当前位置: 仪器信息网 > 行业主题 > >

光栅投影仪工作原理

仪器信息网光栅投影仪工作原理专题为您提供2024年最新光栅投影仪工作原理价格报价、厂家品牌的相关信息, 包括光栅投影仪工作原理参数、型号等,不管是国产,还是进口品牌的光栅投影仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光栅投影仪工作原理相关的耗材配件、试剂标物,还有光栅投影仪工作原理相关的最新资讯、资料,以及光栅投影仪工作原理相关的解决方案。

光栅投影仪工作原理相关的资讯

  • 进出口均价相差400倍——2019年轮廓投影仪海关数据盘点
    p    strong 仪器信息网讯 /strong 测量投影仪又称为光学投影检量仪或光学投影比较仪,为利用光学投射的原理,将被测工件之轮廓或表机投影至观察幕上,作测量或比对的一种测量仪器,可以高效地检测各种形状复杂工件的轮廓和表面形状。仪器信息网通过汇总2019年商品编码90314910的海关进出口数据,对2019年1月至11月轮廓投影仪的进出口贸易情况进行了简要盘点。 /p p   统计周期内,轮廓投影仪进口数量1591台,进口总额约1.77亿元(币种单位:人民币元RMB,以下同) 出口数量约11.79万台,出口总额约3400万元。从数量上看,我国轮廓投影仪出口数量要远远高于进口 从金额上看,呈现出反差,说明出口主要集中在轮廓投影仪中低端仪器市场;从均价上看,单台进口均价约是出口的400倍。 /p p   从数量上看,月度进口数量基本保持在100-200台 从金额上看,月进口总额基本保持在1000万-2000万区间。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 300px " src=" https://img1.17img.cn/17img/images/202001/uepic/26742f9c-4405-49ae-821d-f60643533be5.jpg" title=" 2019年月度进口数量.png" alt=" 2019年月度进口数量.png" width=" 500" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度进口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 316px " src=" https://img1.17img.cn/17img/images/202001/uepic/a61bcc6c-f823-47cd-a065-2c0f63c894d3.jpg" title=" 2019年月度进口总额.png" alt=" 2019年月度进口总额.png" width=" 500" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度进口总额 单位:元 /p p   日本进口数量遥遥领先,进口数量占总进口数量59.2%,进口金额占总进口金额的69.43% 德国排第二,进口数量占总进口数量的24.7%,进口金额占总进口金额的15.27%。日本和德国占据了80%以上的轮廓投影仪进口市场份额。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 316px " src=" https://img1.17img.cn/17img/images/202001/uepic/cc3d4406-b80c-4860-bd7e-b87583e0e279.jpg" title=" 2019年各国进口数量.png" alt=" 2019年各国进口数量.png" width=" 500" height=" 316" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国进口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 315px " src=" https://img1.17img.cn/17img/images/202001/uepic/5ac76254-fd90-45e4-b113-6e3a785789aa.jpg" title=" 2019年各国进口总额.png" alt=" 2019年各国进口总额.png" width=" 500" height=" 315" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国进口总额 单位:元 /p p span    /span 2019年8月单月出口量8万余台,数量高居月第一,然而当月出口总额倒数第二,说明出口仪器主要是集中于中低端仪器。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 318px " src=" https://img1.17img.cn/17img/images/202001/uepic/711aed5f-bb3d-4f05-ba85-2a1702898b73.jpg" title=" 2019年月度出口数量.png" alt=" 2019年月度出口数量.png" width=" 500" height=" 318" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度出口数量 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 300px " src=" https://img1.17img.cn/17img/images/202001/uepic/f97c73f6-1e03-4fa8-afea-a1210266cbce.jpg" title=" 2019年月度出口总额.png" alt=" 2019年月度出口总额.png" width=" 500" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年月度出口数量 单位:元 /p p   从数量上看,最大的贸易出口国是日本,其次为马来西亚,分别占比34.7%、32.18% 从出口金额上看,美国排第一位,其次为台澎金马关税区、香港等。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 309px " src=" https://img1.17img.cn/17img/images/202001/uepic/24e00b9c-3472-468b-b0d3-d0d4d03864f6.jpg" title=" 2019年各国出口数量.png" alt=" 2019年各国出口数量.png" width=" 500" height=" 309" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国出口数量(前20) 单位:台 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 303px " src=" https://img1.17img.cn/17img/images/202001/uepic/d9a2c205-1896-49e8-b639-e1671c27e664.jpg" title=" 2019年各国出口总额.png" alt=" 2019年各国出口总额.png" width=" 500" height=" 303" border=" 0" vspace=" 0" / /p p style=" text-align: center " 2019年各国出口总额(前30) 单位:元 /p p style=" text-align: center " 主要进出口企业 /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" border-collapse:collapse " data-sort=" sortDisabled" align=" center" colgroup col width=" 72" style=" width:72px" / col width=" 273" style=" width:273px" / col width=" 166" style=" width:167px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 1" align=" center" valign=" middle" width=" 14" 主要出口企业 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 企业名称 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" width=" 14" 年出口规模 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 欧姆龙(上海)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 重庆火星人科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 深圳市中康信实业有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 拜里斯科技(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 高屋希克斯电子(上海)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 精量电子(成都)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 冲电气实业(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 上海田岛工具有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 科世达(上海)管理有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 出口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 美艾利尔(上海)诊断产品有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 500万~ 1000万美元 /td /tr tr height=" 18" style=" height:18px" td height=" 18" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " rowspan=" 1" align=" center" valign=" middle" width=" 14" 主要进口企业 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 企业名称 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" width=" 14" 年进口规模 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 苏州紫翔电子科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 中芯北方集成电路制造(北京)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 北京亦庄嘉里大通物流有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 161" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 乐金显示(中国)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万 ~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 基恩士(中国)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 5000万~ 1亿美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 冲电气实业(深圳)有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 福州京东方光电科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 深圳市华星光电技术有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 鄂尔多斯市源盛光电有限责任公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr tr height=" 18" style=" height:18px transition: all 0.3s ease 0s" td height=" 18" style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 进口 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 南京中电熊猫平板显示科技有限公司 /td td style=" -webkit-tap-highlight-color: rgba(0, 0, 0, 0) min-height: 20px border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " align=" center" valign=" middle" width=" 14" 1000万~ 5000万美元 /td /tr /tbody /table p   从以上分析,可以看出,目前我国轮廓投影仪的进口市场相对稳定,进口仪器主要为中高端仪器 我国轮廓投影仪出口数量远远高于进口,但总体出口总额仅为进口的六分之一,说明出口中低端产品数量较多。 /p p br/ /p
  • 《星球大战:原力觉醒》在洛杉矶著名影院首映,新式投影仪效果震撼
    p 美国加利福尼亚州的洛杉矶市传来消息,万众瞩目的《星球大战:原力觉醒》于2016年1月26日在著名的古色古香的Arclight Cinerama Dome影院首映,影院启用了新一代3D激光投影系统来呈现《星战》的壮观场面,效果震撼。在新投影系统联袂《星战》首秀的背后,正是英国豪迈的 a href=" http://www.halma.cn/product/fiberguide" 定制光纤品牌——飞博盖徳工业有限公司 /a 发挥了至关重要的作用:这一双探头激光投影系统采用了飞博盖徳的多模光纤组件进行光能传输。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 好莱坞的Arclight Cinerama Dome影院" src=" http://www.halma.cn/sites/default/files/field/image/201601290101.jpg" / br/ 位于洛杉矶好莱坞的Arclight Cinerama Dome影院的外观(上图)和内部(下图),因其历史底蕴而闻名美国。 /p p br/ /p p 新一代的激光投影系统亮度极高,3D条件下可达到27 nits,2D条件下可达到48 nits,其产生的亮度效果是大多数剧院中所采用系统产生亮度的两倍,画面更明亮,观赏效果更佳。然而,更高的亮度意味着其需要更高效可靠的光能传输与之相匹配。为了满足这一大功率光能传输系统的质量要求,飞博盖徳( a href=" http://www.fiberguide.com.cn" fiberguide.com.cn /a )专门为电影院的3D激光投影系统定制设计了一套多模光纤组件系统。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 飞博盖徳的光纤组件" src=" http://www.halma.cn/sites/default/files/field/image/201601290102.jpg" / br/ 飞博盖徳定制的多模光纤组件系统中用到的光纤。 /p p br/ /p p Arclight Cinerama Dome影院首次安装这一双探头3D激光投影系统就用于《星球大战》的新片首映,足见影院方面对飞博盖德的品牌和其他配套组件的信任。迄今为止,Arclight Cinerama Dome是全美国仅有的三家以新一代3D激光投影系统为卖点的电影院之一。 /p p br/ /p p style=" TEXT-ALIGN: center" img alt=" 星球大战之原力觉醒" src=" http://www.halma.cn/sites/default/files/field/image/201601290103.jpg" / br/ 《星球大战:原力觉醒》影片一瞥。 /p p br/ /p p 欲了解飞博盖德更多产品及服务信息,请拨打飞博盖德免费电话021-60167698,或发送电子邮件至china.info@fiberguide.com,或访问www.fiberguide.com.cn。国外业务请拨打免费电话877-490-7803,或发送电子邮件至info@fiberguide.com,或访问www.fiberguide.com。 /p p strong br/ /strong /p p strong 关于飞博盖德和英国豪迈: /strong br/ 美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。 /p p br/ /p p 飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。 /p
  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 光谱光度辐射度计Photo Research技术原理及介绍
    ‍‍简介美国Photo Researc公司成立于1941年,现地点位于纽约州罗彻斯特的North Syracuse(北锡拉丘兹),是一家专门致力于光度、色度、辐射度测量仪器研究、生产的世界著名公司;同时,PR也是全球第一家生产光谱式亮度计的厂家,在全球拥有13个自己独立的光学校准实验室,溯源NIST(美国国家计量局)标定标准;Aunion昊量光电作为Photo Research公司在国内的一级代理商,总部位于上海,在西安、成都分别建立办事处,为国内客户提供快捷的本地校准及维修服务。‍‍一、理论介绍PR-6系列和PR-7系列是真正意义上的的光谱辐射度计;通过物镜或者其他光学配件有效收集光学辐射信号(光信号)。光信号通过反射镜上的孔径光阑(洞)到达衍射光栅(参见图2)。光栅把光按波长展开,就像棱镜把白色的光转换成彩虹一样。一个宽带光,例如太阳光是由很多不同波长的光组成的。当衍射光栅暴露在这种类型的光下,它将从多角度反射光线产生了一个分散的光谱就像一道彩虹。类似地,如果光栅接触了一种单一光源,比如一束激光,那么只有激光的特定波长的光会被反射。图1 PR-788光谱测量范围对于PR-655、PR-670和PR-788测量波长范围是380纳米(nm)(紫色)到780nm(深红色)-即电磁波的可见光谱段 (参见图1)。衍射光谱到达CCD探测器;PR-655探测器是128位的线性探测器,PR-670探测器是256位的线性探测器,PR-788探测器是512位的线性探测器;每个探测器单元均代表不同的颜色。测量时,辐射光通过自适应灵敏度算法在某个特定的时间内被取样测量,自动适配感应器自动会根据光信号的强弱确定合适曝光时间。光测量后,探测器用同样积分时间再次测量探测器的暗电流,然后从每个探测器单元的光测量结果中减去暗电流的光信号贡献值。图2 简化方框图图3 PR系列亮度计光路图仪器出厂时已通过相应的校准系数校准光谱数据,校正系数包括波长精确度修正、光谱分布修正和光度修正。波长校准采用的是具有特征光谱的氦灯光源,线光源提供了已知的光谱发射谱线通过光栅分光后投射到多探测器上再通过软件显示;用于波长校准的氦谱线包括388.6nm,447.1 nm,471.3 nm,587.6 nm,667.8 nm,706.5 nm和728.13 nm;接下来,可用光谱校准系数校准这些数据;这些校准系数确保被测目标光谱能量分布(SPD)和由此计算出的数据比如CIE色度值经过了正确的溯源。最后,校准系数(光度系数)确保光度测试结果的准确性,如亮度或照度。重要参数计算公式校正后的光谱数据用来计算光度和色度值包括亮度,CIE 1931 x,y和1976 u’, v’的色坐标、相关色温(CCT)和主波长。以下是一些基本的光度色度参数计算公式:图4 CIE 1931 三刺激值函数CIE XYZ三刺激值和光度:X,Y,和Z是CIE的三刺激值。X表示红色,Y是绿色,Z是蓝色。Y还可表示光度值-在使用标准的MS-75镜头时,Y给出的是cd /m²-国际亮度单位。footlamberts(英制亮度单位)可以用cd / m²值乘0.2919 得到fc 单位数值。683是可将流明转换成瓦的一个常数。对于亮场环境(白天),555nm处683流明等同于1瓦的功率。S(l) = 校正的光谱数据, 是CIE三刺激值函数曲线,D(l)是光谱增量 ,对于PR-655的增量是4nm,PR-670的增量是2nm,PR-788的增量是1nm。得出这三个三刺激值表达后,有用的色度值比如CIE 1931 x,y和1976 u,v”可以通过下面的公式计算:CIE 1931 x, y:CIE 1976 u’, v’:光谱式亮度计:速度相对缓慢但是精度高,适合LCD\OLED\Mini-LED\Micro-LED\硅基OLED研发等领域。滤片式亮度计:速度快,但是精度差,适合背光模组,产线上Flicker以及响应时间测试。二、 Spectroradiometer 分光辐射度计SpectraScan分光辐射度计是测量辐射度的高端专业仪器. 具有专利的Pritchard观景器。它们易于使用,高准确性和可靠性,使这一系列产品最广泛应用于光的量测。PR-655 :多功能,极高性价比,配件丰富PR-670 :自动多光阑和自动快门,微区测量PR-680(L) :集光谱式与滤光片式一体,一机多用PR-740/745: 制冷型线阵探测器,超低亮度与超短时间内(最短200ms)测量,同类产品中最敏感。PR-745光谱范围扩展到380-1080nm。PR-788宽动态范围的分光亮度计:是基于超灵敏PR74X系列光谱测试系统而研制的,当前应用于R&D、QC、QA以及工厂生产。具有业界领先的1000000:1 的动态范围 ,它提供了在不必增加外部衰减或改变几何光学(例如测量场地尺寸)的情况下,即可从黑到全白测试设备输出的解决方案,这是在市场上可得到的最高速度。特别地,针对OLED屏幕测试 PR-788满足暗态和超高灵敏度的需求!较宽的动态范围:测试显示/背光不需要添加外部过滤或者改变光阑;可变的光谱带宽:光谱分辨率能够满足LCD甚至激光投影仪的显示技术;极暗态下亮度测试:0.000,034-6,850,000 cd/㎡高速循环时间:测试/校准显示产品的总时间急剧减少;USB、RS232,蓝牙接口:易于集成到自动测试环境(ATE)PR-730/740/735/745技术规格:PR-788 技术规格:光阑&对应光斑尺寸:PR-788亮度范围:三、应用光谱式亮度计在面板显示和照明行业有着广泛的应用。重要可以测量亮度,色度,亮度均匀性,色度均匀性,Gamma值以及某些光学材料的透过率和反射率等应用。还可以作为标准,来校正机差,以及校正成像亮度计参数。不仅是科研,也是工厂中亮度,色度测量解决方案的首选。
  • 用于高分辨率制造的低成本显微投影光刻系统
    集成光信号分配、处理和传感网络需要小型化基本光学元件,如波导、分光器、光栅和光开关。为了实现这一目标,需要能够实现高分辨率制造的方法。弯曲元件(如弯管和环形谐振器)的制造尤其具有挑战性,因为它们需要更高的分辨率和更低的侧壁粗糙度。此外,必须采用精确控制绝对结构尺寸的制造技术。已经开发了几种用于亚波长高分辨率制造的技术,如直接激光写入、多光子光刻、电子束光刻、离子束光刻和多米诺光刻。然而,这些技术成本高、复杂且耗时。纳米压印光刻是一种新兴的复制技术,非常适合高分辨率和高效制造。然而,它需要高质量的母版,通常使用电子束光刻来生产。新发表在《光:先进制造》的一篇论文中,来自汉诺威莱布尼兹大学的科学家Lei Zheng博士等人开发了一种低成本、用户友好的制造技术,称为基于紫外发光二极管的显微投影光刻(MPP),用于在几秒钟内快速高分辨率制造光学元件。这种方法在紫外光照射下将光掩模上的结构图案转移到涂有光致抗蚀剂的基板上。a.采用基于UV-LED的显微镜投影光刻系统的草图。b.工艺链示意图,包括从结构设计到最终投影光刻的步骤。c.使用MPP制造的高分辨率光栅。d.通过MPP实现的低于200nm的特征尺寸。上部和下部所示的线条分别使用昂贵的物镜和经济物镜制造。MPP系统基于标准光学和光机械元件。使用波长为365nm的极低成本UV-LED作为光源,而不是汞灯或激光。研究人员开发了一种前处理工艺,以获得MPP所需的结构图案化铬掩模。它包括结构设计、在透明箔上印刷以及将图案转移到铬光掩模上。他们还建立了一个光刻装置来制备光掩模。通过该装置和随后的湿法蚀刻工艺,可以将印刷在透明箔上的结构图案转移到铬光掩模上。MPP系统可以制造特征尺寸低至85纳米的高分辨率光学元件。这与更昂贵和更复杂的制造方法(如多光子和电子束光刻)的分辨率相当。MPP可用于制造微流体设备、生物传感器和其他光学设备。研究人员开发的这种制造方法在光刻领域取得了重大进展,可用于光学元件的快速和高分辨率结构化。它特别适合于快速原型设计和低成本制造重要的应用。例如,它可以用于开发用于生物医学研究的新型光学设备,或为消费电子产品应用原型化新型MEMS设备。
  • 光学计量仪器:解读精密测量的利器
    光学计量仪器作为现代科学和工业领域中不可或缺的工具,通过利用光学原理进行精确测量,在各个领域发挥着重要作用。本文将介绍光学计量仪器的定义、原理以及其在科学研究和工业应用中的重要性。  第一部分:光学计量仪器的定义和分类  定义:光学计量仪器是基于光学原理设计和制造的精密测量设备,用于测量长度、角度、形状等物理量。  分类:光学计量仪器可以根据其功能和应用领域进行分类,包括测微计、激光干涉仪、投影仪、扫描电子显微镜等。每种仪器都有其特定的测量原理和适用范围。  第二部分:光学计量仪器的原理和工作方式  光学原理:光学计量仪器利用光的传播和反射、折射等特性进行测量。例如,激光干涉仪利用激光光束的干涉现象测量长度和形状,投影仪通过光学系统投影图像进行测量等。  工作方式:光学计量仪器通常利用光源、探测器、光学透镜和其他相关组件构成测量系统。通过精确的光学路径设计和信号处理,可以实现高精度的测量结果。  第三部分:光学计量仪器在科学研究中的应用  物理学研究:光学计量仪器在物理学领域中广泛应用,例如用于测量材料的光学性质、表面形貌和精细结构等,为理论研究提供重要数据。  生物医学研究:在生物医学研究中,光学计量仪器可用于测量细胞、组织和生物标本的大小、形状和表面特征,为疾病诊断和治疗提供依据。  材料科学研究:光学计量仪器在材料科学领域中用于测量材料的机械性能、光学性能和电子性能,为新材料的开发和应用提供支持。  第四部分:光学计量仪器在工业应用中的重要性  制造业:光学计量仪器在制造业中广泛应用,例如测量零部件的尺寸和形状,确保产品的精度和质量。  航空航天:光学计量仪器可用于航空航天领域中对飞行器、航天器以及相关部件进行精确测量,确保飞行安全和性能。  汽车工业:在汽车制造中,光学计量仪器可用于测量汽车外观、内饰和关键零部件的尺寸和形状,确保产品符合设计要求。  光学计量仪器作为精密测量的利器,在科学研究和工业应用中发挥着不可或缺的作用。通过利用光学原理和精确的测量系统,这些仪器能够提供高精度、可靠的测量结果,满足各行各业对于精密测量的需求。  随着科技的不断进步,光学计量仪器也在不断创新和发展。新的技术和方法被引入,以提高测量精度、扩大测量范围和增加测量功能。同时,仪器的便携性和自动化程度也得到了提升,使得使用更加方便和高效。  然而,光学计量仪器的应用并不仅限于科学研究和工业领域。在日常生活中,我们也可以发现它们的身影。例如,眼镜店使用计量仪器来准确测量眼镜度数;珠宝商使用显微镜和投影仪来评估珠宝的品质和工艺。  总之,光学计量仪器在现代社会中扮演着重要的角色,推动着科学技术的发展和产业的进步。通过持续的创新和应用,光学计量仪器将继续为我们提供精密测量的利器,助力于各个领域的科研、生产和品质控制,推动着社会的发展和进步。
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了省科技厅、省发改委、省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为全省整体提升全省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了贵州省科技厅、贵州省发改委、贵州省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为整体提升贵州省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,贵州省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 基于投影微立体光刻的3D打印技术及其应用
    作者:葛锜、李志琴、王兆龙、Kavin Kowsari、张旺、何向楠、周建林、Nicholas X Fang单位:1 Southern University of Science and Technology, China2 BMF Material Technology Inc., Shenzhen, China3 Hunan University, China4 Massachusetts Institute of Technology, USA5 Singapore University of Technology and Design, Singapore1文章导读投影微立体光刻(Projection Micro Stereolithography – PμSL)是一种基于面投影光固化原理的高精度(最高可达0.6微米)增材制造(3D打印)技术。该技术可以用于制造具有跨尺度与多材料特性的高精度复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料及生物医学等领域具有广阔的应用前景。南方科技大学、深圳摩方材科技有限公司、湖南大学、麻省理工学院等单位的葛锜、李志琴、王兆龙、周建林、Nicholas X Fang等作者在《极端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上发表《基于投影微立体光刻的3D打印技术及其应用》综述,系统介绍了投影微立体光刻3D打印技术的研究背景、最新进展及未来展望。2研究背景增材制造,又称3D打印,是一种以数字模型文件为基础,将部件离散成二维图形或者路径,通过逐层叠加的方式构造三维物体的快速成型技术。对比于传统制造方法,3D打印因具有制造高精度复杂三维结构、节省材料、方便快捷等优点,已被应用到航空航天、生物医疗、电子、汽车等国民经济领域。自被发明以来,3D打印发展出了各种不同的技术,包括熔融沉积成型(FDM)、墨水直写(DIW)、喷墨(Inkjet)、立体光刻(SLA)、选区激光烧结/熔融(SLS/SLM)、双光子(TPP),以及基于数字光处理(DLP)的连续液体界面制造(CLIP)、大面积快速打印(HARP)、投影微立体光刻技术(PμSL)等。对比于其他3D打印技术,投影微立体光刻技术因其可同时实现高分辨率与大幅面3D打印(图1),被应用于前沿领域的复杂三维结构制造,并产生了一系列具有影响力的科研成果。南方科技大学葛锜副教授、湖南大学王兆龙助理教授与麻省理工学院Fang教授团队联合深圳摩方材科技有限公司针对投影微立体光刻3D打印技术在最近所做的相关代表性工作逐一地进行了详细介绍。图1 不同3D打印技术的打印精度与幅面范围3最新进展投影微立体光刻是一种通过将构成三维模型的二维离散图案投影到光敏树脂表面,激发局部光固化反应的方式,逐层叠加成型三维结构的3D打印技术。通过对光路系统、光源以及打印工艺的优化,最高打印精度可达到0.6微米。面投影微立体光刻因其能够快速一体化成型高精度、跨尺度、多材料复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料以及生物医药方面应用广泛。深圳摩方科技有限公司将原有投影微立体光刻3D打印技术进行发展与升级(图2a),并成功地将其转化为工业级3D打印装备,实现了稳定的超高精度-大幅面3D打印(精度:2微米,幅面:50毫米×50毫米;精度:10微米精度,幅面:94毫米×52毫米幅面),用于力学超材料、生物医疗器件、微力学器件及精密结构件等工业应用(图2b-j)。图2 投影微立体光刻3D技术及其相关工业级应用。(a)高精度-大幅面投影微立体光刻3D打印技术原理;(b)-(j)工业级应用典型案例。在实现跨尺度、多材料3D打印方面,采用面投影与图形扫描技术相结合的方法实现了跨尺度3D打印(图3a),采用吹气辅助投影微立体光刻法(图3b)与流体控制法(图3c)实现了多材料三维结构的快速打印。图3 跨尺度、多材料3D打印。(a)面投影与图形扫描结合实现跨尺度3D打印;(b)吹气辅助多材料3D打印;(c)流体控制辅助多材料3D打印。在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料(图4a),通过多材料投影微立体光刻3D打印技术一次成型由两种不同刚度和热膨胀系数材料构成的负热膨胀系数超材料(图4b)。图4 力学超材料。(a)超轻-超硬力学超材料;(b)负热膨胀系数超材料。在光学器件打印方面,采用面投影立体光刻灰度曝光与表面浸润相结合的方法,实现光学镜头的3D打印(图5a),以及振动辅助与灰度曝光相结合的方法,实现表面纳米级光滑度的微透镜阵列3D打印(图5b)。图5 光学器件。(a)灰度曝光与表面浸润相结合实现光学镜头3D打印;(b)振动辅助与灰度曝光结合实现微透镜阵列3D打印。在4D打印方面,通过开发形状记忆光敏树脂,实现了大变形4D打印(图6a)、多材料4D打印(图6b)、自修4D打印(图6c),4D打印超材料结构(图6d)与4D打印吸能结构(图6e)等案例。图6 4D打印。(a)大变形4D打印;(b)多材料4D打印;(c)自修4D打印 (d)4D打印超材料结构;(e)4D打印吸能结构。4未来展望尽管面投影微立体光刻3D打印技术在近年来取得了快速的发展,但仍面临着如海量的图片数据传输与存储、多材料体素打印精确控制、高精度陶瓷打印等问题,亟待解决。5作者简介葛锜博士葛锜博士,南方科技大学机械与能源工程系长聘副教授。长期从事面投影微立体光刻3D打印技术研究,主要研究领域为4D打印、多功能3D打印、软物质力学、软体机器人、柔性电子等。王兆龙博士王兆龙博士,湖南大学机械与运载工程学院助理教授,长期从事微立体光刻3D打印,光学超材料及微流与热控理论及技术研究,先后参与包括重点国际(地区)合作研究项目及国家重点研发计划在内的多项国家自然科学基金和科技部重点研发项目。目前承担湖南省优秀青年基金及广东省重点领域研发计划等多项科研项目。Nicholas X. Fang博士Nicholas X. Fang博士,麻省理工学院机械系教授,长期从事包括微立体光刻3D打印技术在内的微纳技术研究,研究领域包括纳米光学、声学超材料、微纳制造、软物质等。本篇文章来自专辑:《极端制造》2020年第2期文章
  • 2023年科学仪器进出口关税调整
    国务院关税税则委员会近日发布了《国务院关税税则委员会关于2023年关税调整方案的公告)》,根据《中华人民共和国进出口关税条例》及相关规定,2023年1月1日起,对部分商品的进出口关税进行调整。随通知公布的还有《2023年关税调整方案》、《进口商品暂定税率表》、《部分信息技术产品最惠国税率表》、《部分冻鸡产品最惠国税率调整表》、《关税配额商品税目税率表》、《自由贸易协定和优惠贸易安排实施税率表》、《出口商品税率表》、《进出口税则税目调整表》等附表。2023年科学仪器调整的具体内容:《进出口税则税目调整表》中,主要列出了2022年和2023年税则税目的对比,包括税则号列、货品名称、最惠国税率、普通税率和调整说明。调整后,删除了税则号为9015.1000的测距仪子目。删除了税则号为8479.5010的多功能工业机器人字目,并新增8479.5011协作机器人和8479.5019其它子目。子目8479.5011所称“协作机器人”,是指能和人类在共同工作空间中协同工作的机器人,由执行机构、一体化关节和控制系统组成,其中一体化关节又由伺服电机、减速器、编码器、驱动器和通信总线等组成。新增了9018.9080手术机器人子目。子目9018.9080所称“手术机器人”,是指由机械臂、控制台、成像系统等部分组成,能以微创方式实施复杂的外科手术的一种医疗设备。包括骨科手术机器人、腔镜手术机器人、神经外科手术机器人、放射介入手术机器人。《进口商品暂定税率表》中,列出了税则号列、商品名称、2023年最惠国税率和2023年暂定税率,涉及包括X射线断层检查仪专用探测器、X射线断层检查仪专用闪烁体、准直器、用于90章下列环境产品,包括太阳能定日镜、其他测量海洋、水文、气象或地球物理用仪器及设备,测量,检验液体流量或液位的仪器,测量、检验压力的仪器及装置,90.26其他税号未列名的液体或气体测量仪器及装置,气体或烟雾分析仪,色谱仪和电泳仪,使用光学射线(紫外线,可见光,红外线)的分光仪、分光光度计及摄谱仪以及其他理化分析仪器及装置,用于测量、记录、分析和评估环境样品或对环境的影响的理化分析仪器及装置,检镜切片机,轮廓投影仪,光栅测量装置,其他光学测量或检验仪器和器具,测振仪,手振动仪,具有可再生能源和智能电网应用的自动电压和电流调节器,自动调控流量、液位和湿度的仪器,且在其他税目未列名的零附件。《部分信息技术产品最惠国税率表》中,主要列出了税则号列、商品名称和最惠国税率,最惠国税率按照2022上半年和下半年税率分别列出。《部分信息技术产品最惠国税率表》中列出分析仪器、测试测量等仪器和仪器相关零件、附件的最惠国税率,部分仪器2023年最惠国税率为0,部分仪器2022年下半年降为0。以上涉及的具体仪器类别可下载附件查看。2022年1月1日起实施:2023年关税调整方案.pdf附1 进口商品暂定税率表.pdf附2 部分信息技术产品最惠国税率表.pdf附3 部分冻鸡产品最惠国税率调整表.pdf附4 关税配额商品税目税率表.pdf附5 自由贸易协定和优惠贸易安排实施税率表.pdf附6 出口商品税率表.pdf附7 进出口税则税目调整表.pdf
  • 近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》
    近日,市场监管总局办公厅发布《关于做好注册计量师注册有关工作的通知》,最新的国家计量专业项目分类表在附件中一同发布。为方便量友查询使用,特转发国家计量专业项目分类表供量友参考。 国家计量专业项目分类表 长度-计量专业项目分类表编号项目子项目规程/规范名称规程/规范号010100激光波长——633nm稳频激光器检定规程JJG 353010200量块——量块检定规程 JJG 146 010301线纹标准线纹尺三等标准金属线纹尺检定规程JJG 71高等别线纹尺检定规程JJG 7324m因瓦基线尺检定规程JJG 306标准钢卷尺检定规程JJG 741分辨力板检定规程 JJG 827容栅数显标尺校准规范JJF 1280显微标尺校准规范JJF 1917010302工作线纹尺钢直尺检定规程JJG 1木直(折)尺检定规程JJG 2钢卷尺检定规程JJG 4纤维卷尺、测绳检定规程JJG 5套管尺检定规程JJG 473线缆计米器检定规程JJG 987π尺校准规范JJF 1423010401角度角度标准器角度块检定规程JJG 70正多面棱体检定规程 JJG 283多齿分度台检定规程JJG 472光学角规检定规程JJG 850010402角度角度常规测量仪器光学数显分度头检定规程JJG 57测角仪检定规程JJG 97水平仪检定器检定规程JJG 191自准直仪检定规程JJG 202小角度检查仪检定规程JJG 300旋光标准石英管检定规程JJG 864刀具预调测量仪检定规程JJG 938激光小角度测量仪检定规程JJG 998测微准直望远镜校准规范JJF 1077光学测角比较仪校准规范JJF 1078光学倾斜仪校准规范JJF 1083光学、数显分度台校准规范JJF 1114光电轴角编码器校准规范JJF 1115直角尺检查仪校准规范JJF 1140三轴转台校准规范JJF 1669倾角仪校准规范JJF 1915010403角度专用 测量仪四轮定位仪校准装置校准规范JJF 1489微机电(MEMS)陀螺仪校准规范JJF 1535捷联式惯性航姿仪校准规范JJF 1536陀螺仪动态特性校准规范JJF 1537钻孔测斜仪校准规范JJF 1550010501直线度和平面度直线度刀口形直尺检定规程JJG 63平尺校准规范JJF 1097010502直线度和平面度平面度平晶检定规程JJG 28平板检定规程JJG 117平面等倾干涉仪检定规程JJG 661研磨面平尺检定规程JJG 740平面等厚干涉仪校准规范JJF 1100010600表面粗糙度——干涉显微镜检定规程JJG 77光切显微镜校准规范JJF 1092表面粗糙度比较样块校准规范JJF 1099触针式表面粗糙度测量仪校准规范JJF 1105010701万能量具游标类量具通用卡尺检定规程JJG 30高度卡尺检定规程JJG 31电机线圈游标卡尺检定规程JJG 566010702微分类量具千分尺检定规程JJG 21内径千分尺检定规程JJG 22深度千分尺检定规程JJG 24杠杆千分尺、杠杆卡规检定规程JJG 26奇数沟千分尺检定规程JJG 182带表千分尺检定规程 JJG 427大尺寸外径千分尺校准规范JJF 1088整体式内径千分尺(6000mm~10000mm)校准规范JJF 1215测量内尺寸千分尺校准规范 JJF 1411010703指示表类 量具指示表(指针式、数显式)检定规程JJG 34杠杆表检定规程JJG 35010703万能量具指示表类 量具机械式比较仪检定规程 JJG 39百分表式卡规检定规程JJG 109扭簧比较仪检定规程JJG 118大量程百分表检定规程JJG 379深度指示表检定规程JJG 830内径表校准规范JJF 1102带表卡规校准规范JJF 1253010704角度量具直角尺检定规程JJG 7正弦规检定规程 JJG 37电子水平仪和合像水平仪检定规程JJG 103方箱检定规程JJG 194多刃刀具角度规检定规程JJG 275方形角尺检定规程JJG 1046框式水平仪和条式水平仪校准规范JJF 1084水平尺校准规范JJF 1085电子水平尺校准规范JJF 1119组合式角度尺校准规范JJF 1132通用角度尺校准规范JJF 1959010705量规类量具半径样板检定规程JJG 58塞尺检定规程JJG 62圆锥量规检定规程JJG 177光滑极限量规检定规程JJG 343标准环规检定规程JJG 894010705万能量具量规类量具针规、三针校准规范JJF 1207电子塞规校准规范JJF 1310楔形塞尺校准规范JJF 1548010801长度通用测量仪器长度常规测量仪器光学计检定规程 JJG 45工具显微镜检定规程JJG 56线纹比较仪检定规程JJG 72接触式干涉仪检定规程 JJG 101指示类量具检定仪检定规程JJG 201光栅线位移测量装置检定规程JJG 341量块光波干涉仪检定规程JJG 371读数、测量显微镜检定规程JJG 571激光干涉仪检定规程JJG 739感应同步器检定规程JJG 836测长机校准规范 JJF 1066投影仪校准规范 JJF 1093测长仪校准规范JJF 1189激光测径仪校准规范JJF 1250激光千分尺平行度检查仪校准规范JJF 1252数显测高仪校准规范JJF 1254量块比较仪校准规范JJF 1304线位移传感器校准规范JJF 1305扫描探针显微镜校准规范JJF 1351角位移传感器校准规范JJF 1352010801长度通用测量仪器长度常规测量仪器生物显微镜校准规范JJF 1402地面激光扫描仪校准规范JJF 1406数字式激光球面干涉仪校准规范JJF 1739凸轮轴测量仪校准规范JJF 1795微小孔径测量仪校准规范JJF 1806球径仪校准规范JJF 1831直线度测量仪校准规范JJF 1890激光干涉比长仪校准规范JJF 1913金相显微镜校准规范JJF 1914光学轴类测量仪校准规范JJF 1933010802坐标测量 仪器皮革面积测量机检定规程JJG 413图形面积量算仪检定规程JJG 660标准玻璃网格板检定规程JJG 832坐标测量机校准规范JJF 1064激光跟踪三维坐标测量系统校准规范JJF 1242坐标定位测量系统校准规范JJF 1251步距规校准规范JJF 1258影像测量仪校准规范JJF 1318关节臂式坐标测量机校准规范JJF 1408坐标测量球校准规范JJF 1422标准球棒校准规范JJF 1859基于结构光扫描的光学三维测量系统 校准规范JJF 1951010803测微仪气动测量仪检定规程JJG 356010803长度通用测量仪器测微仪斜块式测微仪检定器检定规程 JJG 525引伸计标定器校准规范JJF 1096电感测微仪校准规范JJF 1331激光测微仪校准规范JJF 1663光栅式测微仪校准规范JJF 1682电容式测微仪校准规范JJF 1944010804形状测量仪圆度、圆柱度测量仪检定规程JJG 429表面轮廓表校准规范 JJF 1476圆度定标块校准规范 JJF 1485010805测厚仪X射线测厚仪检定规程JJG 480磁性、电涡流式覆层厚度测量仪检定 规程JJG 818超声波测厚仪校准规范JJF 1126厚度表校准规范JJF 1255X射线荧光镀层测厚仪校准规范JJF 1306湿膜厚度测量规校准规范 JJF 1484橡胶、塑料薄膜测厚仪校准规范 JJF 1488掠入射X射线反射膜厚测量仪器校准 规范JJF 1613电解式(库仑)测厚仪校准规范JJF 1707010901齿轮测量齿轮标准器齿轮渐开线样板检定规程JJG 332齿轮螺旋线样板检定规程JJG 408标准齿轮检定规程JJG 1008010902齿轮测量 仪器跳动检查仪校准规范JJF 1109手持式齿距比较仪校准规范JJF 1121010902齿轮测量齿轮测量 仪器齿轮螺旋线测量仪器校准规范JJF 1122基圆齿距比较仪校准规范JJF 1123齿轮渐开线测量仪器校准规范JJF 1124滚刀检查仪校准规范JJF 1125铣刀磨后检查仪校准规范JJF 1138齿轮齿距测量仪校准规范JJF 1209齿轮双面啮合测量仪校准规范JJF 1233齿轮测量中心校准规范JJF 1561010903齿轮测量 量具公法线千分尺检定规程JJG 82齿厚卡尺校准规范JJF 1072圆柱直齿渐开线花键量规校准规范JJF 1557011001螺纹测量螺纹测量仪器石油螺纹单项参数检查仪校准规范JJF 1063丝杠动态行程测量仪校准规范JJF 1410螺纹量规扫描测量仪校准规范JJF 1950011002螺纹测量量具螺纹千分尺检定规程JJG 25螺纹样板检定规程JJG 60石油螺纹工作量规校准规范JJF 1108圆柱螺纹量规校准规范JJF 1345011100轴承测量——轴承内外径检查仪检定规程JJG 471球轴承轴向游隙测量仪检定规程JJG 626深沟球轴承跳动测量仪检定规程JJG 784深沟球轴承套圈滚道直径、位置测量仪检定规程JJG 785轴承套圈厚度变动量检查仪检定规程JJG 819011100轴承测量——滚动轴承宽度测量仪检定规程JJG 885滚动轴承径向游隙测量仪校准规范JJF 1089轴承套圈角度标准件测量仪校准规范JJF 1113圆锥滚子轴承套圈滚道直径、角度测量仪校准规范JJF 1545轴承圆锥滚子直径、角度和直线度比较测量仪校准规范JJF 1684011201测绘仪器及检定装置测绘仪器检定装置 经纬仪检定装置检定规程JJG 949水准仪检定装置检定规程JJG 960长度基线场校准规范JJF 1214011202测绘仪器水准标尺检定规程JJG 8全站型电子速测仪检定规程JJG 100光学经纬仪检定规程JJG 414水准仪检定规程JJG 425光电测距仪检定规程JJG 703超声波测距仪检定规程JJG 928手持式激光测距仪检定规程JJG 966工业测量型全站仪检定规程JJG 1152垂准仪校准规范JJF 1081平板仪校准规范JJF 1082全球定位系统(GPS)接收机(测地型和导航型)校准规范JJF 1118激光扫平仪校准规范JJF 1166脉冲激光测距仪校准规范JJF 1324工具经纬仪校准规范JJF 1349陀螺经纬仪校准规范JJF 1350011202测绘仪器及检定装置测绘仪器非接触式测距测速仪校准规范JJF 1612望远镜式测距仪校准规范JJF 1704011301长度其它测量仪器长度工程专用仪器焊接检验尺检定规程JJG 704刮板细度计检定规程项目子项目规程/规范名称规程/规范号020101质量天平
  • 光影探“热”|上海大学生电视节,用热成像仪拍摄了一部科教片
    第十六届上海大学生电视节已经圆满落幕,以9月22日-23日接连两日的光影秀为预热,主持人大赛、视频广告大赛等专业比赛顺利举行。为记录这场三年来首次回归线下的大学生电视盛事,华东师范大学传播学院组建起多路摄影小队,展开多种形式的影像记录和成片摄制实践,除了普通常见的摄录设备,同学们还使用热成像设备、测温仪,深入探究散发着光与热的大学生电视节。传院学生正用测温仪和红外成像仪拍摄观察在成片正式与大家见面之前,让我们一起来看看来自学生摄影团队的“热成像回顾”:可见光-热成像拍摄对比图之一-樱桃河畔,桥边行人左侧的图片常见普通,而右侧的热成像对比图则是另一个光影世界。为了试验器材,拍摄一部校园热力学科普短片,我们将器材对准校园一角,果然是同一个场景不同的观感。红外热成像仪可以根据不同的场景,支持多种热图显示,包括多种伪彩色和热黑、热白模式;右图采用的成像模式就是伪彩色。类比摄像机镜头画面里明暗的对比,热成像视野的灰度差异表示热成像仪所接收物体发出红外线量的多少,即可反映物体的温差:颜色越深灰度越高说明相对温度越低,反之则越高;若要观察此时绝对温度还需要采用全画幅显示。镜头里,洒水车的扫帚旋转轴、后轮主轮轴温度最高,骑车的同学也呈现出高亮温感。试验成功,且让我们等待光影秀的搭建和开场吧。行驶中的货车的热成像-发动机和轮胎装载大视节光影秀器材的卡车从校门口缓缓驶入传播楼侧,开启热成像视频记录仪,货车发动机的热量扩散到了汽车车盖表面,画面中最亮的光点呈现亮黄色,温差对比非常明显;而因为导热性、摩擦情况、热传递情况差异,轮轴的温度可达到近50℃,而橡胶车胎表面温度只有约20.5℃。强温差下的伪彩红外视野十分瑰丽奇幻,是天然的视觉特效。可见光-热成像拍摄对比图之二-传播楼前,铺设调试团队和传播学院学生来到樱桃河畔大型投影仪的架设布线现场,我们的摄像团队正围绕工作人员拍摄。通过更近距离的红外拍摄,我们得到了更为清晰的人体热成像轮廓。需要声明的是,热成像仪画面呈现的只是传感器接收到的热辐射,而并非所谓“透视”,之所以能够在画面中辨别人的轮廓外形,是因为相对于现在的环境温度,人体散发的热量极为显著,若是在炎炎夏日,空气温度达到接近人体温度时,我们可能更难从一堆清晰度低、颜色相近的色块辨认画面。带队教师用热成像仪拍摄搭建器材的工作人员带队教师用热成像仪拍摄搭建器材的工作人员布置现场时,下起了淅沥小雨,我们的衣服上也淋上了斑驳的雨点,为探究此时人体的热成像图变化。得到工作人员同意后,我们近身靠前,边测温边拍摄了热成像照片。在观察的时候我们发现,集中淋在衣服上雨滴形成了一个个明显的“蓝点”,这是因为雨滴温度要比人体温度低,在短时间一直处于淋雨环境时,衣服表面温度会因并不均匀地沾上雨滴而出现温度差异,通过红外热成像视野能为人眼观测到。华师大物理系同学讲解上海大视节的光和热效应光影秀开始前(左)光影秀开始后20分钟(右)在进行多组热成像拍摄后,天色已晚,我们还想探究背后更多的物理原理。在22日光影秀正式公映第一天,我们特邀了物理与电子科学学院的夏冉同学一同在传播楼前拍摄观察。此前,我们在光影秀试投屏前后不同时刻拍摄了多张传院照片,但并没有见拍摄画面中有明显的变化。夏冉同学为我们解释,画面中两个热点分别是工作中的空调外机和投影仪,而打到传院外墙的灯光虽然有视觉震撼力,但相隔数十米的投映,并不能给墙体增热多少。在绵绵秋雨中,跨学科的“专业混搭”,对比强烈的差异化影像记录,配合着有趣的现场讲解,不仅为制作一部校园热力学科普短片打下基础,同时还是华师大传播学院“融媒体大传播”的小小探索。用热成像记录传院和大视节大视节主持人大赛现场的热成像拍摄23日下午,我们还参与了大视节主持人大赛的热力学摄影,透过热成像镜头,比赛正酣的音乐厅果然热力非凡。在上海大学生电视节开幕式各项活动结束后,我们为各摄制组团队拍摄了热力学头像,并制作成传播学院院标。关于大视节,关于传院,关于光和热,我们传院学子热力学影像实践还在继续,敬请期待!传播学院的学生拍摄团队热成像照片拼图
  • 2024年科学仪器进出口关税调整
    2023年12月21日,国务院关税税则委员会发布2024年关税调整方案。根据《中华人民共和国进出口关税条例》及相关规定,2024年1月1日起,对部分商品的进出口关税进行调整。随通知公布的还有《进口商品暂定税率表》、《关税配额商品税目税率表》、《自由贸易协定和优惠贸易安排实施税率表》、《出口商品税率表》、《进出口税则税目调整表》等附表。其中,对 1010 项商品(不含关税配额商品)实施进口暂定税率(见附 1);继续对小麦等 8 类商品实施关税配额管理,税率不变;继续对铬铁等 107 项商品征收出口关税,对其中68项商品实施出口暂定税率(见附 4);根据国内需要,对部分税则税目、注释进行调整(见附5),调整后,2024 年税则税目数共计8957 个。2024年科学仪器调整的具体内容:《进口商品暂定税率表》中,列出了税则号列、商品名称、2024年最惠国税率和2024年暂定税率,涉及数字化X射线摄影系统平板探测器,X射线断层检查仪专用探测器,X射线断层检查仪专用闪烁体、准直器,三坐标测量机用自动控制柜,其他测量海洋、水文、气象或地球物理用仪器及设备,测量,检验液体流量或液位的仪器,测量、检验压力的仪器及装置,税目90.26中其他税目未列名的液体或气体测量仪器及装置,气体或烟雾分析仪,色谱仪和电泳仪,使用光学射线(紫外线,可见光,红外线)的分光仪、分光光度计及摄谱仪以及其他理化分析仪器及装置,用于测量、记录、分析和评估环境样品或对环境的影响的理化分析仪器及装置,检镜切片机,轮廓投影仪,光栅测量装置,其他光学测量或检验仪器和器具,测振仪,手振动仪,具有可再生能源和智能电网应用的自动电压和电流调节器,自动调控流量、液位和湿度的仪器,且在其他税目未列名的零附件。此外,国务院关税税则委员会近日还发布了《关于给予最不发达国家98%税目产品零关税待遇的公告》(税委会公告2021年第8号),根据我国政府与有关国家政府换文规定,自2023年12月25日起,对原产于安哥拉、冈比亚、刚果(金)、马达加斯加、马里、毛里塔尼亚等6个最不发达国家的98%税目的进口产品,适用税率为零的特惠税率,涉及多种分析仪器、测试测量仪器、光学仪器、生命科学仪器及零件等。附件下载:附件:2024年关税调整方案.pdf附1 进口商品暂定税率表.pdf附2 关税配额商品税目税率表.pdf附3 自由贸易协定和优惠贸易安排实施税率表.pdf附4 出口商品税率表.pdf附5 进出口税则税目调整表.pdf
  • 科学实验|高速热成像技术将动态空间3D与热数据相结合
    今天,小菲要跟大家分享一个使用FLIR红外热像仪做实验的有趣案例:德国耶拿弗劳恩霍夫应用光学和精密工程研究所(Fraunhofer IOF)的研究人员开发了一套成像系统,通过两台高速、高分辨率单色成像仪和一台GOBO投影仪对物体进行三维检测。在碰撞测试、安全气囊展开等典型动态应用中,除快速空间变化过程以外,温度变化也扮演着重要的作用。高速3D热成像系统的工作原理德国耶拿弗劳恩霍夫应用光学和精密工程研究所(简称“IOF”)主要从事光子学领域应用型研究,早在2016年就开发了一款高速3D成像系统。该系统由两台立体排列的高速立体黑白成像仪和一台自行研发的主动照明GOBO投影仪组成。自2019年以来,其还引入FLIR科学成像仪(FLIR X6900sc 超晶格 长波热像仪,该热像仪支持高达1000 Hz的帧速率和640×512像素的分辨率),推出了一款高速3D热成像系统。高速3D成像系统基于能灵敏感知可见光谱范围(VIS)的两台单色成像仪。二者以12,000 Hz的帧速率和1百万像素的分辨率工作——较低分辨率下还可实现更高帧速率。但两台成像仪尚无法以所需质量标准产生有意义的3D数据。此外还要借助一种复杂的照明系统,超快投射条纹图案序列,这些图案类似于常规正弦条纹,只是其宽度会不定期变化。将重建的3D数据与来自FLIR X6900sc SLS高速热像仪的2D数据相结合,生成三维高速红外图像。FLIR X6900sc超晶格探测器在长波红外范围内运行,因此在GOBO投影仪光源发出辐射的可见和近红外波长范围内不敏感。由于投射的非周期性正弦图案对物体的加热也无关紧要,因此GOBO投影仪不会影响红外成像。FLIR X6900sc SLS丨LWIR高速红外热像仪FLIR X6900sc SLS是一款面向科学家、研究人员和工程师的超快速、高灵敏度的红外热像仪。这款热像仪拥有先进的快门释放功能,搭载额外SSD硬盘后,其内置内存能发挥出超强的记录能力,无论是在实验室,还是测试现场,它都能捕捉到质量超群的高速事件定格图像。可谓一机在手,万事无忧。FLIR X6900sc超晶格长波红外热像仪在640×512像素的全尺寸格式下,记录速率高达1,004帧/秒,在最小局部图像格式下,记录速率高达29 kHz。使用这些热像仪,可以在内置内存中记录长达26秒的全帧格式数据,图像丝毫无损。凭借应变超晶格(SLS) 长波红外探测器,FLIR X6900sc SLS可实现比其他X6900s型号约短12倍的积分时间和更大的动态范围。新型系统的测量与计算在测量过程中,三台成像仪同时记录图像数据。来自黑白成像仪的数据与GOBO投影仪的非周期性条纹投影相结合,产生实际3D图像,然后计算出10对一组的图序列,以形成3D图像。这种“3D重建”会形成空间形状,然后将FLIR长波热像仪的红外图像数据叠加到该空间形状上,以便在映射过程中将温度值分配给空间坐标。当然,在测量之前,需要对由可见光成像仪和长波热像仪组成的系统进行校准。为此,IOF团队使用了带有规则的开环和闭环网格的校准板。为确保即使在温度分布均匀的条件下,仍能在可见光谱范围和长波红外中检测到这些结构,圆和背景选用了具有不同反射率(可见光)发射率(长波红外)的材料。耶拿的研究人员通过印刷电路板找到了解决该问题的方法。为此,他们开发了一款非同寻常的电路板,由规则的开环和闭环网格组成,而不是由电气组件之间的电气连接组成。高速3D热成像系统的实际应用IOF的新型高速3D热成像测量系统旨在将高动态空间3D与红外数据结合起来。运动中的运动员、碰撞测试、安全气囊展开等超快速流程不仅有表面形状的快速变化,也有局部温度的变化,过去无法同时捕获这些变化,该系统首次实现了这一目标。目前,该系统已经过各种情景的测试,其中包括篮球运动员运球(不仅会使球变形,还会引起热量):还有用于测量安全气囊展开时的温度变化和空间表示,系统在距离3米处对高速过程记录半秒钟。将三维数据与热成像信息结合后,不仅可以清楚地看到安全气囊展开后的温度,还能获得时间点和空间坐标信息。借助这些信息可以减少和防止安全气囊展开导致驾驶员受伤的风险。IOF研究团队的Martin Landmann确信:高分辨率3D数据和快速热成像图像相结合的应用场景十分广泛。Martin Landmann解释道:“举例来说,通过观察碰撞测试,研究变形和摩擦过程,或者研究超快速的热相关事件,比如安全气囊触发时的爆炸或者开关柜中的爆炸,我们可以获得非常有用的信息。”他强调称,他们正在不断地开发和优化系统。可见,将来我们有望看到弗劳恩霍夫应用光学和精密工程研究所团队的更多创新研究成果。FLIR X6900sc热像仪对于目前的长波红外或中波红外探测器,应变层超晶格(SLS)探测器提供更快的快照速度、更宽的温度频段和更好的均匀性。这款热像仪具有高级触发功能和内置RAM/SSD记录功能,配有一个四插槽电动滤片轮,可以在实验室环境下和测试范围内对高速事件实现画面定格功能。
  • 基于面投影微立体光刻技术(Pμ SL)的3D打印
    面投影微立体光刻(Projection Micro Stereolithography, PμSL)是一种面投影光固化3D打印技术,适用于制作微尺度的复杂三维结构,有着高分辨率、高精度、跨尺度加工、适用材料广、加工效率高、加工成本低等诸多特点。本文将从成型原理、最小加工特征尺寸、最大成型幅面、适配打印材料、与其他3D打印技术的对比、产业化技术创新等方面,对这一技术进行详细介绍。图1 基于PμSL3D打印技术制作的复杂三维结构示例 一、成型原理 图2所示为PμSL 3D打印技术的成型过程,首先使用建模软件构建出三维结构模型;接着使用切片软件对三维模型以一定大小的层厚进行切片处理,得到一系列具有特定图案的二维图片;然后采用PμSL 3D打印系统对切片后的每一层图案进行整面投影曝光;反复重复上一步骤并层层堆叠最终成型出所需的三维结构。图2 PμSL3D打印技术成型过程 PμSL3D打印技术成型三维结构的关键在于光敏树脂材料在紫外光的作用下发生光聚合反应从而固化,而特定图形的产生则依赖于打印系统中的DMD(Digital Micromirror device)芯片所生成的数字动态掩模。如图3所示,切片后的模型数据导入到打印系统后,这些二维图像数据发送至DMD,DMD根据图像数据控制芯片上各个微镜(即DMD上的每一像素点)的偏转。因此,光源发出的紫外光在到达DMD后将重新整形生成与图形数据一致的光。最后,经调制后的光通过最终物镜投影至液态树脂材料表面,对特定区域进行选择性曝光从而生成特定结构。此外,打印系统还可通过打印平台的移动,拼接打印出大幅面的图形结构。图3 典型的PμSL3D打印系统 二、最小加工特征尺寸 通过控制投影物镜的微缩倍率,PμSL 3D打印技术可以实现几微米甚至几百纳米的特征尺寸。深圳摩方材料科技有限公司(以下简称“摩方”)基于在这一技术领域的多年沉淀,自主研发出了一系列PμSL3D打印系统,已经量产的产品最高光学分辨率可达2 μm(这里提到的光学分辨率是指投影光单个像素点的大小)。借助这一高分辨系统,2 μm线宽二维网格线条和8.5 μm杆径三维点阵得以实现(图4)。图4 摩方3D打印系统打印的2 μm线宽二维线条和8.5 μm杆径三维点阵 三、最大成型幅面 PμSL技术采用整面曝光,其中曝光图形由DMD控制产生。因此,一般情况下,PμSL 3D打印系统的最大成型幅面取决于光学分辨率大小以及DMD像素点数量,DMD成像芯片尺寸固定,通过投影镜头只能实现固定的投影幅面。最大成型幅面与系统光学分辨率呈矛盾关系,即当提高系统光学分辨率时,其最大成型幅面相应减小。拼接技术很好地解决了这一矛盾,使得高分辨、大幅面、跨尺度打印得以实现。以摩方PμSL3D打印系统为例,固定投影打印与拼接打印的幅面如表1所示。表1 固定投影打印与最大打印幅面对比 四、适配打印材料 PμSL3D打印技术的加工成型基于材料的光聚合,因此其打印材料为光敏树脂材料。针对不同应用需求,硬性树脂、韧性树脂、耐高温树脂、生物兼容性树脂、柔性树脂、透明树脂、水凝胶等诸多树脂材料已商业化。除上述纯树脂材料以外,功能颗粒掺入树脂中形成的复合树脂材料同样可用于打印,如磁性颗粒复合树脂、陶瓷颗粒复合树脂、金属颗粒复合树脂等。 五、与其他3D打印技术的对比 表2是PμSL技术与其他3D打印技术规格的对比,主要基于已商业化产品的规格对比。熔融沉积成型和聚合物喷射光固化是目前较广泛的两种3D打印技术,可实现大尺寸结构的加工成型,但其精度相对较低。激光逐点扫描光固化和双光子激光直写技术则可实现非常高的分辨率,然而逐点扫描加工的特性极大地限制了其成型速度。此外,双光子激光直写技术的成型尺寸通常在毫米级。相较而言,PμSL3D打印技术很好地平衡了高精度、高速度、大幅面的特点。表2 PμSL技术与其他3D打印技术的对比 六、产业化技术创新 相较于实验室技术,工业市场对这一技术提出了更多更高要求,包括更广泛的功能性打印材料、更大的打印幅面、更稳定的公差控制等方面。深圳摩方材料科技有限公司在这一技术的产业化上进行了诸多工业级技术创新,例如增加气泡消除系统、激光测距、加热打印等创新功能,用以进一步提高打印质量、精密控制加工公差、拓宽打印材料的范围,以满足精密工业设计和制造的需求。本文对PμSL这一高精度、高速度、大幅面的三维复杂结构成型加工技术进行了简要介绍,这一技术适用于复杂精密结构一次成型、快速原型器件验证、小批量功能部件加工等,可用于多个应用领域。后续本公众号将持续推出关于这一技术的应用案例,敬请期待。官网:https://www.bmftec.cn/links/10
  • 清华大学李星辉团队合作在超精密光栅干涉测量领域取得新进展
    近日,清华大学深圳国际研究生院李星辉团队与国防科技大学团队合作提出了一种基于反射型二维光栅的外差式三自由光栅干涉仪。团队自主设计具有高光敏度、高频差和高信噪比的双频激光系统,基于二维反射型光栅和采用创新的共光路设计,搭建三自由度位移测量系统,设计并优化外差信号相位检测算法,最终实现了亚纳米的测量分辨率和重复定位精度。这项工作将有效推动多自由度光栅精密定位技术的发展。多自由度精密定位技术在纳米计量、显微成像、精密机床、半导体制造等领域具有重要地位。以半导体制造为例,光刻机是半导体行业的“掌上明珠”,在先进制程的光刻机中,晶圆台需要亚纳米位移测量精度的六自由度超精密定位技术。当前光刻机常用激光干涉仪和光栅干涉仪对晶圆台进行多自由度超精密定位,然而激光干涉仪由于暴露在环境中的光路长、难以实现单测量点多自由度测量等限制,会引入环境噪声和阿贝误差,而以光栅栅距为测量基准的光栅干涉仪正成为光刻机晶圆台超精密定位的主流方法。(a)光刻机晶圆台中“四读数头—四光栅”的六自由度测量系统;(b)外差式三自由度光栅干涉仪基本原理针对光刻机等先进装备中的超精密定位需求,团队提出了一种新型的基于外差干涉原理的三自由度光栅干涉仪,可以实现亚纳米的测量分辨率和重复测量精度,并通过 “四读数头—四光栅”的晶圆台测量系统可以实现六自由度位移/角位移测量。该外差光栅干涉仪使用一束双频激光,通过二维反射型光栅的四束衍射光产生外差干涉,实现光栅在X/Y方向上的位移测量,通过光栅反射光与固定反射镜反射光产生外差干涉,实现光栅在Z方向上的位移测量,从而完成光栅ΔX、ΔY、ΔZ三自由位移测量。该方案创新地采用了二维反射型光栅,利于光路系统读数头的集成化和小型化,在未来应用中,可以将读数头和光栅分别安装于固定部件和运动部件上,来检测运动部件的位移,其相对于基于透射型光栅的测量方法具有更广的适用性。此外,研究团队提出并采用了自主设计的双频激光系统,相比于传统的基于塞曼效应的商用双频激光器,具备更大更稳定的频差,以及更强的激光功率,可以实现更高的光源稳定性和信噪比以及更大的外差频率,有利于提升系统的整体精度和测量速度。最终实验结果显示,该系统具备0.5 nm的分辨率,0.6 nm的重复定位精度和2.5×10-5的测量线性度。该研究提出的外差式三自由度光栅干涉测量方法有利于多自由度超精密定位技术的发展,同时对先进装备和精密仪器的发展具有指导意义,尤其是需要多轴超精密定位的纳米科学和技术。 (a)自主设计的双频激光系统;(b)外差式三自由度光栅干涉仪测量系统 (a)三轴分辨率测试结果;(b)三轴在10 nm和40 nm处的重复定位精度测试结果相关成果以“三自由度亚纳米测量反射型外差光栅干涉仪”(A Reflective-Type Heterodyne Grating Interferometer for Three-Degree-of-Freedom Subnanometer Measurement)为题,在线发表在仪器仪表领域期刊《IEEE仪器与测量汇刊》(IEEE Transactions on Instrumentation & Measurement)上。论文第一作者为清华大学深圳国际研究生院2020级硕士生朱俊豪,清华大学深圳国际研究生院李星辉副教授为通讯作者,国防科技大学为共同通讯作者单位。该研究工作得到了广东省基础与应用基础研究基金、国家自然科学基金、清华大学科研启动基金、湖南省自然科学基金、中国博士后科学基金等项目的支持。论文链接:https://ieeexplore.ieee.org/document/9913946/
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在
  • 大型高精度衍射光栅刻划机:把光谱看得更通透
    科研人员在为光栅检测做准备工作。 罗浩摄(资料图片)  在1毫米距离里划出6000道刻槽,且槽型均匀,这意味着在20公里的刻距内,刻槽间距误差小于一根头发丝的千分之一。这正是不久前,中科院长春光学精密机械与物理研究所研制的“大型高精度衍射光栅刻划机”达到的刻划精度。  走进长春光机所实验室,项目组科技人员向记者介绍了一块银灰色、近似不透明“玻璃窗”的光栅,它是这套“精密机械之王”的杰作,也是目前世界上面积最大的高精度中阶梯光栅。打造这台“精密机械之王”的,正是长春光机所光栅刻划机老中青三代研制项目组。  光栅是分析万物光谱信息的“芯片”,应用遍及海陆空、吃穿用  人类如何通过光认识世界?项目负责人、长春光机所研究员唐玉国说,人类借助光认知世界有两种方式:一是光学成像,二是光谱分析。光学成像可以看到物质世界的形状、尺寸等外在信息 地球上所知的元素及其它们的化合物都有自己的特征光谱线,光谱分析可以获得物质成分信息,帮助我们看清事物的本质。  但要“抓”住光谱信息并不容易。日常生活中的光,是由红、橙、黄、绿等各种单色光组成的复色光,而单色光才能更好地记录下物质的光谱信息。光栅是一种非常精密的光学元件,它的神奇在于,它能从复色光中解析、提取出单色光。  日常生活中,人们很少看到光栅,但其实它的作用无处不在。“人们去医院抽血检验,原理就是依靠光谱仪器里的光栅,来实现观察血液里的成分是否符合健康标准。”项目组成员、长春光机所研究员巴音贺希格说,“简单地说,光谱分析需要光谱仪器,光栅之于光谱分析的作用,就如芯片之于计算机,是核心和‘大脑’。”  与血液检查原理类似,分析不同物质的光谱,可以探查出农药残留、钢材质量、爆炸物特性等许多重要信息。唐玉国表示,光栅的价值不限于光谱仪,其应用“遍及农轻重、海陆空、吃穿用等各行各业。既能看天,也能看地、看人”。在天文观测中,通过光谱测量得到天体的组成及其与地球的距离,从而揭示宇宙诞生及演化规律 在光通信领域,光栅的分光作用使得不同波长的光能够携带信息顺着光纤飞入千家万户̷̷  通常,光栅性能越强,能分析出的物质成分就更精细。光栅面积越大,集光率和分辨本领就越高 光栅的精度越高,信噪比就越高。2009年,中科院长春光机所启动光栅刻划系统研制工作,一开始就瞄准世界领先水平,攻克光栅同时“做大”和“做精”的难题。  “精密机械之王”成功刻划出了400毫米×500毫米的大面积中阶梯光栅,标志着我国大面积光栅制造技术已达到国际领先。这一块光栅有多强?唐玉国说,最有经验的油漆工能辨别出1000多种色彩的微妙变化,而光栅理论上能够分辨出超过4亿种,可谓世界上感知色彩的最强利器。  光栅刻划机是制作光栅的母机,“做大”“做精”光栅是世界性难题  以防尘服武装,再经风淋室除尘,记者才得以获准进入实验室。这里有一套精密的环境保障系统,要求在30天内温差控制在± 0.01℃之内。  项目组成员、长春光机所研究员齐向东参与了光栅刻划机的设计、研制、调试等全过程,并长期在一线担任指挥。他说,这台仪器对环境要求极为严苛,气温、气压、空气成分等哪怕极其微小的变化,在纳米的尺度下,也可能带来巨大的刻划误差。  对环境的苛刻要求源自光栅刻划机自身的高精度。它由上千个元件、部件精妙配合而成,几乎所有关键部件冲击世界极限水平。加工装调精度难、运行保障环境要求之高,前所未有。  丝杠、蜗轮、导轨是刻划系统“三大件”,项目启动之时,国内现有机床技术根本达不到精度要求,研究组不得不采取土办法——手磨加工。  丝杠被誉为刻划机的“心脏”,其精度水平直接影响整机性能。国内不能造,国外买不到,已经退休的80岁高龄老专家张泰返聘回所,并亲自上阵,带领青年团队不分昼夜加工和检测。历时近1年时间,终于研磨出这根丝杠。这也是目前世界上精度最高、行程最长的三角螺纹丝杠。  用同样的方法,项目组费时6个月加工出蜗轮,8个月加工出V形导轨。这些具有亚微米、纳米量级的关键器件,都是科研人员用双手研磨出来的。此外,项目组成员为了攻克金刚石刻划刀、光栅镀膜等技术难题,也屡屡实验、研磨、调整,方才达到了光栅刻划机的要求。“有一次,项目组去外面交流。一握手,对方都说,你们的手不像科学家,倒像工人。”巴音贺希格回忆。  立项之初,研制计划时间是三年半,但由于整个过程比预料困难太多,前后花费了近8年,成为“严重耽搁的项目”。“研制期间,我们承受着巨大的压力,往往‘按下葫芦又起了瓢’,好不容易攻克一个困难,新的问题又立马出现。”齐向东说,科研人员不停地寻找问题产生的根本原因,有时候甚至要推翻之前花了很长时间建立起来的假设,否定自己重新开始。“这8年中,我曾多次感到绝望,以为进行不下去了。大光栅通过验收时,又觉得一切都很值得。”  这项成果使我国在光栅领域不再受制于人,并将精密机械加工技术推向世界前沿  国际上掌握光栅研制技术的国家很少,大面积高精度光栅是科技强国竞争的焦点。在此之前,只有美国能够制作300毫米以上中阶梯光栅。  大面积、高精度光栅刻划机的成功研制,使我国战略高技术领域所需的光栅不再受制于人,还将我国精密机械加工技术推向了世界前沿。  “我们这一代科研人员做出这台机器,离不开长春光机所几代人的努力。我们只是属于摘桃子的人,没有前辈的积累,没有青年梯队人才的付出,都不可能完成这项艰巨任务,是老中青三代人的结晶。”齐向东感慨。  1959年,长春光机所自主研制出了我国第一台光栅刻划机和第一块光栅。项目期间,我国第一代光栅刻划机的领军人、机械刻划光栅创始人梁浩明回到长春光机所,在重要问题上给出了指导意见 带领团队手工研磨丝杠等精密零部件的张泰先生,也是我国第一台光栅刻划机研制的参与者 已经退休的郝德阜研究员参与了系统的总体结构设计。  目前,我国第一台光栅刻划机依然没有“退休”。半个多世纪前,仅仅借助少量公开发表的相关文献,梁浩明等人开始了光栅刻划机的研制工作。没有专门设计的计算机软件,设计人员就靠手工绘制来画图 没有数控机床,科研人员就靠双手打磨加工零部件,精度甚至比当今数控机床加工还要高。  上世纪80年代,长春光机所计划研制高精度大面积光栅刻划机,由于资金等种种限制,项目搁浅,我国遗憾地错失了追赶光栅制造强国的机会,制造大光栅也成为我国光栅人的梦想。  “我们有信心,也有信念能够完成项目。长春光机所具有数十年的技术积累,此外,现代精密仪器加工技艺水平更高,技术条件更好。老一辈在物质匮乏年代都能够制造出精度非凡的光栅刻划机,我们有条件也有责任把新一代刻划机做好。”齐向东说。  八年磨一剑,项目组研制的这套大型高精度光栅刻划系统,攻克18项关键技术,取得9项创新性成果。  让唐玉国欣喜的是,经过光栅刻划机项目历练,一批青年人才成长起来了,关键技术得到有效传承。他还说,研制成功并不是刻划机的重点,未来项目组还将从“精稳快新”四个方面对它进行持续改进和技术升级、提升性能,使其在满足国家重大科研对大光栅需求的同时,始终保持国际领先。
  • “中国创造”的典范:多光栅折叠光谱——访复旦大学陈良尧教授
    2006年,国际两家光电子杂志Laser Focus World和Photonics Spectra的编辑曾分别主动在世界技术新闻专栏中特别介绍了复旦大学陈良尧教授课题组研发的多光栅二维折叠光谱技术,认为该技术的创新原理和方法将能够被拓广并应用于更具挑战性的高效率光谱获取和分析领域,以及推广到中远红外光谱分析领域。   上海市计量测试技术研究院的资深光学科学家袁海林教授也曾评论到,&ldquo 采用多光栅结构对成像光谱进行高密度折叠,在很宽的光谱区内实现高分辨率、快速和长时间可靠测量,将会成为现代光谱仪设计中一个主流技术和发展趋势&rdquo 。   究竟是怎样的技术让国内外一片赞誉之声?为了寻求答案,近日仪器信息网编辑采访了多光栅折叠光谱仪技术的研究者&mdash &mdash 复旦大学陈良尧教授。 复旦大学 陈良尧教授   &ldquo 原理性创新&rdquo   光谱分析仪器在科学研究和工业领域有着广泛的应用,为满足应用需求,国际上已经发展了各种类型的光谱分析原理和方法,其中最主要的是采用棱镜和光栅等光学色散元件,结合高灵敏度探测器对各种光谱(如反射、透射、吸收、散射、椭圆、荧光、拉曼等光谱)进行测量和分析。但受到光电探测器光谱响应、光栅色散和机械扫描等因素的制约,只能被迫在光谱工作区宽度、分辨率和速度等参数之间做出妥协,从而严重影响和限制了其在许多重要领域的应用。这是国际学术和产业界长期未能解决的瓶颈和难题。   &ldquo 传统的光栅光谱仪需要使用机械装置对色散元件进行位移和旋转,这将限制测量速度的提高,而且机械转动部件的定位精度低,可靠性差,容易在操作过程中发生故障 另外,由于国内机械加工水平所限,使得国产光栅光谱仪的机械部件精度和可靠性不高,从而影响了光谱仪的整体性能水平,&rdquo 陈良尧说,&ldquo 另外,一块光栅难以覆盖全光谱范围,衍射效率为非均匀性分布,在其光谱衍射工作区的两端效率较低,影响了仪器的信噪比质量。&rdquo   在长期的光谱分析研究中,为克服传统仪器的这两方面局限性困难是陈良尧当初决定研发&ldquo 多光栅折叠光谱分析仪&rdquo 的原因,他希望能够研制出一种没有任何移动部件、光谱工作区宽、测量速度快的光谱仪。基于这一想法,陈良尧于90年代末开始&ldquo 多光栅折叠光谱分析仪&rdquo 的研制。&ldquo 这是原理和方法的创新,并非是&lsquo 阳春白雪&rsquo ,它的物理概念清楚,技术可靠,易于普及推广,只不过很多人没朝这方面去想。&rdquo   但是,当前光谱仪技术可以说是非常成熟了,再要尝试原理性创新,可能并不像陈良尧说的那么容易。在10多年时间的持续研究努力中,陈良尧教授经历了很多,如最初虽有设想,但缺少研究经费支持,在市场上也买不到现成的关键元器件,业内对这类极具应用前景的新原理和新技术的认识也不统一等等。不过,&ldquo 梅花香自苦寒来&rdquo ,2012年,最终实现的研究成果被选为国家自然科学基金&ldquo 十一五&rdquo 优秀成果。至今已经推出了多种可供实用的样机,集成组合的光栅数也由最初的3块增加到了10块。日前,陈良尧教授的&ldquo 极高密度二维折叠光谱成像装置&rdquo 课题入选了2014年高校自然基金国家重大科研仪器研制项目。 已研制完成的二维折叠光谱分析仪的整体外形图,250mm焦距,优于0.1nm光谱分辨率,全谱测量时间小于0.1s,重约8.9公斤。   多光栅折叠光谱仪采用了时间并联模式的快速光谱信号获取的新原理和方法,利用二维面阵探测器的优点,在一台光谱仪中,同时满足宽光谱区、高分辨率和快速测量的三项关键功能要求。在10光栅二维折叠光谱分析仪中,是将具有不同闪耀角和色散特性的10块子构成一个光栅阵列,克服了面阵CCD信号接受面的张角限制,在200-1000nm光谱区将一维约276mm光谱探测区的近2万个光谱数据点进行二维10重折叠,快速成像在二维面阵探测器的焦平面上。由于无任何机械位移部件,使得最小的光谱获取时间仅受限制于将光谱从CCD传输到数据存储器件所需要的时间,实现了全光谱高精度快速测量和分析。   &ldquo 所有用到光谱测量分析的地方都可以用&rdquo   &ldquo 多光栅光谱是通用型光谱仪,所有用到光谱测量分析的地方都可以用,如可以应用于食品环境等领域的科研与日常检测,而且未来完全可能替代常见的紫外、红外等光谱分析仪器。&rdquo 陈良尧对多光栅光谱仪的应用前景非常乐观,&ldquo 随着高性能低成本面阵光电探测器的普及,二维折叠光谱将成为主流光谱分析技术在更多领域实现推广应用。&rdquo   &ldquo 而且,由于改进了传统光谱仪的一些不足,使得该仪器可以用于一些极端条件检测。&rdquo 例如:由于无任何机械转动部件,多光栅光谱仪的全谱扫描速度最快能达几毫秒至数十毫秒,所以在清华大学等离子体实验室中,能利用它在真空条件下对等离子体原子谱线进行原位全谱检测分析,在相同的实验条件下,对各种原子态谱线进行比较分析,获得较为可靠的实验数据和结果。&ldquo 并且,等离子体实验室还希望通过合作,研究该技术在真空紫外条件下的应用。&rdquo   多光栅光谱仪既可以作为一种标准配置的光谱仪独立使用,也可以成为一个载体&mdash &mdash 作为光谱分析仪器的核心部件,可以极大简化分析仪器的结构。&ldquo 光谱仪是光谱分析仪器的&lsquo 心脏&rsquo ,目前很多国产光学分析仪器采用的还都是传统扫描型光谱仪,如果多光栅光谱仪能够得到普及,将会显著促进国产光谱仪器的更新换代。&rdquo   &ldquo 探测器技术与成本亟待突破&rdquo   &ldquo 目前在10光栅集成的仪器中,使用的是美国PI公司的CCD面阵探测器,单价在7万美元左右。高性能光电探测器依然是限制我国先进光谱分析技术发展的瓶颈,也是成本无法降下来、难于大规模普及的主要原因。&rdquo 不过,陈良尧也高兴地说到,已有国内企业正从海外引进新一代CMOS光电传感器技术,&ldquo 我们将会成为他们产品的第一批实验室用户。&rdquo   另一个关键元件&mdash &mdash 光栅则可以根据具体需求,既可以购买进口产品,也可以选择国内生产的。&ldquo 我们已经在国内找到一家企业,可以研制和生产出我们所需的光栅和其他光学器件。&rdquo   对于下一步研发方向,陈良尧介绍到,&ldquo 当前最重要的是把研究项目做好,并努力将这一技术应用到不同领域 另外,组合的多光栅模块本身也可以成为一个产品,现在的组合光栅的方位角还需要人工调试,未来希望能够采用自动化激光准直技术,研制出已被封装好、不需要调节的光栅组,用户拿到手里可以直接使用。组合的光栅数也有可能进一步增大,由现在的3-10光栅增至40-50块光栅的组合,满足更高精度的光谱分析需求。&rdquo   经过持续的研究努力,多光栅光谱仪已能够被实际应用。据介绍,除了面阵探测器国内目前还做不出来,其它重要部件都实现了在自己的实验室或在国内找到企业进行加工生产。说到这里,显现出了陈良尧教授比较独特的研究态度和模式,陈良尧将项目研究经费的很大一部分用于改造实验室环境,如在高性能光学仪器研究中,将购买高精度数控机床,用于仪器核心零部件的高品质研制和加工,保证质量,这在目前中国大学的实验室还比较少,对此,陈良尧说,&ldquo 这么做一方面是希望提高科学仪器的研究水平和效率,掌握核心技术,另一方面也十分需要培养研究生们的实际动手能力,不仅进行原理和方法创新,还需要采用先进制造技术,在学生时期就有能力亲手把这些仪器做出来,可靠实现创新科学仪器的各种新功能,在这方面与发达工业化国家相比,我国在培养学生具有硬科学技术研究能力方面的差距还比较大。&rdquo   &ldquo 由于高性能探测器价格一直居高不下,不利于大范围普及,目前仅根据一些用户需求进行定制,需要不断解决问题,让用户满意,建立良好的声誉,&rdquo 陈良尧说到。   后记   据了解,在陈良尧教授的研究成果2003年正式发表后,2007年在美国Light Smyth公司的广告中也出现了采用4种不同光栅结构参数组合的二维折叠光谱分析技术。而关于这一中国自主创新原理和技术的产业化途径,陈良尧无奈的说到,&ldquo 产业化的路还会比较长。&rdquo 究其原因,一是关键部件技术的局限,另外国家的支持政策等也是重要原因。就像采访最后陈良尧所说的,&ldquo 希望能够获得国家较高强度的产业化应用研究项目的支持,并与工业界的合作伙伴一起,使得这项技术被产业化,促进我国高性能光谱分析仪器的进步和发展,将会在国际上有自己的地位,产生出中国乃至世界上最好的光谱仪。&rdquo   编辑:刘丰秋
  • 2022年科学仪器进出口关税调整
    国务院关税税则委员会近日发布了《国务院关税税则委员会关于2022年关税调整方案的通知》,根据《中华人民共和国进出口关税条例》的相关规定,自2022年1月1日起,对部分商品的进出口关税进行调整。随通知公布的还有《2022年关税调整方案》、《2021-2022税则转版对应表(税则税目税率转换)》、《2021-2022税则转版对应表(税则注释修订)》、《部分信息技术产品最惠国税率表》、《进口商品暂定税率表》、《关税配额商品税目税率表》、《2022年自贸协定和优惠贸易安排实施税率表》、《95%、97%税目产品特惠税率表》、《出口商品税率表》、《进出口税则税目调整表》、《进出口税则本国子目注释调整表》等附表。2022年科学仪器调整的具体内容:《2021-2022税则转版对应表(税则税目税率转换)》中,主要列出了2021年和2022年税则的对比,包括税则号列、货品名称、最惠国税率、普通税率。部分射线类应用设备相比之前分类有所细化,新增了子目,税率也随之调整。质谱仪类仪器税则号列发生了变动。《部分信息技术产品最惠国税率表》中,主要列出了税则号列、商品名称和最惠国税率,最惠国税率按照2022上半年和下半年税率分别列出。《部分信息技术产品最惠国税率表》中列出分析仪器、测试测量等仪器和仪器相关零件、附件的最惠国税率,部分仪器2022年最惠国税率为0,部分仪器2022年下半年同比上半年税率降低50%。《进口商品暂定税率表》中,列出了税则号列、商品名称、2022年最惠国税率和2022年暂定税率,涉及包括测量海洋、水文、气象或地球物理用仪器及设备,测量,检验液体流量或液位的仪器,测量、检验压力的仪器及装置,90.26其他税号未列名的液体或气体测量仪器及装置,气体或烟雾分析仪,色谱仪和电泳仪,使用光学射线(紫外线,可见光,红外线)的分光仪、分光光度计及摄谱仪以及其他理化分析仪器及装置,用于测量、记录、分析和评估环境样品或对环境的影响的理化分析仪器及装置,检镜切片机,轮廓投影仪,光栅测量装置,其他光学测量或检验仪器和器具,测振仪,手振动仪,具有可再生能源和智能电网应用的自动电压和电流调节器,自动调控流量、液位和湿度的仪器等仪器及零附件。《进出口税则本国子目注释调整表》中,修改了核磁共振成像成套装置、X射线无损探伤检测仪、γ射线无损探伤检测仪的注释,删除了部分子目中关于测量管道中气体的瞬时流量和累计流量的仪器及装置、质谱联用仪的注释。此外,国务院关税税则委员会近日还发布了《国务院关税税则委员会关于给予最不发达国家98%税目产品零关税待遇的公告》,对原产于最不发达国家98%的税目产品,适用税率为零的特惠税率。适用国家和实施时间将由国务院关税税则委员会另行公布。大批分析仪器、测试测量仪器、光学仪器、生命科学仪器及零件都涵盖其中,详见《98%税目产品特惠税率表》。以上涉及的具体仪器类别可下载附件查看。2022年1月1日起实施:2022年关税调整方案.pdf2021-2022税则转版对应表(税则税目税率转换).pdf2021-2022税则转版对应表(税则注释修订).pdf部分信息技术产品最惠国税率表.pdf进口商品暂定税率表.pdf关税配额商品税目税率表.pdf2022年自贸协定和优惠贸易安排实施税率表..pdf95%、97%税目产品特惠税率表.pdf出口商品税率表.pdf进出口税则税目调整表.pdf进出口税则本国子目注释调整表.pdf实施时间待公布:98%税目产品特惠税率表.pdf
  • 日立分光光度计衍射光栅技术
    日立分光光度计的衍射光栅技术 衍射光栅覆盖了从软X射线到远红外的各种波长,扩展了光谱仪中光学元件的应用领域。日立的衍射光栅在全球多个领域获得了高度评价。比如日本的国立基础生物学研究所的冈崎教授使用90cm*90cm的衍射光栅(刻有36条15cm*15cm的光栅格子)实现了一种人造彩虹,其强度是赤道处太阳光的20倍。此外,美国宇航局发射的探测卫星的极紫外分光光度计采用了日立变间距平面和凹面衍射光栅。 衍射光栅的原理图1衍射光栅衍射的过程衍射光栅是各种光学仪器的核心部件,是一种色散元件,可以将混合了不同波长的光(白光)分成单个波长的光(单色光)。其原理是根据衍射现象将入射处的白光分成不同波长的光,因此单色器中常用光栅作为色散元件。在单色器中,夹缝通常设置在光栅后面,选取特定波长的单色光。在凹面衍射光栅中,一般每毫米有几百或几千个凹槽,如图2所示。图2 凹面衍射光栅 光栅刻划机光栅刻划技术是世界上一种罕见的技术之一,使用机刻光栅能够制造出高质量的单色器。日立优异的衍射光栅刻制技术,能够将光栅刻槽精确到nm级别。光栅刻划机一般使用金刚石刀具,这样制作的光栅衍射效率高,同时凹槽设计具有像差校正功能。详细光栅种类和应用信息请参考:https://www.instrument.com.cn/netshow/sh102446/down_917717.htm 总结日立开发的反射平面光栅和凹面光栅致力于满足前沿科学领域的需求,丰富的产品线能够适应多样化的实际应用。
  • 基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776官网:https://www.bmftec.cn/links/10
  • 正投影机光色参数快速测试仪用于大屏幕投影机光色参数的快速测量仪器
    正投影机光色参数快速测试仪 投影机光色参数检测仪 型号:HAD-XYI-XI正投影机光色参数快速测试仪用于大屏幕投影机光色参数的快速测量仪器,特别适用于投影机生产线上的自动调校。其测量对象包括屏幕光通量、屏幕的光通量不均匀性、对比度、色品坐标和色温。 仪器预设标准A光源及D65光源文件,并可根据用户需求,由用户意设定存储标准光源。仪器可根据不同参考光源自动修正探测器的光谱参数误差,达到屏幕的总光通量、屏幕的光通量不均匀性、色品坐标和色温的密测量。其测量度达到际水平。 仪器软件运行于Windows98/NT环境,具有友好的图形界面、能强大。采用图形化实体数据显示,可以行柱形图和亮度图切换及数据打印输出。仪器同时具有实时通讯能,适用于屏幕参数的在线测量及控制。正投影机光色参数测量,9点照度测量,颜色参数测量术标: 光通量测量范围:0-8000lm(按4m2计算) 仪器度:优于±4% 分辨率:0.05%(满量程) 线性:±1% 作温度:0-50℃ 投影屏幕测试探测器:1-9探测器为照度探测器,5、10、11探测器为色度探测器(根据用户要求仪器也可附带15个探测器) 探测器V(λ)匹配达家照度计标准 具有色温修正软件, 可确测量不同色温的光通量及色品坐标 总光通量自动计算和屏幕光通量不均匀性计算及其相关软件 微机控制及上位机通讯。 刷新频率:3次/s 供电电源:220V交流电 保修期:1年 随机附件:相关软件和说明书
  • 上海光机所研制成功三维达曼光栅
    近日,中科院上海光学精密机械研究所信息光学与光电技术实验室周常河课题组发明了一种新型衍射光学器件——达曼波带片(DZP),并基于此器件,发明了三维达曼光栅。该光栅可将通常透镜的一个焦点转换成三维焦点阵列,称之为三维达曼阵列。该项工作发表在美国光学学会期刊Applied Optics 51, 1619-1630 (2012)上,并入选Virtual Journal for Biomedical Optics(VJBO)。   传统的透镜对单束激光束来讲只会产生一个聚焦光斑。菲涅尔波带片是一种可以产生轴向多焦点的重要光学元件。然而,在实际应用中,菲涅尔波带片产生的轴向多焦点的强度分布不均匀,且主要能量集中在主焦点上,因而菲涅尔波带片结构并不能提供一种实用的轴向多焦点系统。   该课题组发明的这种新型波带片结构DZP,通过将达曼相位编码的思想引入到二元相位波带片结构中,从而可以在透镜的聚焦后场产生一系列等强度、均匀间隔分布的轴向聚焦光斑阵列,突破了传统菲涅尔波带片轴向焦斑能量分布不均匀的固有缺陷,是与传统菲涅尔波带片属于同一类型、相互并列的重要基础衍射光学元件,在轴向并行激光处理和大景深成像等系统中有重要的实用价值。   该课题组研究人员指出,结合这种达曼波带片和另一个二维达曼光栅,可以在透镜的后场实现按照规则晶格结构排布的聚焦光斑三维阵列,即三维达曼阵列。研究人员通过实验,在一个NA0.13和一个NA0.66物镜的聚焦后场分别实现了5×5×5和6×6×7聚焦光斑阵列。这种按照规则晶格结构排布的三维达曼阵列在三维激光直写光刻、三维光存储、并行光学粒子操控等方面有广泛的应用前景。   这种高数值孔径透镜下产生聚焦光斑的三维达曼阵列是上海光机所余俊杰博士在导师周常河研究员的指导下首次实现的。余俊杰博士在毕业论文中详细论述了其发明的达曼波带片、螺旋达曼波带片等一系列新型衍射光学元件的原理与设计加工流程,解决了三维达曼阵列的设计问题,为其在高数值孔径透镜下的广泛应用奠定了基础。
  • 上海光机所实现用于单周期艾瓦激光的超宽带脉冲压缩光栅
    近期,中国科学院上海光学精密机械研究所邵建达研究员、晋云霞研究员团队和张江实验室李朝阳研究员在超宽带脉冲压缩光栅领域取得突破性进展。研究团队针对单周期脉冲压缩需求,成功研制超400 nm宽带金光栅,其在750-1150 nm 的波长范围内衍射效率大于90%,比现役金光栅带宽提升近一倍,并且其研制口径可进一步推向米量级。相关成果以“400nm ultra-broadband gratings for near-single-cycle 100 Petawatt lasers”为题发表于《自然-通讯》。  拍瓦激光器的脉冲宽度从目前10-20个周期压缩到单周期(3.3 fs)结合大能量的载入被认为是实现艾瓦激光的未来。研究团队长期深耕于宽带高阈值脉冲压缩光栅领域。在本项工作进展中,超宽带金光栅的仿真设计取得突破,引入方位角扩展了设计和应用自由度 实验上掌握了光栅槽形演化规律,发明了大底宽小尖角金光栅技术(专利号:CN114879293B),成功研制1443 g/mm和1527 g/mm超400 nm宽带金光栅。如此宽带和高阈值(优于0.3J/cm2)的超宽带光栅将在宽角非共线光参量啁啾脉冲放大系统【WNOPCPA,Laser Photonics Rev 17, 2100705(2022). https://doi.org/10.1002/lpor.202100705】中发挥关键性作用,理论计算证明其足以支撑 4 fs 脉冲压缩,可将实现百拍瓦需要的光栅口径从米级缩减至半米级。  啁啾脉冲放大(CPA)及其衍生技术推动激光峰值功率从太瓦推向10PW量级,脉冲压缩器已成为高功率超强超短激光装置的核心模块。受限于大口径、宽光谱、高阈值压缩光栅的单路负载能力,中、欧、美、俄、韩等国均已部署多路相干合成100 PW乃至艾瓦量级的激光设施建设。除此外,单周期(3.3fs)脉冲也是产生艾瓦级激光的重要策略之一。近些年来,WNOPCPA等技术能够在工程上支撑增益介质的带宽拓展至 400 nm,从而支撑 3-6 fs的傅里叶变换极限脉冲。支持单周期脉冲展宽和压缩的超宽带光栅是实现单周期艾瓦激光的一个核心技术难题。目前,团队正将超宽带光栅的口径推向米级,并将其应用于单周期艾瓦激光的原理样机。  研究工作得到了国家重点研发计划、国家自然科学基金、科技部、上海市战略新兴产业项目的支持。
  • 大族激光 — 世界知名激光设备制造商选用雷尼绍RGH24光栅反馈系统
    多年来,大族激光研发并生产了一系列激光设备,不断满足世界工业对激光应用的各种需求。为迎合中国国内市场的急速发展,大族激光一直在积极地寻求高质量零件供应商,确保随时为客户提供高精度、便利、耐用的激光设备方案。在本案例分析中,大族激光选择雷尼绍RGH24光栅作为其音圈电机的位置反馈系统。 作为在中国深圳上市的公司,大族激光是一家集技术研究、开发、生产及销售为一体的高科技企业。它在世界激光行业中处于领先地位,年出货量高达10 000台!其旗下拥有众多子公司,包括大族电机科技有限公司,大族数控科技有限公司等,为不同领域的客户(如诺基亚、大众汽车等国际企业)提供专业的激光设备和应用方案。公司产品齐全,如激光打标机、切割机、焊接机、电机配件等。大族激光通过自主研发把&ldquo 实验室装置&rdquo 变成可以连续24小时稳定工作的激光技术装备,是世界上仅有的几家拥有&ldquo 紫外激光专利&rdquo 的公司之一。 2004年至今,大族激光从雷尼绍购买了10 000多套光栅系统,广泛应用于各类产品上。 大族激光集团总部 激光打标机内的音圈电机 音圈电机的工作原理是将电信号转换成机械力,当永磁磁铁之间的线圈通电时,磁场改变,从而产生力,产生的力会驱动永磁磁铁之间的线圈组运动;通过控制电流大小,可使线圈在永磁磁铁之间来回移动,从而产生线性运动。与其他电机不同,音圈电机具有一流的线性特性,例如直接驱动、零齿槽刀、轻动子高响应和带宽、动子及定子无磨损等。&ldquo 直接&rdquo 驱动的特性使音圈电机广泛应用在一些距离短但需要较高加速度的直线运动的场合。大族激光旗下的大族电机不但把音圈电机在市场上作为零件出售,还将其广泛应用在集团生产的激光打标机上。 研发部总裁王光能先生说:&ldquo 打标机需要在材料上打出立体效果的标签,我们必须通过运动反馈系统来控制镜子,在极短的时间内引导激光定位到相应位置上,雷尼绍正好能提供这方面的产品。&rdquo RGH24读数头通过光学原理在光栅尺上读取数据,与接触式系统相比,这种非接触式设计能够使音圈电机在位置控制上高速运转,并保证了高重复定位精度。除了应用在激光上之外,音圈电机还可以用于医疗检测仪器、精细位置控制和电脑硬盘生产等等。 音圈电机工作原理 音圈电机 体积轻巧 音圈电机是一个理想的线性促动器,在短距离(微米到厘米)位置控制上具有极佳的效果。雷尼绍光栅尺安装在音圈电机活动部位上,读数头则被固定。由于音圈电机需要保持其高输出/重量比例数值,因此光栅尺必须轻巧,以维持最高加速度。王总说:&ldquo 我们在选择光栅尺的时候,尺子的重量是我们考虑的首要问题。通过比较几家供应商的产品,我们发现雷尼绍RGS20光栅尺十分轻巧,满足需要的同时,又不影响电机的效率。&rdquo 雷尼绍RGS20光栅尺使用轻巧材料制成,厚度仅0.2 mm,在音圈电机上几乎是不载重量,完全不影响电机的快速运转。由于使用音圈电机的机器空间一般都比较有限,因此包括电机位置控制的部分要尽量设计得轻巧。设计师在市场上选择读数头时需要考虑体积问题,读数头必须能够固定在狭小的空间内,配合光栅尺运动,从而控制电机位置。 王总说:&ldquo 在市场上同类产品中,雷尼绍读数头设计轻巧,质量和体积都能令人满意,并且其他性能不受影响。&rdquo 王光能 大族激光打印机 安装简单 一般光栅系统的安装过程主要包括三个步骤:安装和固定光栅尺、安装读数头以及校准。王总说:&ldquo 雷尼绍光栅系统的整个安装过程十分简单,看过雷尼绍工程师安装一次后,我们的第二台机器就能自己安装了,而且过程快捷便利,看了指示灯就能知道安装过程是否正确。&rdquo 雷尼绍RGS20光栅尺成卷存放,用户在使用时可根据用途自行裁剪所需要的长度。在大族激光的音圈电机设计上,行程距离只有10到20 mm,王总说在市场上找到相同尺寸的光栅尺比较困难,而按需裁剪的设计解决了这一难题,为他们带来了便利。 王总继续说:&ldquo 我们不需要打孔或其他工具辅助,只要把光栅尺背面的双面胶撕掉,贴在预先定好的位置上就可以了。这种设计使我们能够根据需要灵活应用,我们可以自己裁剪光栅尺的长度来决定电机的行程距离,完全不受供应商的限制。&rdquo 此外,雷尼绍读数头上装有专利LED指示灯,使安装和校准过程变得简单快捷。用户通过观察LED指示灯的颜色,便可知道安装是否成功。 RGH24 展望 自2004年至今,大族激光与雷尼绍合作已有8年时间,展望未来,王总说:&ldquo 我们大族会在激光行业中继续开发新产品和技术,为客户提供高质量的激光设备;同时我们也会在其他领域,如LED、太阳能等新能源课题上投入资金进行研发。希望在不久的将来,大族能成功开发出与激光设备一样出色的产品,为全球用户提供可信赖、高品质的工业设备。&rdquo -完- 如需了解雷尼绍更多产品,请访问www.renishaw.com.cn 关于雷尼绍 英国雷尼绍公司于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国共设有三个分公司和八个办事处,员工近百人。公司产品广泛应用于机床自动化、坐标测量、快速成型制造、比对测量、拉曼光谱分析、机器校准、位置反馈、形状记忆合金、大尺寸范围测绘、立体定向神经外科和医学诊断等领域。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3000人。 -完- 详情请联系: 张晶 (Grace Zhang) 市场助理 Marketing Administrator 雷尼绍(上海)贸易有限公司北京分公司 电话: +86 10 510882882 *1001 电邮:Grace.zhang@renishaw.com
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 在屏幕保护玻璃上“写入”光栅,为智能手机增加光谱仪功能
    智能手机自1993年推出以来,已成为全球广泛使用并融入人们日常生活的电子设备。多年来,随着计算能力的提高,以及新的传感器及其功能的加持,智能手机集成平台不断发展。智能手机正在取代摄像机、照相机、闹钟、手表、全球定位系统(GPS)、日历、计算器、闪光灯等等过去常见的设备,变得像一台可以上网的小型计算机一样强大。新冠肺炎疫情期间的作用,也凸显了智能手机在快速向大范围人群分发应用的能力。光子学是丰富智能手机功能并提高其潜力的极具前景的技术。全球主要智能手机制造商已经将新的光子传感器集成到了一些最新款的高端产品上,例如,面向增强现实(AR)应用的激光雷达(LiDAR),或者用于采集实时血氧水平和心率的脉搏血氧计等。与此同时,许多研究小组正在积极利用现有板载传感器或开发新的传感器,在智能手机上创建新的功能。利用智能手机摄像头及算法的显微镜系统,已被证明可以计数白细胞或红细胞,以用于血样分析以及寄生虫、细菌和病毒的检测;还可以通过RGB摄像头评估蓝色和绿色光谱成分的比率来检测血糖水平;采用Mie扩散法还可以测量水的浊度水平;还有报道基于呼吸中酒精含量而造成的蒸发率差异的光学式酒精测试仪等。然而,这些新的功能通常需要添加占用空间的附加组件。对于尺寸敏感的智能手机来说,空间限制问题值得关注。为了解决这个问题,Lapointe等研究人员提出了在手机屏幕前作为保护层的750 μm厚的康宁大猩猩玻璃上蚀刻光子器件的想法。借助1030 nm飞秒(fs)激光直接写入,他们展示了在1550 nm波长0.053 dB/cm的低损耗单模波导。他们还展示了一种基于玻璃表面倏逝场相互作用损耗的折射率(RI)测量装置。Davis等研究人员在1996年介绍一种玻璃材料的飞秒激光功能化。该工艺利用多光子吸收或隧道电离等非线性效应来引起折射率的永久变化。折射率变化很大程度上取决于材料和写入条件,并受多种因素的叠加影响,例如色心形成、玻璃基质的结构变化或导致密度变化的热效应等等。在高重复率下还存在一种特殊的热积累机制,会导致较大的焦外折射率变化。继Lapointe等人的研究,研究人员对通过飞秒激光改性的保护玻璃层机械性能的完整性进行了研究,发现飞秒激光写入对玻璃强度的影响可以忽略不计。同一项研究表明,通过减少写入所需的光子数量(减少波长),折射率变化可以增加一个数量级。据麦姆斯咨询介绍,近期,加拿大蒙特利尔理工学院工程物理系的Jean-Sébastien Boisvert及其团队在Scientific Reports期刊上发表了一篇题为“Fs laser written volume Raman–Nath grating for integrated spectrometer on smartphone”的论文,研究人员首先展示了一种没有热量积累的新写入方式,可以实现具有正折射率变化的高分辨率精细写入点。正折射率变化对于波导写入特别重要,而小折射率变化区域,对于写入具有精细周期的光栅至关重要。正如研究人员在两种不同的玻璃中所展示的那样,这种机制并不局限于个别玻璃。智能手机集成光谱仪原理示意图在该研究中,飞秒激光写入采用了来自Light Conversion的8W Pharos激光系统,该系统具有250 fs脉冲长度。激光器被耦合到Orpheus OPA以将频率加倍,从原来的1030 nm到515 nm。利用50倍Olympus PLAN 0.65数值孔径(NA)显微镜物镜聚焦飞秒激光脉冲,并将样品置于由AEROTECH 3200控制器控制的3轴写入系统上。使用脉冲选择器来控制激光器的重复频率以节省脉冲能量。激光的偏振与写入方向平行。所使用的写入速度在0.1~100 mm/s之间,脉冲能量在82~825 nJ之间。用于写入的玻璃有两种类型:康宁大猩猩玻璃(一种用于保护多媒体屏幕设备的碱性铝硅酸盐玻璃)和钢化铝硅酸盐玻璃(来自Bodyguardz的一种通用屏幕保护玻璃层)。两种玻璃以101 kHz重复率不同写入速度时,飞秒激光曝光下诱导集成折射率剖面断层扫描变化的演变采用这种新颖的写入技术,研究人员展示了在智能手机摄像头前以拉曼纳斯机制运行的体相光栅(VRNG),以获得一种集成的智能手机光谱仪。其关键是产生一个弱VRNG,不会显著改变相机的传统功能,但在暴露于强光照射时会产生光谱。(a)写入钢化玻璃的VRNG,置于智能手机前置摄像头前;(b)如果没有明亮的光源,光栅不会影响相机拍摄的日光成像质量,但如果有明亮的光线靠近光栅或在弱光环境中拍摄则会出现衍射光谱在热积累范围之外,两种玻璃都发现了一种产生正折射率变化的新写入方式。对于这两种玻璃,都发现了这种无热累积写入机制的上限阈值,重复率分别小于150 kHz和101 kHz,光通量分别为8.7 × 106 J/m²和1.4 × 107 J/m²。将尺寸为0.5 × 3 mm²、间距为3 μm的弱VRNG放置在三星Galaxy S21 FE智能手机前,以使用第二衍射级记录光谱。该光谱仪覆盖了401-700 nm的可见光波段,探测器分辨率为0.4 nm/pixel,光学分辨率为3 nm。利用该光谱仪测定了水中有机激光染料Rhodamine 6G的浓度检测限为0.5 mg/L。这一概念验证为现场吸收光谱法快速收集信息铺平了道路。论文链接:https://doi.org/10.1038/s41598-023-40909-9
  • 雷尼绍RESOLUTE™光栅升级科研级天文望远镜的位置反馈性能
    背景Wise天文台是由以色列特拉维夫大学 (Tel Aviv University) 拥有并运营的天文研究机构。四十多年以来,该天文台始终致力于支持天文学领域的前沿研究。它位于以色列的内盖夫 (Negev) 沙漠中,距离最近的城镇也有五公里;这种独特的地理位置意味着,这里的夜空全年大多数时间晴朗无云,并且远离光污染的影响。凭借这些优势,该天文台的一米口径天文望远镜可以拍摄出高质量的天文照片,为全世界各大天文学和天体物理学研究机构提供理想的研究素材。特拉维夫大学的天文望远镜是全自动操作的,并且配有超高分辨率的光谱仪,用于发现已知恒星周围的新行星。该望远镜安装于1971年,自安装之后,它的结构基本保持不变。但是其中的一些内部组件, 例如电机和轴承,尤其是位置反馈光栅,已经逐渐接近设计使用寿命,而且研究人员也开始注意到一些性能问题。望远镜的运动轴上装有光栅,用于测量望远镜的移动位置。天文台的研究团队发现,原来的光栅有时会提供错误的信息,导致软件毫无预警地停止运行。因此,现场工程师最终决定更换光栅,并且开始联系光栅供应商报价。该研究团队咨询了其他天文台的同行,并且对供应商进行了在线审核,最终选择与一家以色列的运动技术供应商Soulutions合作,这家公司同时还是雷尼绍光栅产品的授权经销商。 挑战“由于天体沿着轨道不停运行,研究人员只有很小的机会窗口能拍摄特定星座的高质量照片,所以我们必须快速完成升级工作,从而将停机时间降至最短,”Soulutions公司的雷尼绍光栅业务经理Benny Naim解释道。Naim先生继续说道:“我们详细了解了天文望远镜的运动方式,包括它的精度和速度要求,以确定新光栅的最佳安装位置。综合考虑以上因素,我们认为必须进行定制设计。”“在为研究团队提供解决方案建议时,我们还考虑了天文台的地理位置,”Naim先生补充道。“在沙漠中,气温日变化剧烈,白天仿佛盛夏,到了夜晚温度却降到零度以下。温度变化会导致热胀冷缩,进而对 金属物体产生不利影响。因此,在设计用于将新光栅安装到望远镜上的定制安装支架时,我们必须考虑热膨胀效应,以确保气候状况不会影响望远镜的精度。” 解决方案Soulutions团队建议在望远镜上安装两个雷尼绍RESOLUTE™ 绝对式光栅。RESOLUTE系列能够使 直线光栅系统在高达100 m/s的速度下实现1 nm分辨率,使圆光栅系统在高达36,000转/分的速度下实现32位分辨率,这是世界上首款做到这一点的绝对式光栅。而且,RESOLUTE直线光栅系统的超低电子细分误差 (SDE) 和抖动使其从同类光栅中脱颖而出。该团队还搭配了RTLA30-S直线栅尺。这是一款轻薄小巧的不锈钢钢带栅尺,其安装选项考虑到了基体热膨胀的影响,又兼具钢带栅尺的便利性。雷尼绍光栅技术提供了无与伦比的坚固性、优异的运动控制性能、宽松的安装公差、更高的位置稳定性,以及低至±40 nm的电子细分误差,能够实现平稳的速度 控制。“在首次造访天文台进行现场调查之后,我们决定不从望远镜上拆下原来的光栅,因为这样需要拆解整个望远镜,从而增加研究团队的停工时间,”Naim先生说道。“相反,我们建议先断开旧光栅的连接,然后使用定制加工的机械支架安装新光栅,这样就能快速而高效地完成整个升级工作。”Soulutions团队在天文台进行了两次现场访问,并且在望远镜的每个运动轴上都安装了RESOLUTE直线光栅。横滚轴控制望远镜的方向,用于观测不同的天区;而俯仰轴控制物镜和摄像机的左右运动。“将光栅连接至望远镜的控制器之前,我们先使用雷尼绍的高级诊断工具 (ADTa-100) 测试了光栅的安装效果,”Naim先生说道。“我们使用软件验证了两个光栅均可提供良好反馈,并且检查了整个轴行程上的信号强度,从而确保了光栅能够实现优异的运动控制性能。在确定安装成功后,我们才将光栅系统与控制器相连。”ADTa-100可从RESOLUTE绝对式光栅中获取全面的实时数据,并将这些信息显示在ADT View软件的 用户友好型界面上。它不仅可以在复杂安装条件下报告光栅的性能,亦可辅助系统查错,从而避免机器发生长时间停机。结果“雷尼绍的先进技术与Soulutions经验丰富的本地专家团队强强联手,帮助我们快速找到了最适合的解决方案,”Wise天文台的Arie Blumenzweig表示。“望远镜的位置反馈子系统的精度、分辨率和可靠性均显著提升,性能焕然一新。现在,我们正在研究如何进一步改进观测方式,以充分利用新光栅系统的诸多功能。”Naim先生继续说道:“对于我们团队而言,这个项目既特别又充满挑战,但同时也收获颇丰。在运行了一个月之后,Wise天文台的研究人员向我们反馈说,新光栅系统的位置测量性能优异,并且希望我们继续升级天文台的其他望远镜。看到雷尼绍技术在天文学研究领域施展身手,我们感到非常激动。” Wise天文台简介Wise天文台是专业的天文研究机构,由特拉维夫大学拥有并运营。它位于内盖夫沙漠的米茨佩拉蒙镇 (Mitzpe Ramon) 附近,在特拉维夫以南约200 km的位置。这里部署有一架一米口径的Ritchey-Chrétien天文望远镜,多台小型自动天文望远镜,以及多种用于地质与大气科学研究的专业仪器。
  • 我国高精度平面刻划光栅已自主可控 国产光谱仪器研发迎来新时代——访中科院长春光学精密机械与物理研究所 李晓天副研究员
    p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   作为光谱仪器的核心部件,光栅的地位举足轻重。近年来,针对我国机械刻划光栅的刻划面积及精度不足等问题,中科院长春光学精密机械与物理研究所(以下简称:长春光机所)开展了一系列的技术攻关,不仅成功研制出大型高精度光栅刻划机,而且该刻划机已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅。 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   为了更深入的了解我国光栅及光谱仪器的研究现状及未来发展态势,仪器信息网编辑特别邀请到中科院长春光学精密机械与物理研究所李晓天副研究员给大家分享其在光栅及光谱仪器研发过程中的经验。 /span /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 356px " src=" https://img1.17img.cn/17img/images/202007/uepic/6a4b4291-b891-4b13-b4aa-d667cb197457.jpg" title=" 微信图片_20200710094424.png" alt=" 微信图片_20200710094424.png" width=" 450" height=" 356" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中科院长春光学精密机械与物理研究所 李晓天副研究员 /strong /p p style=" text-align: justify " span style=" font-size: 14px " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   李晓天,博士生导师,九三社员,Opt. Express等10余个权威SCI期刊审稿专家。自2006年参加工作,主要从事光电检测、衍射光栅及其在光谱技术领域应用研究等科研工作,作为项目负责人获批空间外差拉曼方面的国内第一个自然科学基金青年基金和第一个面上项目,以及吉林省技术攻关项目等 作为分系统或子课题负责人承担国家973课题、国家重大科研装备研制项目等,曾获“航天科技四院杰出青年”、“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。获授权发明专利28项,其中第一发明人12项 在Opt.Express等权威SCI/EI期刊发表论文40余篇,其中第一/通讯作者16篇。培养的博士和硕士研究生获得国家奖学金、中科院院长奖、中科院新生奖等10余种奖励,其中一名学生连续两年获国家奖学金后公派留学于美国哈佛大学 /span 。 /span /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 我国高精度平面刻划光栅已处于国际领先水平 /strong /span /p p style=" text-align: justify "   衍射光栅是最重要的一类光学色散元件,它是绝大多数光谱仪器的核心器件,其精度高低直接决定光谱仪器性能的优劣。按制作方法, 衍射光栅可分为机械刻划光栅、离子束刻蚀-全息光栅、体全息光栅等。随着国家支持力度的加大,我国各类光栅制作技术均有显著提升,与国外最高水平的差距也越来越小,特别值得一提的是,我国的机械刻划光栅制作技术已达到国际领先水平。 /p p style=" text-align: justify "   机械刻划光栅的性能主要由光栅刻划机的运行精度决定。据李晓天介绍,光栅刻划机是制作光栅的母机,机械刻划光栅主要是通过光栅刻划机的金刚石刻刀在光栅基底的膜层上挤压成形出一系列具有一定规则形状和间距的刻槽,在此期间,刻划机的基底工作台要不断进行精密进给运动,而金刚石刻划刀要不断进行往复运动,光栅刻划的定位精度要达到纳米量级。因此部件的加工装调精度要求极高,运行保障环境要求也极为苛刻,光栅刻划机也被誉为“精密机械之王”。 /p p style=" text-align: justify "   李晓天开展的光栅研究主要是针对机械刻划光栅,采访中他给大家详细介绍了自己在这方面的工作。据介绍,李晓天通过仿真分析和科研经验等,指出国产光栅刻划机刻划系统结构不够稳定是导致刻划出的光栅杂散光较大的主要原因之一,最终通过大量的实验验证了这一结论 据此,他在导师唐玉国研究员等前辈的悉心指导下,在国内率先开展了光栅刻划系统误差修正技术研究,最终使得刻划出的光栅杂散光从10 sup -3 /sup 量级降低至可达10 sup -5 /sup 量级,此外他还开展了衍射波前主动补偿、光栅性能实时检测技术等研究工作,有效提高了光栅刻划机及刻划光栅的性能。目前,李晓天及其所在的大光栅团队已研制出高精度大光栅刻划机1台,主要性能指标为:最大刻划面积:400mm× 500mm;最高刻槽密度:6000线/mm;仪器运行的短期定位误差:≤3.0nm(1σ),并已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅,获得“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。相关成果被中央电视台新闻联播、人民日报、科技日报、经济日报、光明日报等多家媒体进行报道。 /p p style=" text-align: justify "   谈到其开展的光栅相关工作,李晓天自豪的说,“就光栅定制而言,我们光栅产品价格要比国外产品低的多,国内的一些企业获得信息后,原本计划在国外采购的光栅也改为从我们单位定制采购了。”据悉,长春光机所的刻划光栅产品已在北京博晖创新光电公司、浙江大学、加拿大多伦多大学、中科院西安光机所、中科院上海技物所等单位研制的光谱仪器中得到了成功应用。其中,加拿大多伦多大学将他们研制的红外中阶梯光栅与美国Bach公司制作的194线/mm中阶梯光栅进行了对比,结果发现该光栅性能优于美国Bach公司产品,其中TM波的光栅衍射效率高出约20%左右;北京博晖创新光电公司将长春光机所的光栅产品与其购买的一块国外产品进行了对比,发现长春光机所的光栅产品性能更优。 /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 以光栅自主创新促进光谱仪器进步 核心部件国产化率亟待提升 /strong /span /p p style=" text-align: justify "   作为光谱仪器的核心部件,光栅技术的深入对光谱仪器的开发具有重要的指导意义。在完成了光栅刻划机研制之后,李晓天的研究重心转向光栅应用技术,其曾参与了中阶梯光栅光谱仪、光栅杂散光测量仪、傅立叶变换型光栅衍射效率测量仪和成像光谱仪等研究工作。特别是近几年,他开始了拉曼光谱技术的研究工作。对此,李晓天表示说,由于拉曼光谱不怕水,可以在水溶液或者水环境中实现物质的检测,做完拉曼光谱仪技术的基础研究工作以后,下一步的工作重点是要将其应用到生物医学、星际探测等与国计民生息息相关的重要领域中。 /p p style=" text-align: justify "   现有的拉曼光谱技术,如色散型拉曼光谱仪因存在入射狭缝,导致其在高光通量、高分辨率、宽波段、无运动部件等性能方面难以兼顾。为解决以上影响拉曼光谱技术发展的关键问题,李晓天从2015年开始研发可兼具高光通量、高分辨率等以上性能的新型空间外差拉曼光谱仪,并作为项目负责人成功获批了空间外差拉曼光谱方面的国内第一个自然科学基金青年基金项目和第一个面上项目。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 312px " src=" https://img1.17img.cn/17img/images/202007/uepic/0dc5b33a-9e92-4c9a-8052-ddb610c8743b.jpg" title=" 微信图片_20200710094022.png" alt=" 微信图片_20200710094022.png" width=" 600" height=" 312" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 拼接光栅型空间外差拉曼光谱仪原理样机(左)及硫磺样品的外差拉曼干涉图(右) /strong /p p style=" text-align: justify "   据介绍,空间外差拉曼光谱仪无入射狭缝,且整个仪器没有运动部件。通过探测器单次测量及分析,即可获得全波段的待测物拉曼光谱信息。而且仪器结构紧凑,其除探测器以外的核心光学模块的尺寸可以做到15cm× 15cm以内,因此仪器可兼具高光通量、高分辨率、宽波段、无运动部件等性能。空间外差拉曼光谱仪将在待测物拉曼信号较弱、有限载荷使用条件以及待测环境条件恶劣等方面具有较好的应用前景,此外在透射拉曼光谱领域也可以发挥其优势。 /p p style=" text-align: justify "   在拉曼光谱仪研究过程中,李晓天提出光栅拼接型空间外差拉曼及LIPS光谱仪、中阶梯光栅型空间外差拉曼光谱仪和空间外差型太赫兹拉曼光谱仪等新型仪器结构,并带领团队突破关键理论与技术,设计出具有棱镜视场展宽能力的高光通量空间外差拉曼仪器原理样机,其测得的硫磺等样品信号强度可达同等分辨率和测量波段范围的传统色散型仪器的100倍;给出基于三阶极小值和多子区间分割的光谱背景扣除算法,可有效解决背景光干扰等对拉曼光谱测量的影响 提出通过光阑和光学陷阱等抑制仪器杂散光的方法;提出基于中阶梯光栅多级次锥面衍射的空间外差拉曼光谱仪结构等等。 /p p style=" text-align: justify "   近几年,国内的一些知名企业和院校纷纷开展了拉曼光谱仪器研发工作,使得我国拉曼光谱仪研发力量得到了较大的提高,但整体来说与国际最高水平仍存在一定差距,在全球市场中所占份额较低。对此,李晓天分析到,光栅等拉曼光谱仪的核心光学元件在国产拉曼光谱仪中的国产化率并不高,主要原因是我国光栅技术水平的提升是在近几年发生的,目前国内的科研院所和企业大多还不清楚国内的机械刻划光栅水平已得到显著改善且定制价格远低于国外产品这一事实。相信随着时间的推移,我国拉曼光谱仪产品中的光栅国产化率会得到大幅度提升。此外,李晓天也提到,除了光栅以外,拉曼滤光片也是仪器的核心元件,特别是低波数拉曼滤光片尚未实现高性能产品国产化,制约着相应仪器的发展。 /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 国产光栅及光谱仪发展展望: 一代光栅对应着一代光谱仪 /strong /span /p p style=" text-align: justify "   从核心部件到仪器整机,李晓天在光学仪器研发领域已经工作了10余年。据悉,未来他还将继续开展新型高端光栅光谱仪研究工作,在高分辨率、高通量、高灵敏度光谱仪器研制方面继续开展深入的研究。不仅如此,他还计划尝试开展拉曼光谱技术在生物医学等领域的应用研究。 /p p style=" text-align: justify "   采访中,李晓天指出,目前国内的光栅刻划机只能刻划平面光栅,但是国内外市场对凹面光栅和凸面光栅等非平面光栅的需求也日益迫切,若能采用光栅刻划机进行非平面光栅研制,将能够有效解决现有的非平面光栅的衍射效率等性能难以满足诸多领域使用需求的难题,所以希望国家或地方政府可以对非平面光栅刻划机的研制进行专项资金投入。再者,国内外天文望远等领域对更大面积光栅仍有使用需求,不过如果直接研制可以刻划更大面积光栅的刻划机,对机械和精密控制等技术具有更高需求,需要的资金投入也较多,因此发展投入相对较低的大光栅拼接复制技术也是未来光栅技术的重要方向。此外,超环面光栅、大面积体全息光栅等其它光栅技术也应该开展深入研究。 /p p style=" text-align: justify "   对于我国光谱仪器研发的现状,李晓天分析到,衍射光栅是光栅光谱仪器的核心元件,在仪器研发中意义重大。但是现在国内大多数仪器厂家和单位在进行光谱仪器设计时,往往先在现有产品中选择一个测量波段等指标相对适合的光栅产品,然后根据该光栅参数进行仪器设计,这将导致仪器设计存在一定局限性。李晓天指出,大家应充分发挥光栅在光谱仪器研制中的重要作用,如根据仪器光路结构,去优化光栅参数再去定制该光栅,将大大提高仪器性能。一代光栅对应着一代光谱仪,若能进一步提出新的光栅设计参数或者新的光栅类型,则有望产生新一代光谱仪器!以新型的中阶梯光栅、离子束-刻蚀全息光栅、体全息光栅、超环面光栅、各类其它非球面光栅以及特殊类型光栅为核心元件的光谱仪器将逐步登上我国的历史舞台。 /p p style=" text-align: justify "   此外,对于大家关注的科研成果转化问题,李晓天也谈到,我国在光谱仪器研发方面已具有多年的经验积累,也取得了较好成绩,但是,企业与科研院所之间存在一定的技术脱节,也就是说科研院所把光谱仪器研发后,并没有与企业形成较好的对接。不过,他也提到,目前国家已经形成一些激励政策,相信未来科研院所和企业会形成的良好合作模式。 /p p style=" text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   附注:李晓天副研究员课题组隶属于国家光栅制造与应用工程技术研究中心(简称为国家光栅工程中心),该中心拥有60年以上的光栅研制及光谱仪器研发经验,具有完善的光栅制造设备、丰富的光学设计及精密装调技术、光谱仪标定设备、精密微动工作台、精密光学检测仪器、光学系统计算辅助装调设备等,具有自主研制高刻线密度光栅、中阶梯光栅和多种全息光栅等能力。先后研制出中型和大型摄谱仪、红外分光光度计、紫外分光光度计、大型真空紫外单色器、空间太阳紫外光谱辐照监视器、可见和红外高分辨率成像光谱仪、中阶梯光栅光谱仪、凸面光栅光谱仪、微型生化分析仪、近红外水分分析仪、近红外粮食成分分析仪、荧光在线水中油测试仪等仪器。 /span /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制