因子和碳质量的共同调控(图2b)。 图2 土壤有机碳分解温度敏感性(Q10)随土壤深度增加而增大(a)及不同因子对Q10调控作用的相对贡献随土壤深度的变化(b)。 该研究还发现,忽视土壤有机碳分解温度敏感性沿土壤剖面的变异,会极大低估土壤释放的CO2量(图3),强调急需将这一特征纳入到陆地气候预测模型中以提高预测精度。 图3 与多层模型(six-layer model;使用剖面变异的温度敏感性Q10值)相比,单层模型(single-layer model;将表层0–10 cm土壤的Q10值应用于整个土壤剖面)会低估本世纪末温度升高3°C时土壤碳排放,即高估土壤相对碳库(relative SOC stock)。 论文链接:https://onlinelibrary.wiley.com/doi/10.1002/advs.202001242 从聂明老师团队的研究中发现,土壤有机质分解的温度敏感性(Q10)不仅是生态学和土壤学研究的核心科学问题之一,也是全球变化生态学研究的热点领域。国内外学者对Q10的影响因素或机制开展了大量卓有成效的研究工作,并有不少相关的综述或展望。 在该项研究中,聂明老师团队运用的测定方法是连续变温培养+气相色谱手动测量,而今天要为大家介绍的是一种更快的连续变温培养+连续自动测试新模式。 长期以来,室内培养研究的方法经历了几次技术更新。最早是用碱液吸收法+气相色谱来进行(CDM模式),该方法无法变温,测试点少,并且需要人工操作;之后经过技术改进,可以变温培养,仍然采用气相色谱设备检测(VDM模式),该方法仍然存在取样点少,人工操作不方便,无法大量样点试验等问题。 鉴于培养和测定模式对实验研究的重要性,北京普瑞亿科科技有限公司和中国科学院地理科学与资源研究所何念鹏研究团队合作研发了PRI-8800全自动变温土壤培养温室气体(同位素)分析系统,并发展了Q10研究的连续变温培养+连续自动测试的新模式。3种模式的示意图见【图1】,各自的特点、优缺点见【表1】。图1:3种模式示意表1:3种模式的特点VCM模式实验过程 150mL样品瓶(PRI-8800样品瓶)中填装40g土壤样品,向其中混入10g石英砂,防止土壤板结,调整含水量至60%(WHC),放置在样品盘上。土壤样本在25°C下预培养7天,排除微生物活动干扰。分别在第1天、5天、8天、15天、22天和26天的时候,使用PRI-8800全自动变温控制土壤通量系统(PRI-ECO,中国)测量每个样品瓶中SOM分解速率(Rs)。该系统允许连续改变培养温度并在高频下测量Rs。测样时,每个样品需在一个设定温度恒温稳定至少30分钟,然后在12小时的测量周期内测量36次(75s一个样品)。PRI-8800每秒钟记录一次CO2浓度,同步记录土壤温度,以提供准确的Rs和土壤温度配对数据。采用称重法监测土壤水分。最后,使用经典指数方程计算Q10值,每个方法的R2和P值。所用设备 PRI-8800即可对接温室气体分析仪,又可对接碳氮同位素分析仪。稳定同位素技术具有示踪、整合和指示等多项功能和检测快速、结果准确等特点,δ13C、δ15N同位素技术被广泛用于土壤碳氮循环研究,也成为探讨土壤中有机组分来源和转化动态的有效手段,利用δ13C同位素可区分土壤呼吸的不同成分,指示碳的来源和周转途径;δ15N用于土壤氮素转换等的研究。可灵活对接不同分析仪(同位素分析仪、气体浓度分析仪等);标配16位样品盘,也可选配4位或9位样品盘;自动化程度高,无人值守,24h不间断工作;可方便拆卸土壤瓶固定装置,实现在线置换土壤瓶;全自动控温系统(-20~80 ℃),控温精度优于0.1 ℃;土壤温度传感器探针可频繁自动插入土壤瓶中,准确测量土壤温度;高效的气体循环气路——双回路气路设计,可根据需要对CO2浓度进行预处理,调控系统内的起始CO2浓度(避免过高CO2浓度的抑制效应);高效的气路设计,缩短响应时间;可灵活设定的标定系统,保障测量数据的准确性;友好的软件界面,可根据具体实验需要设定参数及数据存储等功能;全自动日变化温度模拟功能。参考文献: Robinson J M , T. A. O’Neill, Ryburn J , et al. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year[J]. Biogeochemistry, 2017, 133(3):101-112.Liu Y, He NP*, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition[J]. Soil Biology & Biochemistry, 2019, 138, 107596何念鹏, 刘远, 徐丽, et al. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11).
  • 中科院地理所刘远团队揭示基质可用性调和不同土壤剖面SOC矿化的温度响应
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达24篇。 今天与大家分享的是中国科学院地理科学与资源研究所刘远团队在调查基质可用性(根系分泌物)的变化如何影响不同土壤剖面中土壤有机碳(SOC)矿化的温度响应(Q10)方面取得的进展,在该项研究中,研究团队利用PRI-8800对SOC矿化率进行高频测量,为研究结果提供了有力的数据支撑。 土壤有机碳(SOC)矿化是导致大量碳从土壤流失到大气中的一个主要过程,而温度会极大地影响这一过程。预计在下个世纪,底土和表土都将经历类似程度的变暖。气候变暖预计会产生土壤碳-气候正反馈,从而加速气候变化。这种正反馈的大小在很大程度上取决于不同深度SOC矿化的温度敏感性(Q10)。因此,更好地了解不同深度的Q10变化及其内在机制,对于准确预测气候变化情景下的土壤碳动态至关重要。尽管在理解全球变暖对底土碳动态影响方面取得了进展,但对于Q10在土壤剖面不同深度的变化方式仍未达成共识。 为了更好地理解气候变化背景下土壤碳动态,刘远团队从三个地点采集了土壤剖面的土壤样品,包括四个深度区间(0-10厘米,10-30厘米,30-50厘米和50-70厘米):两个地点具有典型的矿物质土壤,一个地点是埋藏土壤。研究团队在实验室中使用这些土壤来探讨随着土壤深度的增加SOC矿化的Q10对底物可利用性变化的响应。葡萄糖是一种容易获得的底物,因为它是根分泌物的重要组成部分。土壤在10-25°C的温度下孵育,以0.75°C的温度间隔进行了24小时。然后,在孵育1天后,通过高频率连续测量SOC矿化速率,避免了底物限制和微生物群落的变化对结果的影响,估算Q10。 值得注意的是,针对SOC矿化速率的测量,研究团队使用的是由北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,该系统允许在一定时间内逐步提高孵育温度并与SOC矿化速率的高频测量同步进行,为该项研究提供了更准确的Q10估计。图1:不同土壤深度和不同站点下,控制组(CK)和底物添加组(S+)的土壤有机碳(SOC)矿化的温度响应,使用指数拟合表示。站点:Liangshui(LS)、Huinan(HN)和Hongyuan(HY)。***代表P0.001的显著差异。图2 a:在控制组(CK)和底物添加组(S+)中,土壤有机碳(SOC)矿化速率(R22)在22°C下随深度增加的变化。b:不同站点下不同土壤深度的底物可利用性指数(CAI);c:在CK和S+处理中,SOC矿化的温度敏感性(Q10)随深度增加的变化;d:不同站点下不同土壤深度中CK和S+处理之间Q10的差异(ΔQ10)。 研究结果表明,在典型的矿质土壤中,Q10随深度的增加而降低,但在埋藏土壤中,Q10则先降低后增加。不出所料,在不同的土壤深度,基质的添加会明显增加Q10;但是,增加的幅度(ΔQ10)随土壤深度和类型的不同而不同。出乎意料的是,在典型的矿质土壤中,表土中的ΔQ10比底土中的高,反之亦然。ΔQ10与土壤初始基质可用性(CAI)呈负相关,与土壤无机氮呈正相关。总体而言,气候变化情景下基质可用性的增加(即二氧化碳浓度升高导致根系渗出物增加)会进一步加强SOC矿化的温度响应,尤其是在无机氮含量高的土壤或氮沉积率高的地区。 相关研究成果以“Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles”为题在线发表于期刊《Journal Of Soils And Sediments》上(中科院三区Top,IF5 =3.8)。相关论文信息:Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.原文链接:https://doi.org/10.1007/s11368-023-03602-y 截至目前,以PRI-8800为关键设备发表的相关文章已达24篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
  • 莱伯泰科:省时、灵活、高通量,多样化产品助力土壤有机物检测
    p   随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在土壤污染物检测中,有机污染物种类众多、类型复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。 /p p & nbsp   为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/youjiwu" target=" _blank" style=" text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong “土壤有机物检测最新技术进展” /strong strong /strong /span /a 专题,并邀请莱伯泰科产品经理刘雪就土壤有机物检测技术相关的问题发表了自己的观点。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/fa91c9f8-344e-4bf5-805d-0e9eb230955e.jpg" title=" 莱伯泰科1.jpg" alt=" 莱伯泰科1.jpg" / /p p style=" text-align: center " strong 刘雪 莱伯泰科产品经理 /strong /p p & nbsp    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 目前国家一直在更新土壤检测方面的相关标准,相应的不同种类的仪器也被逐渐地收录到各个标准里面去,为相关检测单位提供了更加丰富、更加灵活的选择。然而就目前而言,相对于水和大气,土壤检测方面的标准还是相对偏少的,我相信后期在这方面肯定还会有更多更细化的标准出台。 /p p & nbsp   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 我认为还是以半挥发性有机物和挥发性有机物为主,除了常见的PAHs、PCBs、有机氯等,二噁英、全氟化合物等有机物的检测也在逐渐进入大家的视线之中。针对土壤中半挥发性有机物的检测,主要涉及样品制备-提取-浓缩-净化-浓缩过程,流程比较复杂,要保证所有物质的回收率满足标准要求,尤其是一些比较容易挥发的物质,就要在检测过程中更加注意操作细节。土壤样品的种类比较多,含水率不同,基质从简单到复杂,不同含水率的样品需要不同的制备方法,且根据样品复杂情况以及测试项目的不同,选择的净化方式也有所不同。 /p p & nbsp    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p & nbsp    span style=" color: rgb(0, 0, 0) " strong 刘雪: /strong /span 在这方面我们公司主要有高效溶剂萃取仪、微波萃取仪、定量浓缩仪、旋转蒸发仪、固相萃取仪、凝胶净化仪等前处理仪器,可以提供包含提取、净化以及浓缩在内的整体产品组合。 /p p & nbsp   莱伯泰科一直秉承自主研发创新的理念,走在科技创新的最前沿,用创新带动企业发展。我们的全自动快速溶剂萃取仪是目前通量最大、效率最高的自动萃取产品,可支持30位、双通道同时运行,效率极高;且仪器自动密封,杜绝漏液,保证连续运转;仪器支持从小体积到大体积8种萃取罐规格、5种实验室常用的收集瓶体积可供选择,非常灵活;仪器创新三维平台机械臂设计,萃取罐可在运行过程中追加,节省填罐等待时间;收集瓶架可以方便抽出进行下一步浓缩,提高检测效率;仪器整体透明式设计,方便观察仪器运行情况,且系统密闭自带通风,无需放入通风橱;除了硬件方面,软件控制终端为仪器自带一体触摸屏,360度自由旋转,操作灵活,软件支持数据溯源和权限管理功能。 /p p & nbsp   另外,我们的的凝胶净化系列产品也是创新设计采用不锈钢净化柱代替传统玻璃柱,无需人工装填,减少人工工作;且机械中压填充方式,将净化时间、试剂消耗量减少为原来的1/3,大大提升了检测效率。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 592px height: 446px " src=" https://img1.17img.cn/17img/images/201909/uepic/5adc8484-2822-498f-97db-65ffa6590af4.jpg" title=" 莱伯泰科2.jpg" alt=" 莱伯泰科2.jpg" width=" 592" height=" 446" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong Flex-HPSE全自动高效快速溶剂萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/2a161bf0-83d1-49d2-886a-ade9fa90d9f6.jpg" title=" 莱伯泰科3.jpg" alt=" 莱伯泰科3.jpg" / /strong /p p style=" text-align: center " strong MultiVap-10 定量平行浓缩仪 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/7a022a3a-a2d2-446f-810f-8742c01070b6.jpg" title=" 莱伯泰科4.jpg" alt=" 莱伯泰科4.jpg" / /strong /p p style=" text-align: center " strong SPE 1000 全自动固相萃取系统 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 600px height: 450px " src=" https://img1.17img.cn/17img/images/201909/uepic/233ce1b1-d11d-4514-b325-49a77af68122.jpg" title=" 莱伯泰科5.jpg" alt=" 莱伯泰科5.jpg" width=" 600" height=" 450" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong PrepElite-GV全自动样品前处理平台 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 574px height: 432px " src=" https://img1.17img.cn/17img/images/201909/uepic/54718096-28b5-43bd-a593-65b7625f9972.jpg" title=" 莱6.jpg" alt=" 莱6.jpg" width=" 574" height=" 432" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong Astation 全自动多功能样品制备进样平台 /strong /p p & nbsp   strong span style=" color: rgb(255, 0, 0) "  仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案? /span /strong /p p & nbsp    strong 刘雪: /strong 我们的仪器完全满足HJ 834、HJ 805等环境标准方法和GB15618和GB 36600等国标中对前处理的设备和方法的要求。对于土壤中半挥发性有机物(SVOC)检测,我们可以提供从提取、净化到浓缩的整体解决方案,如土壤中多氯联苯、多环芳烃、有机氯、二噁英等各种半挥发性有机物的检测。对于土壤中半挥发性有机物(VOC)检测,我们还可以提供全自动的多功能进样平台,配备水土一体吹扫捕集、顶空以及固相微萃取以及液体自动进样功能,可进行土壤中挥发性有机物的检测。 /p
  • 深芬仪器土壤养分检测仪被广泛使用
    随着农业的发展,土壤养分的消耗将继续增加。这导致了近年来过度施肥的现象。从实际表现来看,过量施肥不仅难以增加增产效果,而且对耕地土壤造成了严重的负担,导致土壤质量退化,如土壤固结和土壤酸化。为了保持土壤的可持续生产,必须使土壤养分尽可能地平衡,补充必要的土壤养分,保持土壤养分的平衡。土地是人类赖以生存、保护土壤健康、发展人类健康发展的重要基础。随着农业现代化进程的不断推进,水土保持意识也在不断增强。利用土壤养分检测仪器保持土壤养分平衡,不仅可以达到农业生产的目的。此外,它还可以在土壤保护中发挥重要作用。土壤养分检测仪器通过对土壤的测量来实现配方施肥。深圳市芬析仪器制造有限公司生产的土壤养分检测仪对提高肥料利用率、节约成本、增加产量和收入都有重要作用。土壤肥料检测仪能够快速检测土壤有机质,土壤中全氮,化肥中全氮,土壤中全磷,化肥中全磷,植物中全磷,土壤中全钾,化肥中全钾,土壤中速效氮,化肥中速效氮,土壤中速效磷,化肥中速效磷,植物中全磷,土壤中速效钾,化肥中速效钾,氯离子,硝态氮等。仪器功能:★7寸彩色中文液晶触摸显示屏★采用新型仪器结构设计,体积小,便于携带。无机械移动部件,抗干扰、抗振动,★同时启动和单通道分别启动两种测量模式。进行多个样品测量时,客户可根据操作熟练程度,自行选择测量模式,最大限度消除通道间的变异系数而引起的测量误差。★准确性高:采用进口特制LED光源,具有良好的波长准确度和重复性,全面提高检测结果的 准确性。★自动化程度高:仪器自动诊断系统故障、波长校准:自动校准仪器使用寿命长:采用LED光源,自动开关节能设计,非连续工作模式。使用寿命可达10年★内置微型热敏打印机。★配备RS-232接口和USB口(升级无线Wifi、以太网接口)等,可通过计算机进行数据处理、统计分析以及结果上传。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制