当前位置: 仪器信息网 > 行业主题 > >

土壤哈茨木霉菌检测

仪器信息网土壤哈茨木霉菌检测专题为您提供2024年最新土壤哈茨木霉菌检测价格报价、厂家品牌的相关信息, 包括土壤哈茨木霉菌检测参数、型号等,不管是国产,还是进口品牌的土壤哈茨木霉菌检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤哈茨木霉菌检测相关的耗材配件、试剂标物,还有土壤哈茨木霉菌检测相关的最新资讯、资料,以及土壤哈茨木霉菌检测相关的解决方案。

土壤哈茨木霉菌检测相关的资讯

  • 7项土壤检测国家标准发布
    近日,国家市场监督管理总局(国家标准化管理委员会)批准发布373项推荐性国家标准和6项国家标准修改单。其中包括GB/T 42363-2023《土壤质量 土壤理化分析样品的预处理》等7项土壤检测国家标准。1、GB/T 42333-2023《土壤、水系沉积物 碘含量的测定 氨水封闭溶解-电感耦合等离子体质谱法》,实施于7月1日标准由TC93(全国自然资源与国土空间规划标准化技术委员会)归口,主管部门为自然资源部(国土);主要起草单位为国家地质实验测试中心;主要起草人为刘崴、杨红霞、李冰、马新荣、胡俊栋。2、GB/T 42363-2023《土壤质量 土壤理化分析样品的预处理》,实施于7月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、江苏省质量和标准化研究院、中国科学院生态环境研究中心、中国环境科学研究院、上海辰山植物园;主要起草人为陈美军、段增强、侯月丽、沈仁芳、朱永官、冯有智、刘俐、方海兰。3、GB/T 42485-2023《土壤质量 土壤硝态氮、亚硝态氮和铵态氮的测定 氯化钾溶液浸提手工分析法》,实施于10月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、南京林业大学、华东师范大学、江苏申达检验有限公司、江苏省质量和标准化研究院、常州市武进区环境监测站;主要起草人为王如、唐昊冶 、韩勇、徐仁扣、俞元春、钱薇、吴电明、陈美军、段增强、陆国兴、朱小芳、赵敏、张燕琴、卞彦、周小龙。4、GB/T 42487-2023《土壤质量 土壤硝态氮、亚硝态氮和铵态氮的测定 氯化钾溶液浸提流动分析法》,实施于10月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、南京林业大学、华东师范大学、江苏申达检验有限公司、江苏省质量和标准化研究院、常州市武进区环境监测站;主要起草人为王如海、唐昊冶、韩勇、徐仁扣、俞元春、钱薇、吴电明、陈美军、段增强、陆国兴、朱小芳、赵敏、张敏、卞彦、周小龙。5、GB/T 42488-2023《土壤质量 土壤中无机态氮15N丰度的测定 稳定同位素比值质谱法》,实施于10月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、中国科学院城市环境研究所、中国科学院亚热带农业生态研究所、南京师范大学、上海交通大学、北京科荟测试技术有限公司、江苏省质量和标准化研究院;主要起草人为曹亚澄、王曦、孙晓丽、张晗、袁红朝、温腾、张莉、杨禄、贺珍、张珮仪、杨帆、魏来、查明霞、侯月丽。6、GB/T 42489-2023《土壤质量 决策单元-多点增量采样法》,实施于10月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、生态环境部南京环境科学研究所、生态环境部土壤与农业农村生态环境监管技术中心、江苏省环境科学研究院、江苏省地质调查研究院、江苏省环境监测中心、农业农村部环境保护科研监测所、江苏省耕地质量与农业环境保护站、江苏省农产品质量检验测试中心、北京市生态环境保护科学研究院、北京建工环境修复股份有限公司、江苏大地益源环境修复有限公司、南京中荷寰宇环境科技有限公司、江苏省南京环境监测中心、江苏省质量和标准化研究院;主要起草人为宋静、单艳红、郭观林、王水、汤志云、胡冠九、林大松、邱丹、郝国辉、张丽娜、李书鹏、刘志阳、潘云雨、杨正标、侯月丽、唐伟、吕品洁、王东哲、高新、赵晓峰、毛娟、许根焰。7、GB/T 42490-2023《土壤质量 土壤与生物样品中有机碳含量与碳同位素比值、全氮含量与氮同位素比值的测定 稳定同位素比值质谱法》,实施于10月1日标准由TC404(全国土壤质量标准化技术委员会)归口,主管部门为农业农村部;主要起草单位为中国科学院南京土壤研究所、中国科学院城市环境研究所、中国科学院亚热带农业生态研究所、南京师范大学、上海交通大学、北京科荟测试技术有限公司、江苏省质量和标准化研究院;主要起草人为曹亚澄、王曦、孙晓丽、孙德玲、张晗、袁红朝、温腾、张莉、杨禄、戴沈艳、贺珍、魏来、杨帆、张姗姗、查明霞、吴杰。
  • 珀金埃尔默推出用于检测曲霉菌感染的EUROIMMUN ELISA
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 2019年8月5日珀金埃尔默公司宣布推出新的Euroimmun& nbsp Elisa(免疫球蛋白酶联免疫吸附试验)。酶联免疫吸附试验专门用于检测曲霉抗原半乳甘露蛋白,并辅助鉴别侵袭性曲霉病(IA)。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 曲霉病是一种由曲霉菌引起的感染疾病,曲霉菌是一种常见的霉菌,其孢子通过人类呼吸的空气传播到室内和室外。吸入孢子通常无害,但感染可能发生在免疫系统较弱的人群中,例如接受化疗或骨髓移植的患者。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " IA是最危及生命的曲霉感染形式,通常影响免疫功能受损患者的肺部,但病原体通常会扩散到全身的中枢神经系统、眼睛、心脏和肾脏。IA患者死亡率高,高达90%,尤其是当中枢神经系统受到影响时。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 珀金埃尔默公司Euroimmun的首席执行官Wolfgang Schlumberger博士说:“及时发现和诊断这种危险的感染对确保正确治疗和预防死亡至关重要,”PerkinElmer公司EUROIMMUN首席执行官Wolfgang Schlumberger博士说。 “临床研究表明,EUROIMMUN Aspergillus Antigen ELISA在检测半乳糖甘露糖蛋白方面具有高灵敏度和特异性。[2]而且,当使用自动EUROIMMUN分析仪系统进行处理时,我们的ELISA可以无缝集成到实验室工作流程中,以便在早期阶段更快地检测曲霉菌感染。“ /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 有曲霉菌抗原的检测在美国传染病学会(IDSA)、欧洲癌症研究和治疗组织(EORTC)、国家过敏和传染病真菌病研究组(MSG)等机构的的指南中作为 “可能的”IA感染”标准。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " EUROIMMUN是公认的全球领先的自身免疫检测和传染病、过敏和分子遗传学检测的新兴力量,涵盖免疫学,细胞生物学,组织学,生物化学和分子生物学等学科知识。 /p p style=" line-height: 1.5em margin-bottom: 10px " & nbsp /p
  • 2000人!第三届土壤检测大会落幕!
    5月11日,历时2天的,第三届土壤检测网络大会,落下帷幕。本届会议吸引2000人报名云参会,直播间互动氛围极其热烈!直播期间,22位专家首次集结,围绕土壤三普进行了全方位的深入交流!都有哪些精彩内容呢?跟随小编一起来回顾一下吧!特邀:农业农村部环境保护科研监测所赵玉杰研究员5月10日上午9时,来自农业农村部环监所的赵玉杰老师,作为特邀嘉宾,领衔开场!赵老师首先对仪器信息网的邀请表示了感谢,对主办方的筹备与组织工作给予了高度认可。随后,从土壤三普角度,围绕水稻吸收重金属镉的影响因素,为我们讲解了团队的最新工作进展,报告内容丰富且精彩,短短30分钟的报告直播,让人意犹未尽。焦点:土壤三普里的自动化与机器人作为新秀企业,上海斯卡拉的关健旭经理和上海汇像的李祖敏经理为我们带来了实验室土壤分析检测的智能化设备介绍,分别讲述了自动化、智能化设备如何助力土壤三普。关健旭经理报告中提到:土壤性状普查时,传统的土壤质地、有机质、酸碱度、盐分和养分等理化指标的手工分析速度慢、分析过程耗时复杂、分析质量难以控制,无法满足实验室大批量、高质量的检测需求。而斯卡拉根据《土壤普查土壤样品检测技术规范》规定的标准方法,结合不同的自动化检测技术,实现了土壤的机械组成、pH-EC、有机质&碳氮和养分等理化指标检测分析的自动化,将实验室分析的可靠性和效率都提升到更高水平。李祖敏经理报告中提到:第三次土壤普查要求真实准确掌握土壤质量、性状等基础数据,落实到检测环节存在样本量极大、数据质量要求高等难题,而传统土壤检测极度依赖人工,效率低且数据质量难以保证。汇像实验室自动化运用机器人、大数据等技术,在土壤实验中来样、分样、前处理、检测、分析等多个环节均有成熟高效的解决方案,助力土壤检测效率及数据可靠性快速提升。权威:土壤研究员细说土壤重金属检测标准江苏省地质调查研究院/国土资源部南京矿产资源监督检测中心张培新老师,在土壤重金属方面的研究检测工作硕果累累!基于土壤三普,张老师在报告中不仅梳理了土壤重金属检测技术的各项标准,而且为大家详细讲解了在重金属分析测试新技术方面的技术要求和重难点。直播间听众朋友们纷纷投来小红花表示感谢!土壤无损检测新技术--XRD法土壤粘粒矿物是土壤的重要组成部分,一般由层状硅铝酸盐组成。粘粒矿物的种类,对土壤中的肥力、重金属吸附、抗蚀性等都会产生影响。因此研究粘粒矿物对土壤的农业绿色发展、污染治理、石油勘探开发及环境指示等,都具有重要指导意义。苏州浪声的焦成老师,在报告中介绍了浪声的XRD设备,该设备具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点,对土壤粘粒矿物进行定性定量分析,近年来得到市场广泛认可。土壤调查全过程质控要点解析来自江苏环境监测中心的唐梦涵老师,基于丰富的实验室质控经验,从多个角度为大家介绍了土壤检测从采样、制样、检测、质控、数据处理等方面的内容,为从事实验室分析质量控制工作的人员提供了宝贵的建议。样品前处理专场,6位报告专家各展所长南京环境监测中心的任兰老师,有着二十几年的工作经验,详细地为大家阐述了在样品前处理过程中,如何做好土壤重金属前处理及分析检测技术。安东帕的毛新峰老师,对土壤中重金属检测的相关标准和对标准中的注释进行解读;同时,对标准中提及的消解、提取和萃取的原理做相关介绍,并提供了安东帕微波样品前处理的解决方案。睿科的杨小含老师提到,从土壤“三普”和建设用地土壤污染风险管控标准出发,目前土壤的前处理方法主要为湿法消解,包括电热板消解、石墨消解、微波消解等,为此,睿科从配标、加酸、微波消解、全自动石墨消解等方面为用户提供全套解决方案。在土壤有机污染物前处理及分析检测技术方面,江苏环境监测中心的杨丽莉主任为我们带来了详细的报告。报告中既包含有机物样品的前处理操作,也包括了进样后的分析检测重难点,获得参会老师的热情提问!来自天津恒奥的王琰老师,通过分析土壤检测标准,分析标准方法中所使用的前处理设备,介绍了最新前处理设备的应用范围和方法。并介绍了恒奥的全自动应用方案,如何满足用户在样品前处理过程中的多种需求。5月11日,大会第二天,参会的老师们热情不减!有效报名人数达到2000人,会议在今日进入高潮!11位专家从全新角度带来了报告分享!干货多多,一起来看。新发现:质谱技术非靶标筛查有机物国家环境分析测试中心的朱超飞老师,为大家带来了最新研究成果。具体讲述了如何利用气相色谱-四极杆飞行时间质谱快速筛查土壤中的有机物,以及该方法在识别过程中的新发现。土壤检测相关标准解读与技术应用来自天美、岛津、安捷伦的3位老师,在土壤有机物方面,为大家分享了本企业的优势产品和全套解决方案。天美的何易尚老师在报告中介绍,天美公司响应国家第三次土壤普查的号召,推出了土壤检测相关标准解读与应用。该应用通过吹扫捕集和顶空进样器等前处理设备,搭配使用SCION 8700 SQ气相质谱联用仪检测土壤相关标准中挥发性有机物和半挥发性有机物以及其他物质的含量,可为客户测试提供参考。岛津的杜世娟老师在报告中介绍,针对土壤中的有机污染物检测,岛津公司与国家环境分析测试中心联合,推出以Smart 数据库为核心的土壤有机物检测解决方案,助力检测单位轻松应对土壤有机物检测。安捷伦的王智聪老师,在报告中梳理了土壤有机物检测中的相关标准,并重点介绍了安捷伦的一站式全流程解决方案。农大教授:农田土壤中的农药残留检测进展来自中国农业大学的刘丰教授,为大家详细阐述了农田土壤中的农药残留检测进展,并为大家就植物激素和动物激素为大家进行了区分,强调了环境激素(内分泌干扰物等)对人类健康的危害,介绍了环境激素、农药在植物生长期的累积效应。现场互动热烈!国家地质实验测试中心:土壤重金属形态分析国家地质实验测试中心的刘崴老师,梳理了土壤三普的重点理化性质检测项目,并基于团队工作进展,讲解了土壤重金属形态分析的重点注意事项,并进行了实用案例的分享,为我们展示了工业园区附近土壤重金属检测的实际成果。经典:无机物检测经典技术,各展风采在下午的无机污染检测专场,来自瑞士万通、海光、禾信、珀金埃尔默的三位报告专家,为我们带来了各自优势产品和解决方案。瑞士万通的温旭老师在报告中提及,随着工业化进程的不断深入,产业所带来的污染问题越发引起人们的重视,尤其是土壤的重金属污染,对人们的生活和健康产生了极大的危害。瑞士万通伏安极谱仪(VA),采用溶出伏案技术,在重金属元素的分析检测中发挥了重要的作用。海光的未敏老师,详细介绍了海光原子光谱在土壤分析领域中的应用。报告内容针对第三次全国土壤普查检测内容和行业相关检测方法标准,介绍了原子荧光、原子吸收、测汞仪等光谱技术在土壤分析中的应用,满足用户的不同需求,精准助力土壤污染物的检测。禾信的王一曼老师,在报告中描述了土壤三普的背景及必要性,介绍了禾信仪器在土壤重金属元素分析中的解决方案和应用案例,围绕如何实现土壤样品中8大重金属的精准检测展开讲解!珀金埃尔默的陈观宇老师,介绍了PerkinElmer原子光谱 在土壤“三普”中的解决方案,详细讲解了仪器从制样、进样到分析检测的各阶段注意事项,并分享了自己在无机物检测方面的经验。报告内容获得大家的好评!土壤元素分析关键技术与质量控制中国计量科学研究院化学所的巢静波副主任,在大会中基于土壤三普的背景,为大家详细讲解了土壤无机元素的分析全过程,并重点围绕几项关键技术展开讲解。与此同时,巢老师从如何做好检测分析的质量控制角度展开报告,干货满满!直播现场互动提问氛围极其热烈。第三届土壤检测技术大会虽然落幕,但我国第三次土壤普查工作正开展得如火如荼。同时,为了更好地助力三普工作顺利进行,网络讲堂拟定于2022年8月9-10日,召开“土壤重金属检测技术”网络大会!2天直播,欢迎持续关注!更多精彩内容尽在网络讲堂!专家报告合作:13717560883 刘老师(微信同号)关于网络讲堂:仪器信息网网络讲堂成立于2010年,整合科学仪器行业仪器原理、应用及方法开发、维修与保养等内容机构,以“音频+PPT”直播模式与行业用户实时在线交流。迄今为止,我们组织在线研讨会已覆盖生命科学、制药、食品、材料等热点领域,仪器方面涉及质谱、光谱、色谱、电镜、核磁等热门仪器,为近350万用户传递知识。我们的定位:捕捉行业热点、跟踪仪器最新技术,深度解读行业政策、法规、标准等内容。网络讲堂官网:https://www.instrument.com.cn/webinar/
  • 助力第三次全国土壤普查——海能/新仪土壤检测解决方案
    随着经济社会发展,耕地占用刚性增加,要进一步落实耕地保护责任,严守耕地红线,确保国家粮食安全,需摸清耕地数量状况和质量底数。2月16日,国务院印发了《关于开展第三次全国土壤普查的通知》,实施耕地及相关土地的“全面体检”。根据《全国第三次土壤普查土壤样品制备、保存、流转和检测技术规范(征求意见稿)》要求,本次普查涉及土壤全氮、阳离子交换量、有机质、各类金属元素等实验室检测项目。 海能/新仪针对其检测项目提供相应解决方案,帮助您提高分析效率,助力土壤普查。K1160凯氏定氮仪/阳离子交换量测定仪 涉及项目:全氮、阳离子交换量方案优势:1)完全符合土壤全氮各类检测标准,同时兼容土壤阳离子交换量检测,一机两用,提高仪器利用率;2)可升级自动进样器,极大减少人员占有率,可节约一半以上人工投入;3)适用于大批量样品的检测,全自动凯氏定氮仪与20位消解仪配合,8小时可完成60-100个样品的检测。CEC400阳离子交换量前处理系统 涉及项目:阳离子交换量、交换性盐基总量、交换性钙、交换性镁、交换性钠、速效钾、有效锰方案优势:1)四通道设计,30-40min 既可完成单批次样品处理,较传统方式,效率可提升3 倍以上;2)仪器可自动完成加液、置换、清洗等过程,实验过程无需人员值守,有效降低人员占有率;3)土壤及滤液皆可单独收集,满足各类检测需求。T960系列 全自动滴定仪 涉及项目:有机质、交换性盐基总量、水溶性碳酸根和碳酸氢根、水溶性钙和镁离子、水溶性氯根、水溶性硫酸根、全硫、水解性酸度、可交换酸度方案优势:1)可配置不同电极传感器,一台仪器可进行多种滴定实验,酸碱滴定、氧化还原滴定、银量法滴定、络合滴定等,例如有机质、钙镁离子、碳酸根碳酸氢根、可交换酸、氯离子等不同实验;2)多通道组合模式,可自动切换滴定剂使用通道进行实验,减少清洗滴定管路、补液换液等繁琐过程;3)电化学传感替代颜色判断,排除土壤颜色的干扰,测试结果更加准确TANK 40微波消解仪 涉及项目:全钼、全锰、全铜、全锌、全铁、全铝、全钙、全镁、全钛、总铅、总镉、总铬、总镍方案优势:1)40位高通量全密闭消解罐,可保证土壤样品消解效果和待测元素回收率;2)宇航复合纤维外罐整体喷涂特氟龙涂层,提供最高等级的安全防护和防腐性能,确保操作安全;3)非接触式红外全罐测温系统,可实时监控每个消解罐内温度变化,无需拔插、使用方便;4)仪器具备标准控制、斜率升温、功率控制等不同升温模式,满足不同标准的升温方式要求。SH60A全自动消解仪 涉及项目:全锰、全铜、全锌、全铁、全铝、全钙、全镁、全钛、总铅、总镉、总汞、总砷、总铬、总镍方案优势:1)全自动运行,自动定量加液、升降、无级变速摇匀、赶酸、定容,免去大量繁琐、机械性工作;2)60位立体环绕高温加热腔,双模块设计,不同消解方案同时进行;3)试剂管理系统实时监测试剂余量,避免因试剂不足导致的实验失误,提高工作效率;4)仪器操作平台采用PTFE板材加工,加热块采用耐高温耐腐蚀涂层,机械臂、风机等与酸气接触的零部件,均采用防腐设计,仪器经久耐用。
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 食品中霉菌检测及微生物检测会遇到哪些问题?又该如何解决?
    实验室霉菌检测中常见问题霉菌: 不是分类学上的名词,而是一些丝状真菌的通称,属真菌的一部分;其对人类具有双重性,有利的方面是它可以用来酿造、工业发酵、抗生素和酶制剂的生产等,不利方面是它能引起农副产品、食品、原料及器材的腐烂,也感染并引起人类和动、植物的多种疾病,少数种类,如黄曲霉,能产生黄曲霉毒素,黄曲霉毒素是一种致癌物质,危害人、畜的健康和生命。因此,霉菌的检测对于食品的安全性很重要。食品中常见的霉菌:毛霉属、根霉属、曲霉属、青霉属等。检测中的注意事项: 1、取样的代表性。 2、取样工具的无菌。空气中霉菌的孢子含量很高,所以,取样的工具、容器等要经过严格的高压灭菌。 3、检样的方法。 (1)由于霉菌易被携带,所以,检样时操作人员应尽量避免自身携带的可能。 (2)样品的均质及充分振摇。因为有些孢子是连成串的,故均质和振摇能使其充分散开,同时,在各梯度连续稀释时,也要用灭菌吸管反复吹吸几次,使孢子充分散开。 4、培养温度和时间。培养温度25-28℃培养,3天后观察,需培养观察一周。 霉菌检验中常用的培养基:孟加拉红琼脂、马铃薯葡萄糖琼脂、察氏琼脂、高盐察氏琼脂等。 5、检样中常见的问题。 (1)不同稀释度计数结果相同;(2)不生长或生长很好连成片无法计数;原因:①稀释时未经反复振摇,吹吸,导致孢子未充分散开,影响了计数的结果。②由于培养基不适宜,pH值低等,致使生长较慢。③观察时间的掌握。真菌生长较慢,故需5d后才能观察出结果。每天都要观察结果。微生物操作中常见问题的讨论与分析1、划不出单个菌落的原因: (1)平板上有过多的水分;(2)划线时接种环未经反复灼烧; (3)多区划线,三区或四区划线。2、涂布和倾注的区别:涂布利于观察,但由于涂布棒上会带有少量的菌液,可能影响计数的准确性;倾注更为准确,但不利于观察菌落的状态。Beuchat和Matsuda等人分别对这两种方法作了大量比较试验后发现,对霉菌计数来说,涂抹法有以下几方面优越于倾注法:①培养出的霉菌菌落数较多;②培养所需的时间较短;③霉菌孢子、菌落形态特征发育完全,便于鉴定。这是因为绝大多数霉菌是好氧的,在培养基表面生长快,发育好,而混在培养基中发育就受影响,而且在培养基倾注时霉菌孢子易受热损伤。3、培养基的选择:培养基的选择应根据实验材料和检验目的来确定。目前国标方法中使用的培养基有:马铃薯葡萄糖琼脂(PDA)、孟加拉培养基(RBC)、高盐察氏培养基(CAO),其中PDA和RBC适合于一般的霉菌和酵母菌生长,而CAO则适合于高渗性霉菌生长,酵母菌几乎不长。在日常检测中我们发现,有些常见的耐高渗性霉菌,如局限曲霉、谢瓦曲霉、赤曲霉、Wallemia等在PDA、RBC上生长非常缓慢或不长,而这些菌在高渗培养基如M40Y、DG18(M40Y琼脂配方:蔗糖400g,麦芽提取汁20g,酵母提取汁5g,琼脂20g,氯霉素50mg,蒸馏水1000ml;DG18琼脂配方:葡萄糖10g,蛋白胨5g,KH2PO41g,MgSO47H2O 0.5g,氯霉素0.1g,0.2%二氯硝基苯胺1.0mL,琼脂15g,蒸馏水1000mL,PH6.5)上则正常生长。孢子、形态特征发育良好,而且酵母菌也能在M40Y、DG18上生长,因此,若能同时采用PDA和M40Y(或DG18)分离培养各类样品中的霉菌,将能更全面地反映出污染霉菌的菌相。特别是对干燥食品、高糖食品、淹渍食品等,更有必要同时采用M40Y或DG18。由于霉菌中很多种类不会产生有毒的霉菌毒素,危害较小,而有的菌株即使污染数量不多,但其产生的霉菌毒素却危害较大,因此仅作霉菌计数并不能全面反映其危害程度,重要的是要知道污染菌的菌相,才能更好地判断被污染食品的安全程度。为此,国外有些研究者设计出各类选择性培养基,可以识别产毒的霉菌。如AFPA培养基(配方:酵母提取汁20g,蛋白胨10g,柠檬酸铁铵0.5g,0.2%二氯硝基苯胺1.0mL,琼脂15g,蒸馏水1000mL,PH5.6)用于分离黄曲霉毒素产生菌高污染率的食品。产黄曲霉毒素的菌株黄曲霉和寄生曲霉在AFPA上30℃培养2~3天就形成背面有亮橙黄色的特征性菌落,非常容易识别。有人利用该培养基分离黄曲霉高污染食品花生、玉米等,取得了满意的结果。因此,针对不同样品,有目的地设计出相应的选择性培养基,以筛选污染菌中的危险菌群,将是一个值得探索的方向。4、 培养基配制时应注意的问题:(1)灭菌温度要严格控制,按照要求灭菌,尤其含糖量较高的培养基温度不应太高,过高会导致糖分焦化,影响质量;(2)琼脂培养基不能反复溶化。反复溶化会破坏培养基中的营养成分;(3)培养基不能反复灭菌,反复灭菌也会导致营养成分的破坏;(4)含琼脂的培养基灭菌后,要摇匀。5、 平板的保存:大多数平板如 VRBA、DC、尿素酶生化管、显色系列等要避光低温保存。
  • 用户文章丨《Nature Food》中国科学院城市环境研究所团队发表基于单细胞分离技术的土壤原生解磷菌原位活性检测新方法
    2024年8月5日,中国科学院城市环境研究所朱永官院士和崔丽研究员团队在《Nature Food》期刊(IF23.6)发表了题为“Single-cell exploration of active phosphate-solubilizing bacteria across diverse soil matrices for sustainable phosphorus management”的论文,文章第一作者为李弘哲副研究员。文章采用单细胞拉曼重水(Raman-D2O)标记技术对土壤原生活性解磷菌(PSB)进行了识别和定量,并通过宏基因组及高通量测序方式确定了土壤中活性解磷菌的主要代谢途径。其中,长光辰英核心产品——PRECI SCS微生物单细胞分选仪为高活性土壤解磷菌的筛分提供了快速、便捷的分离工具。 一、研究背景 磷是所有生物的基本元素,其有限的全球储量强调了农业系统中有效磷管理的重要性。目前,地质磷矿的不可再生性、磷肥需求的增加和利用效率的低下导致了磷危机,危及全球粮食生产。解磷菌(Phosphate-solubilizing bacteria, PSB)通过分泌有机酸和磷酸酶来提高磷的生物利用度和调节磷的转化过程。它们在原生土壤环境中的代谢活性显著影响了土壤固定磷的溶磷效率。了解PSB的原位活性及其对不同土壤和施肥类型的响应是指导有效施肥的基础。将这种活性与特定的分类群和遗传决定因素结合起来,可以更全面地理解磷溶解过程的机制,并为可持续的磷管理提供见解。 二、研究方法 在该研究中,为了量化土壤中PSB的原位活性及其对土壤类型和施肥的影响,选择了三个地区(德州DZ、东湖DH、祁阳QY)的土壤并施加两种不同类型的肥料(无机肥IF、无机肥+有机肥CF),对9组样品(含三个地区土壤不添加肥料的对照组CK)进行了土壤理化性质检测。为筛选土壤中原生高活性PSB,先对各组土壤进行了溶解性游离磷的去除,接着采用Raman-D2O法标记其中的高活性PSB。该方法的原理是,在去除游离磷的土壤中,只有具备土壤固定磷代谢能力的PSB才能够同时代谢D2O,被D元素标记,进而量化其活性。然后通过单细胞分选仪对高活性的PSB进行分离,经过宏基因组与高通量测序探究其磷代谢相关过程的基因。另外,由于微生物的碳代谢过程会影响PSB的磷代谢活性,因此对碳代谢功能相关的基因也进行了关注。最后,通过盆栽实验确定了PSB对土壤固定磷释放的影响。图1 Raman-D2O标记筛选高活性PSB流程图 三、结果 1. 土壤微生物原位溶磷能力的定量首先,对方法中提到的9组土壤去除原有的溶解性游离磷,将处理过的土壤与重水进行共孵育,具有土壤固定磷代谢活性的PSB在拉曼光谱检测中呈现较为明显的C-D峰(2040-2300cm-1)。由于土壤活性PSB的C-D比会随着土壤类型和施肥处理的不同而产生差异,因此,每组C-D比采用标准化C-D比进行组间比较,标准化C-D比:洗涤土壤的C-D比/原始土壤C-D比的平均值。三种土壤在不同施肥条件下的PSB活性如图2a所示,标准化C-D比高于图中横线所示阈值(0.5)的个体视为活性PSB。另外,对9组样品中的活性PSB丰度进行了统计(图2b),结果发现,IF的施用能够促进DH和DZ土壤中活性PSB的丰度,而在QY土壤中,IF和CF的施用都使得活性PSB丰度略有下降。将PSB活性与活性PSB丰度相乘以量化土壤微生物的磷溶解效率(图2c),结果发现,磷溶解效率的总体趋势与活性PSB丰度趋势相似,但标准差更大,说明这些土壤中单个PSB细胞活性变化很大,有必要对土壤高活性PSB进行定向分离。图2 Raman-D2O标记土壤活性PSB统计图a为三种土壤不同施肥条件下各菌的磷代谢活性统计;图b为9组样品中活性PSB丰度统计结果;图c为PSB代谢活性与PSB丰度相乘得到的土壤磷溶解效率 2. 高活性原生PSB的定向分类和物种鉴定 经过上述拉曼检测后,采用PRECI SCS微生物单细胞分选仪,基于激光诱导向前转移(LIFT)单细胞分选技术,对高活性PSB单细胞进行分选,并将分选细胞用于16s rRNA测序和宏基因组检测。在该过程中每种土壤中选择了20个高活性PSB(H-PSB),共60个H-PSB单细胞。通过分选前后的16s rRNA扩增子测序结果显示,H-PSB的门在除磷后的原始土壤中普遍存在(图3a)。最终统计结果确定,在物种水平上被分类的高活性PSB包括DH土壤中的Bacillus marmarensis和Bacillus pseudofirmus,DZ土壤中的Moraxella osloensis,和QY土壤中的Stenotrophomonas maltophilia和Cutibacterium acnes (图3b)。图3 分选前后16s rRNA测序检测物种差异图a为分选前后16s rRNA测序物种差异统计;图b为三种土壤中高活性PSB物种统计 3. 宏基因组揭示土壤PSB磷碳循环相互作用遗传基础与代谢途径 为了进一步了解磷增容功能的遗传基础和相关的代谢途径,对分选的单细胞进行宏基因组测序,得到磷溶解相关功能的基因。将宏基因组检测到的基因在NCBI和KEGG中进行了功能解读与注释,确定分选的H-PSB中鉴定到了磷溶解、矿化、调控功能和转运体相关的基因(图4a),这表示这些细菌拥有完整的遗传途径参与解锁固定磷。同时,在所有分类的H-PSB群落中都检测到了编码碳底物降解酶的基因,说明H-PSB的碳代谢能够加速无机磷的溶解过程(图4b)。图4 分选的H-PSB遗传信息图a为7个H-PSB的系统发育树及基于NCBI数据搜索得到的H-PSB中与磷循环相关的功能基因热图;图b为检测到的参与纤维素、半纤维素、木质素、淀粉和果胶降解的CAZyme基团;图c为碳代谢和三羧酸代谢的概述,彩色方块代表功能性基因或酶的存在 四、结论 本研究为量化土壤微生物的磷溶解效率,在去除溶解性游离磷的土壤条件下,提出了一种基于单细胞Raman-D2O技术的PSB识别定量方法,用以量化不同土壤中原生PSB的活性和丰度,又结合单细胞分选技术和靶向宏基因组测序,提供了一种将土壤PSB的磷溶解功能与其物种以及潜在机制联系起来的方法。揭示了PSB在土壤中的原位溶磷行为以及土壤关键PSB类群中磷碳循环基因之间的直接联系,为指导磷肥使用或农业肥料应用提供了可靠的理论基础。 文章链接: https://www.nature.com/articles/s43016-024-01024-8 五、辰英价值 该研究中采用的PRECI SCS微生物单细胞分选仪是长光辰英自主开发的一款基于LIFT技术,应用于微生物单细胞可视化分离的科研级分选仪。在本文中,单细胞拉曼分选提供了一种将土壤高活性解磷菌的原位表型与基因型联系起来的新策略。PRECI SCS微生物单细胞分选仪在该方法中起到了关键的分离作用,其可视化、准确、快速、特异性分选的特点,为实现功能微生物表型与基因型的一致性评估提供了有力工具。 六、研究团队 朱永官院士生态环境学家,中国科学院院士,发展中国家科学院院士;长期从事环境土壤学和环境生物学研究。现任中国科学院城市环境研究所/生态环境研究中心研究员。曾任国际原子能机构科学顾问(2004-2012),现任国际期刊Environment International共同主编以及多个国内外学术期刊的副主编和编委。在国际上发表学术论文500余篇,包括多篇发表在Science, Nature及其子刊。2016-2020年连续五年入选科睿唯安(Clarivate Analytics)全球高被引科学家。 崔丽中国科学院城市环境研究所,研究员,博导,国家优青。厦门大学学士和博士,英国牛津大学、兰卡斯特大学和瑞士伯尔尼大学访问学者。长期从事环境微生物单细胞拉曼新技术研发,并研究原位复杂环境中抗生素耐药性、病原菌、以及固氮和解磷等有益功能菌。已在PNAS,Angew,JACS,PNAS nexus,EST,Anal Chem等发表论文70余篇,应邀在Anal Chem和Trends in Anal Chem发表拉曼研究微生物的方法综述。担任美国微生物学会旗下杂志mSystems编辑,Chinese Chem lett、环境化学等编委。主持NSFC国家优青基金、微塑料专项项目、重大研究计划,以及中国科学院从0到1原始创新项目等10余项,参与NSFC创新群体研究项目。 李弘哲中国科学院城市环境研究所,副研究员。华中农业大学农业资源与环境专业学士,中国科学院城市环境研究所环境科学博士。长期从事环境活性微生物、单细胞技术、抗生素耐药性等领域研究。已在PNAS,Environmental Science & Technology,Analytical Chemistry等期刊上发表高水平论文。主持青年科学基金项目、国家重点研发项目子课题等项目。 END 往期推荐 “谁在主导土壤耐药活性”| PRECI SCS微生物单细胞分选仪与你共同探索2024-09-05 当微阵列芯片遇到LIFT分选,会擦出什么样的火花!2024-08-23 如何利用可视化单细胞分选技术高效开展“功能靶向”宏基因组研究?2024-06-28 @设备更新选型,来自长光辰英的国产原创高端设备产品选型指南请收好!2024-09-05
  • 山西:饮用水中检出铜绿假单胞菌、大肠菌群 黑芝麻糊检出霉菌超标
    p & nbsp & nbsp 12月11日,山西省食药监局公布了10大类170批次食品监督抽检结果,检出不合格样品9批次,涉及饮料8批次、方便食品1批次。 /p p   通报显示,8批次饮料全部为饮用水,来自临猗县峨嵋润泽泉纯净水厂、稷山县黄花源饮用水有限公司、稷山县秦井天然饮品有限公司、晋中津美饮业有限公司、运城市方大银蝶泉饮品有限公司、夏县怡鑫源饮品有限公司、临县观音圣泉饮品有限公司、夏县禹洋水业有限公司8家生产企业。其中有6批次检出铜绿假单胞菌,2批次检出大肠菌群和铜绿假单胞菌。 /p p   铜绿假单胞菌是常见的细菌之一,常存在于潮湿的环境,如土壤、水、空气中,该菌是一种条件致病菌,在机体抵抗力降低等特定条件下可致病。饮用水中铜绿假单胞菌不合格原因可能是:一是原料水体受到感染;二是生产过程中卫生控制不严格,杀菌不彻底,从业人员未经消毒的手直接与饮用水或容器内壁接触;三是包装材料清洗消毒有缺陷。 br/ /p p   大肠菌群是国内外通用的食品污染常用指示菌之一。食品中检出大肠菌群,提示被致病菌(如沙门氏菌、志贺氏菌、致病性大肠杆菌)污染的可能性较大。大肠菌群超标的原因可能是由于产品的加工原料、包材受污染,或生产过程中产品受人员、生产设备、环境的污染,或者有灭菌工艺的产品灭菌不彻底等原因导致。 br/ /p p   另外,大同市华林有限责任公司振华南街超市销售的标称桂林周氏顺发食品有限公司生产的手工纯香黑芝麻糊检出霉菌超标。 br/ /p p   霉菌在自然界很常见,霉菌可使食品腐败变质,破坏食品的色、香、味,降低食品的食用价值。霉菌超标可能是加工用原料受霉菌污染,或者生产过程中卫生条件控制不严,样品储运条件控制不当导致。 br/ /p p   针对抽检中发现的不合格产品,山西省食药监局已按照《中华人民共和国 strong class=" keylink" 食品安全法 /strong 》的规定,责成相关市局及时进行核查处置,采取封存、下架、召回不合格产品等措施防控食品安全风险,督促企业查找原因,消除隐患。消费者如果在市场上发现被通报的不合格食品,可拨打12331投诉举报。 br/ /p p br/ br/ /p
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 第四届土壤检测技术与应用网络会议今日开幕!
    土壤检测在现代农业生产中是一项很重要的工作,通过土壤检测我们可以知道土壤的墒情、养分含量、酸碱度、污染情况等等土壤品质的数据。2022年,第三次全国土壤普查工作全面开启,这是时隔40年我国再一次对土壤进行 “体检”,其内容包括土壤性状普查、土壤类型普查、土壤立地条件普查、土壤利用情况普查、土壤数据库和土壤样品库构建、土壤质量状况分析、普查成果汇交汇总等。2023年发布的中央一号文件也特别强调:要做好第三次全国土壤普查工作。5月9日,由仪器信息网主办的“第四届土壤检测技术与应用”网络会议盛大开幕!本次会议聚焦土壤三普技术,并涵盖污染物检测、前处理方法等土壤环境领域多个热点、重点、难点内容,特别邀请了来自政府检测机构、科研院校以及企业的16位资深技术专家,共同就土壤检测技术及应用的最新进展和未来发展等进行了一场深刻的学术讨论。上午的“守护净土 助力三普”专场,三普过程中的检测工作备受关注。北京市农林科学院植物营养与资源环境研究所质检中心主任刘善江分享报告题为《三普土壤有效养分检测知识培训》,睿科集团股份有限公司应用工程师王永朝分享报告题为《睿科自动化前处理技术在土壤检测中的应用》,赛默飞世尔科技(中国)有限公司应用工程师分享报告题为《赛默飞痕量元素分析在环境土壤的应用》,西藏自治区农牧科学院农业质量标准与检测研究所农业生态环境检测研究室部门负责人刘青海分享报告题为《三普内业测试化验质量控制解读》。而在下午的土壤无机污染物检测专场,重金属、水溶性盐的检测是重点内容。农业农村部环境保护科研监测所研究员赵玉杰分享报告题为《土壤重金属有效态提取及检测技术分析》,德国耶拿分析仪器有限公司应用工程师廖菽欢分享报告题为《德国耶拿在环境土壤中元素分析的经验分享》,钢研纳克检测技术股份有限公司工程师张敏会分享报告题为《土壤中水溶性盐检测技术分析》,河南省土壤重金属污染监测与修复重点实验室正高级工程师赵小学分享报告题为《土壤重金属检测关键点》。错过今日的直播没有关系,明日精彩报告还将继续!在明日上午的土壤样品前处理专场及下午的土壤有机污染物检测专场,这些专家大咖将继续分享——钟明 中国科学院南京土壤研究所 工程师《土壤有机污染物前处理方法和技术进展》(报名速戳)钟明,主要从事环境中有机物分析方面的研究工作,作为课题负责人和技术骨干参与多项中科院创新前沿项目和国家自然科学基金项目。在环境有机物分析方法和未知物鉴定方面具有丰富的经验。张戈妍 普兰德(上海)贸易有限公司 产品专员《土壤重金属检测分析中适用的移液产品与耗材》(报名速戳)张戈妍,上海师范大学研究生毕业,研究领域涉及微生物的亚细胞结构和功能等方向,有多年微生物细胞实验经验及实验室设备管理经验。现任普兰德(上海)贸易有限公司产品专员,主要负责移液产品,玻璃量具以及生命科学耗材产品线,有多年技术,产品和市场相关经验。郑瑞 岛津企业管理(中国)有限公司 应用工程师《一站式元素分析,岛津方案助力土壤三普》(报名速戳)郑瑞,岛津企业管理(中国)有限公司光谱及SPM应用工程师,主要负责岛津光谱以及SPM产品的应用研究和客户服务支持工作。陈秋生 天津市农业科学院农产品质量安全与营养研究所 研究员《土壤样品制备、前处理方法及注意事项》(报名速戳)陈秋生,研究员,硕士生导师,天津市农业科学院农产品质量安全与营养研究所副所长,农业产地环境监测与评价研究室主任。国家农产品产地重金属污染综合防治协同创新联盟理事、天津市农产品质量安全应急专家、国家级检验检测机构资质认定评审员、农业部农产品质量安全检测机构考核评审员。主要从事农业产地环境监测与评价工作。先后承担了国家重点研发计划项目、农业行业专项、天津市重点研发计划、天津市自然科学基金项目等30多项。获省部级科技奖项4项,在国内外核心刊物发表论文50余篇,制定地方标准9项,授权专利6项,获软件著作权11项,主编及参编著作4部。高丽荣 中国科学院生态环境研究中心 研究员《环境样品中短链氯化石蜡的检测技术研究》(报名速戳)高丽荣,中国科学院生态环境研究中心研究员。长期从事新型有机污染物的分析方法和环境行为研究工作,建立了多维色谱分离分析复杂POPs的分析方法,方法获得国际同行的高度认可。开展了大气中有机污染物的非靶标筛查,识别出多种新型高风险有机化合物。多次作为负责人参加联合国环境规划署组织的POPs分析国际比对,比对结果优秀。编写了我国履行关于持久性有机污染物斯德哥尔摩公约成效评估监测报告,已提交联合国环境规划署。已发表SCI论文100余篇,授权发明专利2项,研制标准参考物质2项,编制生态环境部监测标准一项,获得国家环境保护科技二等奖获得者(排名3),主持国家重点研发计划课题、863计划项目课题、国家自然基金重大研究计划培育项目、国家自然基金面上项目、中国科学院知识创新工程重要方向项目等。刘茜 安捷伦科技中国有限公司 应用工程师《土壤中有机污染物检测方案及创新技术应用》(报名速戳)刘茜,安捷伦科技中国有限公司GCMS应用工程师,毕业后一直致力于色谱、质谱仪器的分析研究,具有十余年气相色谱-质谱联用实战经验,主要侧重于环境、食品等研究领域。任GCMS应用工程师,在水、土壤和环境空气有机污染物检测方面积累了较丰富的经验。陈虹 中国科学院南京土壤研究所 高级工程师《水土中新型有机污染物全氟化合物LC-MSMS法检测》(报名速戳)陈虹,从事土壤与环境有机分析与方法学研究十余年,主要应用有机分析主流仪器GC、GCMS、LC、LCMS等从事环境污染物、土壤圈相关代谢物等分析。截止目前,获小分子有机酸检测方法发明专利授权1项,共发表论文36篇,其中SCI论文18篇。主持南京土壤研究所创新基金支撑的方法开发类项目2项,并参与多项国家自然科学基金项目、标准制定等。邹志芬 重庆市生态环境监测中心 高级工程师《土壤中半挥发性有机物的分析测试技术》(报名速戳)邹志芬,重庆市生态环境监测中心高级工程师,主要从事环境监测和有机分析,参与省部级或单位级项目10余项,参与或主持生态环境行业标准或团体标准制订3项,被生态环境部授予生态环境监测“三五”人才“技术骨干”称号,具有较丰富的理论和实践经验。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/soil230509
  • 第三次全国土壤普查理化性状检测指标
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1 号)确定的全国统一筛选测试化验专业机构的技术路线,国务院第三次全国土壤普查领导小组办公室决定组织开展土壤普查实验室筛选工作。第三次全国土壤普查理化性状检测指标如下:第三次全国土壤普查理化性状检测指标序号检测指标序号检测指标1机械组成23全钙2土壤水稳性大团聚体24全镁3pH值25有效磷4可交换酸度26速效钾5水解性酸度27缓效钾6阳离子交换量28有效硫7交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、盐基总量)29有效硅8水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)30有效铁9有机质31有效锰10全氮32有效铜11全磷33有效锌12全钾34有效硼13全硫35有效钼14全硼36碳酸钙15全硒37游离铁16全铁38总汞17全锰39总砷18全铜40总铅19全锌41总镉20全钼42总铬21全铝43总镍22全硅
  • 第三次全国土壤普查第二批检测实验室名单公示 共计363家
    按照《国务院第三次全国土壤普查领导小组办公室关于开展普查实验室筛选工作的通知》(农建发〔2022〕3号)和《国务院第三次全国土壤普查领导小组办公室关于印发第三次全国土壤普查第一批检测实验室名录的通知》(国土壤普查办发〔2022〕4号)要求,经相关实验室自愿申请、所在地省(区、市)级第三次全国土壤普查办公室初步筛选推荐,第三次全国土壤普查领导小组办公室组织专家复核和评审等程序,确定了第二批检测实验室名单,现予以公示,公示时间为2022年7月11日至17日。 第三次全国土壤普查第二批检测实验室公示名单注:辽宁省含大连市,黑龙江省含北大荒农垦集团有限公司,浙江省含宁波市,山东省含青岛市,广东省含广东省农垦总局,新疆维吾尔自治区含新疆生产建设兵团土壤三普进展如下:根据《国务院关于开展第三次全国土壤普查的通知》《第三次全国土壤普查工作方案》要求,各省市按照“一年试点、两年铺开、一年收尾”的时间安排进度陆续开展土壤普查试点工作。据悉,2022年将率先在31个省(自治区、直辖市)的80个以上县开展试点,从领导小组成立、检测实验室筛选、采样机构筛选到专家库建立,各地试点工作紧锣密鼓展开。土壤三普进展情况:多方位齐头并进 各地加快推进土壤三普工作部署(点击查看);土壤三普实验室设备设施装备清单(点击查看);126家第一批检测实验室名单(点击查看);5家第一批国家级质量控制实验室名单(点击查看)。土壤三普试点县(据不完全统计)省份普查试点县广西上林县重庆江津区、南川区山西运城市绛县广东茂名高州市湖南邵东市湖北天门市福建浦城县江苏新沂市、盐城市大丰区、海安市、泰兴市、仪征市、太仓市、昆山市山东青岛市即墨区、烟台市招远市、东营市垦利县甘肃兰州市榆中县云南石林县、马龙区、腾冲市、宁洱县、建水县贵州平坝区、纳雍县、绥阳县、龙里县、岑巩县浙江杭州市富阳区、宁波市鄞州区、桐乡市、温岭市吉林东辽县宁夏平罗县、沙坡头区海南澄迈县辽宁苏家屯区河北邯郸市永年区、石家庄市鹿泉区、南皮县、永清县、滦州市、围场满族蒙古族自治县内蒙古呼伦贝尔市扎兰屯市、通辽市科尔沁左翼中旗、赤峰市巴林右旗、乌兰察布市察哈尔右翼前旗、巴彦淖尔市五原县黑龙江大庆市肇源县陕西大荔县、神木市四川崇州市、大邑县、射洪县、中江县、古蔺县、平昌县、盐源县、会东县、康定市天津宁河区
  • 土壤三普系列二|第三次全国土壤普查相关检测项目及东西分析应对方案
    近日,第三次全国土壤普查实验室筛选工作正在如火如荼开展中,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一筛选测试化验专业机构的技术路线及相关检测技术规范的讨论稿,小编总结了普查所需的主要仪器设备及东西分析在土壤普查关于理化性状检测方面可提供的服务,希望能够为土壤三普尽绵薄之力。根据《第三次全国土壤普查工作方案》(农建发【2022】1号)确定的全国统一筛选测试化验专业机构的技术路线及相关检测技术规范的讨论稿,土壤三普拟检测43项指标,其中土壤中重金属、类金属及非金属检测相关项目如下:方 案用于分析土壤中总镉、总铬、总镍、总铅等项目AA-7090原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA 原子吸收光谱仪适用项目总镉、总铬、总镍、总铅、全钾、有效铁、有效锌、有效锰、有效铜、缓效钾、速效钾、交换性钙、交换性镁及水溶性钙和镁离子用于分析土壤中总砷、总汞、全硒及有效硒项目AF-7550双道氢化物-原子荧光光度计适用项目总砷、总汞、全硒及有效硒用于分析土壤中全磷、全铝、有效钼、总镍等项目ICP-7760HP型全谱直读电感耦合等离子体发射光谱仪ICP-7700电感耦合等离子体发射光谱仪Quantima电感耦合等离子体发射光谱仪适用项目全磷、全钾、全硼、全铁、全铝、全硅、全钙、全镁、全钛、全锰、全铜、全锌、有效磷、速效钾、缓效钾、有效硫、有效铁、有效锰、有效铜、有效锌、有效硼、有效钼、总铅、总铬及总镍用于分析土壤中全锰、全铜、全锌、全钼、有效钼、总铅、总镉、总铬及总镍项目OptiMass9600电感耦合等离子体飞行时间质谱仪 适用项目全锰、全铜、全锌、全钼、有效钼、总铅、总镉、总铬及总镍后续土壤普查是一项重要的国情国力调查,涉及范围广、参与部门多、工作任务重,技术要求高。接下来敬请关注东西分析关于土壤普查方面的后续工作…
  • 土壤新标二次征求意见 检测指标又增加
    p   近日,环保部发布《土壤环境质量标准》(GB 15618-1995)修订二次征求意见稿。与初次发布的征求意见稿相比,此次稿件仍是将《土壤环境质量标准》分拆为《农用地土壤环境质量标准》和《建设用地土壤污染风险筛选指导值》。但标准内容有了一定的调整。《农用地土壤环境质量标准》继上次增加10项选测项目外,又增加一项检测项目——钼,此次征求意见稿含9项必测项目和12项选测项目,同时农用地土壤分类也做了一定调整。《建设用地土壤污染风险筛选指导值》检测标准取消了基本项目和其他项目的分类,检测指标增至121项。 /p p    strong 具体全文如下: /strong /p p style=" TEXT-ALIGN: center" 关于征求《农用地土壤环境质量标准(二次征求意见稿)》等三项国家环境保护标准意见的函 /p p   各有关单位: /p p   为贯彻落实《中华人民共和国环境保护法》,保护土壤环境,防治土壤污染,保障人体健康,我部决定修订《土壤环境质量标准》(GB 15618-1995),并于2015年1月对标准修订草案公开征求意见。根据反馈意见和相关研究,标准修订项目组进一步梳理了土壤环境质量评价标准体系,修改完成了《农用地土壤环境质量标准(二次征求意见稿)》和《建设用地土壤污染风险筛选指导值(二次征求意见稿)》,并完成了配套标准《土壤环境质量评价技术规范(征求意见稿)》。 /p p   根据国家环境保护标准制修订工作规定,现将上述三项标准规范征求意见稿及其编制说明印送给你单位,请研究并提出书面意见,于2015年9月15日前反馈我部。征求意见材料电子版可登录我部网站(http://www.mep.gov.cn/)“征集意见”栏目检索查阅。 /p p   联系人:环境保护部科技标准司 段光明 /p p   通信地址:北京市西直门南小街115号 /p p   邮政编码:100035 /p p   电话:(010)66556621 /p p   传真:(010)66556213 /p p   电子邮箱:biaozhun@mep.gov.cn /p p   附件:1. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/5c4d1e61-ce01-4522-b1b6-17615e9e54af.pdf" 部分主送单位名单.pdf /a /p p   2 img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/fbaec221-e690-4463-827d-ff99122d81d0.pdf" 农用地土壤环境质量标准(二次征求意见稿).pdf /a /p p   3. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/25d68d18-4a4c-43cb-8ac8-172cb9a07c35.pdf" 建设用地土壤污染风险筛选指导值(二次征求意见稿).pdf /a /p p   4. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/0ef78b61-cb17-4b94-a694-90e471050f26.pdf" 土壤环境质量评价技术规范(征求意见稿).pdf /a /p p   5. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/cf934708-e3c8-4edd-93dc-7af0f53be3e6.pdf" 土壤环境质量评价标准体系建设方案.pdf /a /p p   6. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/edc4b2ae-f5e9-4a5c-846f-1c1e9ba5dcb8.pdf" 《农用地土壤环境质量标准(二次征求意见稿)》编制说明.pdf /a /p p   7. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/f95082ef-cdb4-4b63-8c63-16b04a9a5e1e.pdf" 《建设用地土壤污染风险筛选指导值(二次征求意见稿)》编制说明.pdf /a /p p   8. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/a597ee99-0ab5-4b52-9da3-1e5f03ce52de.pdf" 《土壤环境质量评价技术规范(征求意见稿)》编制说明.pdf /a /p p /p
  • 广东地区饲料霉菌毒素检测技术培训交流会圆满成功
    p   为贯彻实施《饲料卫生标准》,促进饲料行业规范化、标准化,切实提高饲料霉菌毒素快速检测技术水平,保护生产经营使用者的合法权益。由广东省饲料工业协会主办,青岛普瑞邦生物工程有限公司承办的《饲料中霉菌毒素检测技术培训交流会》于2017年9月8日在广州拉开序幕。 /p p   来自广东省各地市的饲料相关企事业单位品控及检测人员纷纷到场参加学习。会议以饲料卫生新标准解读,饲料中霉菌毒素、违禁添加物监督检测,及饲料中霉菌毒素快检技术应用为主要内容,特邀中国农科院饲料所李俊博士,广东省兽药饲料监察所,广东省农科院畜牧研究所的专家领导做专题报告。 /p p   会议开始,广东省饲料工业协会周副秘书长致开幕辞,他指出霉菌和霉菌毒素是对饲料危害最大的天然生物性污染物.饲料霉变不仅降低了饲料营养价值,改变了饲料适口性,而且其中有毒代谢产物导致畜禽急性,慢性中毒,甚至死亡。广东作为全国饲料产值第一大省,无论在养殖业、饲料业都非常有必要做好霉菌毒素防控.农业部饲料安全监测领导小组负责人、中国农科院饲料研究所李俊博士针对霉菌毒素做了《我国饲料中真菌毒素监管现状及趋势》的主题报告,他不仅对近期实施的新《饲料卫生标准》进行了详情解读,就涉及霉菌毒素和药物添加剂方面的变化做了重点分析和政策要求,让广大饲料品控人员提前了解国家对饲料安全监管层面的最新要求和并针对饲料企业如何进一步做好饲料安全生产提出了专业性的建议,对于霉菌毒素防控,他重点建议饲料企业在采用快检技术产品比如酶联免疫试剂盒时,要打破陈规,采取不同毒素项目选用不同厂家的试剂盒,确保选用最优质最稳定的试剂盒产品。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/a3a04c8d-335a-47e7-a57b-ee5dfacd28d7.jpg" style=" " title=" 1_副本.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/3666abe2-ae83-4c8b-b902-1c6428232568.jpg" style=" " title=" 2_副本.jpg" / /p p   随后,广东省农科院畜牧研究所马现永博士结合自己从事饲料检验的多年实际经验,对饲料中违禁添加物的检测方法以及检测过程中碰到的实际问题进行了详细讲解,让饲料质控人更多的掌握饲料检验的实际技能。 /p p   最后,普瑞邦技术工程师针对饲料企业当前采用的霉菌毒素快检技术—酶联免疫法和胶体金试纸检测法进行了专业性讲解,并就两种方法进行了现场技术演示操作培训,得到参会人员的积极响应。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/5e4e4cfc-db17-4d90-9ee2-9feb60bbf873.jpg" title=" 3_副本.jpg" / /p p   会后,参会人员参观了普瑞邦展台:饲料快检产品——Elisa试剂盒,金标快检卡,真菌毒素快速定量检测仪等,普瑞邦工程师一一解答了参会人员的询问。 /p
  • 全球首个饲料中霉菌毒素高通量检测标准发布
    近日,一项新的行业标准《饲料中37种霉菌毒素的测定液相色谱串联质谱法》发布,并将于2021年4月1日起实施。据悉,该标准由农业质量标准与检测技术研究所“饲料质量安全检测与评价”创新团队制定,是全球首个饲料中霉菌毒素高通量检测标准。中国农科院方面表示,该标准检测方法的成功研发,扩大了我国饲料及畜产品中霉菌毒素监测范围,提升了发现风险的能力。饲料及农产品中霉菌毒素污染是一个全球性问题,给农业生产和食品安全带来严重挑战。霉菌毒素由于种类多、结构差异大以及样品基质复杂等原因,多类毒素高通量检测一直是产业瓶颈。目前,检测标准和文献报道方法多为单一或单类霉菌毒素检测。研究团队着眼于饲料中多种霉菌毒素同时污染的现实问题,从基础理论入手,历时5年攻关,在大量实验数据基础上,提出多重机制杂质吸附原理,研制出适合饲料基质中5类37种霉菌毒素同时净化的杂质吸附型净化柱,解决了样品基质干扰严重、兼顾不同种类危害物结构及理化性质差异巨大等两个关键技术难题,样品净化时间从40分钟以上缩短至两分钟以内。据了解,基于多重机制杂质吸附净化柱制定出农业行业标准《饲料中37种霉菌毒素的测定液相色谱串联质谱法》,是目前世界上饲料中霉菌毒素“一次提取、一次净化、一次上机”同步测定数量最多的标准方法。应用该方法参加2016年度欧盟、2018和2019年度亚太地区饲料原料霉菌毒素同步检测国际实验室能力验证,结果全部满意。该项研究授权国家发明专利1项,在国内外刊物上发表研究论文3篇 形成的多重机制杂质吸附净化技术已向有关生物技术企业转让,实现了产、学、研的深度融合。
  • 涉及质谱法,侵袭性霉菌感染实验室诊断临床应用专家共识发布
    共识中提到:侵袭性霉菌感染实验室诊断方法及路径基本一致,包括直接镜检、培养、血清学检测(G试验、GM试验、曲霉IgG抗体测定等)、分子生物学检测(PCR、mNGS),再通过形态学、质谱、分子生物学鉴定具体菌种,进一步进行体外药敏试验并提出治疗建议。  根据共识文件中的数据显示:质谱对曲霉菌属、毛霉属、淡紫紫孢霉和宛氏拟青霉等均有较高鉴定准确率,有的甚至能达到100%。  摘要  侵袭性真菌病发病率在世界范围内逐渐增加,世界卫生组织和美国疾病预防控制中心相继发布了重要文件,呼吁提高对侵袭性真菌病的重视程度和认知水平,以应对侵袭性真菌病对全球造成的威胁。霉菌是侵袭性真菌病的重要病原菌之一,且发病率高、死亡率高,临床诊断和治疗面临极大挑战。中国初级卫生保健基金会检验医学研究与转化专业委员会、中国医院协会临床微生物实验室专业委员会和全国真菌病监测网侵袭性霉菌感染监测项目组组织专家制定该文件,对曲霉菌属、毛霉菌目、镰刀菌属、赛多孢菌属、节荚孢霉属、拟青霉属、暗色霉菌、双相真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)共8种临床重要侵袭性霉菌的实验室诊断方法及要点形成共识,并对实验室诊断及与临床沟通过程中遇到的六大常见问题形成专家共识,旨在为提升侵袭性霉菌感染的实验室诊断能力提供借鉴和指导。  全球每年真菌感染患者超过3亿,因侵袭性真菌病(invasive fungal disease,IFD)死亡的患者超过150万[1,2] ,而我国每年有超过500万人受到IFD的威胁,其中侵袭性霉菌是重要病原菌之一,但临床对侵袭性霉菌感染诊断困难,患者预后较差。国内外IFD相关指南均明确指出,病原微生物的实验室检测在诊断标准中极为重要 [ 3 , 4 ] 。IFD相关实验室检测,除传统的涂片镜检和培养外,血清学检测如真菌1,3-β-D葡聚糖试验(G试验)、半乳甘露聚糖(galactomannan,GM)试验和曲霉IgG抗体测定等,质谱技术以及分子生物学检测如聚合酶链反应(polymerase chain reaction,PCR)和宏基因组二代测序(metagenomics next-generation sequencing,mNGS)等在临床中的应用价值逐渐得到肯定。但目前我国真菌实验室发展非常不均衡,特别是针对霉菌的实验室检测,不管是临床医生对于检测项目的认知,还是霉菌实验室的检出能力均需进一步提高 同时,不同检测方法的送检时机、检测性能以及结果的正确解读仍面临很多问题。鉴于此,由中国初级卫生保健基金会检验医学研究与转化专业委员会、中国医院协会临床微生物实验室专业委员会和全国真菌病监测网侵袭性霉菌感染监测项目组组织我国真菌感染领域内的多学科专家和学者,参考国内外相关指南和最新研究数据,结合多学科专家临床经验共同制定本共识,旨在更好地指导临床医生合理送检真菌相关的实验室检测,提升真菌实验室的检测能力,助力临床IFD的诊断和治疗。  该共识通过参考世界卫生组织“真菌重点病原体清单”以及全国真菌病监测网最新数据 [ 5 ] ,共筛选出8种临床常见的侵袭性霉菌,即曲霉菌属、毛霉菌目、镰刀菌属、赛多孢菌属、节荚孢霉属、拟青霉属、暗色霉菌、双相真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)。共识第一部分围绕不同霉菌感染建议送检标本类型,实验室检测方法(直接镜检、培养、鉴定、血清学检测、分子生物学检测)及性能评价,体外药敏试验及治疗建议等要点形成推荐意见 共识第二部分,通过前期问卷调查,筛选出6个霉菌实验室检测最常见问题,并形成专家推荐意见。  本共识适合从事真菌感染相关领域的临床医护人员、实验室技术人员、感染控制人员、科研学者等阅读,也希望通过这种方式与广大同仁交流意见。  一、侵袭性霉菌感染实验室诊断方法及要点  侵袭性霉菌感染实验室诊断方法及路径基本一致,包括直接镜检、培养、血清学检测(G试验、GM试验、曲霉IgG抗体测定等)、分子生物学检测(PCR、mNGS),再通过形态学、质谱、分子生物学鉴定具体菌种,进一步进行体外药敏试验并提出治疗建议( 图1 )。因检测不同霉菌适用的样本类型,以及每种检测方法针对不同霉菌的检测性能及要点有很大差别,故本共识针对8种霉菌感染,建议送检的标本类型以及不同检测方法的操作要点及性能评价分别形成推荐意见。  (一)曲霉菌属  曲霉菌在自然环境中广泛存在,临床最常见的感染类型是侵袭性曲霉病(invasive aspergillosis,IA)和慢性肺曲霉病(chronic pulmonary aspergillosis,CPA),其中IA临床表现和进展速度与患者的免疫状态密切相关 [ 6 , 7 ] 。血液恶性肿瘤、慢性肺病、移植(包括实体器官移植和造血干细胞移植)、糖皮质激素治疗、中性粒细胞减少症和慢性肝病均是IA的危险因素。肺外脏器和组织的曲霉菌感染可为原发感染,也可播散至邻近脏器感染而造成继发感染。除肺部外,鼻窦旁、中枢神经系统、骨骼、皮肤、心脏、眼部及消化系统等部位也可发生曲霉菌感染。临床最常见的曲霉菌为烟曲霉,其次是黄曲霉、黑曲霉、土曲霉和构巢曲霉。值得注意的是,近年来唑类耐药曲霉菌感染病例持续增加。曲霉菌属感染诊断可选择的样本类型包括血液、痰液、支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)、活检组织、分泌物等,怀疑曲霉菌属引起的侵袭性真菌感染的诊断方法及要点见 表1 。  (二)毛霉菌目  毛霉菌目由55个属250多个种组成。引起人类发病最常见的是根霉属、毛霉属和横梗霉属,其次是根毛霉属和小克银汉霉属等。毛霉菌目可引起皮肤、软组织、肺部、鼻-眶-脑、胃肠部位感染,病死率达40%~80% [ 20 ] 。不同种属可能会导致不同感染部位的复发,如横梗霉属易引起皮肤毛霉病复发,而小克银汉霉属常见于肺部或播散性感染患者。毛霉菌目感染诊断可选择的样本类型包括血液、痰液、BALF、脓液、分泌物、痂皮或活检组织等,怀疑毛霉菌目引起的侵袭性真菌感染诊断方法及要点见 表2 。  (三)镰刀菌属  镰刀菌属是一类全球性分布的土壤腐生菌,也是植物病原菌,能引起感染和中毒。镰刀菌属可广泛感染人类,包括浅表感染(如角膜炎和甲真菌病等)、局部侵袭性和播散性感染。局部侵袭性和播散性感染主要发生于免疫功能低下患者,特别是长期重度中性粒细胞减少或严重T细胞免疫缺陷患者。引起人类感染的镰刀菌种多为茄病镰刀菌复合群、尖孢镰刀菌复合群。此外,摄入镰刀菌毒素污染的食物后可引起中毒。镰刀菌属感染诊断可选择的样本类型包括角膜刮片、眼内容物、指(趾)甲、皮肤组织、呼吸道标本(痰液、BALF、刷取物、肺穿组织)、关节液、胸腹水、脓液、血液等,怀疑镰刀菌属引起的侵袭性真菌感染诊断方法及要点见 表3 。  (四)赛多孢菌属  赛多孢菌属呈全球性分布,广泛存在于土壤、污水、腐物等环境中,可定植于囊性纤维化患者呼吸道,是一种重要的条件致病真菌。未经有效治疗,6个月病死率达55% [ 3 ] 。感染类型以创伤后局部感染为主,其次为溺水后感染、免疫功能明显受损后感染及呼吸道内定植感染等 [ 36 ] 。临床主要致病菌种为尖端赛多孢和波氏赛多孢。赛多孢菌属感染诊断可选择的样本类型包括痰液、BALF、脓液、分泌物、痂皮、血液或活检组织等,怀疑赛多孢菌属引起的侵袭性真菌感染诊断方法及要点见 表4 。  (五)暗色霉菌  暗色霉菌是一大类可产生黑色素的真菌群体,可分离于多种临床感染标本,根据临床表现及其在组织中的分布特征,暗色霉菌所致常见感染性疾病包括着色芽生菌病、暗色丝孢霉病、孢子丝菌病和足菌肿。暗色霉菌感染常因环境中暗色霉菌经创伤性植入皮肤或皮下组织所致,但肺部感染或播散性感染常为吸入分生孢子所致。虽然暗色霉菌具有相似的生长特征及形态学特征,但部分菌属仍具有明显特征。临床上分离率较高的菌属包括弯孢霉属、离蠕孢属、着色霉属、链格孢霉属、枝孢霉属等。暗色霉菌感染诊断可选择的样本类型包括组织、脑脊液、脓液、关节腔液、腹水、人工瓣膜、BALF、痰液、骨髓、血液等,怀疑暗色霉菌引起的侵袭性真菌感染诊断方法及要点见 表5 。  (六)节荚孢霉属  节荚孢霉属包括多育节荚孢霉(原称多育赛多孢)和 L.valparaisensis 2个菌种,其中仅多育节荚孢霉有感染人类的报道。多育节荚孢霉是一种常见的土壤腐生菌,多分布于干旱气候地区。目前,关于多育节荚孢霉的报道以病例报道和小规模队列研究为主,缺乏流行病学数据。感染类型主要是肺部感染、血流感染、中枢神经系统感染、皮肤软组织感染等。虽然多育节荚孢霉感染罕见,但其易发生播散性感染,并且其固有多重耐药表型的播散性感染致死率高达77% [ 44 ] 。节荚孢霉感染诊断可选择的样本类型包括血液、痰液、BALF、脓液、分泌物或活检组织等,怀疑节荚孢霉引起的侵袭性真菌感染诊断方法及要点见 表6 。  (七)拟青霉属  拟青霉属中临床常见的菌种包括宛氏拟青霉和淡紫紫孢霉(淡紫拟青霉)。宛氏拟青霉常见感染类型包括肺炎、皮肤和软组织感染、骨髓炎、腹膜炎、真菌血症和中枢神经系统感染,常见症状为发热、呼吸困难和咳嗽,其侵袭性感染致死率为16.9% [ 48 ] 。淡紫紫孢霉常引发角膜炎、眼内炎、皮肤感染、肺部感染和真菌血症,疼痛和发热为最常见症状,其引发的感染致死率为45.5% [ 49 ] 。拟青霉属感染诊断可选择的样本类型包括角膜组织、眼拭子、血液、痰液、BALF、甲屑、鼻窦组织、脓液和皮肤组织等,怀疑拟青霉属引起的侵袭性真菌感染诊断方法及要点见 表7 。  (八)双相型真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)  马尔尼菲篮状菌,原名马尔尼菲青霉菌,是一种温度依赖性双相型真菌,在我国广西、广东等地,以及东南亚等地流行。目前在世界34个国家、我国21个省/直辖市均有报道。马尔尼菲篮状菌感染好发于免疫低下人群,尤其是CD4+T细胞小于100个/μl的艾滋病患者 在亚洲的艾滋病患者中,马尔尼菲篮状菌病总发病率为3.6%。马尔尼菲篮状菌可侵犯全身各器官,导致播散性感染。但临床表现无特异性,常被误诊为肺结核、肿瘤,误诊导致的病死率超过85%。  荚膜组织胞浆菌也是双相型真菌,可引起组织胞浆菌病。该菌常见于被蝙蝠粪和鸟粪污染的土壤中,在建筑、洞穴挖掘和接触鸟类处理等活动中吸入分生孢子可致感染。荚膜组织胞浆菌有3个变种,分别为荚膜变种、杜波变种和鼻疽变种。其中荚膜变种分布最广,主要在美国密西西比河流域和拉丁美洲 杜波变种主要分布在乌干达和尼日利亚等非洲国家 鼻疽变种主要引起马和狗的感染,但也有少数人类感染病例报道。我国引起发病的主要为荚膜变种,呈地区性分布,多雨潮湿的中南、华南和西南地区感染率较高,而干旱的新疆地区感染率低。马尔尼菲篮状菌和荚膜组织胞浆菌感染诊断可选择的样本类型包括血液、骨髓、体液、痰液、BALF、支刷物、脓液、分泌物、穿刺液(肝、脾、淋巴结)或活检组织等,怀疑马尔尼菲篮状菌和荚膜组织胞浆菌引起的侵袭性真菌感染诊断方法及要点见 表8 。  二、侵袭性霉菌感染实验室诊断常见问题及推荐意见  为更好地提升我国侵袭性霉菌感染实验室诊断能力,解决实验室工作中最常见、最困惑以及与临床交流最多的问题,通过问卷调查收集到来自全国76位临床和检验医师的共207个问题。经过归纳分类后,整理出6大类最常见问题,并由专家组形成推荐意见。  (一)霉菌检测阳性,如何判断是污染菌、定植菌还是致病菌  1.直接镜检霉菌阳性,如何判断是污染菌、定植菌还是致病菌?  建议1 直接镜检阳性时,应首先区分标本来自无菌部位还是非无菌部位。无菌部位标本(血液标本除外)直接镜检有特征性菌丝和孢子且与组织病理结果、真菌培养结果相符,可确诊为致病霉菌 非无菌部位标本直接镜检到霉菌,要结合培养结果、血清学检测结果、患者流行病学史和临床感染表现等综合分析。  2.培养霉菌阳性时,如何判断是污染菌、定植菌还是致病菌?  建议2 培养霉菌阳性时,重点关注送检标本类型,直接镜检、组织病理检查与霉菌阳性培养的一致性,以及霉菌致病性、感染部位等。无菌标本如血培养为曲霉菌属或毛霉菌目,污染菌的可能性大 如为镰刀菌属、赛多孢菌属和马尔尼菲篮状菌,可能为致病菌。非无菌标本,视情况而定:2个试管有单一形态真菌生长,真菌镜检同时阳性者提示有临床意义 仅1管生长真菌,生长部位为非接种部位,菌落为霉菌样则可能是污染 培养出的真菌与直接镜检和组织病理学检查表现相符,连续培养阳性,且真菌具备36~37 ℃生长的能力提示有临床意义。  (二)不同检测结果不一致问题  1.临床怀疑真菌感染,实验室相关检测阴性,可从哪些方面与临床沟通?  建议3 分析前应评估标本留取是否规范并适于特定检验项目 分析过程应评估镜检和/或培养方法检测敏感性是否充分、培养条件是否适宜、所选检测项目是否适于检测疑似真菌类型(如G试验不能检测隐球菌和毛霉菌目) 分析后过程应结合组织病理学或影像学结果,参考其他感染指标结果(如C反应蛋白、降钙素原),分析是否存在导致血清学结果假阴性的因素等。  2.如何解释镜检和/或培养结果与血清学检测(G试验、GM试验)结果不一致?  建议4 鉴于真菌体内增殖及血清标志物出现时间不同,不同感染期血清学与镜检和/或培养结果常不一致。血清学检测方法敏感性常高于传统镜检、培养方法,而单纯培养结果常难区分感染、定植或污染。此外,应考量是否存在导致血清学结果假阳性或假阴性的因素以及宿主免疫功能。  (三)血清学检测相关问题  1.血清学检测常见干扰因素有哪些?  建议5 血清学检测假阳性因素包括药物因素(血液制品如静脉输注免疫球蛋白等)、医疗因素(纤维素膜血液透析)、宿主因素(细菌菌血症)、样本因素(如采血管污染或过度操作)、方法学因素(传统鲎试剂法干扰因素多) [ 65 , 66 ] 等 假阴性因素包括使用抗真菌药物、脂血或黄疸样本 [ 65 , 66 ] 等。实际应用过程中应尽量排除干扰因素的存在,并谨慎评估对结果的干扰影响。  2.如何解释血清G试验与GM试验结果不一致?  建议6 G试验与GM试验检测标志物不同,G试验是泛真菌检测,而GM试验为曲霉菌特异性抗原检测 另外,2种标志物的释放时间和释放量的不同也可能导致二者结果不一致,例如1,3-β-D葡聚糖只有被吞噬细胞吞噬处理后才被释放出来,而GM是表达在曲霉菌细胞壁表面的一种多糖成分,在曲霉菌繁殖生长时由菌丝释放出来。因此,在感染早期,曲霉菌的生长分泌强于死亡消化裂解,可出现GM试验阳性,而G试验未达到阳性水平 粒细胞缺乏患者,不能将1,3-β-D葡聚糖从真菌中释放出来,也可导致二者检测结果不一致。  3.如何解释血清与BALF的GM试验结果不一致?  建议7 二者检测的敏感性、特异性不同,可能会导致检测结果的不一致。GM试验对免疫抑制患者IA检测敏感性高,BALF样本敏感性优于血清样本 [ 9 ] 。另外BALF样本采样和处理的标准化问题(灌洗量、回收量、血性、痰性、灌洗技术等)对GM试验结果的影响很大。  (四)mNGS检测相关问题  1.mNGS检测霉菌相比于传统检测方法的优势有哪些?  mNGS检测敏感性高,更适合混合感染病例的病原学检测,多项侵袭性真菌感染的研究表明mNGS检测阳性率高于传统检测,且对免疫缺陷患者和混合感染时较传统检测更具优势 [ 67 , 68 , 69 ] 。外周血可作为深部组织器官真菌感染的mNGS检测样本:侵袭性真菌感染可累及多种组织和器官。当感染部位样本获取困难时,外周血可作为替代样本进行检测。mNGS可作为少见真菌或培养困难真菌的平行检测手段,如毛霉菌目、组织胞浆菌、拟青霉等。  建议8 对免疫功能低下、疑似混合感染、传统检测阴性或疑似少见真菌感染患者,在进行传统微生物学检测的同时留取样本进行mNGS检测。外周血样本检测敏感性低于感染部位样本,因此在不能获得感染部位样本时可进行替代检测,检出真菌应结合临床谨慎评估。  2.mNGS检测有哪些局限性?  真菌的细胞壁相对较厚,mNGS可因破壁效率低而影响核酸提取效率,且检测性能可因真菌类型、临床样本种类及实验流程差异而有所不同。有研究显示IA患者的BALF样本其mNGS检测敏感性低于GM检测 [ 15 ] 。公共数据库中真菌信息的准确性和完整度低于细菌及病毒,已有的核酸序列质量参差不一,可导致结果假阴性或真菌鉴定准确率降低。对于检出的非常见真菌类型,应进行其他方法的验证,如一代测序或靶向PCR检测。mNGS假阳性较常见,主要原因为湿试验过程引入微生物核酸及生信分析错配,前者更常见。湿试验所致假阳性原因包括样本采集环节、实验室环境背景菌以及样本间污染 [ 70 ] 。  建议9 mNGS假阳性率高于传统微生物学检测,仅mNGS检出真菌不应作为真菌感染的诊断依据,应对检出真菌进行其他方法验证,并需结合临床谨慎评估。与此同时,因真菌结构特点及数据库原因,mNGS可存在假阴性结果,mNGS阴性不应作为排除真菌感染的标准。  3.当临床考虑IFD时,如何解释镜检、培养、血清学检测与mNGS检测结果不一致?  不同方法学的诊断性能存在较大差异。(1)传统微生物学未检出真菌,而mNGS检出:与培养、镜检方法相比,mNGS的敏感性较高,需结合临床考虑检出真菌是否为致病菌,同时应考虑送检其他真菌相关检测以验证mNGS结果。(2)传统微生物学检出真菌,而mNGS未检出:无菌样本培养和/或镜检检出霉菌,应充分考虑致病菌可能,mNGS可因真菌细胞壁较厚、人源背景高等原因造成漏检。  建议10 当临床考虑IFD时,应充分考虑阳性结果检出,结合未检出的检测方法性能特征考虑漏检可能,有条件情况下进行重复检测或重新采集样本检测。  (五)霉菌体外药敏试验相关问题  1.霉菌是否均需常规开展体外药敏试验?  建议11 微生物实验室在条件适宜的情况下,尽量开展重要病原真菌的体外药敏试验,为临床用药提供指导,具体用药原则建议由临床相关科室、微生物实验室、药剂科、感控部门共同讨论决定。特别是下列情况,实验室应该开展体外药敏试验:(1)建立致病性霉菌抗菌谱和耐药性监测。(2)使用标准剂量的抗霉菌药物治疗失败的患者。(3)临床上已有临床耐药菌株报道。(4)曾接触过抗真菌类药物或正在接受长期抗真菌治疗的患者。  接受抗真菌治疗的患者发生深度感染、治疗失败的情况下,若无菌部位分离出霉菌菌种为罕见或新出现的菌种,或怀疑特定菌种可能对所使用的抗真菌药物耐药的情况下,应优化患者个体化治疗,根据流行病学调查等情况,建议进行体外药敏试验。  2.对无判定折点的药敏结果,如何向临床发送报告?  建议12 如分离出高度疑似或确诊为病原体的霉菌,应尽量向临床提供体外药敏试验结果。药敏试验暂无判定折点的霉菌也需提供体外药敏试验的最低抑菌浓度(minimum inhibitory concentration,MIC)值。  由于诸多因素,目前美国临床实验室标准研究所(Clinical and Laboratory Standards Institute,CLSI)、欧洲抗微生物药物敏感试验委员会(European Committee on Antimicrobial Susceptibility Testing,EUCAST)以及我国对多数霉菌缺乏临床药敏试验判读折点。对已有规范化体外药敏试验方法的霉菌(如曲霉、毛霉、镰刀菌、赛多孢、孢子丝菌、皮肤癣菌等),可按照抗丝状真菌药物敏感性试验肉汤稀释法标准(WS/T411-2024) [ 71 ] 向临床提供体外药敏试验MIC值,临床可结合抗真菌药物的血药谷浓度和峰浓度值,选择相应的药物种类和剂量。对于尚无规范化体外药敏试验方法的霉菌(如暗色真菌等),可参考类似菌体外药敏试验方法测定其MIC值,报告临床,并注明体外药敏试验非标准化方法操作,此结果仅供参考。  (六)如何保证侵袭性霉菌实验室检测的生物安全,避免实验室污染?  建议13 霉菌实验室不应与细菌、结核实验室共用,应单独设置 霉菌检测需在Ⅱ级生物安全柜内进行,特别是可疑高致病性病原真菌 紫外线仍然是必备的空气消毒设备 定期使用高锰酸钾或甲醛熏蒸24 h,对空气进行消杀 每天实验完成后用0.5%过氧乙酸或含氯消毒剂(500 mg/L)消毒。如遇操作台被真菌或标本污染,应立即覆盖纸巾,并用含氯消毒液(500 mg/L)消毒20 min。一旦实验室环境或培养箱发生污染,应立即停止实验操作,对实验室或培养箱进行彻底消毒,可用含氯消毒液(500 mg/L)进行表面消毒擦拭,然后进行过氧乙酸或甲醛熏蒸,熏蒸后再进行表面消毒,连续3 d监测实验室或培养箱空气质量和表面染菌量,确认无污染后方可重新启用。  执笔人(按姓氏拼音排序):曹存巍(广西医科大学第一附属医院皮肤性病科),杜君洋(侵袭性真菌病机制研究与精准诊断北京市重点实验室),范欣(首都医科大学附属北京朝阳医院感染和临床微生物科),辜依海(三二〇一医院微生物免疫科),黄晶晶(南京医科大学附属淮安第一医院检验科),刘亚丽(中国医学科学院北京协和医院检验科),王贺(侵袭性真菌病机制研究与精准诊断北京市重点实验室),王俊瑞(内蒙古医科大学附属医院检验科),徐春晖(中国医学科学院血液病医院临床检测中心),徐和平(厦门大学附属第一医院检验科)  专家组成员(按姓氏拼音排序):曹存巍(广西医科大学第一附属医院皮肤性病科),曹俊敏(浙江省中医院检验科),褚云卓(中国医科大学附属第一医院检验科),杜君洋(侵袭性真菌病机制研究与精准诊断北京市重点实验室),范欣(首都医科大学附属北京朝阳医院感染和临床微生物科),辜依海(三二〇一医院微生物免疫科),郭大文(哈尔滨医科大学附属第一医院检验科),韩崇旭(苏北人民医院医学检验科),胡付品(复旦大学附属华山医院抗生素研究所临床微生物室),黄晶晶(南京医科大学附属淮安第一医院检验科),贾伟(宁夏医科大学总医院医学实验中心),金炎(山东省立医院检验科),康梅(四川大学华西医院实验医学科),李轶(河南省人民医院检验科),梁伟(宁波大学附属第一医院检验科),林宁(南京医科大学附属淮安第一医院检验科),刘亚丽(中国医学科学院北京协和医院检验科),罗燕萍(国家卫生健康委员会合理用药专家委员会办公室),马筱玲(中国科学技术大学附属第一医院检验科),逄崇杰(天津医科大学总医院感染科),王贺(侵袭性真菌病机制研究与精准诊断北京市重点实验室),王俊瑞(内蒙古医科大学附属医院检验科),王瑶(中国医学科学院北京协和医院检验科),魏莲花(甘肃省人民医院检验科),肖盟(中国医学科学院北京协和医院检验科),徐春晖(中国医学科学院血液病医院临床检测中心),徐和平(厦门大学附属第一医院检验科),许建成(吉林大学白求恩第一医院检验科),徐雪松(吉林大学中日联谊医院检验科),徐英春(中国医学科学院北京协和医院检验科),喻华(四川省人民医院检验科),张丽(中国医学科学院北京协和医院检验科),张利侠(陕西省人民医院检验科),张义(山东大学齐鲁医院检验医学中心),朱镭(山西省儿童医院临床检验中心)
  • 智云达霉菌毒素检测系列新品待发
    近年来,随着社会进步、人们生活质量的提高,全球对动物产品的需求持续增长。都知道优质饲料培育优质产品,随之而来对优质饲料的需求也与日俱增。殊不知每年全球因霉菌毒素引起的饲料及饲料原料污染也日趋严重,据统计全球有73%的饲料样品黄曲霉毒素检测超标。 生产饲料应用最多的原料是玉米和小麦,富含能量高,但据统计2013年收获的谷物中霉菌毒素污染情况仍非常严重。据国际饲料工业联合会称,它们发现在10亿吨配合饲料中,大约3000万吨是养殖场生产的自配料,自配料大多未能对其中的霉菌毒素等进行检测,这样生产出来的饲料质量必然达不到优质饲料的标准,即便当下不能果断地说饲料原料或是饲料中的霉菌毒素对人体一定会有危害。 因此,在世界很多地区,检测饲料原料或成品饲料中的霉菌毒素仅是一项例行的工序,需要一些快速检测产品做立行工序。北京智云达科技有限公司作为食品安全快速检测行业的领先者,多年来专业致力于食品检测产品的研发、生产和销售,并且推出多项食品安全问题的解决方案。我国是粮食生产大国,是全球最大的饲料生产国,结合我国现阶段饲料原料及饲料受霉菌毒素污染的现状分析,我司特推出多款霉菌毒素检测系列产品。 此次推出的霉菌毒素检测系列产品类型包括胶体金卡、ELISA快速检测试剂盒和免疫亲和柱,同时还配有黄曲霉毒素检测所需的其他的设备和耗材,新产品有十余种,新品即将上市,小包装设计操作简便、方便携带,有助您饲料更安全。作为您身边的食品安全检测专家——北京智云达一直牢记自己的使命,不断创新、不断研发,接下来还会有更多新产品上市,敬请期待。
  • 全国第三次土壤普查:格林凯瑞土壤检测方案
    前言:以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,弘扬伟大建党精神,完整、准确、全面贯彻新发展理念,加快构建新发展格局,推动高质量发展,遵循全面性、科学性、专业性原则,衔接已有成果,按照“统一领导、部门协作、分级负责、各方参与”的要求,全面查明查清我国土壤类型及分布规律、土壤资源现状及变化趋势,真实准确掌握土壤质量、性状和利用状况等基础数据,提升土壤资源保护和利用水平,为守住耕地红线、优化农业生产布局、确保国家粮食安全奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。“第三次全国土壤普查"是按照党中央、国务院有关决策部署,为全面掌握中国土壤资源情况而开展的一次普查。国务院决定自2022年起开展第三次全国土壤普查工作。山东格林凯瑞精密仪器有限公司由下至上积极配合,使用GK-600自动凯氏定氮仪进行土壤检测,记录实验数据,由技术部门撰写解决方案。 引用:国务院资讯《第三次全国土壤普查工作方案》、《胡春华强调:确保高质量完成第三次全国土壤普查任务》格林凯瑞为帮助您提高检测分析效率,助理土壤普查,现推出GK-600型自动凯氏定氮仪、GA-20D型全自动消解仪
  • 土壤检测仪器仪表迎机遇
    土壤质量是土壤在生态系统界面内维持生产,保障环境质量,促进动物和人类健康行为的能力,其重要性不言而喻。当前,我国土壤污染形势严峻,突发性土壤环境污染事件频发,对于土壤污染防治处于“后知后觉”的状态,很大程度上是因为我国缺乏对土壤环境质量评估的重视,没有及时对土壤环境质量现状展开调查评估。  土壤污染形势严峻  土壤是人类赖以生存,不可或缺的重要自然资源,事关家家户户的米袋子、菜篮子、水缸子,事关国家生态安全,事关美丽中国建设。然而,相比大气污染和水污染,土壤污染以其隐蔽性、潜伏性、长期性、不均匀性和不可逆转性,成为了污染防治攻坚战中最难缠的“看不见的敌人”。近些年,无论是农用耕地还是建设用地,人们对“脚下的环境”越发关注。  土壤污染的特点主要有四个,首先是具有隐蔽性和滞后性。土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题,通常会滞后很长时间。  其次,具有累积性和地域性。污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不像在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。  再者,具有不可逆性。如被某些重金属污染的土壤需要200~1000年才能够恢复。最后,土壤污染治理的艰难性。如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。  因此,土壤污染一旦发生,则很难恢复,治理成本较高、治理周期较长。对于土壤污染防治处于“后知后觉”的状态,很大程度上是因为我国缺乏对土壤环境质量评估的重视,没有及时对土壤环境质量现状展开调查评估。而在两会上,全国人大代表、致公党江苏省委副主委沈仁芳表示,实施第三次全国土壤普查,对我国土壤质量进行“全面体检”已成为当务之急和农业现代化发展的重大战略需求。  土壤质量亟待“体检”  土壤环境质量是土壤质量的一部分,是土壤容纳、吸收、净化污染物的状况。土壤环境质量评估是按一定的标准和方法,通过对土壤中污染物浓度进行监测,判定土壤环境是否受到污染,是单要素环境质量评估的一种。  据数据显示,将全国20.23亿亩耕地质量等级由高到低依次划分为一至十等,评价为一至三等的耕地面积为6.32亿亩,占耕地总面积的31.24% 评价为四至六等的耕地面积为9.47亿亩,占耕地总面积的46.81% 评价为七至十等的耕地面积为4.44亿亩,占耕地总面积的21.95%。(数据为2019年全国耕地质量公告)。  此外,耕地土壤质量的监测,主要是了解土壤质量变化情况。其重点监测pH、铅、镉、汞、砷、铬、镍、铜、锌等内容,根据国家土壤环境质量对农田土壤进行质量分等定级,并提出农业生产合理布局、环境质量与土壤修复的意见。  对土壤环境质量评估是加强土壤污染防治工作的前提,对耕地土壤进行一次全面“体检”,帮助农民因土、因作物施肥,提高肥效利用率,保护土壤和环境,在此发展背景下,其监测仪器仪表设备发展强劲。  “体检”土壤 相关仪器仪表设备发展强劲  土壤环境监测网络由各类监测仪器仪表组成,通过对各项指标的监测分析,探讨各参数间的相互关系,为土壤质量的监测和科研或决策部门提供了科学的土壤参数。根据全国土壤详查实验室要求,承担土壤详查的实验室要具备一定数量仪器设备,如分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪、微波消解仪、索氏提取器、气相色谱-质谱联用仪等。  此外,土壤中除了矿物质、有机质、土壤微生物,杂质,剩下的就只有土了。但其实土壤空隙中还存在着部分液体、固体。土壤分析是对土壤的组成分和物理、化学性质进行的定性、定量测定。作为农业发展的基础,土壤分析对农业也有具有举足轻重的作用,如不同的土壤适合种何种作物、作物生长过程中缺少哪种元素等都可以通过土壤分析检测而得出结果。  作为做好土壤污染防治、质量评估的基础,土壤监测必然提速。可以说,土壤监测是贯穿至土壤污染防治始终的。在初期基础性工作中,土壤污染状况以及污染地块分布调查需要监测先行,从而摸清“家底” 因此,耕地土壤质量亟待全面“体检”,给土壤监测仪器仪表带来的机遇不可小觑。  最后,我们要知道,土壤是人类赖以生存,不可或缺的重要自然资源,土壤相关监测仪器仪表等将成为推动土壤污染监测的关键,其设备发展强劲。
  • 谱尼测试21家实验室入选第三次全国土壤普查检测实验室
    7月11日,农业农村部公布了第三次全国土壤普查第二批检测实验室名单,谱尼测试集团所属的河北谱尼、内蒙古谱尼、大连谱尼、吉林谱尼、黑龙江谱尼、上海谱尼、江苏谱尼、杭州谱尼、宁波谱尼、青岛谱尼、郑州谱尼、武汉谱尼、深圳谱尼、广州谱尼、广西谱尼、四川谱尼、陕西谱尼等17家实验室列入全国土壤普查第二批检测实验室名录。  早在今年4月,农业农村部发布公告,公示了第三次全国土壤普查第一批检测实验室名单,谱尼测试集团及所属天津谱尼、厦门谱尼、乌鲁木齐谱尼等多家实验室名列其中,成功入选。到目前为止,谱尼测试共有21家所属实验室入围。   按照《国务院关于开展第三次全国土壤普查的通知》《第三次全国土壤普查工作方案》(农建发〔2022〕1号)以及《国务院第三次全国土壤普查领导小组办公室关于开展普查实验室筛选工作的通知》(农建发〔2022〕3号)的内容和细则,第三次全国土壤普查对实验室有着严格的要求,严格检测实验室选用 ,强调规范检测实验室运行的同时强化对实验室的监督检查。   谱尼测试集团作为我国的大型综合性检测认证集团,是农业农村部授予的全国土壤污染状况详查检测实验室,凭借二十年雄厚的检测技术实力,深耕土壤环境专业检测技术,以优异的服务能力和丰富土壤检测行业经验,获得了政府和企业用户的认可。   谱尼测试将高度重视此次任务,认真部署落实资源需求,增强责任意识,组织工作人员培训学习,提高检测能力,积极应对土壤普查内容多、任务重、技术要求高等难题,迎接挑战,确保土壤检测任务及时、准确完成。   此次土壤普查是继1958年至1960年和1979年至1985年两次土壤普查后的第三次全国土壤普查。据了解,为深入落实党中央、国务院关于耕地保护建设和生态文明建设的决策部署,此次普查对全国耕地、园地、林地、草地等土壤“全面体检”,摸清土壤质量“家底”,为守住耕地红线、保护生态环境、优化农业生产布局、推进农业高质量发展奠定坚实基础,为加快农业农村现代化、全面推进乡村振兴、促进生态文明建设提供有力支撑。
  • 土壤也要“体检” 土壤监测仪器仪表迎机遇
    土壤污染形势严峻 土壤是人类赖以生存,不可或缺的重要自然资源,事关家家户户的米袋子、菜篮子、水缸子,事关国家生态安全,事关美丽中国建设。然而,相比大气污染和水污染,土壤污染以其隐蔽性、潜伏性、长期性、不均匀性和不可逆转性,成为了污染防治攻坚战中最难缠的“看不见的敌人”。近些年,无论是农用耕地还是建设用地,人们对“脚下的环境”越发关注。 另外,小编了解到,土壤污染的特点主要有四个,首先是具有隐蔽性和滞后性。土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康状况的影响才能确定。因此,土壤污染从产生污染到出现问题,通常会滞后很长时间。 其次,具有累积性和地域性。污染物质在大气和水体中,一般都比在土壤中更容易迁移。这使得污染物质在土壤中并不像在大气和水体中那样容易扩散和稀释,因此容易在土壤中不断积累而超标,同时也使土壤污染具有很强的地域性。 再者,具有不可逆性。如被某些重金属污染的土壤需要200~1000年才能够恢复。最后,土壤污染治理的艰难性。如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。 因此,土壤污染一旦发生,则很难恢复,治理成本较高、治理周期较长。文章开头,小编提到,对于土壤污染防治处于“后知后觉”的状态,很大程度上是因为我国缺乏对土壤环境质量评估的重视,没有及时对土壤环境质量现状展开调查评估。而在两会上,全国人大代表、致公党江苏省委副主委沈仁芳表示,实施第三次全国土壤普查,对我国土壤质量进行“全面体检”已成为当务之急和农业现代化发展的重大战略需求。土壤质量亟待“体检” 土壤环境质量是土壤质量的一部分,是土壤容纳、吸收、净化污染物的状况。土壤环境质量评估是按一定的标准和方法,通过对土壤中污染物浓度进行监测,判定土壤环境是否受到污染,是单要素环境质量评估的一种。 据数据显示,将全国20.23亿亩耕地质量等级由高到低依次划分为一至十等,评价为一至三等的耕地面积为6.32亿亩,占耕地总面积的31.24%;评价为四至六等的耕地面积为9.47亿亩,占耕地总面积的46.81%;评价为七至十等的耕地面积为4.44亿亩,占耕地总面积的21.95%。(数据为2019年全国耕地质量公告)。 此外,耕地土壤质量的监测,主要是了解土壤质量变化情况。其重点监测pH、铅、镉、汞、砷、铬、镍、铜、锌等内容,根据国家土壤环境质量对农田土壤进行质量分等定级,并提出农业生产合理布局、环境质量与土壤修复的意见。 对土壤环境质量评估是加强土壤污染防治工作的前提,对耕地土壤进行一次全面“体检”,帮助农民因土、因作物施肥,提高肥效利用率,保护土壤和环境,在此发展背景下,其监测仪器仪表设备发展强劲。“体检”土壤 相关仪器仪表设备发展强劲 土壤环境监测网络由各类监测仪器仪表组成,通过对各项指标的监测分析,探讨各参数间的相互关系,为土壤质量的监测和科研或决策部门提供了科学的土壤参数。根据全国土壤详查实验室要求,承担土壤详查的实验室要具备一定数量仪器设备,如分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪、微波消解仪、索氏提取器、气相色谱-质谱联用仪等。 此外,土壤中除了矿物质、有机质、土壤微生物,杂质,剩下的就只有土了。但其实土壤空隙中还存在着部分液体、固体。土壤分析是对土壤的组成分和物理、化学性质进行的定性、定量测定。作为农业发展的基础,土壤分析对农业也有具有举足轻重的作用,如不同的土壤适合种何种作物、作物生长过程中缺少哪种元素等都可以通过土壤分析检测而得出结果。 作为做好土壤污染防治、质量评估的基础,土壤监测必然提速。可以说,土壤监测是贯穿至土壤污染防治始终的。在初期基础性工作中,土壤污染状况以及污染地块分布调查需要监测先行,从而摸清“家底”;因此,耕地土壤质量亟待全面“体检”,给土壤监测仪器仪表带来的机遇不可小觑。最后,我们要知道,土壤是人类赖以生存,不可或缺的重要自然资源,土壤相关监测仪器仪表等将成为推动土壤污染监测的关键,其设备发展强劲。
  • 【干货】土壤监测技术—土壤采样如何减少误差?
    随着《土壤污染防治行动计划》(以下简称“土十条”)的发布,很多业内人士分析认为,未来5年我国的土壤检测市场潜力巨大,可高达520亿元。  土壤污染实际状况的把握和风险管控的前提是采样的代表性和检测的准确性。但是笔者在考察中发现,实际操作时,土壤采样的代表性、采样密度以及检测准确性等有时却成为土壤检测的技术瓶颈。  事实上,土壤本身是个高度不均匀的介质,采样误差远远大于分析误差。  有研究对1亩地这样一个土体性质变化不大的地块随机选取9 个样点,分别采集9 个土样,分析土壤有效磷含量。结果发现样品间的方差是平行样的6倍,是仪器读数重复的73倍,足见采样误差比起仪器分析误差大得多。  同样,另一个案例对一个长40米宽32米的田块进行8米×8米的网格采样,对所采的20个样品分析全氮发现,采样误差远远大于分析误差。  因此土壤污染研究中的采样问题可能成为时下土壤检测行业的瓶颈。为此我们有必要说说土壤采样如何减少误差这一问题。  土壤是个开放体系。在生态系统中,土壤位于水圈、大气圈、岩石圈和生物圈的核心圈。土壤圈本身是个开放体系,和4个圈层存在着物质和能量的交换。大气圈和水圈的污染物质一部分会进入土壤,造成土壤污染。  根据进入途径的不同,重金属等污染物在空间分布上有着很大的差别。对于通过点源如冶炼厂的污染排放进入土壤的污染物,其以污染点为中心分布,同时,污染物的空间分布还受常年主导风向的影响显著,点源的影响范围和程度受到点源的排放量、烟囱高度、地形、气象条件的影响。  对于水源污染,一般呈现沿着河流两岸污染的线型分布特征,且受地形影响很大。由于土壤具有较大的吸附性能,进入稻田后,重金属在田块中非常不均匀。据日本科学家研究,一个54米长的田块中,镉、锌、铅等元素的浓度可以相差一倍,镉分别是2.02毫克/千克和1.04毫克/千克,铜分别是348毫克/千克~168毫克/千克,锌分别是101毫克/千克~53.1毫克/千克 且田块左右两侧数值也不尽相同。  而在我国台湾地区的研究中,一个50米的田块进水口的镉浓度可以高达7.0毫克/千克,而出水口可以低到0.2毫克/千克,相差高达35倍。如果没有多点采样,容易对田块的污染状况造成误判。  在大气、水、土壤等环境要素中,唯有土壤是最不均匀的介质。土壤是一个多相的疏松多孔体系,同时也是一个胶体体系、化学体系、生物体系,还是一个氧化还原体系。  所以污染物进入土壤后会发生各种各样的物理、化学和生物学过程而重新分布。固然到达土壤表面的污染物主要分布于土壤的表面,但重金属主要是被黏土矿物部分吸附,因此其之后的分布则受到黏土矿物分布的影响。  有研究测定土壤表层0~15厘米的土壤镉含量为5.0毫克/千克,但如果分离出其黏土部分,测定到的镉含量则高达18毫克/千克。由于土壤中镉主要吸附在其中的黏粒上,所以采集土样时主要土壤质地的差异将带来显著的影响。  因此,在耕作过程中,土壤颗粒的再分布容易造成土壤重金属的分异。有日本科学家研究表明,在进行犁耙田后,由于土壤黏粒的上浮以及随后其沉淀于土壤表层,水田表层3厘米土层的重金属含量可以比其下的土层高出一倍以上。所以采样时务必上下均匀取样,否则容易带来误差。  在进行重金属分析的采样过程中,除了避免采样工具和器具带入的污染外,必须确定采样方式(蛇形、对角线、梅花点等),进行多点采样(通常5点或以上)、采集混合样 单点采样则必须是上下均匀采样。  而对其他有机污染物的采样,考虑到污染物的性质(挥发性、光分解等),更应该采取各种相对应的采样对策,以确保采样带来的误差降到最小。
  • 第三次全国土壤普查第三批检测实验室名单公示
    据悉,按照《国务院第三次全国土壤普查领导小组办公室关于开展普查实验室筛选工作的通知》(农建发〔2022〕3号,以下简称《通知》)和《国务院第三次全国土壤普查领导小组办公室关于组织开展第三批检测实验室初筛推荐工作的通知》(国土壤普查办发〔2022〕16号)要求,经相关实验室自愿申请、所在地省(区、市)级第三次全国土壤普查办公室初步筛选推荐,土壤普查办组织专家复核等程序,确认农业农村部谷物品质监督检验测试中心等283家检测实验室符合《通知》确定的要求,并予以公示,公示时间为2022年12月9日至15日。 第三次全国土壤普查第三批检测实验室公示名单如下:序号推荐省(区、市)申请单位法人单位实验室类型1北京农业农村部谷物品质监督检验测试中心中国农业科学院作物科学研究所仅承担样品检测任务2北京北京市科学技术研究院资源环境研究所北京市科学技术研究院资源环境研究所仅承担样品检测任务3北京北京中天云测检测技术有限公司北京中天云测检测技术有限公司承担样品制备和检测任务4北京苏伊士环境检测技术(北京)有限公司苏伊士环境检测技术(北京)有限公司承担样品制备和检测任务5北京奥来国信(北京)检测技术有限责任公司奥来国信(北京)检测技术有限责任公司仅承担样品检测任务6北京北京京创净源环境技术研究院有限公司北京京创净源环境技术研究院有限公司仅承担样品检测任务7北京国正检验认证有限公司国正检验认证有限公司承担样品制备和检测任务8天津易景检测服务(天津)有限公司易景检测服务(天津)有限公司承担样品制备和检测任务9河北邢台市康达建筑工程环境检测有限公司邢台市康达建筑工程环境检测有限公司承担样品制备和检测任务10河北河北木本水源环保科技有限公司河北木本水源环保科技有限公司承担样品制备和检测任务11河北保定畿亿检测服务有限公司保定畿亿检测服务有限公司承担样品制备和检测任务12河北河北正态环境检测有限公司河北正态环境检测有限公司承担样品制备和检测任务13河北河北宝隆检验检测技术有限公司河北宝隆检验检测技术有限公司承担样品制备和检测任务14河北沧州燕赵环境监测技术服务有限公司沧州燕赵环境监测技术服务有限公司承担样品制备和检测任务15河北国土资源部地球化学勘查监督检测中心(中国地质科学院地球物理地球化学勘查研究所)中国地质科学院地球物理地球化学勘查研究所承担样品制备和检测任务16河北河北省区域地质调查院实验室河北省区域地质调查院承担样品制备和检测任务17河北河北省地球物理勘查院实验室河北省地球物理勘查院(河北省浅层地热能研究中心)承担样品制备和检测任务18河北河北彩驰环保科技有限公司河北彩驰环保科技有限公司承担样品制备和检测任务19河北唐山天予环境检测有限公司唐山天予环境检测有限公司承担样品制备和检测任务20河北石家庄斯坦德优检测技术有限公司石家庄斯坦德优检测技术有限公司承担样品制备和检测任务21河北河北恒一检测科技集团有限公司河北恒一检测科技集团有限公司承担样品制备和检测任务22河北中化地质矿山总局中心实验室中化地质矿山总局地质研究院承担样品制备和检测任务23河北河北精鼎环境监测有限责任公司河北精鼎环境监测有限责任公司承担样品制备和检测任务24河北河北华普环境检测有限公司河北华普环境检测有限公司承担样品制备和检测任务25河北河北泉皓环境科技有限公司河北泉皓环境科技有限公司承担样品制备和检测任务26河北河北省煤田地质局新能源地质队能源矿产检测中心河北省煤田地质局新能源地质队承担样品制备和检测任务27河北河北普华检测技术服务有限公司河北普华检测技术服务有限公司承担样品制备和检测任务28河北河北拓维检测技术有限公司河北拓维检测技术有限公司承担样品制备和检测任务29河北河北标科环境检测技术有限公司河北标科环境检测技术有限公司承担样品制备和检测任务30山西山西天和盛环境检测股份有限公司山西天和盛环境检测股份有限公司承担样品制备和检测任务31山西山西华涵净环境检测有限公司山西华涵净环境检测有限公司承担样品制备和检测任务32山西山西农业大学环境监测有限公司山西农业大学环境监测有限公司承担样品制备和检测任务33山西山西绿澈环保科技有限公司山西绿澈环保科技股份有限公司承担样品制备和检测任务34山西山西康标安环科技有限公司山西康标安环科技有限公司承担样品制备和检测任务35山西山西丽浦创新科技有限公司山西丽浦创新科技有限公司承担样品制备和检测任务36山西山西中环鑫宏检测有限公司山西中环鑫宏检测有限公司承担样品制备和检测任务37山西山西碧霄环境监测有限公司山西碧霄环境监测有限公司承担样品制备和检测任务38山西山西嘉誉检测科技有限公司山西嘉誉检测科技有限公司仅承担样品检测任务39山西山西实朴检测技术服务有限公司山西实朴检测技术服务有限公司承担样品制备和检测任务40山西山西中科检测科技有限公司山西中科检测科技有限公司承担样品制备和检测任务41内蒙古内蒙古寰宇环境科技有限公司内蒙古寰宇环境科技有限公司承担样品制备和检测任务42内蒙古内蒙古本木检测科技有限公司内蒙古本木检测科技有限公司承担样品制备和检测任务43内蒙古内蒙古华质检测技术有限公司内蒙古华质检测技术有限公司承担样品制备和检测任务44内蒙古内蒙古嘉誉检验检测有限公司内蒙古嘉誉检验检测有限公司承担样品制备和检测任务45内蒙古通辽环保投资有限公司通辽环保投资有限公司承担样品制备和检测任务46内蒙古内蒙古金玥检测技术有限公司内蒙古金玥检测技术有限公司承担样品制备和检测任务47内蒙古内蒙古华智鼎环保科技有限公司内蒙古华智鼎环保科技有限公司承担样品制备和检测任务48内蒙古内蒙古泰达环保安全科技发展有限公司内蒙古泰达环保安全科技发展有限公司仅承担样品检测任务49辽宁辽宁泽明环境监测有限公司辽宁泽明环境监测有限公司承担样品制备和检测任务50辽宁辽宁标普检测技术有限公司辽宁标普检测技术有限公司承担样品制备和检测任务51辽宁中咨华宇(沈阳)检测认证有限公司中咨华宇(沈阳)检测认证有限公司承担样品制备和检测任务52辽宁辽宁祥渌检测有限公司辽宁祥渌检测有限公司承担样品制备和检测任务53辽宁辽宁禹宇环境检测有限公司辽宁禹宇环境检测有限公司承担样品制备和检测任务54辽宁辽宁科维检验检测有限公司辽宁科维检验检测有限公司承担样品制备和检测任务55辽宁辽宁省有色地质勘查总院有限责任公司辽宁省有色地质勘查总院有限责任公司承担样品制备和检测任务56辽宁辽宁筑海检测科技有限公司辽宁筑海检测科技有限公司承担样品制备和检测任务57辽宁辽宁中环祥瑞工程技术有限公司辽宁中环祥瑞工程技术有限公司承担样品制备和检测任务58辽宁营口市产品质量检验检测研究有限公司营口市产品质量检验检测研究有限公司承担样品制备和检测任务59辽宁辽宁中科检测有限公司辽宁中科检测有限公司承担样品制备和检测任务60辽宁辽宁卫衡检测科技有限公司辽宁卫衡检测科技有限公司承担样品制备和检测任务61辽宁大连产品质量检验检测研究院有限公司大连产品质量检验检测研究院有限公司承担样品制备和检测任务62辽宁大连诚泽检测有限公司大连诚泽检测有限公司承担样品制备和检测任务63吉林国土资源部长春矿产资源监督检测中心(吉林省地质科学研究所)吉林省地质科学研究所仅承担样品检测任务64吉林吉林省第五地质调查所实验室吉林省第五地质调查所承担样品制备和检测任务65吉林吉林省中实检验检测有限公司吉林省中实检验检测有限公司仅承担样品检测任务66吉林吉林省优尼普瑞科技有限公司吉林省优尼普瑞科技有限公司仅承担样品检测任务67吉林吉林省普林松技术检测服务有限公司吉林省普林松技术检测服务有限公司承担样品制备和检测任务68吉林吉林省惠津分析测试有限公司吉林省惠津分析测试有限公司仅承担样品检测任务69吉林吉林省华科检测有限公司吉林省华科检测有限公司仅承担样品检测任务70吉林吉林市吉科检测技术有限公司吉林市吉科检测技术有限公司仅承担样品检测任务71吉林吉林省正真检测有限公司吉林省正真检测有限公司仅承担样品检测任务72吉林吉林省澳蓝环境检测有限公司吉林省澳蓝环境检测有限公司仅承担样品检测任务73吉林中化地质矿山总局吉林地质勘查院中化地质矿山总局吉林地质勘查院仅承担样品检测任务74吉林农业农村部特种经济动植物及产品质量监督检验测试中心中国农业科学院特产研究所仅承担样品检测任务75吉林中国科学院东北地理与农业生态研究所测试部中国科学院东北地理与农业生态研究所仅承担样品检测任务76吉林吉林省云海技术检测服务有限公司吉林省云海技术检测服务有限公司仅承担样品检测任务77吉林吉林省君证检验检测科技有限公司吉林省君证检验检测科技有限公司仅承担样品检测任务78吉林吉林莱美检测技术有限公司吉林莱美检测技术有限公司仅承担样品检测任务79吉林吉林省华航环境检测有限公司吉林省华航环境检测有限公司仅承担样品检测任务80黑龙江农业农村部大豆及大豆制品质量监督检验测试中心黑龙江省农垦科学院仅承担样品检测任务81黑龙江大庆中环评价检测有限公司大庆中环评价检测有限公司承担样品制备和检测任务82黑龙江黑龙江省能源地质测试研究院黑龙江省能源地质测试研究院仅承担样品检测任务承担样品制备和检测任务86黑龙江哈尔滨海关技术中心哈尔滨海关技术中心仅承担样品检测任务87
  • 检测土壤含元素的机器设备:新智能型土壤养分检测仪新品上市
    检测土壤含元素的机器设备:云唐新智能型土壤养分检测仪新品上市Uusi ?lyk?s maaper?n ravinteiden ilmaisin土壤污染导致生物品质不断下降,我国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标和接近临界值。此外,土壤污染除影响食物的卫生品质外,也明显地影响到农作物的其他品质。有些地区污灌已经使得蔬菜的味道变差,易烂,甚至出现难闻的异味 农产品的储藏品质和加工品质也不能满足深加工的要求。随着经济全球化的不断深入,在100多个国家内有机农业生产方式得到了广泛推广,其面积与种植人数也越来越多。当前,我国有机产品主要为植物类产品,动物性产品较少,野生采集产品增长速度最快。其中主要出口品种包含有机茶、有机大豆等。截至2010年底,我国从事有机产品认证的认证机构都已达到26家,发放证书4 800张,获得认可的企业超过4 000家,有机产品认证面积在260万公顷以上。功能多、测试项目齐全:1、土壤养分:●铵态氮、硝态氮、速效磷、速效钾、有机质、全氮、pH值、含盐量、水分、碱解氮等十项;●中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等。2、肥料养分:●单质化肥中的氮、磷、钾;●复(混)合肥及尿素中的铵态氮、硝态氮、磷、钾、缩二脲;●有机肥中速效氮、速效磷、速效钾、全氮、全磷、全钾、有机质,各种腐植酸、微量元素(钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼)等。3、植株养分:●植株中的氮素、磷素、钾素;硝酸盐、亚硝酸盐;钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等项。4、烟叶养分:全氮、全磷、全钾、还原糖、水溶性总糖、硼、锰、铁、铜、钙、镁等20项。5、土壤、肥料重金属:铅、铬、镉、砷、汞、镍、铝、氟、钛、硒等十余种重金属。6、食品(水果、蔬菜等):硝酸盐、亚硝酸盐、重金属(铅、铬、镉、砷、汞、镍、铝、氟、钛、硒)等项。 7、水质:●铵态氮、硝酸盐、亚硝酸盐、磷、钾、硬度、PH、铁、铜、锰、锌、硼、氯、硫、硅、钼等。技术指标: 1.电源:交流 220±22V 直流 12V+5V(仪器标配内置锂电池也可用车载电源)2.功率: ≤5W 3.量程及分辨率:0.001-99994.重复性误差: ≤0.02%(0.0002,重铬酸钾溶液) 5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。6.线性误差: ≤0.1%(0.001,硫酸铜检测)7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-38.波长范围 :红光:680±2nm 蓝光:420±2nm 绿光:510±2nm;橙光:590±4nm9.PH值(酸碱度): (1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.110.含盐量(电导):(1)测试范围:0.01%~1.00% (2)相对误差:±5%11.土壤水分技术参数水分单位:﹪(g/100g);含水率测试范围:0-100﹪;误差小于0.5%12.土壤中速效N、P、K三种养分一次性同时浸提测定、科学推荐施肥量(农业部速测行业标准起草者)13.肥料中氮(N)、磷(P)、钾(K)等养分同时、快速、准确检测(专利技术)14.测试速度:测一个土样(N、P、K)≤30分钟(含前处理时间,不需用户提供任何附件)15.同时测8个土样≤1小时(含前处理时间)16.仪器尺寸:43×34.5×19cm, 主机净重:5.1kg
  • 2024年土壤检测到底测什么?土壤普查究竟查什么?
    土情连着农情、国情、民情。对于农民而言,土壤质量好坏干系到农作物的生长状况;对于农业研究工作者,土壤健康程度代表土壤肥力强弱,指导研究方向;对于环保从业者,土壤污染检测关联着土壤治理与修复……小到个人,大至国家,土壤质量已然深入我们的生活、工作。那么,什么样的土壤才是健康的?国务院第三次全国土壤普查领导小组、办公室平台工作组组长、中国农业科学院农业资源与农业区划研究所所长吴文斌认为,可以从土壤肥力、 土壤自我修复能力、土壤的结构、通风、通气等一些物理特性、土壤里有害成分比例、土壤生物群落结构等五个方面判断土壤是否健康。“土壤三普”是对农用地土壤的一次“全面体检”。那么,此次“土壤三普”主要查什么?据有关专家介绍,一方面要查土壤质量,另一方面要查土壤污染情况。这次“土壤三普”当中涉及到的指标,耕地、园地是45项指标左右,林地、草地是19项指标左右,共性地都包含有机质含量这一指标。同时,还包括容重 pH值、群氮、群磷、群钾等与养分相关指标。除此之外,土壤结构也是关注的点。“土壤三普”如何检测土壤有没有被污染?随着全国土土壤普查的正式启动,土壤污染受到更广泛的社会关注。据仪器信息网的报告专家介绍,三普过程中,判断土壤有没有被污染,可以根据一些重金属指标,包括铬、镍等,一些不同形态的重金属也是值得关注的,例如,如果查某种重金属污染,可以检测其是否有游离态存在,因为游离态的容易被作物吸收;而一些非游离态的,可能跟其他物质结合,作物不吸收,但可定量。当前,土壤检测技术已经相对成熟,检测对象也相对固化,那么土壤检测中有哪些值得关注的点呢?从技术角度看,分析仪器依然是实验室主流检测手段,除此之外,快速筛查设备、便携式设备,在面对场地土块污染检测方面发挥着独特作用。从污染物种类看,自2022年《新污染物治理行动计划》发布以来,新污染物检测名噪一时,具体到土壤,又有哪些相关检测标准或质量基准出台?土壤重金属检测的难点有哪些?又有哪些新标准出台?土壤检测又有哪些新技术手段?新成果发布?全球首台快速土壤检测设备“知土”的真实“样貌”如何?带着您的种种疑问与好奇,欢迎报名第五届土壤检测技术大会,可以同时了解 新污染物、土壤三普、农田土壤、场地土壤、重金属等各方面内容,甚至还有一个《土壤检测实战指导》编委面对面的论坛,全是干货~~~强烈推荐!报名转发会议,集赞30个还能得一本《ICPMS实战宝典》这羊毛不得不薅呀!(添加助教微信:13260310733)部分精彩报告如下,点击下方链接即可报名:https://www.instrument.com.cn/webinar/meetings/soil240507/5月7日 新污染物专场+新技术及新应用报告时段报告主题报告嘉宾09:00--09:30土壤中微塑料的来源、识别及生态环境效应研究穆莉 农业农村部环境保护科研监测所 研究员09:30--10:00土壤中新型半挥发性有机污染物的非靶向筛查与风险评估高丽荣中国科学院生态环境研究中心 研究员10:00--10:30岛津方案助您轻松应对土壤有机物检测杜世娟 岛津企业管理(中国)有限公司 高级工程师10:30--11:00睿科自动化技术在土壤新污染物前处理中的应用王永朝 睿科集团股份有限公司 应用工程师11:00--11:30土壤纳米金属颗粒的定量分析与环境风险党菲 中国科学院南京土壤研究所 研究员11:30-12:00土壤中新污染物分析技术进展与应用黄毅 国家地质实验测试中心 副研究员14:00--14:30知土-新一代土壤成分现场监测技术与装备董大明 北京市农林科学院 研究员14:30--15:00实现农业可持续发展的关键:土壤检测新技术与碳氮分析的应用张欢 华唯意朴仪器(上海)有限公司 区域销售经理15:00--15:30赛默飞痕量元素分析在环境土壤的应用张志杨 赛默飞世尔科技(中国)有限公司 应用工程师15:30--16:00《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)》标准解读姜晓旭 中国环境监测总站 高级工程师16:00--16:30基于可见-近红外光谱和数据挖掘的土壤检测技术陈颂超 浙江大学杭州国际科创中心 科创百人研究员5月8日土壤三普检测+土壤重金属检测09:00--09:30土壤检测指标的方法验证刘善江 北京市农林科学院植物营养与资源环境研究所 质检中心主任09:30--10:00钢研纳克土壤检测综合解决方案文桦 钢研纳克检测技术股份有限公司 产品经理10:00--10:30基于近红外光谱技术的土壤参数光谱在线检测系统开发李民赞 中国农业大学 教授10:30--11:00三普土壤检测中关键点分析及内部质量控制刘桀佳 中国冶金地质总局第三地质中心实验室 总工程师14:00--14:30场地调查重金属分析要点简介陈素兰 江苏省环境监测中心 质量部部长 研究员14:30--15:00环境样品重金属检测技术研究进展曹莹 中国环境科学研究院 高级工程师15:00--15:30用逐步回归分析法筛选土壤重金属XRF校准模型经验系数法中的基体元素李玉武 研究员/理学博士 原国家环境分析测试中心分析测试技术研究室主任15:30--16:00场地重金属的现场快速筛查测试技术李培中 北京市科学技术研究院资源环境研究所(原轻工业环境保护研究所) 副研究员5月9日 土壤检测实操培训+“实战宝典编委面对面”论坛9:30-10:00原子吸收分光光度计的使用及其在土壤分析中的应用韩木先 湖北生态工程职业技术学院 高级实验师10:00-11:00“实战宝典编委面对面”论坛主持人赵小学 河南省土壤重金属污染监测与修复重点实验室 正高级工程师 李百球 江西省地质调查研究院 高级工程师报名转发会议,集赞30个还能得一本《ICPMS实战宝典》这羊毛不得不薅呀!(添加助教微信:13260310733),或扫码添加:
  • 土壤肥力检测仪
    土壤肥力检测仪(Soil fertility tester)——YT-TR05土壤肥力檢測儀山东云唐智能科技有限公司自主研发,目前采购模式均为单一来源采购,咨询客服均有优惠!山东云唐智能科技有限公司旗下另有山东云泽精密仪器有限公司、山东蓝虹光电科技有限公司,一共只此三家,其余皆不属于云唐公司体系,请知晓!土壤肥力检测仪特点:1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器,可测土壤水分含量、土壤环境温度、土壤电导率。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。土壤肥力检测仪是云唐智能科技厂家生产的YT-TR05型号仪器,是一款综合性全项目的土壤环境分析检测系统,检测精度达到农业大学进行课题试验的标准和要求,而且采用智能安卓操作系统,智能化程度高,人机互动性强,配有7寸液晶屏幕,可以清楚的看到操作的过程和检测的内容。仪器也内置了操作视频,可以帮助用户完成检测过程的学习,厂家提供包教包会的服务,可以比较全面的解答用户的疑问和使用过程中的问题。土壤肥力检测仪不仅对测土配方的不断深化有着非常重要的意义,而且在农业的增产方面以及增收方面,都有着非同小可的作用。在各个农业地区,要广泛应用,并开展有关测土配方施肥的重要行动,让他们可以有序、合理的进行施肥。有助于提高耕地的质量在我国土壤肥料检测体系的土壤肥料化验室是非常重要的一个角色,可以分析和研究土壤的样品,不仅可以保障耕地的肥效,还可以改善土壤的质量。
  • 土壤新标三次征求意见 检测方法提供新选择
    p   环保部近日发布了 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02006-T000-1-1-1.html" span style=" color: rgb(255, 0, 0) " strong 土壤 /strong /span /a 新标的三次征求意见稿,土壤新标的修订工作自2006年启动,并于2015年1月和8月两次公开征求意见。按照反馈意见修改完善后,已经过专家委员会审议通过,且经过了部长专题会议审议并原则通过。 /p p   在检测指标和监测方法方面,与第二版相比,明显的区别在于污染物分析方法从单一选择修改为可选择多种方法。根据三次征求意见稿,土壤监测的主要分析仪器为微波消解仪、AFS、波长色散XRF、AAS、分光光度计、GCMS、GC等。 /p p   更多土壤监测标准和解决方案可参考: a title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02006-T000-1-1-1.html" http://www.instrument.com.cn/application/SampleFilter-S02006-T000-1-1-1.html /a /p p 全文如下: /p p style=" text-align: center "   关于征求《农用地土壤环境质量标准(三次征求意见稿)》等三项国家环境保护标准意见的函 /p p   全国人大环资委办公室、全国人大常委会法工委办公室,全国政协人资环委办公室,国务院法制办公室秘书行政司,各有关单位: /p p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,配合土壤污染防治立法和制定、实施土壤污染防治行动计划,我部决定修订《土壤环境质量标准》(GB 15618-1995),加强土壤环境保护标准体系建设。 /p p   目前,标准编制单位已完成《农用地土壤环境质量标准》《建设用地土壤污染风险筛选指导值》和《土壤环境质量评价技术规范》三项标准草案,并已公开征求意见。结合土壤污染防治工作有关要求和征求意见情况,我部组织修改完成了《农用地土壤环境质量标准(三次征求意见稿)》及其编制说明、《建设用地土壤污染风险筛选指导值(三次征求意见稿)》及其编制说明、《土壤环境质量评价技术规范(二次征求意见稿)》及其编制说明,以及《关于〈土壤环境质量标准〉修订思路及有关情况的说明》。 /p p   现将上述材料印送给你们,请研究提出书面意见,于2016年4月15日前反馈我部。 /p p   联系人:环境保护部科技标准司 李晓弢 /p p   通信地址:北京市西直门南小街115号 /p p   邮政编码:100035 /p p   电  话:(010)66556215 /p p   传  真:(010)66556213 /p p   电子邮箱:biaozhun@mep.gov.cn /p p   附件:1.其他征求意见单位名单 /p p style=" line-height: 16px "   2. a href=" http://img1.17img.cn/17img/files/201603/ueattachment/e2cc5cc4-7174-42ad-9295-a36b2f8af707.pdf" 农用地土壤环境质量标准(三次征求意见稿).pdf /a /p p style=" line-height: 16px "   3. a href=" http://img1.17img.cn/17img/files/201603/ueattachment/fd6a5049-232a-4291-992b-ed5f996b0c97.pdf" 建设用地土壤污染风险筛选指导值(三次征求意见稿).pdf /a /p p   4. a href=" http://img1.17img.cn/17img/files/201603/ueattachment/1ffa6aef-2dd2-48db-8fe4-428690bea8f1.pdf" 土壤环境质量评价技术规范(二次征求意见稿).pdf /a br/ /p
  • 土壤中有机氯检测的方法验证
    土壤中有机氯检测的方法验证有机氯类农药是含氯元素的有机化合物,曾广泛用于防治植物病、虫害等,主要分为以苯为原料和以环戊二烯为原料的两大类。其化学性质稳定、难分解、易残留,持续破坏着生态环境,且其生物毒性和致癌性,严重影响人类健康,现已逐渐禁止或减少使用。本应用根据环境标准 HJ 783-2016、HJ 921-2017 等,将样品利用步琦一站式土壤分析方案的萃取仪、定量浓缩仪处理后,进行 GC 分析以检测有机氯化合物里 8 组分的回收率,整个流程在 1 小时内完成,同时一次平行萃取 6 个样品,考察更具代表性和严谨性,大大提高了工作效率,也优化了传统费时的样品处理和繁琐的操作流程。1设备快速溶剂萃取 SpeedExtractor E-916定量浓缩仪 Syncore R-12+回流模块GC Agilent 7890A+7693 Autosampler▲ 快速溶剂萃取仪 E-9162药品及耗材有机氯标准品(100 g/mL)质控土(西格玛)硅藻土:粒径 30-40 目石英砂:粒径 25-50 目丙酮:农残级正己烷:农残级3实验方法1、步琦样品管尾管定容准确度考察为了考察样品管定容的准确性,将样品溶液分别用 1mL 尾管和 1mL 容量瓶定容,并进行含量测定。2、快速溶剂萃取仪回收率考察先进行萃取池样品装填:石英砂-硅藻土-样品-石英砂,基质平面与池子顶端预留 1cm 左右的空隙。然后将萃取池立即放入已预热好的仪器中,开始萃取。萃取方法如下:表1:快速溶剂萃取仪 E-916 萃取参数萃取温度100 ℃压力100 bar萃取池40 mL接收瓶150 mL溶剂丙酮/正己烷:50%/50%循环2预热默认保持10/10 min排液2 /2min溶剂冲刷2 min气体冲刷2 min3、定量浓缩仪 Syncore R-12 回收率考察在 60mL 的丙酮-正己烷(1:1)溶液中加入有机氯的标准溶液10μL,用定量浓缩仪 R-12 进行浓缩,并用正己烷置换溶液两次,每次约 2mL。在第 2 次置换后将溶液浓缩至 1mL 左右后,用正己烷定容到 1mL,待上机分析检测。▲ 定量浓缩仪 Syncore R-124、质控土样的实验考察考察两个质控土样的情况,分别将土样装填进萃取池后,用 E-916 进行萃取,带尾管的 150mL 样品管接收好萃取液后,直接转移至 R-12 中进行浓缩,并经两次溶剂置换,浓缩至约 1mL,定容待测。4实验结果1、尾管定容实验结果样品管定容 1mL 和容量定容的结果比较如表 2。表2:尾管定容测试结果_容量瓶定容含量样品管定容含量α-666190.60190.46β-666186.56186.83γ-666192.36192.33δ-666184.80185.67p,p'-DDE205.90206.14p,p'-DDD216.10216.39o,p -DDT213.37213.83p,p'-DDT203.53203.31由上表可知,由步琦样品管定容分析的数据与容量瓶定容基本无差别,说明直接用样品管定容的方法可行,且避免了转移定容时造成的样品损失。2、快速溶剂萃取仪实验结果考察平行萃取的平行性和回收率。结果见下表:表3:土壤中有机氯的测定结果回收率12345α-66696.6%99.0%98.8%99.4%98.6%β-666102.9%105.3%105.2%106.2%105.9%γ-66697.9%100.0%100.0%100.6%99.8%δ-66695.1%96.5%94.6%95.9%90.5%p,p'-DDE100.9%104.0%103.7%105.3%104.6%p,p'-DDD105.5%108.8%108.7%110.0%109.0%o,p -DDT94.1%92.7%93.9%92.8% 93.7%p,p'-DDT95.6%93.6%95.8%94.4%94.3%由表 3 可知,5 个平行样的每个组分回收率均在允许的 RSD 范围内。且回收率均在 90% 以上,说明快速溶剂萃取的精密度符合要求、萃取方法合理。3、定量浓缩仪定量浓缩实验结果平行处理 6 个样品,考察定量浓缩的结果稳定性和准确性,结果如表 4。表4:土壤中有机氯的测定结果回收率123456α-66689.6%94.3%88.4%93.4%98.5%94.5%β-66692.9%97.9%97.0%102.8%97.5%101.4%γ-66688.9%93.5%91.0%96.9%96.2%97.3%δ-66692.1%96.7%96.8%103.0%95.9%100.2%p,p'-DDE93.6%98.0%97.3%102.9%97.1%101.0%p,p'-DDD90.5%94.6%95.0%100.4%94.6%97.2%o,p -DDT98.8%104.8%104.7%110.9% 104.0%108.6%p,p'-DDT101.0%107.7%106.9%114.4%106.2%112.0%有上表可知,低沸点组分的 666 回收率可以达到 90% 及以上,且 6 个数据平行性也在合理范围内,说明步琦定量浓缩仪配上回流模块能提高样品回收率和数据稳定性。4、质控土实验结果选取 2 个批次质控土进行全流程考察验证,得到结果下表:表5:质控土的测定结果_ZK1 测量值范围ZK2 测量值范围α-666170.3398-228196.18120-387β-666186.499-231208.04120-386γ-666182.0699-232200.88120-387δ-666182.1699-231204.44120-387p,p'-DDE116.5364-149163.9596-310p,p'-DDD113.8764-149155.3696-309o,p -DDT108.1963-147150.396-310p,p'-DDT88.0964-149133.0696-309有表 5 可知,两个质控土的含量均在质控范围内,说明整个萃取-浓缩方法可行。可顺利进行后续样品的检测分析。5结论本方法使用快速溶剂萃取仪 E-916,利用高温高压的萃取原理,获得的实验结果符合要求,同时一次平行萃取 6 个,约 30min 完成一批,大大提高了萃取效率,简化了样品前处理的等待时间,增加样品通量。同时萃取液接收瓶可以无缝转移至定量浓缩仪上进行溶剂浓缩定容,减少样品转移造成的损失,确保了有机物的高回收率和结果稳定性。6参考文献HJ 783-2016 土壤和沉积物有机物的提取加压流体萃取法。HJ 921-2017 土壤和沉积物有机氯农药的测定气相色谱法。SpeedExtractor E-916 Operation Manual.Syncore Platform Operation Manual.
  • 高精度土壤养分快速检测仪
    高精度土壤养分快速检测仪(高精度土壤養分快速檢測儀)是由山东云唐生产研发的用于测定土壤中养分含量的仪器,目前采购模式均为单一来源采购 。咨询客服均有优惠!山东云唐智能科技有限公司旗下另有山东云泽精密仪器有限公司、山东蓝虹光电科技有限公司,一共只此三家,其余皆不属于云唐公司体系,请知晓!高精度土壤养分快速检测仪如何指导土壤修复要想进行土壤的污染修复工作,就要了解土壤,对土壤进行全方位的检测,土壤团粒结构特别不稳定,容易受到外界环境比如施肥的影响,我们现在使用的化肥大部分都是酸性的,这样的土地上作物是无法健康成长的,土壤养分检测仪可以检测土壤中的各种成分,了解土壤的养分状况,从而依据作物的种植种类数据进行对比分析,找出合理的施肥用料配方,依据配方对土壤进行改良,从而提升作物产量。在农业生产中,肥料不是用的越多越好,过量施肥容易造成土壤污染,土壤酸碱化及板结化严重,所以在了解了土壤情况以后,应该减少化肥使用,增施有机肥,尤其是肥料中的各种元素搭配,避免单一肥料造成的土壤养分不均衡现象,实现作物平衡施肥、减少了肥料的浪费,真正实现农业的可持续发展。高精度土壤养分快速检测仪使用必要性测土施肥对农业发展的帮助作用很大,能实现科学种田的良性发展模式,是山东云唐智能科技新推出的高智能测土施肥仪器,使用安卓智能操作系统,四核处理器,配有7寸液晶屏幕,操作简单,大大减少了操作失误的问题,内置各种作物测土配方施肥功能,可对百余种全国农业、果树、 经济作物的目标产量科学计算推荐施肥量,指导农业生产。农民是测土配方施肥技术的执行者和落实者,也是受益者。检验测土配方施肥的实际效果,及时获得农民的反馈信息,不断完善管理体系、技术体系和服务体系。同时,为科学地评价测土配方施肥的实际效果,必须对一定的区域进行动态调查。测土配方施肥技术宣传培训是提高农民科学施肥意识,普及技术的重要手段。农民是测土配方施肥技术的使用者,迫切需要向农民传授科学施肥方法和模式 同时还要加强对各级技术人员、肥料生产企业、肥料经销商的系统培训,逐步建立技术人员和肥料商持证上岗制度。测土配方施肥是以养分归还(补偿)学说、同等重要律、不可代替律、肥料效应报酬递减律和因子综合作用律等为理论依据,以确定没养分的施肥总量和配比为主要内容。为了补充发挥肥料的大增产效益,施肥必须怀选用良种、肥水管理、种植密度、耕作制度和气候变化等影响肥效的诸因素结合,形成一套完整的施肥技术体系。作物生长发育需要吸收各种养分,但严重影响作物生长,限制作物产量的是土壤中那种相对含量最小的养分因素,也就是最缺的那种养分(最小养分)。如果忽视这个最小养分,即使继续增加其他养分,作物产量也难以再提高。只有增加最小养分的量,产量才能相应提高。经济合理的施肥方案,是将作物所缺的各种养分同时按作物所需比例相应提高,作物才会高产。高精度土壤养分快速检测仪特点 1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素以及铅、铬、镉、汞、砷等各种重金属含量。2、内置传感器接口,配备FDR传感器,可测土壤水分含量、土壤环境温度、土壤电导率。3、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。4、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。7、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。8、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。9、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。10、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。11、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。12、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制