当前位置: 仪器信息网 > 行业主题 > >

发射光谱仪检测原理

仪器信息网发射光谱仪检测原理专题为您提供2024年最新发射光谱仪检测原理价格报价、厂家品牌的相关信息, 包括发射光谱仪检测原理参数、型号等,不管是国产,还是进口品牌的发射光谱仪检测原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合发射光谱仪检测原理相关的耗材配件、试剂标物,还有发射光谱仪检测原理相关的最新资讯、资料,以及发射光谱仪检测原理相关的解决方案。

发射光谱仪检测原理相关的论坛

  • 原子发射光谱仪的构成

    [url=http://www.huaketiancheng.com/][b]原子发射光谱仪[/b][/url]是测定每种化学元素的气态原子或离子受激后所发射的特征光谱的波长及强度来确定物质中元素组成和含量。  原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。  原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。原子发射光谱仪有火花原子发射光谱仪,光电原子发射光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空原子发射光谱仪等多种品种。原子发射光谱仪广泛应用于铸造、钢铁、金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检、质检等部门。

  • 【资料】-用于气相色谱的微波等离子体原子发射光谱检测器的发展

    [size=4][B]用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展[/B][/size][I]袁懋,师宇华[/I]摘要:分别介绍和评价了用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波诱导等离子体、电容耦合微波等离子体和微波等离子体炬等3种微波等离子体原子发射光谱检测器的发展、应用以及局限性。对用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的微波等离子体原子发射光谱检测器的发展作了展望。关键词:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url];微波等离子体;原子发射光谱;检测器自[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法(GC)问世以来,色谱分离分析方法得到了迅速发展,已成为生命科学、石油化工、环境科学等学科必不可少的检测手段和工具。色谱法的发展在很大程度上取决于检测器的发展,每种新型检测器的提出和完善都在一定程度上提高了色谱仪器的性能,促进了色谱法更加广泛和深入的应用。如果没有合乎需要的检测器的诞生,再好的色谱分离方法也难满足社会的需求。迄今为止,已报道过的色谱检测器有100种之多。色谱分析的实践对检测器提出了更高的要求,理想的色谱检测器应具备的特点是灵敏度高、精密度好、线性范围宽、通用性或选择性强、具有形态分析的能力、操作特性优良等。传统的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器已不能满足上述要求。近30年来,由于新型光源和电子技术的发展,等离子体光源部分代替了电弧、火花和火焰等传统光源的主导地位, 为原子发射光谱分析增添了新的活力,且在作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器方面越来越显示出它的优越性。[B]1 概述[/B][I]1. 1 等离子体和微波等离子体[/I]  在物理学上,“等离子体”是指由大量自由电子和离子组成且在整体上表现出近似为电中性的电离气体;在光谱学上,“等离子体”指的是用电学方法获得的类似于火焰的发光气体。因此,微波等离子体(MWP)包括微波诱导等离子体(MIP)、电容耦合微波等离子体(CMP)和微波等离子体炬(MPT) 。[I]1. 2 微波等离子体原子发射光谱检测器的特性[/I]  微波等离子体原子发射光谱检测器(MWP-AED)的检测原理是将微波等离子体作为激发光源,样品进入检测器(激发光源)后被原子化,然后被激发至高能态,再跃迁回到低能态,发射出原子光谱。根据这些发射光谱线的波长和强度即可对待测物进行定性和定量分析。原子发射光谱检测器有许多独特的性能和应用。选用某一特定波长通道时,它只对某一特定元素有响应,此时的检测器为选择性检测器, 并且其选择性比其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如电子俘获检测器(ECD)、火焰光度检测器(FPD)等)更好;如果选择碳或氢的波长作为通道,它就会对一系列含有这两种元素的化合物有响应而成为通用性检测器, 且对某些化合物的灵敏度高于火焰离子化检测器(FID )。  AED 对元素周期表中除了He以外的任何一种元素均可检测,属多元素检测器,并可用于测定未知化合物的经验式和分子式。对未知化合物的鉴定,AED是质谱(MS)、傅里叶变换红外光谱(FT-IR)的有力补充手段。20世纪60年代以来,随着环境科学、生物化学、农业科学、无机和有机化学等领域的发展,越来越多的检测要求得到样品中每个组分每个元素的信息。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]具有极强的分离能力,恰能满足单组分信息测定的要求。近年来AED与GC联用的应用领域更是不断扩大,成为一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。[B]2 微波诱导等离子体2原子发射光谱检测器的发展[/B]  由于MIP系统简单,操作方便,又是灵敏特效的元素选择性检测器,因而最受欢迎。微波耦合给等离子体工作气体的常用器件是微波谐振腔。它是一种空心的金属容器, 其形状和大小正好使微波可在其中形成一个电磁驻波。等离子体工作气体一般以连续流动方式通过谐振腔,并在谐振腔轴向插入的石英管中形成等离子体。用来获得MIP 的耦合器件的种类很多,常见的有TM010、3/4λ谐振腔和同轴表面波激励器件Surfatron等。[color=#DC143C]全文附件在5楼[/color]

  • 等离子体发射光谱仪分类与“全谱直读”一词

    等离子体发射光谱仪分类与“全谱直读”一词陆文伟上海交通大学分析测试中心, 上海 200030摘 要 本文从仪器结构原理上讨论了当前国内在新型等离子体发射光谱仪分类命名上的问题。指出“全谱直读”一词用于仪器分类的不严谨性。提仪使用固态检测器等离子体发射光谱仪作为分类词。主题词 等离子体发射光谱仪 中阶梯光栅 固态检测器 全谱直读中图分类号:O657131   文献标识码:B   文章编号:100020593 (2002) 0220348202 收稿日期:2000208205 ,修订日期:2000212212 作者简介:陆文伟,1951 年生,上海交通大学分析测试中心高级工程师  早期国外把等离子体发射光谱仪( ICP2OES) 仪器分成同时型(Simultanous) 和顺序型(Sequential) 二类。国内把色散系统区分为多色器(Polychromator) 、单色器(Monochromator) ,仪器则从检测器来区分,命名为多通道型(多道) ,顺序型(单道扫描) 仪器[ 1 ,2 ] 。其仪器的分类命名与仪器功能,仪器结构基本一致,与国外的仪器分类也一致。ICP2OES 仪器在其发展期间,又有N + 1 的单道与多道结合型仪器出现,以及有入射狭逢能沿罗兰圈光学平面移动,完成1~2 nm 内扫描,能获得谱图的多道仪器出现,但总体上仍没动摇仪器的原始分类。1991 年新的中阶梯光栅固态检测器ICP2OES 仪器问世,新的仪器把中阶梯光栅等光学元件形成的二维谱图投影到平面固态检测器的感光点上,使仪器同时具有同时型和顺序型仪器的功能,这样形成了新一类的仪器。从它的信号检出来看,它与同时型仪器很接近,故有的国外文献仍把它简单归为同时型(Simultaneous) 仪器。但更多的是从仪器的硬件结构上出发,采用中阶梯光栅固态检测器等离子体发射光谱仪“Echelle grating solid state detector ICP2OES”的命名。1993 年该类仪器进入中国市场,国内仪器广告上出现“全谱直读”一新名词。随着该类仪器的推广使用,该名词逐渐渗入期刊杂志,教科书,学术界,甚至作为仪器分类词出现在《现代分析仪器分析方法通则及计量检定规程》[ 3 ]中。纵观国外涉及到中阶梯光栅固态检测器等离子体发射光谱仪的期刊杂志,书籍和文献均未使用到该词或与之意思相近的词。甚至各仪器厂家的英文样本中也无该词出现。实际上“全谱直读”是中文广告词,它不严谨,并含糊地影射二方面意思:11 光谱谱线的全部覆盖性和全部可利用性 21 全部谱线的总体信号同时采集读出。从中阶梯光栅固态检测器等离子体发射光谱仪的光谱范围(英文常采用Wavelength coverage range) 来看,一般仪器都在160~800 nm 左右。如有的仪器在167~782 nm ,有的在165~800 nm ,有的在175~900 nm ,有的在165~1 000 nm ,有的是在122~466 nm 基础上另加590 ,670 ,766 nm 的额外单个检测器。有的在超纯Ar 装置下短波段区扩展至134nm ,其长波段区能扩展至1 050 nm。很明显所有此类仪器的光谱范围目前离“全谱”还是有距离的,而且仪器厂家还在扩大其光谱范围。再说此类仪器的“光谱范围”,实际上更确切的意思是指可利用的分析谱线波长跨度范围!实际上中阶梯光栅和棱镜所形成的二维光谱图在目前固态检测器芯片匹配过程中,高级次光谱区可以说是波长连续的,不同级次的光谱波长区甚至重迭。而低级次光谱区级次与级次之间的波长区并不衔接,最大可以有20 nm 以上的间隙,其间隙随着级数增大而变小,严格地说也就是仪器的光谱不连续性存在,尽管对有用谱线影响并不太大。另外中阶梯光栅多色器系统产生的二维谱图闪烁区与检测器芯片匹配的边缘效应,固态检测器的分段或分个处理,都会造成使用全部谱线的困难,甚至发生有用谱线的丢失。大面积的固态检测器芯片可望用于光谱仪,光谱级次间波长区的连续性会进一步改善,其波长区复盖也会增大。但仪器制造成本及芯片因光谱级次间波长过多重叠显得利用效率不高,都会形成其发展的阻力。从仪器可利用谱线上看,目前中阶梯光栅固态检测器等离子体发射光谱仪还只能是多谱线同时分析仪器。当然它可利用的谱线要比以前多道发射光谱仪器的谱线(最多六十多条) 多得多。如目前仪器有6 000 多条的,有2 万7 千条的,有在2 万4 千条的基础上再可由使用者在仪器波长区任意定址添加的等等。但这与“全谱”给人的含糊概念,与数十万以上的全部谱线概念相差甚远。就是从全部可利用谱线讲,该类仪器在定量分析时也不等于纪录全部谱线。有的仪器是在定性分析时能纪录所有覆盖谱线。“全谱直读”一词还常常被沿伸到一次曝光像摄谱仪一样工作。直读一词(Direct reading) 出现在摄谱仪之后、光电倍© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.增管用于发射光谱仪之时。是相对摄片2读片过程变成一步而言。多道发射光谱仪采用该词较多。目前中阶梯光栅固态检测器等离子体发射光谱仪还没有完全达到全部谱线的总体信号同时采集读出的水平。有的仪器分检测器读出,有的仪器分波长区读出,有的仪器分波长区检测器再加几个单个波长检测器读出。固态检测器的曝光与摄片又不同,固态检测器比照相底片更灵活,为了适应样品分析元素高低浓度大小信号的要求,固态检测器灵活处理,有的分区曝光,有的分级扫描曝光,有的级中分二段控制曝光,有的检测器分子阵列(Subarray) 控制曝光,有的从其检测器机理出发分每个感光点(Pixel) 控制曝光。“全谱直读”给人是含糊的印象,不能正确反映仪器的特点。当前新的仪器还在不断涌现,有分级扫描式中阶梯光栅固态检测器等离子体发射光谱仪,有新的多个固态检测器在罗兰圈排列使用的仪器,从检测器硬件结构分类,它们都能方便地归入中阶梯光栅固态检测器等离子体发射光谱仪,或固态检测器等离子体发射光谱仪类别里。而“全谱直读”则明显不能适应。新名词会受到实践和事实的考验。国外文献中名词也有变化的,如电感耦合等离子体原子发射光谱仪的ICP2AES 英文缩写名词,因AES 含义面广,易与俄歇电子光谱[ 4 ]混淆,现在逐渐被ICP2OES 取代。切入实际的名词才会在发展中生存。参考文献 [ 1 ]  化学试剂电感耦合等离子体原子发射光谱方法通则,中华人民共和国国家标准GB10725289. [ 2 ]  发射光谱仪检定规程,中华人民共和国国家计量检定规程J TG768294. [ 3 ]  感耦等离子体原子发射光谱方法通则 感耦等离子体原子发射光谱仪检定规程,1997. (第一版) 科学技术文献出版社,现代分析仪器分析方法通则及计量检定规程. [ 4 ]  英汉仪器仪表词汇,科学出版社,1987 (第一版) .

  • Varian 710-Es全谱直读等离子发射光谱仪检测金属离子

    最近做用710-Es全谱直读等离子发射光谱仪检测电解质和电解液中的金属离子杂质含量,在检测过程中,遇到的主要问题是,钙,镁和钠的标准曲线总是校正不了,这个问题全是因为标液没有配好吗?容易污染?是否还有其他问题,或者我应该怎么去避免这些问题。还有就是我现在刚开始接触ICP,还不是很熟悉,在做ICP时,有什么要注意的,我现在有个课题,是关于方法的改进,可以提高金属离子的准确度,我应该从哪几方面着手,我应该查阅什么资料???

  • 【原创】原子发射光谱仪的优点和缺点

    [font=宋体]ICP[/font][font=宋体]光谱法是上世纪60年代提出、70年代迅速发展起来的一种分析方法,它的迅速发展和广泛应用是与其克服了经典光源和原子化器的局限性分不开的,与经典光谱法相比它具有如下优点:[/font][font=宋体] 1. 因为ICP光源具有良好的原子化、激发和电离能力,所以它具有很好的检出限。对于多数元素,其检出限一般为0.1~100ng/ml。[/font][font=宋体] 2. 因为ICP光源具有良好的稳定性,所以它具有很好的精密度,当分析物含量不是很低即明显高于检出限时,其RSD一般可在1%以下,好时可在0.5%以下。[/font][font=宋体] 3. 因为ICP发射光谱法受样品基体的影响很小,所以参比样品无须进行严格的基体匹配,同时在一般情况下亦可不用内标,也不必采用添加剂,因此它具有良好的准确度。这是ICP光谱法最主要的优点之一。[/font][font=宋体] 4. ICP发射光谱法的分析校正曲线具有很宽的线性范围,在一般场合为5个数量级,好时可达6个数量级。[/font][font=宋体] 5. ICP发射光谱法具有同时或顺序多元素测定能力,特别是固体成像检测器的开发和使用及全谱直读光谱仪的商品化更增强了它的多元素同时分析的能力。[/font][font=宋体] 6. 由于ICP发射光谱法在一般情况下无须进行基体匹配且分析校正曲线具有很宽的线性范围,所以它操作简便易于掌握,特别是对于液体样品的分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法除具有上述主要优点外目前尚有一些局限性,主要体现在以下几个方面:[/font][font=宋体] 1. 对于固体样品一般需预先转化为溶液,而这一过程往往使检出限变坏。[/font][font=宋体] 2. 因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体] 3. 因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体] 4. ICP 发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法测定的是样品中的多种元素,它可以进行定性分析、半定量分析和定量分析,它的定性分析通常准确可靠,而且在原子光谱法中它是唯一一种可以进行定性分析的方法。[/font][font=宋体]  ICP发射光谱法的应用领域广泛,现在已普遍用于水质、环境、冶金、地质、化学制剂、石油化工、食品以及实验室服务等的样品分析中。截止到上世纪80 年代初,用ICP发射光谱法就已测定过多达78种元素,目前除惰性气体不能进行检测和元素周期表的右上方的那些难激发的非金属元素如C、N、O、F、Cl 及元素周期表中碱金属族的H、Rb、Cs的测定结果不好外,它可以分析元素周期表中的绝大多数元素。[/font][font=宋体]ICP[/font][font=宋体]发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。[/font][font=宋体]  ICP发射光谱法包括了三个主要的过程,即:[/font][font=宋体]  由plasma提供能量使样品溶液蒸发、形成气态原子、并进一步使气态原子激发而产生光辐射;[/font][font=宋体]  将光源发出的复合光经单色器分解成按波长顺序排列的谱线,形成光谱;[/font][font=宋体]  用检测器检测光谱中谱线的波长和强度。[/font][font=宋体]  由于待测元素原子的能级结构不同,因此发射谱线的特征不同,据此可对样品进行定性分析;而根据待测元素原子的浓度不同,因此发射强度不同,可实现元素的定量测定。[/font][font=宋体]优点:[/font][font=宋体]1. [/font][font=宋体]多元素同时检出能力。[/font][font=宋体]可同时检测一个样品中的多种元素。一个样品一经激发,样品中各元素都各自发射出其特征谱线,可以进行分别检测而同时测定多种元素。[/font][font=宋体]2. [/font][font=宋体]分析速度快。[/font][font=宋体]试样多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,同时还可多元素同时测定,若用光电直读光谱仪,则可在几分钟内同时作几十个元素的定量测定。[/font][font=宋体]3. [/font][font=宋体]选择性好。[/font][font=宋体]由于光谱的特征性强,所以对于一些化学性质极相似的元素的分析具有特别重要的意义。如铌和钽、铣和铪、十几种稀土元素的分析用其他方法都很困难,而对AES来说是毫无困难之举。[/font][font=宋体]4. [/font][font=宋体]检出限低。[/font][font=宋体]一般可达0.1~1ugg-1,绝对值可达10-8~10-9g。用电感耦合等离子体(ICP)新光源,检出限可低至 数量级。[/font][font=宋体]5. [/font][font=宋体]用ICP光源时,准确度高,标准曲线的线性范围宽,可达4~6个数量级。可同时测定高、中、低含量的不同元素。因此ICP-AES已广泛应用于各个领域之中。[/font][font=宋体]6. [/font][font=宋体]样品消耗少,适于整批样品的多组分测定,尤其是定性分析更显示出独特的优势。[/font][font=宋体]缺点:[/font][font=宋体]1. [/font][font=宋体]在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。[/font][font=宋体]2. [/font][font=宋体]含量(浓度)较大时,准确度较差。[/font][font=宋体]3. [/font][font=宋体]只能用于元素分析,不能进行结构、形态的测定。[/font][font=宋体]4. [/font][font=宋体]大多数非金属元素难以得到灵敏的光谱线。[/font][font=宋体]1 [/font][font=宋体]因为工作时需要消耗大量Ar气,所以运转费用高。[/font][font=宋体]2 [/font][font=宋体]因目前的仪器价格尚比较高,所以前期投入比较大。[/font][font=宋体]3 ICP [/font][font=宋体]发射光谱法如果不与其他技术联用,它测出的只是样品中元素的总量,不能进行价态分析。[/font][font=宋体]原子发射光谱法主要是通过热激发来获得特征辐射的,因为分析物原子可以被激发至各个激发态能级,所以在原子光谱中发射光谱的谱线最为复杂,光谱干扰非常严重。ICP发射光谱法与采用经典光源的发射光谱法相比,因为只改变了激发光源,提高的只是光源的分析性能,所以光谱干扰的问题依然存在,并且没有得到任何改善。因此在进行定量分析时往往必须考虑光谱干扰的问题,需要选择适当的校正方法。[/font][font=宋体]  发射光谱谱线多是形成光谱干扰的主要原因,但同时它也为我们提供了丰富的信息,让我们有了更多的选择余地,这也是其定性分析之所以准确可靠的原因所在。当我们进行定量分析时,如果我们选用的分析灵敏线被与其他谱线发生了重叠干扰,这时我们就可以重新选择没有被干扰的谱线。特别值得一提的是现在很 多的商品仪器已经采用了中阶梯光栅的二维色散方式,使光的色散率和谱线的分辨率得到了明显的提高,这无疑又为我们选择分析线创造了更好的条件。[/font][size=3][font=Times New Roman] [/font][/size]

  • 【原创】【原子发射光谱分析法的基本原理】

    原子发射光谱分析(摄谱法)的一般过程是:使试样从外界能量的作用下转变成气态原子并使原子外层电子进一步被激发;当被激发的电子从较高能级跃迁到较低的能级时,原子将释放出多余的能量从而产生光辐射——特征发射谱线;所产生的光辐射经过摄谱仪器进行色散(分光)、按波长长短顺序记录在感光板上;经暗室处理后,借助光谱投影仪就可观察到有规则的谱线条即光谱图;根据所得光谱图进行元素定性鉴定或定量分析。 当采用原子发射光谱的摄谱分析法时,首先要将样品蒸发、原子化、激发以便产生光辐射,为此要有一激发光源;然后要将光辐射(混合光)色散开以便展开成谱并用相板加以记录得到光谱图,为此要有一摄谱仪;对所得到的光谱图进行波长鉴别以完成定性分析,需要一映谱仪,对黑度测量以完成定量分析,需要一测黑度计。

  • 吸收光谱与发射光谱

    旧话重提,对于吸收光谱与发射光谱的区别,在检测能力上有怎样的区别,检测范围,检出限等方面

  • 【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    【原创大赛】原子发射光谱仪常用检测器(PMT、CCD、CID)简介

    仪器信息网论坛一直是我学习工作当中的一个好帮手,每次工作中遇到不懂的地方,在这里多多少少都能找到一些想要的信息,或者寻求帮助也总是能得到热心网友的回应,不胜感激。近期刚刚想了解一些有关光谱检测器的知识,在仪器信息网的论坛搜索了一下,发现有不少帖子,大家各抒己见,提供了许多宝贵的资料,于是将其中的一些信息稍作整理,同大家分享一下。光谱仪器的检测器有很多种,PMT、CPM(端窗式光电倍增管)、CCD、CID、PDA(光电二极管阵列)、InGaAs、SDD(硅漂移探测器)等,其中论坛讨论最多的主要是用于原子发射光谱仪的PMT、CCD、CID等,下文将从各个检测器的原理,优缺点以及相互间的比较做一介绍。一、基本原理及特点1.PMT(photomultiplier tube,光电倍增管)光电倍增管将微弱光信号转换成电信号的真空电子器件,可分成4个主要部分:光电阴极、电子光学输入系统、电子倍增系统、阳极。光电阴极受光照后释放出光电子,在电场作用下射向第一倍增电极(打拿极),引起电子的二次发射,激发出更多的电子,然后在电场作用下飞向下一个倍增电极,又激发出更多的电子。如此电子数不断倍增,阳极最后收集到的电子可增加 10E4~10E8倍,这使光电倍增管的灵敏度比普通光电管要高得多,可用来检测微弱光信号。http://ng1.17img.cn/bbsfiles/images/2011/12/201112131831_337911_2086240_3.jpg光电倍增管具有灵敏度高,噪声低及响应速度快的特点,所以被广泛地应用在许多光学仪器中作为检测器。PMT的寿命是比较长的,电子管真空度越高寿命就越长。虽然光电倍增管有许多优点,但该器件自身也有缺陷;灵敏度因强光照射(这也就是为何仪器在通电的情况下样品室盖子不能打开的原因)或因照射时间过长而降低,停止照射后又部分地恢复;鉴于光电倍增管的这种特性致使它随着使用时间的累加,灵敏度会逐渐下降(一般从长波长开始下降,俗称“红外紫移”)且噪声输出却逐渐加大,直至被弃用。我们把这种现象称为“疲乏效应”;光阴极表面各点的灵敏度不是均匀的,而是根据入射光束的输出变动而定。光电倍增管的灵敏度和工作光谱区间主要取决与于光电倍增光阴极和打拿极的光电发射材料。光电倍增管的短波响应的极限主要取决于窗的材料,而长波响应极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯或铋-银-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。http://ng1.17img.cn/bbsfiles/images/2011/12/201112141746_338132_2086240_3.jpg 滨松研制的μPMT滨松是PMT的主要供应商,至于价格,不同型号的PMT价格相差很大,几百到几万之间的都有。2010年 滨松光电开发出了全球首款可采用MEMS技术制造的小型光电倍增管“μPMT”。由于利用MEMS技术加工硅基板后,只需用2张玻璃基板封装即可,部件点数很少,因此可实现与半导体产品相当的大批量生产。原来的PMT单价为1万日元以上,但此次的μPMT“如果以量产为前提,价格可为数千日元”。当然,新生事物具体效果如何还有待考证。2.CCD(Charged Coupled Device,电荷耦合器件)CCD是一种固态检测器,由多个光敏像元组成,其中每一个光敏像元就是一个MOS(金属—氧化物—半导体)电容器。它的突出特点是以电荷作为信号,实现电荷的存的转移。因此,CCD工作过程的主要问题是信号电荷的产生、存储、传输和检测。好的CCD具有极高的电荷转移效率,一般可达0.999995,所以电荷在多次转移过程中的损失可以忽略不计。CCD的量子效率大大优于PDA和CID,在400~700nm波段优于PMT。但是,不同厂商制造的CCD在几何尺寸、制造方法、材料上有所不同,结果它们的量子效率差别较大。CCD在低温工作时,暗电流非常低,暗电流是由热生电荷载流子引起的,冷却会使热生电荷的生成速率大为降低。但是CCD的冷却温度不能太低,因为光生电荷从各检测元迁移到放大器的输出节点的能力随温度的下降而降低。CCD的简单动态范围非常大,宽达10个数量级。但在一些光谱分析中,如AES(原子发射光谱)中,实际的动态范围达不到那么大的值。一种扩展CCD动态范围的方法是根据光的强弱改变每次测量的积分时间。强信号采用短的积分时间,弱信号采用长的积分时间。这种方法测量强信号旁的弱信号非常不利,存在Blooming(溢出)的问题,特别是对于AES。通过改进CCD制作工艺生产出来的性能优秀的CCD已在不同程度上解决了这个问题。 CCD检测器可分为商用CCD检测器,还有专业CCD检测器。普通商用CCD检测器坏点较多,通过软件的插值计算,可以修正坏点,这就是市面上所谓“700万像素的CCD可以达到1000万像素的效果”,这种CCD检测器的成本比光电倍增管便宜。专业CCD检测器像素点之间的间距远小于普通的CCD,而且它不仅要求坏的像素点极少甚至没有外,一般还必须处理饱和溢出问题,所以光谱仪上用的CCD要比一般普通商业型CCD贵很多,据了解在2万美元左右。3.CID(charge injection device,电荷注入器件)CID是通过电极电压的改变使在检测单元两个电极势阱中电荷发生转移而进行读出、注入检测过程的,当电荷的转移、注入N型硅的衬底便在外电路中引起信号电流,由于它不需要将阵列检测器的电荷全部顺序输出而是直接注入单元体内衬底形成电流来读出的,因此这种方式是一种非破坏性的读出过程,具有防溢出功能。CID检测器为了保证检测器在真空紫外区有较高的灵敏度需要在器件表面涂以增敏剂,因此在此光谱区域的量子效率对增敏剂的依赖性较强。二、不同检测器之间的比较1 光电倍增管和CCDPMT光电倍增管采用电子管技术,是点(或线)测量,可在常温下测量有较好的信噪比。CCD采用半导体技术,是面扫描(分区)测量,须要深冷处理以提高信噪比数元素(全谱)。光电倍增管在分光后一次只能检测一个波长的光信号,而CCD

  • 火花源/电弧原子发射光谱分析技术考核与培训大纲

    火花源/电弧原子发射光谱分析技术考核与培训大纲1 总则1.1 目标 熟悉火花源/ 电弧原子发射光谱(SPARK/ARC-AES )分析技术基本概念及基础理论知识;了解 SPARK/ARC-AES 光谱仪组成结构及工作原理;具备SPARK/ARC-AES 光谱仪的实际操作能力;掌握SPARK/ARC-AES 分析技术在相关领域的应用。1.2 适用范围 本大纲适用于对金属固体样品进行直接分析的火花源/ 电弧原子发射光谱分析技术的考核与培训。适用仪器包括检测器为光电倍增管或CCD 的各类固定式、移动式火花源/电弧原子发射光谱仪。1.3 应具备的基础知识和技能1.3.1 通用基础 具备分析化学的基础知识。1.3.2 分析测试基本操作 具备分析化学实验的基本操作能力,具备实验室一般仪器和设备的操作能力。1.3.3 数据处理基础知识 具备数据统计处理和误差理论的基础知识。

  • 【资料】-原子发射检测器(AED)原理及检测条件选择

    [b]原子发射检测器原理及检测条件选择[/b]原子发射检测器(AED)是近年飞速发展起来的多元素检测器。它是利用等离子体作激发光源,使进入检测器的被测组分原子化,然后原子被激发至激发态,再跃迁至基态,发射出原子光谱。根据这些线光谱的波长和强度即可进行定性和定量分析。所以,AED属光度学检测法。由于它是原子(或原子离子)而不是分子激发后发射光,故有原子发射检测器之称。AED具有许多独特的性能和应用。如:①AED可以以选择性和通用性两种方式工作:若用杂原子通道,AED可作为选择性检测器,且其选择性较其他[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器(如ECD、FPD、ELCD等)更高,若用碳、氢通道,AED即为通用性检测器,且灵敏度高于FID;②AED对元素周期表中除氦以外的任何一种元素均可检测,属多元素检测器,可用于测定未知化合物的经验式和分子式;对未知物鉴定,AED是MSD、FTIR(,的有力补充手段;③由于AED选择性强,可降低对复杂混合物高分辨分离的要求,对未完全分离峰亦可分别检测;④由于AED的相对响应因子几乎是恒定的,不用标样亦可准确定量。近年,AED的应用领域仍在不断扩大,它是一种十分有发展前景的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。AED工作原理和仪器结构一、仪器结构[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-微波诱导等离子体原子发射光谱联用系统的主要组成部分为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、原子发射光谱仪(也称原子发射检测器)、色谱仪和光谱仪之间的接口(包括传输线、溶剂放空系统、谐振腔、等离子体放电管及微波发生器等)以及数据收集和数据处理系统等四大部分,本文着重介绍HP5921 A [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED仪器系统中的接口和光谱仪。1.接口(1)传输线及其加热系统 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-AED结构示意图见图3-4-1。接口部分由三个加热区构成:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]区加热单元、传输线及谐振腔单元。传输线结构与以往的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MIP相同,不同之处是内层不锈钢管内径增大到1.17mm,谐振腔单元(如图3-4-2所示)用70W加热筒为放电管入口侧提供热量,传输线的末段塞进3$块的埋头孔,并伸入谐振腔的毛细管连接件的后面。接口的设计使得石英毛细管柱由色谱炉中伸出并通过接口直接塞入放电管中,石英毛细管出口端通常置于离等离子体末端8~15mm处,使用填充柱时,以石英毛细管传输线连接柱出口到谐振腔单元。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611111550_32062_1613333_3.gif[/img]

  • X荧光谱线与发射光谱谱线关系?

    那位能解答下啊。X荧光光谱也是电子从高能级跃迁回低能级,然后放能量发射出光谱,和icp电子受激发返回低能级原理基本一样,只是一个逐出电子一个没逐出,都是△E=hv. 不同原子能级不都是确定好了的,可为啥X荧光的强度和发射光谱不一样啊?比如铅最外层能量最低的M线,能量是2.443Kev,算成波长是50.7nm,这已经是最外层电子跃迁了。但我们普通用的icp用的220线,是哪个层电子能级跃迁出来的?或者说发射光谱的能级跃迁不是按电子结构层数来算的,是按原子整体能级,和X荧光按电子klmn能级不一样?哪位给小弟解惑下,不胜感激

  • 请问荧光发射光谱是否具有特征性?

    通常来说紫外光谱具有一定的特征性,可以在一定程度上对物质进行定性,只是没有质谱的特征性那么强。那么荧光检测器采集的荧光发射光谱是否具有特征性呢?能否利用它来进行定性分析?还有荧光检测器采集的荧光激发光谱应该和紫外光谱基本一样吧?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制